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Abstract Large parts of the worldwide energy system are
undergoing drastic changes at the moment. Two of these
changes are the increasing share of intermittent generation
technologies and the advent of the smart grid. A possible
application of smart grids is demand response, i.e., the abil-
ity to influence and control power demand to match it with
fluctuating generation. We present a heuristic approach to
coordinate large amounts of time-flexible loads in a smart
grid with the aim of peak shaving with a focus on algorithmic
efficiency. A practical evaluation shows that our approach
scales to large instances and produces results that come close
to optimality.

Keywords Smart grids · Demand response · Scheduling ·
Heuristics

1 Introduction

The electrical energy system of the future will be based on
a smart grid, i.e., the confluence of communications and
power transmission technology. An anticipated feature of
smart grids is demand response, which is defined as “chan-
ges in electric usage by end-use customers from their normal
consumption patterns […] to induce lower electricity use at
times of high wholesale market prices or when system relia-
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bility is jeopardized” by the U.S. Department of Energy [17].
Demand response can be facilitated by various means, such
as time-of-use pricing, dynamic tariffs with price signals,
or centralized demand response. In the latter case, a central
authority controls devices connected to the smart grid. These
devices allow to control their load, for example by shifting it
to a different time, modifying the shape of the load curve, or
shedding the load altogether. An extensive survey regarding
the possibilities of smart grids and demand response is given
by Siano [16].

Throughout this paper, we deal with centralized demand
response (also called direct load control) and load shifting,
i.e., the shifting of the unmodified load curve of devices to
a desirable time. While this might technically be possible
in the foreseeable future, the owners of the devices might
not want to relinquish control over their devices. This can
be addressed with (financial) incentives for allowing such
control; however, these considerations are beyond the scope
of this paper.

Desirable and undesirable times for electrical loads can
be the result of a high level of renewable generation in the
electrical system. In contrast to conventional generation such
as coal, gas or nuclear power, solar and wind power cannot
be dispatched, i.e., the generation cannot be controlled to
match a fluctuating demand. It can therefore be desirable to
shift loads away from times of high demand or low solar and
wind availability.

From this arises the objective of peak shaving, where
the goal is to minimize the maximum power requirement
that exceeds the renewable generation. Intuitively, this peak
corresponds to the maximum capacity of the conventional
generation that needs to be activated to satisfy all demand.
Hence, demand response for peak shaving can reduce the
necessary installed conventional capacity, as for example
Zibelman and Krapels [19] show. Earle et al. [6] also come
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to this result, but also argue that the positive effect is dimin-
ished if the demand response is uncertain, e.g. because it is
based on price signals and relies on customers acting on these
signals. With direct load control, such uncertainties do not
exist.

1.1 Related work

Topics revolving around the smart grid are currently very
active throughout the energy community. Fang et al. [7] give
an overview over the developments in the field of smart grids.
Approaches to exploit the flexibility offered by smart devices
can be loosely separated into two groups, one considering
flexibility in household contexts, one considering industry
contexts. In the first group, Allerding et al. [1] present an
evolutionary algorithm aimed at scheduling devices within a
smart building that is equipped with generation. Li et al. [11]
present a mixed-integer linear programming approach to
schedule household appliances. Pedrasa et al. [13] use par-
ticle swarm optimization to schedule electrical loads in
households, where some loads can be shed.

In the context of industry, Ashok [2] looks at steel plants
and argues that these have a large potential for saving money
by using their flexibility. Mitra et al. [12] consider contin-
uous energy intensive processes and state a Mixed-Integer
Program (MIP) to optimize these under fluctuating energy
prices.

Some work has also gone into abstracting and unifying
both household and industry contexts: Petersen et al. [14]
develop a taxonomy of flexible electrical loads. Gottwalt et
al. [8] describe how to select a portfolio of flexible electric
loads to achieve maximum utility.

Besides the energy community, the task of scheduling
flexible electric demands touches two fields of research: in
operations research, the “time-constrained project schedul-
ing problem” (TCPSP) is well known, which contains our
problem as a special case. Guldemond et al. [9] give an
overview over work related to the TCPSP and propose a solu-
tion technique inwhich jobsmaymiss their deadline (or need
to be completed in “overtime”). The first ILP formulation for
the problem is given by Deckro and Hebert [5].

The second field touched is the computer science field of
machine scheduling. Here, the problem of minimizing the
number of machines to schedule a set of jobs is similar to
our problem. Cieliebak et al. [4] first introduce this idea,
show its hardness and present efficient algorithms for special
cases. Chuzhoy et al. [3] present an approximation algorithm
to this problem. In machine scheduling problems, jobs usu-
ally only take one machine simultaneously. When applying
machine scheduling approaches to smart grid scheduling,
machines correspond to the power requirement of a job; thus,
these approaches only directly apply to smart grid schedul-

ing scenarios where all electrical loads have the same power
requirement.

1.2 Contribution and outline

We present an iterative heuristic that minimizes electricity
usage peaks using load shifting of directly controllable loads
in smart grids—the Resource Utilization Scheduling Heuris-
tic (RUSH).

Benefits from using flexibility in smart grids increase
with the number of controlled loads. Thus, being able to
optimize flexible devices at large scales is crucial. Most of
prior research focuses on modeling sophisticated constraints
or optimization criteria, but neglects algorithmic efficiency.
Also, many approaches are based on meta heuristics which
are not fine-tuned to the problem at hand. Our presented
approach is focused on speed of computation even for very
large instances. According to the principle of algorithm engi-
neering, we intend to increase themodel complexity in future
research while trying to maintain algorithmic efficiency.

Section 2 formalizes the problem under study. In Sect. 3,
we describe the details of the RUSH heuristic in detail.
Section 4 presents an experimental evaluation of RUSH,
analyzing its performance and comparing result quality to
optimal results obtained via a mixed-integer linear program.
In Sect. 5, we outline what further steps we are going to take
with this research.

2 Problem formulation

We define our problem as a set of (electrical) loads with
release times, deadlines, execution times and power require-
ments. These loads can represent for example individual
cycles of devices such as refrigerators or A/C units, runs
of one-off devices such as ovens, or batches in industrial
processes.

Formally, let n be the number of loads. Then, each load
j ∈ {1, . . . n} is described by a tuple

(r j , d j , e j , p j ) ∈ N
3 × R

where r j (the release time) is the first time step in which j
may be executed, d j (the deadline) is the first time step in
which j must be finished, e j (the execution time or duration)
is the number of time steps j must be active consecutively and
p j is the amount of power required by j during its execution.
Note that we model time steps as discrete, while power is
continuous. Given all loads, we define a global release time
R = mini {ri } and a global deadline D = maxi {di }.

The objective is to find an assignment s ∈ N
n of start

times that minimizes the maximum total power requirement
over all time steps. For such an assignment to be feasible, it
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must hold for every load j that s j ≥ r j and s j + ei ≤ di . We
will call a feasible assignment a schedule.

Note that this model aims to minimize the peak of all
consumption. However, as stated in the introduction, one is
usually interested in minimizing the (maximum) consump-
tion that exceeds renewable generation, the so-called residual
load. In our model, this can easily be achieved by introduc-
ing a set of immovable (by virtue of deadlines and release
times) jobs that represent the difference between the amount
of renewable generation available during the respective time
interval and the maximum renewable generation.

3 Resource utilization scheduling heuristic

In this section, we describe how RUSH works, starting with
a high level overview.

Given a problem as defined in Sect. 2 and a feasible sched-
ule to the problem (i.e., a start-time assignment s ∈ N

n), we
define its profile as a sequence of intervals, each of which
marks a time span in which the schedule requires roughly
the same amount of power.

Formally, let ps(t) be the power requirement at timestep t
induced by schedule s. To group timesteps with roughly the
same power requirement together, we define a set of power
levels. Let λ be a parameter specifying the size of each power
level. We then say that during time step t , the schedule s
executes in power level l if and only if lλ ≤ ps(t) < (l+1)λ.

For a given schedule, profile P = (I,L) consists of a
sequence of intervals I and a function L : I → R

+. Here,
I is a sequence of consecutive, disjunct, right-open intervals
spanning the whole scheduling horizon, i.e., ∪iIi = [R, D],
∩iIi = ∅ and lim sup(Ii ) = min(Ii+1). Correspondingly,
for Ii ∈ I, L(Ii ) states the power level that the schedule is
in during Ii .

The working principle of RUSH is to first generate a feasi-
ble schedule by scheduling every load at its release time, and
then repeatedly pick a load j , determine the highest power
level during the scheduled execution of j (let this be l̂) and
then move j so that the total time the schedule executes in
power level l̂ is minimized while not increasing the time exe-
cuted in any level above l̂.

For such an iterative approach it is desirable to have the
individual iterations execute as efficiently as possible, so that
the algorithm arrives at a satisfactory solution as quickly as
possible. Because of this, most computations performed by
RUSH can be implemented as a set of simple operations on
sets of intervals. Abusing notation a bit, we treat I as a func-
tion which is the inverse of L: Let I(l) = {Ii : L(Ii ) = l}
be the set of intervals in the profile where the schedule is in
level l. Also, for a fixed load j , let P j = (I j ,L j ) be the
profile derived from P by removing load j .

For a fixed load j , define the base level l∗ of load j as the
maximum level in P j during the scheduled execution in j .

Consider Fig. 1. Here, the maximum power demand below
the highlighted load j is in level 3. Thus, l∗ = 3 in this
example.

Intuitively, executing j during any of I j (l∗), i.e., the times
in which the schedule without j executes in the base level,
results in power consumption roughly equal to the old maxi-
mumpower consumption during the execution of j . Thus, we
try to minimize the amount of j we schedule during I j (l∗).
We also forbid scheduling any of j during any I j (l∗ + k)
for any k > 0, i.e., no part of j may be scheduled on top
of a level that is higher than the base level. This leaves
T j = ∪i∈{0,...l∗−1}I j (i) as the desirable area to schedule
j in, called the target. In the example of Fig. 1, the target is
everything in level 2 and below (after j has been removed),
i.e., T j = {[0, 1), [6, 17)}. We further define a set of forbid-
den intervals, in which j may not be started. We do so by
taking all intervals of levels above l∗ in I j and extending
these intervals by e j − 1 to the left:

F j =
{

[max(0, a − e j − 1), b) : [a, b) ∈
⋃
i>l∗

I j (i)

}

In the example of Fig. 1, the only time the profile (after
removal of j) is in a level above l∗ = 3 is in [17, 19). Since
j has length 12, that results in F j = {[6, 19)}. It is easy to
see that starting j during any of these intervals would cause
a part of j to be scheduled during a higher power usage than
before.

Observing that d j − e j + 1 is the latest time step at
which we can start j without missing its deadline, we
now combine everything. We want to find a start point in
[r j , d j − e j + 1)\F j that maximizes j’s overlap with T . We
can show that to find this optimum position, it is sufficient to
check the borders of the intervals in [r j , d j )\F j plus all time
steps t for which j would be right-aligned in an interval in
T j ∩ [r j , d j ), i.e., the set of candidates for start positions is

C j = {x : [x, ·) ∈ ([r j , d j − e j + 1)\F j )}
∪ {x : [·, x) ∈ ([r j , d j − e j + 1)\F j )}
∪ {max(x − e j , 0) : [·, x) ∈ T ∩ [r j , d j )}

For each ŝ ∈ C j , we check the size of [ŝ, ŝ + e j ) ∩ T j and
select the start point with the largest overlap.

Putting everything together, one iteration of RUSH works
in these five steps:

1. Randomly select a load j ∈ {1, . . . n}
2. Remove j from the current schedule
3. Compute I j ,L j , T j ,F j and C j as above
4. In C j , find the start candidate that results in the largest

overlap with T j

5. Re-insert j into the schedule at this point
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Fig. 1 Example setting before moving load j . The green rectangle
corresponds to the length and power requirement of j . On the top, the
release and deadline of j are shown togetherwith j . Below is a graphical
depiction of a possible profile, its discretization into levels, and j’s
contribution to it. Base level, target and forbidden sets are indicated
below (color figure online)
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Fig. 2 Example setting after moving load j

In the example in Fig. 1, the set of candidates is {0}∪{5}∪{5}
as per the above formula. Indeed, setting s j = 5 results in
the largest overlap of j with the target of {[0, 1), [6, 17)}.
Moving j to start at time step 5 results in j being executed
for only one time step inside level 4, as seen in Fig. 2 instead
of five time steps in Fig. 1.

Efficient implementation The sets computed in Step 3
above can all be computed via efficient set operations
from L and I. More precisely, for T j (resp. F j ), we need
unions in the style of ∪i≥kI(i) (resp. ∪i≤kI(i)) for some
value k. To facilitate efficient access to these unions, we
store each of them directly. However, since in our case
∪i≥kI(i) = [R, D)\ ∪i≤k−1 I(i), it suffices to store
∪i≤k−1I(i) for all possible levels k. We do so using Boost’s
ICL datastructures.1

1 http://www.boost.org/doc/libs/1_64_0/libs/icl/doc/html/index.html.

4 Experimental evaluation

We evaluate RUSH experimentally by using it to schedule a
set of instances of the problem introduced in Sect. 2. Runs
of RUSH were conducted on a machine with four Intel Xeon
E5-1630 cores at 3.7 GHz (of which only one was used)
and 128 GB of RAM, the baseline Mixed-Integer Program
(MIP) was run on a machine with 16 Intel Xeon E5-2670
cores at 2.6 GHz and 64GB of RAM, using Gurobi 6.5 as a
solver.

Wegenerated twogroups of instances:One set ofmedium-
sized instances and a set of very large instances. For the
medium instances, the MIP described in Sect. 4.1 yields
acceptable lower bounds within reasonable time, allowing
us to compare the solution quality obtained by RUSH to a
lower bound. On the set of large instances, we demonstrate
the scalability of RUSH.

For the set ofmedium-sized instances, the number of loads
per instance was drawn uniformly at random from the range
[100, 400]. For the large instances, we generated 10000 loads
per instance.

The duration of all loads was also randomly drawn, from
a normal distribution with a mean of 30, a standard deviation
of 20, and a minimum value of 1. For each load, we assigned
the release time uniformly at random between 0 and 200 (0
and 2000 for the large instances), and the slack, that is the
difference between deadline minus release time and execu-
tion time, i.e., the amount of flexibility of a load, uniformly
between 0 and 200 (0 and 2000 for large instances).

Finding randomly generated instances which adequately
represent real smart grid scheduling problems is not easy,
and has been done in various ways throughout literature.
Petersen et al. [14] randomly chose all loads lengths from
{2, 3, 4, 5}, all power requirements from {1, 2, 3, 4} and the
deadline for each load from {1, . . . 100} while all loads are
released at t = 1. Li et al. [11] explicitly model four house-
hold appliances: kettles, toasters, ovens and refrigerators.
Each has a unique power consumption and pattern of release,
deadline and duration. Yaw et al. [18] also model individual
household appliances, however they base their models on
consumption profiles obtained from the REDD dataset [10].
We intentionally chose to generate our instances randomly
and not by explicit modeling, since we think that a small
number of household appliances alone are not sufficient to
represent the various demands in the electrical system. By
picking values from a continuous distribution instead of a
fixed setwe tried to have asmuchdiversity among the loads as
possible.

On each of these instances, we ran the MIP described in
Sect. 4.1 for a maximum of 1200 s. For most instances, an
optimal solution could not be found in this time. However,
from the MIP runs we obtain lower bounds on the optimal
solution quality as well as non-optimal feasible solutions.
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Fig. 3 Convergence speed of
RUSH〈4000〉. Measurements
were taken every second. All
measurements fall within the
blue area. The black line
indicates the median value at
every point in time. All results
are normalized by the optimum
value RUSH〈4000〉 computes on
the respective instance. a large
instances, b medium instances
(color figure online)

(a) (b)

Fig. 4 Histogram of the gaps achieved by the MIP solver

Table 1 Median, upper quartile and maximum values for the quality
gap achieved by the RUSH variants

Algorithm Median 0.75-quantile Max

RUSH〈20〉 13.5 15.3 23.7

RUSH〈40〉 10.5 12.1 17.5

RUSH〈60〉 9.1 10.4 16.6

RUSH〈200〉 7.4 9.4 17.2

RUSH〈1000〉 7.4 9.4 17.5

RUSH〈4000〉 7.6 9.4 18.5

4.1 Baseline mixed-integer linear program (MIP)

The MIP used to compute a baseline is based on the formu-
lation by Pritsker et al. [15]. The basic idea is to introduce a
matrix of n× (D− R) binary variables x jt , where x jt = 1 if
and only if load j starts in time step t . The original MIP for-
mulation solves the Resource-Constrained Project Schedul-
ingproblem, but rewriting it for theTime-ConstrainedProject
Scheduling problem, of which our problem is a special case,
is straightforward.

4.2 Results

It is easy to see that the quality achieved by RUSH depends
on the number of levels that RUSH discretizes the power
requirement into. We ran RUSH on all instances with 20, 40,

60, 200, 1000 and 4000 levels each. We write RUSH with k
power levels as RUSH〈k〉.

We first examine the speed with which RUSH converges
against a solution. The individual iterations become more
expensive the finer the power consumption is discretized, i.e.,
the more power levels RUSH uses. Thus, we mainly look at
the speed of RUSH〈4000〉, the largest number of levels we
evaluated.

Figure 3 shows for every of the runs of RUSH〈4000〉 on
each instance of medium resp. large size how close each
computation got to the final result after what time. Note that
1.0 in this case does not indicate the global optimum of the
respective instance, but rather the optimal value that RUSH
achieved. Measurements were taken every second. While on
medium instances, the near-optimum value is achieved after
10 s for all runs, it takes about 100 s on the large instances.
On medium instances, the median solution is near-optimal
after 2 s already.

We now take a look at the quality of the computed solu-
tions. The MIP described in Sect. 4.1 is not suited to solve
a significant number of medium-sized instances to optimal-
ity within reasonable time. Therefore, we take the average
between lower bound and quality of the best feasible solu-
tion found by the MIP as baseline. Since the MIP does not
compute anything useful on the large instances, the quality
comparison is only done on the medium instances. Figure 4
shows a histogram of the gaps that the MIP achieved on the
medium instances after 1200 s, i.e., the ratio between best
feasible solution found and best lower bound.

Figure 5 show histograms of the gap between the baseline
and the solutions achieved by RUSH with the various levels.
Table 1 reports median, upper quartile and maximum values.
It can be seen that going from 20 to 200 levels, the average
solution quality improves significantly, even though theworst
case is not improved bymuch after 40 levels. From 200 levels
upwards, result quality does not improve much anymore. In
fact, solution quality does even deteriorate marginally when
going from 1000 to 4000 levels. This could be explained
by the fact that in RUSH〈4000〉, individual iterations are
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Relative quality of variations of RUSH compared to the baseline derived from the MIP. a RUSH〈20〉, b RUSH〈40〉, c RUSH〈60〉, d
RUSH〈200〉, e RUSH〈1000〉 and f RUSH〈4000〉

more expensive and therefore less iterations can be computed
within the given time limit.

5 Conclusion and future work

We have presented RUSH, an iterative heuristic to exploit
flexibility in smart grids on a large scale. We have shown
that RUSH yields results with good quality in short time.
Still, this approach is research in progress.

There are several directions that seem promising. First,
RUSH can be improved to yield even better results. Second,
RUSH can be extended to be applicable to more complex
models. Finally, a more thorough evaluation of RUSH, and
a direct comparison against prior algorithmic approaches
should be done.

To improve RUSH, we intend to find a smarter way of
(randomly) selecting the load to be moved in each iteration.

Also, we did not yet pay any attention to the solution
RUSH starts with. Using a simple list scheduling heuristic
instead of initially scheduling every load at its release time
might lead to faster convergence.

In terms of extending RUSH, the first thing that comes
to mind is adding dependencies between loads, i.e., allow-
ing loads to only start after some predecessors finished.
What needs to be done is to limit the feasible range of start
candidates in Step 4 of the algorithm presented in Sect. 3.
Regarding the evaluation, while we show that RUSH arrives
at good solutions in very short time, solution quality and
performance should be directly compared to competing algo-
rithmic solutions such as the GRASP-based metaheuristic
by Petersen et al. [14] or the PDM heuristic by Yaw et al.
[18].

Finally, since our heuristic works iteratively, a technique
like simulated annealing to climb out of local optima seems
applicable: After every iteration, one can decide to accept
the modified solution or go back to the previous solution. A

scheme in which this decision is driven by some cool down
factor as in simulated annealing might be beneficial.
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