
Batch Dynamic Single-Source Shortest-Path
Algorithms: An Experimental Study ?

Reinhard Bauer and Dorothea Wagner

Karlsruhe Institute of Technology (KIT), Germany
{rbauer,wagner}@ira.uka.de

Abstract. A dynamic shortest-path algorithm is called a batch algo-
rithm if it is able to handle graph changes that consist of multiple edge
updates at a time. In this paper we focus on fully-dynamic batch algo-
rithms for single-source shortest paths in directed graphs with positive
edge weights. We give an extensive experimental study of the existing al-
gorithms for the single-edge and the batch case, including a broad set of
test instances. We further present tuned variants of the already existing
SWSF-FP-algorithm being up to 15 times faster than SWSF-FP. A sur-
prising outcome of the paper is the astonishing level of data dependency
of the algorithms. More detailed descriptions and further experimental
results of this work can be found in [1].

1 Introduction

The single-source shortest-path problem is a fundamental graph problem with
many real-world applications, such as routing in road networks, routing/data
harvesting in sensor networks and internet routing using link state protocols (for
example OSPF and IS-IS). In these applications shortest-path trees are stored
and have to be updated whenever the underlying graph undergoes changes [2–5].

Algorithms that update the trees without a full recomputation from scratch
are called dynamic single-source shortest-path algorithms. Such algorithms slightly
differ in the type of their output. Some store only the distances from the source,
while others additionally store a shortest-path tree or the shortest-path sub-
graph. Some of the algorithms known in the literature are only able to cope with
the update of one edge at a time, while others can perform batch updates, i.e.
update the shortest-path information after multiple edges have simultaneously
changed their weight.

We consider edge insertions and deletions as special cases of weight changes:
Deletions correspond to weight increments to infinity, while insertions are weight
decrements from infinity. An algorithm is called fully dynamic if both weight
increases and decreases are supported, and semi-dynamic if only weight decreases
or only increases are supported.
? Partially supported by the Future and Emerging Technologies Unit of EC (IST

priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL) and the
DFG (project WAG54/16-1).



In this paper we focus on fully-dynamic batch updates for directed graphs
with positive edge weights. In order to compare the different approaches, the
only requirement that we make regarding the tested algorithms is that they
update the distance vector. We furthermore demand that the algorithms be able
to cope with edge insertions and deletions. For our experimental study, we apply
integer edge weights.
Related work. Ramalingam and Reps [6] introduce the batch algorithm SWSF-
FP, Narvaez et al. [2] propose the Narváez-framework containing six single-
edge update algorithms and a modification to the framework leading to the
according batch algorithms. Pure single-edge update algorithms are RR [7] (due
to Ramalingam and Reps) and FMN [8] (by Frigioni et al). Buriol et al [9]
present a heuristic technique to speed up RR-like approaches. The technique
is similar to techniques used in the Narváez-framework but does not support
edge insertions or deletions. Furthermore, in [9] the RR algorithm is adapted to
maintain a special (shortest-path) tree proposed in [10].

There is no algorithm known in the literature for which the worst case is
asymptotically better than recomputing the new solution from scratch. In the
original works the algorithms described in Section 3 are theoretically analyzed
with respect to different measures. These measures mostly depend on the size of
the subgraph for which the shortest-path subgraph changes.

There is some work on the variant of the problem where edge weights may
also be negative. In [7] the algorithm RR is adapted to cope with the existence
of negative cycles, in [11] the same is done for the algorithm FMN. In [12]
Demetrescu gives some algorithms for that problem. These algorithms use the
reweighting technique, which incorporates a complete Dijkstra run on the graph
(with changed edge weights). Hence, this approach is impractical for the problem
with non-negative edges.

A well-studied related problem is the fully dynamic all-pairs shortest-path
problem, in which the distances between all pairs of nodes have to be maintained
while the graph undergoes changes. See [13] for a survey on the problem.

There is only few experimental work on this topic, all concentrating on single-
edge updates. In [14] the algorithms FMN, RR and a full recomputation from
scratch are compared on two instance classes: Erdös-Rényi graphs, where up-
dates are chosen uniformly at random and a graph representing the internet
on the AS-level, where updates simulate the failure and recovery of the links.
In [2] the algorithms of the Narváez-framework are evaluated on graphs orig-
inating from a generator. This generator randomly places nodes on a grid and
connects them by edges with probability that exponentially decreases with the
distance of the nodes. The generator does not seem to be available any more. In
[15] the algorithms SWSF-FP, RR, FMN, Narváez and full recomputation
from scratch using Dijkstra, Bellman Ford, D’Esopo Pape are evaluated
with single-edge updates on Erdös-Rényi-like graphs. In [4] one algorithm of the
Narváez-framework is evaluated on random single-edge updates on a graph
representing the road-network of Western Europe. In [9], the algorithm RR as
well as seven variants thereof are evaluated on a real world AT&T IP network,



synthetic internet-related graphs and a large set of other synthetic instances,
namely those of [16] with non-negative edge lengths.
Overview. This paper is organized as follows. Section 2 states basic definitions
and formally introduces the problem. Section 3 reviews the existing algorithms.
Section 4 presents our tuned variants of the SWSF-FP-algorithm, while an
extensive experimental study of these algorithms on synthetic and real-world
data is given in Section 5. The paper ends with a conclusion in Section 6.

2 Problem Statement

Let G = (V,E) be a directed graph with n nodes and m edges and a non-negative
length function len : V × V → R

+ ∪ {∞}. Let s ∈ V be an arbitrary but fixed
source. With d(v) we denote the length of a shortest s-v-path in G for any v ∈ V .

A batch update is a set of edge modifications on G which can be edge inser-
tions, edge deletions, edge weight increases and edge weight decreases (that keep
the length function non-negative). We want to maintain a distance vector D[]
containing d(v) for each node v in a dynamic environment where G is undergo-
ing batch updates. After each batch update, D[] (and possible required auxiliary
data needed by the recomputation algorithm) has to be updated accordingly.

Throughout the text, we will cope with the recomputation of D[] and the
auxiliary data when one concrete batch update is given (because of the re-
computation of the auxiliary data the algorithms are able to handle following
updates). We write lenold for length function and dold for distance before the
update. Accordingly we write len for length function and d for distance after
the update. For notational convenience, we consider inserted or deleted edges
to be existing in the original and the updated graph and set the edge length to
infinity, if necessary.

Some of the following algorithms are designed to handle only one edge modifi-
cation at a time. Obviously, repeated application of these algorithms also solves
the batch case. We call such algorithms iterative algorithms while the others
are called batch algorithms. Iterative algorithms can be split into two parts: the
incremental part handles edge insertions and weight decreases while the decre-
mental part handles edge deletions and weight increases. This terminology can
be unintuitive on a first glance but originates from the point of view that the
graph increases when edges are inserted.

3 Overview of Algorithms

In this section, we give an overview on the algorithms evaluated in our ex-
perimental study. Each algorithm includes a main phase in which a min-based
priority queue Q is used to recompute the distances in a Dijkstra-like fashion
but on a smaller subgraph.
RR. Ramalingam and Reps [7] describe the iterative algorithm RR that handles
only edge insertions and deletions. It can be directly transferred to an algorithm
that works with weight increases and decreases. We will use this variant.



FMN. The FMN-algorithm of Frigioni et al. [8] is an iterative algorithm similar
to the algorithm RR that uses more complex auxiliary data to obtain better the-
oretical worst case bounds. The approach relies on the existence of a k-bounded
accounting function on G, which is a mapping K : E → V such that for each
edge (u, v) the node K(u, v) is either u or v and such that for each node n,
no more than k edges are n-valued. We use the constructive 2-approximation
algorithm described in [11] for finding a k-bounded accounting function on G.
Narváez. Narvaez et al. [2] propose a batch algorithm incorporating two degrees
of freedom. One degree of freedom is the choice of Q which does not necessarily
need to be a priority queue but only has to maintain the operations INSERT and
EXTRACT. Narvaez et al propose a FIFO queue (Bellman-Ford like approach),
a heap (implemented as binary heap or linked list) and a D’Esopo-Pape like
approach. The other degree of freedom consists of two different variants for
the main phase of the algorithm which we will describe below. We will refer
to the diffent variants as NAR{1st, 2nd}{HEAP, BF, PAP}. The main idea
of the Narváez-framework is to early-propagate distance changes through the
tentative shortest-path tree.

4 Tuning SWSF-FP

In this section we will review the algorithm SWSF-FP which is due to Ra-
malingam and Reps [6] and give some tuned variants of it. The input of the
algorithms is the outdated distance vector D[], the graph G, the original length
function lenold, the batch update U = (u1, . . . uk) and some auxiliary data which
will be described for each algorithm separately. The output is the updated dis-
tance vector D[] and the updated auxiliary data.
Notation. Given the outdated distance vector D[], we say we relax an edge
(u, v) when we check if D[v] > D[u] + len(u, v). We say we relax and update an
edge (u, v) when we set D[v] := min{D[v], D[u] + len(u, v)}. An edge (u, v) is
said to be consistent if D[v] = len(u, v) + D[u] and underconsistent if D[v] >
len(u, v) + D[u]. The consistent value con(v) of a node v is

con(v) :=
{

min(u,v)∈E {D[u] + len(u, v)} , v 6= s
0 , v = s

A node is said to be consistent if D[v] = con(v) and to be over-consistent if
D[v] > con(v). As convention, we use min ∅ := ∞.
SWSF-FP. For each node v, a label d[v] is given. Initially, d[] equals D[] (in
order to save time for the copy process we implemented d[] as auxiliary data).
We say we adjust an inconsistent node v when we set d[v] := con(v) and insert
v with priority min(D[v], d[v]) in Q. In case v is already in Q we only update its
priority. We adjust a consistent node v when we remove it from Q. If v is not in
Q we do nothing.

Initially, we adjust each node which is target of an edge in U . Main Phase.
While Q is not empty, we perform as follows: We extract and delete the minimum
node w from Q. If d[w] < D[w] we set D[w] := d[w] and adjust each outgoing



neighbor of w. If d[w] > D[w] we set D[w] := ∞ and adjust w and each of its
outgoing neighbors.
Tuned SWSF. This algorithms basically works like the SWSF-FP-algorithm,
but with less computational effort. When performing SWSF-FP we have to
relax all incoming edges of a node n in order to compute con(n). Tuned SWSF
relaxes fewer of such incoming edges: When we adjust an outgoing neighbor v of
a node w with d[w] < D[w], we compute con(v) by min{d[w] + len(v, w), d[v]}.
The same strategy works in the initialization phase when we compute con(n)
for a node n that is the target node of an edge with decreased edge weight.
When we adjust an outgoing neighbor v of a node w with d[w] > D[w], we set
Dold := D[w] and D[w] := ∞. We can skip v when Dold + len(w, v) 6= d[v]. The
same strategy holds in the initialization phase for target nodes of edges with
increased weight.
Tuned SWSF RR. This variant enhances the algorithm Tuned SWSF with a
technique adapted from the RR-algorithm. For each node v, a label indegree(v) is
given indicating the number of edges (u, v) with D[u]+ len(u, v) = d[v]. Further,
for each edge (u, v) a boolean label DAG(u, v) is given indicating if D[u] +
len(u, v) = d[v]. The labels indegree and DAG are directly updated whenever
len, D[] or d[] change. The algorithm performs like Tuned SWSF with the
following difference: After a node v with d[v] > D[v] is extracted from Q only
those edges (v, w) have to processed for which indegree[w] = 0.
Tuned SWSF NAR. This variant enhances the algorithm Tuned SWSF
with a technique adapted from the Narváez-algorithm. For each node v that
is not the source, a label P (v) is given pointing at another node, such that
D[P (v)] + len(P (v), v) = d(v). At the beginning a shortest-path tree T on the
original graph is given implicitely by this label. The main phase of the algorithm
works like the main phase of Tuned SWSF. The initialization phase works
as follows: First, we update the edge weights. We denote by A the set of all
nodes that lie behind a target node of an updated edge. Then, we update the
distances D[] of nodes in T according to the new edge weights (but to the original
shortest-path tree T ). This can be implemented such that for each node v ∈ A,
the distance D[w] is updated at most once. Then, we set d[v] = con(v) for each
node v which either is contained in A or has a neighbor in A. Finally we insert
each node with d[v] 6= D[v] with priority min{d[v], D[v]} in Q.

5 Experiments

In this section, we present an experimental evaluation of the algorithms described
above. Our implementation is written in C++ (using the STL at some points).
Our tests were executed on one core of an AMD Opteron 2218, running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2, using optimization level 3.

For each experiment, 1000 update instances were generated. To properly
measure the speed-ups, a full Dijkstra run is performed directly after each up-
date and the speed-up compared to that run (i.e. the time needed by Dijkstra’s



algorithm divided by the time needed by the update algorithm) is computed.
Finally we compute the mean value of these speed-ups. Thus, measurement dis-
turbances due to background processes etc are avoided as much as possible. For
Tables 1-4 we showed in bold letters all algorithms whose performance was at
least 85% of the best observed performance.

In our experiments we evaluated all previously described algorithms. We did
not include the heuristic of Buriol et al [9] because it does not support edge
insertions or deletions. Further, we did not include the D’Esopo-Pape variants
of the Narváez-framework because pretests had revealed some instances with
extremely bad performance with this approach. To gain further insights in the
performance of the batch-algorithms (Narváez and Tuned SWSF), we exe-
cuted these two times: one time with processing the edges in batch, as stated
originally and one time with iteratively processing the edges one after another.
We refer to these approaches as itNar and Ittuned SWSF. Note that we refer
to the Narváez-framework as a batch algorithm while it actually does not per-
form updates completely in a batch: its initialization phase handles edge updates
iteratively but the following main phase handles all updates in a batch.

5.1 Graph Instances

UNIT DISK. Given n and m, a unit disk graph is generated by randomly
assigning each of the n nodes to a point in the unit square of the Euclidean
plain. Two nodes are connected by an edge in case their Euclidean distance is
below a given radius. This radius is adjusted such that the resulting graph has
approximately m edges. As edge weights we use the Euclidean distance to the
power of 0 (hop length), 1 (Euclidean distance) and 2 (energy). All tested graphs
consist of 15 000 nodes.
RAILWAY. The graph RAIL represents the condensed railway network of Eu-
rope, based on timetable information, provided by the company HaCon [17] for
scientific use. Nodes represent stations while edges represent direct connections
between the stations. The edge weight corresponds to the average travel time
between two stations. The graph has 29 578 nodes and 159 914 edges.
AS-GRAPH. The graph AS-HOP represents the internet as of 2008/3/26 on
the AS-level, i.e. each node corresponds to an autonomous system and edges
represent connections between autonomous systems. This graph is taken from
the Routeviews project page [18]. It has 27 909 nodes and 114 474 edges. The edge
weight is 1 for each edge. The same graph with edge weights chosen uniformly
at random from the interval [1, 1000] is called AS-RAN.
CAIDA. This dataset represents the internet on the router level, i.e. nodes are
routers and edges represent connections between routers. The network is taken
from the CAIDA webpage [19] and has 190 914 nodes and 1 215 220 edges. The
edge weight is 1 for each edge.
ROAD. We evaluate three road networks provided by the PTV AG [20]. DEU
represents Germany with 4 378 447 nodes and 10 968 884 edges, NLD the Nether-
lands with 946 632 nodes and 2 358 226 edges and LUX represents Luxembourg



with 30 647 nodes and 75 576 edges. The edge weights are the corresponding
travel times with speed profile ‘slow car’.
GRID. These are fully synthetic graphs based on two-dimensional square grids.
The nodes of the graph correspond to the crossings in the grid. There is an edge
between two nodes if these are neighbors on the grid. Edge weights are randomly
chosen integer values between 1 and 1000. GRID 100 is a 100x100 grid graph
while GRID 300 is a 300x300 grid graph.

5.2 Assessing the Performance of the Algorithms

Let U = {u1, . . . , uk} be a set of updated edges. By ∆(G, U) we denote the
number of vertices in V for which the distance from the source changes due
to the update. The expected speed-up of an update is the number of vertices in
the graph divided by ∆(G, U). This value is roughly the speed-up we expect
from a good update algorithm. Of course, speed-ups can even be higher for
special instances. It experimentally turned out that when the topology of the
original shortest-path tree does not change, the propagation of the updated
edge’s weights through the tree can gain a large speed-up.

When we want to measure the difficulty of an update for an iterative algo-
rithm we consider U = (u1, . . . , uk) to be ordered. We perform the updates ui

iteratively in the given ordering (always additional to the former updates) ob-
taining a sequence of graphs G = G0, G1, . . . , Gk. We write δ(G, (u1, . . . , uk)) :=∑k−1

i=0 ∆(Gi, {ui+1}). We have the following hypothesis: the smaller the difference
between ∆(G, U) and δ(G, U) is, the less do the contained single-edge updates
interfere and it is reasonable to use an iterative algorithm for the update. If the
difference is great, an iterative algorithm would change the distance of many
nodes multiple times. Hence, it is more appropriate to use a batch algorithm.
The experimental evaluation will support our hypothesis.

5.3 Space-Saving Implementation of RR

The algorithm RR needs to maintain the shortest-path subgraph. This subgraph
is implicitly given by each edge (u, v) with d[u] + len(u, v) = d(v). We imple-
mented the algorithm doubly. One time with explicitely storing the subgraph
(RR DAG) and one time with reconstructing it when needed (RR). It turned
out that there are only small differences between both implementations, with
no variant being clearly superior. We therefore only report the results for the
space-saving implementation RR.

5.4 Single-Edge Update Experiments

We start our experimental study by single edge updates. Because of space restric-
tions and a different focus of our paper we do not carry out a separate analysis
for the decremental and the incremental case. An update consists of choosing
an edge uniformly at random and multiplying its weight by a random value in
(0, 2). The results can be seen in Table 1.



We observe that the algorithms of the Narváez-framework have only tiny
differences in performance with Nar-1st BF being slightly (but not significantly)
faster most times. There is no such uniform behavior for the SWSF-FP-like al-
gorithms. Tuned SWSF is always faster (between 1.3 and 6 times) than SWSF-
FP. The algorithm Tuned SWSF RR is always at least as fast as SWSF-FP
and up to 5.5 times faster. The algorithm Tuned SWSF NAR seems to be very
volatile being between half as fast and 4 times faster than SWSF-FP.

Comparing the different classes of algorithms, we find the algorithms to per-
form quite differently, but within the same order of magnitude. The algorithm
FMN is most times much slower than the other ones. This is due to the overhead
caused by maintaining and reading the priority queues used by this algorithm.
The technique used in this algorithm can pay off in case nodes with high degree
exists (for which many edge-relaxations can be saved). This is not the case for the
test instances used. Exceptions are the INTERNET instances CAIDA, AS-HOP
and AS-RAN. Here, the gap to the other algorithms is much smaller, (which
meets the theoretical considerations). Hence, it is to be expected that there are
dense graph classes for which FMN is the superior algorithm. On the ROAD
and GRID instances, the Narváez-framework is superior. This is because the
structure of the shortest-path tree stored by the algorithm hardly changes on
these experiments. Therefore, the early-propagation of the weight change works
well. On the INTERNET instances, RR is the fastest algorithm. Looking at the
small value of ∆(G, U), we can see that updates hardly have any impact on these
instances, which favors the RR-algorithm with its small computational overhead
and the early detection of edge weight increases that do not change distances on
the graph.

The achieved speed-ups vary greatly between the instances. This is mainly
due to the different structure of the underlying graphs, which results in greatly
differing expected speed-ups. It is interesting to see that in nearly all cases the
best actual speed-ups are close to the expected speed-ups or even higher. This,
in combination with the small absolute runtimes in the range of microseconds,
makes us expect that there is not much space for further improvement for the
single-edge update case.

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GR100 GR300 UNIT H UNIT E

FMN 42 1504 29087 151 22702 1624 2182 25 142 327 36
SWSF-FP 112 3759 65404 366 12429 416 691 59 351 1613 31
tun SWSF-FP 152 5140 84873 562 16406 893 3442 105 598 2436 186
tun SWSF-NAR 147 3354 70245 215 9306 614 695 94 523 748 129
tun SWSF-RR 118 3798 66068 412 26093 2148 3766 74 430 2096 102
RR 155 4666 74857 510 34586 2599 4057 103 568 2519 137
Nar-1st BF 284 5335 100944 357 6578 417 305 138 784 1176 20

∆(G, U) 130.42 140.52 70.72 30.68 0.21 0.41 0.74 59 113 0.01 93
expected speed-up 236 6762 62549 986 inf inf inf 169 804 inf 163

Table 1. Speed-ups of experiments with single-edge updates



5.5 Experiments on Batch Updates

Multiple Randomly Chosen Edges. In this experiment we chose 25 edges
uniformly at random. For each edge, we chose uniformly at random a value from
the interval (0, 2) and multiplied the weight of the edge with that value. For each
graph there is hardly any difference between ∆(G, U) and δ(G, U). Therefore,
the single-edge updates did only interfere marginally with each other. Hence,
not much news is to be expected by this setting regarding the comparison of the
algorithms. This has been confirmed by the experiments.

However, we ran the batch-algorithms (Narváez and Tuned SWSF) twice.
One time with processing the edges in batch as stated in the description and one
time with iteratively processing the edges one after another. Nearly no runtime
differences were observed between the iterative and the batch variants, which
indicates a low overhead with batch updates.
Node Failure and Recovery. This update class uses the two parameters
degmin and degmax. First, a node v with degree between degmin and degmax

is chosen uniformly at random. The update consists of two steps. In the first
step, v fails, i.e. the weights of all edges adjacent to v are set to infinity. In the
second step, v recovers, i.e. the weights of all edges adjacent to v are reset to
their original values. The results can be found in Tables 2 and 3.

AS-HOP AS-RAN CAIDA
degree 1-10 10-100 100-500 1-10 10-100 100-500 1-10 10-100 100-500

FMN 784 173 23 1368 129 3 7824 2284 185
ittun SWSF-FP 912 228 26 1320 235 11 12874 4212 382
SWSF-FP 273 68 8 389 28 1 9651 2203 128
tun SWSF-FP 967 250 24 1417 252 15 14042 4693 405
tun SWSF-NAR 407 92 9 410 50 4 9785 2187 122
tun SWSF-RR 1272 528 130 2475 433 21 12395 6839 969

RR 1438 576 142 2623 490 17 13915 7075 1163

Nar-1st Heap 53 21 9 86 59 16 4315 761 75
itNar-1st Heap 52 18 6 71 30 8 4060 573 63

δ(G, U) 1.26 12.16 82.54 1.47 45.01 1365.85 1.97 7.4 90.99
∆(G, U) 1.07 8.59 71.28 1.1 34.6 712.3 1.45 5.7 85.73
expected speedup 27909 3489 393 27909 821 86 190914 38183 2246

Table 2. Speed-ups of experiments with node failure and recovery updates on
INTERNET-instances

We now take a look at the INTERNET instances. The most remarkable result
is the bad performance of the Narvaez-framework, which clearly is the inferior
algorithm for that testset. One main reason for that is, that on this testset the
edge-weight propagation in the initialization phase creates useless extra effort
which gets overwritten later on. The gap between δ(G, U) and ∆(G, U) is small
to mid-size, favoring RR with its small overhead, but big enough such that
Tuned SWSF RR is nearly as fast. This difference also manifests in the small
difference between Ittuned SWSF and Tuned SWSF.

The situation is similar, but a bit clearer, for UNIT DISK graphs. When
applying hop distance, δ(G, U) and ∆(G, U) are still quite near to each other,
Tuned SWSF and RR are the best-performing algorithms (with RR being
slightly better). When applying Euclidean or energy edge weights updates, the



difference between δ(G, U) and ∆(G, U) is much bigger, and Tuned SWSF
clearly is the superior algorithm. We also observe the advantage of Tuned
SWSF against SWSF-FP being between 2 and 15 times faster.

metric hop euclidean energy
average degree 7 10 15 7 10 15 7 10 15

FMN 30 40 55 27 21 24 12 14 20
ittun SWSF-FP 238 398 485 116 95 98 56 66 91
SWSF-FP 128 214 236 60 32 36 28 24 22
tun SWSF-FP 260 462 561 158 115 141 75 86 110
tun SWSF-NAR 106 116 147 101 77 97 57 61 67
tun SWSF-RR 223 395 527 105 75 89 49 54 67
RR 289 504 628 111 91 106 55 63 84
Nar-1st Heap 70 87 131 84 62 111 52 62 74
itNar-1st Heap 55 71 100 64 50 66 36 46 52

δ(G, U) 19 8 6 86 107 99 194 174 132
∆(G, U) 18 7 5 54 79 55 128 119 98
expected speedup 833 2500 3750 283 190 273 117 126 153

Table 3. Speed-ups of experiments with node failure and recovery updates on UNIT
DISK-instances

Traffic Jams. This update class models real-world traffic jams. It derives from
the observation that traffic jams often occur along shortest paths. The number k
of updated edges is given as a parameter. Initially, a node v is chosen uniformly
at random. Then a shortest path SP ending at v and containing exactly k edges
is chosen uniformly at random. The update consists of two steps: in the first step,
the weights of edges in SP are multiplied by 10. In the second step, the edge
weights are reset to their original values. The results can be found in Table 4.

GRID LUX NLD DEU
edges 10 20 30 5 10 20 10 20 30 10 20 30

FMN 3 2 1 4 2 1 11 5 2 185 30 7
ittun SWSF-FP 15 9 5 15 7 2 39 17 6 755 100 23
SWSF-FP 13 10 6 15 9 5 75 32 12 873 173 40
tun SWSF-FP 23 16 9 20 12 6 107 44 17 1210 235 55
tun SWSF-NAR 22 16 9 22 13 7 107 41 17 1402 342 79
tun SWSF-RR 16 12 7 15 9 5 72 31 12 957 181 42
RR 17 10 5 20 9 3 43 18 6 924 149 36
Nar-1st Heap 16 9 5 20 10 4 37 15 5 1120 196 35
itNar-1st Heap 19 12 6 24 12 4 57 24 8 1231 219 54

δ(G, U) 4367 7909 15552 1178 3052 8616 12910 32088 93725 7885 39260 142191
∆(G, U) 2591 3564 6412 821 1366 2567 4134 10899 26153 3884 13701 51252
expected speed-up 35 25 14 37 22 12 229 87 36 1127 320 85

Table 4. Speed-ups of experiments with traffic jam updates

We observe that this update class consists of strongly interfering single-edge
updates: there is a big difference between δ(G, U) and ∆(G, U). Tuned SWSF
and Tuned SWSF NAR are the best-performing algorithms for this testset.
This is because pure batch algorithms avoid processing nodes many times. With
an increasing number of edges, the interference between the updated edges in-
creases and the advantage of these two algorithms grows.

For a small number of edges in the jam, the Narváez-framework is compa-
rable to Tuned SWSF. The framework slows down with a growing number of



updated edges. This is because the initialization phase processes many nodes one
time for each updated edge. It is astonishing to see that the Narváez-framework
is not able to take advantage of the batch-character of the update. This can be
seen through a comparison with itNarvaez. The iterative variant is even faster
than the batch one, which could be a hint at space for improvement. Again,
FMN is much slower than the other algorithms, as its overhead does not pay of
on these instances.

6 Conclusion

In this work we focused on the single-source shortest-path problem with non-
negative weights. We gave the first experimental study evaluating the perfor-
mance for single-edge updates that contains all current algorithms and incorpo-
rates a broad set of instance classes. It turned out that the algorithms perform
quite differently, but within the same order of magnitude. Furthermore, the
achieved speed-ups varied greatly between different instances. This can be ex-
plained by measuring the impact of the updates on the graphs.

Moreover, we presented the first experimental study at all for the case of
multiple edge changes at a time. One experiment was to choose a set of edges
uniformly at random. It turned out that this way the single-edge updates did
almost not interfere. Therefore, the results deviated not much from the single-
edge case. We also used two more realistic types of batch updates. One is the
simulation of node failure and recovery, which affects all incident edges. The
single-edge updates interfered for that class, but not very strongly. For internet
instances, the best performing algorithms were RR and Tuned SWSF RR
with RR being slightly faster. For UNIT DISK graphs, Tuned SWSF was the
best algorithm with RR being slightly faster for hop distance. The other update
class modelled traffic jams. The single-edge updates interfered greatly, Tuned
SWSF and Tuned SWSF NAR were the superior algorithms there.

Furthermore, we presented tuned variants for the SWSF-FP-algorithm and
evaluated their performance. For the tuned variants we observed speed-ups com-
pared to SWSF-FP of up to 15. Finally, we gave a simple methodology (based
only on Dijkstra’s algorithm) to decide if one should try a single-edge or a batch-
update algorithm for a given instance class. We compared the ‘impact’ of the
update when processed in batch with the ‘impact’ when processed iteratively.
For updates with a big gap between both values, the algorithms Tuned SWSF
or Tuned SWSF RR usually performed best. With a small gap, there was
usually a better-performing iterative algorithm.

Concluding, we gave a first experimental overview on the different approaches
for the problem, which can be used as a base for further research. The most
important information that can be extracted from our experiments is the aston-
ishing level of data dependency within the problem. It turned out that a proper
assessment of an algorithm’s running time is not possible without full knowl-
edge of the application it is used in. Further, a great amount of experiments is
required to get the big picture of an algorithm’s efficiency.



References

1. Bauer, R., Wagner, D.: Batch Dynamic Single-Source Shortest-Path Algo-
rithms: An Experimental Study. Technical Report 2009,6, ITI Wagner, Fac-
ulty of Informatics, Universität Karlsruhe (TH) (2009) http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000010926.

2. Narváez, P., Siu, K.Y., Tzeng, H.Y.: New Dynamic Algorithms for Shortest Path
Tree Computation. IEEE/ACM Transactions on Networking 8 (2000) 734–746

3. Bruera, F., Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D.: Dynamic Multi-
level Overlay Graphs for Shortest Paths. Mathematics in Computer Science (2008)
To appear.

4. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In Deme-
trescu, C., ed.: Proceedings of the 6th Workshop on Experimental Algorithms
(WEA’07). Volume 4525 of Lecture Notes in Computer Science., Springer (2007)
52–65

5. Wagner, D., Watternhofer, R., eds.: Algorithms for Sensor and Ad Hoc Networks.
Volume 4621 of Lecture Notes in Computer Science. Springer (2007)

6. Reps, T., Ramalingam, G.: An Incremental Algorithm for a Generalization of the
Shortest-Path Problem. Journal of Algorithms 21 (1996)

7. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph
problems. Theoretical Computer Science 158 (1996)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully Dynamic Algorithms for
Maintaining Shortest Paths trees. Journal of Algorithms 34 (2000)

9. Buriol, L., Resende, M., Thorup, M.: Speeding Up Dynamic Shortest-Path Algo-
rithms. Informs Journal on Computing 20 (2008)

10. King, V., Thorup, M.: A space saving trick for directed dynamic transitive closure
and shortest path algorithms. In: Proceedings of the 7th Annual International
Conference on Computing Combinatorics (COCOON’01). Volume 2108 of Lecture
Notes in Computer Science., Springer (2001) 268–277

11. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths
in digraphs with arbitrary arc weights. Journal of Algorithms 49 (2003) 86–113

12. Demetrescu, C.: Fully Dynamic Algorithms for Path Problems on Directed Graphs.
PhD thesis, Department of Computer and Systems Science (2001)

13. Demetrescu, C., Italiano, G.F.: Dynamic shortest paths and transitive closure:
Algorithmic techniques and data structures. Journal of Discrete Algorithms 4
(2006)

14. Frigioni, D., Ioffreda, M., Nanni, U., Pasqualone, G.: Experimental Analysis of
Dynamic Algorithms for the single Source Shortest Path Problem. ACM Journal
of Experimental Algorithmics 3 (1998)

15. Taoka, S., Takafuji, D., Iguchi, T., Watanabe, T.: Performance Comparison of
Algorithms for the Dynamic Shortest Path Problem. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences E90-A (2007)

16. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms. Math-
ematical Programming, Series A 73 (1996) 129–174

17. HaCon - Ingenieurgesellschaft mbH: http://www.hacon.de (2008)
18. University of Oregon Routeviews Project: http://www.routeviews.org/ (2008)
19. CAIDA: The Cooperative Association for Internet Data Analysis: http://www.

caida.org/ (2008)
20. PTV AG - Planung Transport Verkehr: http://www.ptv.de (2008)


