
Straightening Drawings of
Clustered Hierarchical Graphs�

Sergey Bereg1, Markus Völker2,��, Alexander Wolff2,�, and Yuanyi Zhang1

1 Dept. of Computer Science, University of Texas at Dallas, U.S.A.
{besp,yzhang}@utdallas.edu

2 Fakultät für Informatik, Universität Karlsruhe, Germany
mvoelker@ira.uka.de

http://i11www.ira.uka.de/people/awolff

Abstract. In this paper we deal with making drawings of clustered
hierarchical graphs nicer. Given a planar graph G = (V, E) with an
assignment of the vertices to horizontal layers, a plane drawing of G (with
y-monotone edges) can be specified by stating for each layer the order of
the vertices lying on and the edges intersecting that layer. Given these
orders and a recursive partition of the vertices into clusters, we want to
draw G such that (i) edges are straight-line segments, (ii) clusters lie in
disjoint convex regions, (iii) no edge intersects a cluster boundary twice.

First we investigate fast algorithms that produce drawings of the
above type if the clustering fulfills certain conditions. We give two fast
algorithms with different preconditions. Second we give a linear pro-
gramming (LP) formulation that always yields a drawing that fulfills the
above three requirements—if such a drawing exists. The size of our LP
formulation is linear in the size of the graph.

1 Introduction

A graph is often associated with structural information that needs to be made
explicit when drawing the graph. There are many ways in which structure can be
given, but usually it comes in one of two ways: clusters or hierarchies. A cluster-
ing of a graph is a (possibly recursive) partition of the vertex set into so-called
clusters. The vertices in the same cluster are interpreted as being similar or
close, those in different clusters as different or far from each other in some sense.
It is common to visualize disjoint clusters by placing their vertices in disjoint
convex regions. For example in the Ptolemy II project (heterogeneous modeling,
simulation, and design of concurrent systems), clustered graphs are used to rep-
resent (possibly nested) parts of embedded systems, see Fig. 1. Hierarchies also
partition the vertex set, but not according to proximity, but according to rank.
The rank of a vertex reflects its importance or status in relationship to vertices
of lower or higher rank. Usually vertices of equal rank are placed on horizontal
� A preliminary version of this work was presented as a poster at SOFSEM’06.

�� Supported by grant WO 758/4-2 of the German Research Foundation (DFG).

Jan van Leeuwen et al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 176–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Straightening Drawings of Clustered Hierarchical Graphs 177

Fig. 1. A Ptolemy-II model: ver-
tices represent actors, edges com-
munication

Fig. 2. The organigram of Hogeschool Limburg:
vertices represent administrative entities, edges
interaction

lines, to which we refer as layers. Examples of hierarchical graphs are so-called
organigrams that are used to represent the structure of organizations, see Fig. 2.
For both clustered and hierarchical graphs there is an abundance of literature.
Brockenauer and Cornelsen give an overview [1].

In this paper we deal with graphs that have both clusters and a hierarchy.
This makes it possible to visualize two different graph structures at the same
time. The challenging question is how to overlay these different and independent
structures. We model the problem as follows. Given a planar graph G = (V, E)
with an assignment of the vertices to horizontal layers, a plane drawing of G
(with polygonal or y-monotone edges) can be specified by stating for each layer
the order of the vertices lying on and the edges intersecting that layer. Given
these orders and a recursive partition of the vertices into clusters, our aim is to
draw G such that (i) edges are straight-line segments, (ii) clusters lie in disjoint
convex regions, and (iii) no edge intersects a cluster boundary twice.

Our first contribution consists of two fast algorithms that draw clustered
hierarchical graphs if certain preconditions are met. Both algorithms require
that the left-to-right ordering of the clusters is consistent, i.e., the precedence
relationship of the clusters is the same over all layers. The first algorithm runs in
O(n2) time and additionally relies on the cluster adjacency graph (to be defined
later) being acyclic, see Section 3. The second algorithm runs in linear time and
requires that clusters can be separated by y-monotone paths, see Section 4. The
preconditions for both algorithms can be tested in linear time.

Our second contribution is a linear programming (LP) formulation that al-
ways yields a drawing if a drawing with straight-line edges and non-intersecting
convex cluster regions exists, see Section 5. The number of variables and con-
straints in our LP formulation is linear in the size of the graph. If either of the
above-mentioned constraints is satisfied, the existence of the corresponding algo-
rithm shows that the LP formulation also yields a drawing. The LP is obviously
less efficient than the above algorithms, but it is more general, more flexible,
and yields nicer results due to global optimization. The LP allows the user to
incorporate esthetic criteria. For example, one can use additional constraints to
enforce minimum vertex-vertex distances. We also suggest two different objective

178 S. Bereg et al.

functions; one minimizes the width of the drawing, the other tries to maximize
the angular resolution. The LP can also draw non-planar graphs; it keeps exactly
the crossings of the input graph. We extend the basic LP to be able to process
rectangular vertices as in Fig. 2. We have implemented the LP and applied it
to a number of planar and non-planar graphs, see Fig. 10. Our implementation
can be tested via a Java applet under the URL http://i11www.ira.uka.de/
clusteredgraph/.

Our work builds on the seminal work of Eades et al. [2]. They define a clustered
graph to be compound planar (c-planar) if it admits a drawing with no edge
crossings or edge-region crossings, where the regions are the convex hulls of the
clusters. They present an algorithm that draws clustered c-plane graphs, i.e.,
c-planar graphs given a c-planar embedding. (An embedding is defined by the
counter-clockwise order of the edges incident to a vertex and by specifying the
outer face.) From the embedding they compute a special st-numbering, the so-
called c-st numbering, which maps each vertex v of G to a unique layer λ(v),
i.e., an integer y-coordinate from the set {1, . . . , n}. The layer assignment is
such that the vertices that belong to the same cluster occupy consecutive layers.
The assignment is then used to draw the graph as a hierarchical graph with
straight-line edges. Since each cluster occupies a range of consecutive layers, the
convex hulls of different clusters do not intersect. Moreover, since each cluster is
assumed to be connected and the algorithm for drawing hierarchical graphs does
not produce edge crossings, no edge intersects a cluster hull more than once.

A draw-back of the algorithm of Eades et al. for drawing clustered graphs
is that it produces a drawing of height n for any n-vertex graph. For example,
it draws the graph of a k × k square grid on k2 horizontal lines, although this
graph can easily be drawn on k lines. Eades et al. list vertical compaction among
the important problems for further research concerning the drawing of clustered
graphs. Vertical compaction can be divided into two steps: (a) assign vertices to
layers and (b) draw the hierarchical graph. This paper deals with step (b).

Concerning the first step Bachmeier and Forster [3] have shown how to check
in O(kn) time whether a graph has a planar k-level embedding. If an embedding
exists, it is computed within the same time bound. However, they restrict the
input to proper layer-connected single-source graphs. A hierarchical graph is
proper if no edge crosses a layer, i.e., if |λ(u) − λ(v)| = 1 for every edge uv.
A clustered hierarchical graph is layer-connected if in each cluster each pair of
consecutive layers is spanned by an edge of the cluster. A source is a vertex that
is only connected to vertices of higher levels.

Rectangular cluster regions and rectilinear edges were considered by Sugiyama
and Misue [5] and by Sander [4]. They give algorithms for drawing compound
graphs, which generalize clustered graphs in that edges between clusters or be-
tween clusters and vertices are also allowed. Both algorithms extend the clas-
sical algorithm of Sugiyama et al. [6] for drawing hierarchical graphs. Like
Eades et al. [2], Sugiyama and Misue [5] place each vertex on a separate hori-
zontal level, while Sander [4] tries to produce more compact drawings.

Straightening Drawings of Clustered Hierarchical Graphs 179

2 Preliminaries

A clustered graph C = (G, T) consists of an undirected graph G = (V, E) and
a rooted tree T = (VT , ET) such that the leaves of T are in one-to-one corre-
spondence with the vertices of G. A subset C of V is called a cluster if C is
the set of leaves of the subtree rooted at a vertex of VT . A drawing of a graph
G = (V, E) assign positions π : V → R

2 to the vertices of V and to each edge
(u, v) ∈ E a simple Jordan curve joining π(u) and π(v). A drawing is planar
if the curves of different edges do not cross. We say that a drawing is weakly
monotone if all curves are weakly monotone in y-direction, i.e., for each curve
it holds that its intersection with a horizontal line is empty or connected. For
strictly monotone the intersection must be empty or a point. In other words: we
allow horizontal edges between neighboring vertices on the same layer. A spe-
cial case of monotone drawings are straight-line drawings, where all curves are
straight-line segments.

A layered or hierarchical graph L = (G, λ) is given by a graph G = (V, E)
and an assignment λ : V → {1, . . . , k} of the vertices to horizontal layers
y = 1, . . . , y = k. For a hierarchical graph we define Vi to be the set of vertices on
level i, i.e., Vi = {v ∈ V | λ(v) = i} and Ei to be the set of edges crossing level i,
i.e., Ei = {{u, v} ∈ E | (λ(u) − i)(λ(v) − i) < 0}. A monotone drawing D of G
induces the x-order of Vi ∪Ei, i.e., a bijection λi : Vi ∪Ei → {1, 2, . . . , ni} where
ni = |Vi ∪ Ei|. The layer assignment λ and the x-orders λ1, . . . , λk induced
by D yield another monotone drawing D′ of G, where each edge e = (u, v)
is represented by a polygonal chain, namely the chain given by the point se-
quence (λi(e), i), (λi+1(e), i + 1), . . . , (λj(e), j), where i = min{λ(u), λ(v)} and
j = max{λ(u), λ(v)}. Note that D′ is plane if and only if D is plane.

In this paper we assume that we are given a clustered hierarchical c-plane
graph (G, T, λ) including the x-orders λ1, . . . , λk of a monotone planar drawing
of G. Our aim is to investigate conditions under which we can efficiently de-
termine a straight-line drawing of G that respects the x-orders and has convex
cluster regions.

Eades at al. [2] have given a linear-time algorithm that draws clustered c-plane
graphs such that edges are drawn straight and cluster regions are convex. The
main disadvantage of that algorithm is that it places each vertex on a unique
layer. Eades et al. require that the curves in the given drawing are strictly
y-monotone and that the subgraph induced by each cluster is connected. We only
require weak monotonicity. The layer assignment that Eades et al. compute has
the property that the vertices of each cluster are assigned to a set of consecutive
layers. We do not require this. However, we require that the x-orders λi are
consistent, i.e., for any pair of clusters C and C′ and any pair of layers i and j it
holds that if λi(v) < λi(v′) then λj(w) < λj(w′) for all v, w ∈ C and v′, w′ ∈ C′.

3 Recursive Algorithm

In this section we make a stronger assumption on the x-orders of the vertices
on each layer. Let F be the directed graph whose vertices correspond to clusters

180 S. Bereg et al.

and, for two clusters C and C′, there is an edge (C, C′) if there is a level i with
λi(t) < λi(t′), where t is either a vertex of C or an edge incident to C and t′ is
either a vertex of C′ or an edge incident to C′. If F , the cluster adjacency graph,
is acyclic, we say that the layer assignment λ is strongly consistent. Note that F
is planar since G is c-planar.

A c-plane clustered graph with strongly consistent layer assignment can be
triangulated in linear time such that the same layer assignment is strongly con-
sistent in the resulting graph. We show that every triangulated hierarchical plane
graph with strongly consistent layer assignment admits a straight-line drawing
with a prescribed external face that is the complement of a convex polygon P ,
i.e., R

2 \ P . We borrow some terminology from Eades et al. [2]. As Eades at al.
we allow slightly more general polygons than convex polygons. Strictly speaking,
in a convex polygon each vertex has an interior angle of less than 180◦. We call
such a vertex an apex. We also allow flat vertices where the two incident edges
form an angle of 180◦. When we map vertices of the given c-plane graph G to
those of the polygon P we must be careful with these flat vertices. We say that
a polygon P is feasible for G if (i) P is a convex polygon, and (ii) if abc is a face
of G and the vertices a, b, and c are vertices of P , then they are not collinear.

It is easy to construct a feasible polygon for the graph G; for example, all
the vertices of the outer face can be made apexes of the polygon. We present
a recursive procedure to draw the graph G. Consider the cluster adjacency graph
F defined above. Since F is acyclic, F has a topological ordering, i.e., an ordering
C1, C2, . . . of the clusters such that i < j for any edge (Ci, Cj) of F . Note that F
has linear size and can thus be sorted topologically in time linear in the number
of vertices, i.e., clusters. The first cluster C1 has in-degree 0 in F . We split G
into the subgraph G1 induced by the vertex set V1 of C1 and a subgraph G2
induced by V2 = V \ V1. Color the vertices in V1 black and those in V2 white.
Let edges with a white and a black endpoint be gray. Due to our choice of C1
there are exactly two gray edges e and e′ on the outer face. These are connected
by a path of inner faces each of which has exactly two gray edges.

Now we split the polygon P into two polygons by a line ab in order to treat
G1 and G2 recursively. We choose the points a and b anywhere on the edges e
and e′, respectively, see Fig. 3.

a

bC1

G \ C1

e

e′

Fig. 3. Split along ab

Our recursion is as follows:

1. Construct feasible polygons P1 and P2 for
G1 and G2 that are separated by the line ab
and are consistent with P .

2. For i = 1, 2 draw Gi in Pi recursively.
3. Draw the gray edges as straight-line seg-

ments.

Unfortunately, this may produce a drawing
with crossing edges, see Fig. 5. We now show
how this problem can be fixed by introducing
dummy vertices.

Straightening Drawings of Clustered Hierarchical Graphs 181

c

d

e

(a) type A

c c′

d

e

d

e

c c′

(b) type B

c

d e

(c) type C

Fig. 4. The three types of faces

We analyze the faces split by the line ab. Each of these faces contains at least
one vertex in C1 and at least one vertex not in C1. Let cde be a face that is
crossed by ab such that c is the only vertex in C1. The case where C1 contains
two vertices of cde is symmetric. Without loss of generality we assume that cde
is the clockwise order of the vertices. In general, there are three types of faces
depending on the layer assignment of the vertices c, d, and e, see Fig. 4:

(A) λ(d) ≤ λ(c) ≤ λ(e),
(B) λ(d) ≤ λ(e) and (λ(c) ≤ λ(d) or λ(c) ≥ λ(e)), and
(C) λ(e) ≤ λ(d) ≤ λ(c).

Faces of type A can be handled by the above approach. We show that there
are no faces of type C. Indeed, if C1 contains only one vertex c of a face as in
Fig. 4 (c), then the edge ce crosses the layer of vertex d and the order λi(d) <
λi(ce) is not consistent with the x-order of layer i = λ(d). Note that faces of
type B cause a problem, see the face uvw in Fig. 5. For each type-B face abc we
do two things. First, we introduce a dummy vertex c′ at the intersection of the
separating line ab and the layer of c, see Fig. 4 (b). Second, we add the triangle
c′de to the graph G2. Then we connect each pair of consecutive dummy vertices
by an edge and triangulate new faces if they contain more than three vertices.
The triangulation can be done arbitrarily. We construct a feasible polygon for
G2 that contains the dummy points on ab and is consistent with P . Similarly
we add vertices and faces to the graph G1 if there are faces of type B with two
vertices in C1.

Let G′
1 and G′

2 be the graphs constructed as above and let P ′
1 and P ′

2 be the
corresponding convex polygons. Then it is not hard to see the following.

Lemma 1 (Recursion). The polygons P ′
1 and P ′

2 are feasible for the graphs
G′

1 and G′
2, respectively. The positions of the vertices of V in the polygons P ′

1
and P ′

2 can be used for the straight-line drawing of G.

At the bottom level of the recursion the graph G contains only one cluster and
the linear-time drawing algorithm for hierarchical graphs by Eades at al. [2] can
be used. In the full version of this paper we show the following theorem.

182 S. Bereg et al.

a

b

C1

G \ C1

v

u

w

t

x

Fig. 5. After splitting along ab simple recur-
sion does not work: edge uv and vertex w are
not independent

C1

C2

Fig. 6. A clustered hierarchical
graph without a monotone separat-
ing path

Theorem 1 (Algorithm). Let (G, T, λ) be a clustered hierarchical c-plane
graph whose n vertices are assigned to k layers. If the layer assignment is strongly
consistent, then a straight-line drawing with convex cluster regions can be com-
puted in O(n2) time.

4 Separating-Path Algorithm

The algorithm of Section 3 is recursive and guarantees a c-plane drawing if
the layer assignment is strongly consistent. However, the layer assignment of
a clustered graph may not be strongly consistent even for two clusters. There-
fore we now discuss an algorithm with a different requirement. We explore the
possibility of splitting the graph along a path. A monotone separating path in
a clustered hierarchical c-plane graph G = (V, E) is defined as a path Π between
two vertices on the boundary of G such that (i) the path is y-monotone, and
(ii) the graph G − Π has two connected components G1 and G2 whose vertices
are in different clusters, i.e., for any cluster Ci, Ci ∩ G1 = ∅ or Ci ∩ G2 = ∅.
For example, the graph shown in Fig. 5 admits the monotone separating path
tuvwx. Although there are clustered c-plane graphs without separating paths,
see Fig. 6 (a), the requirement is intuitive and does not seem too restrictive for
practical applications.

Finding a monotone separating path. Suppose that G has only two clusters. We
show how to detect whether they can be separated by a monotone separating
path. An edge (u, v), λ(u) ≤ λ(v) is separating if it separates the clusters in
the slab λ(u) ≤ y ≤ λ(v). The boundary of G contains exactly two edges g1
and g2 called gates whose endpoints are in different clusters. We want to find
a y-monotone path Π between two vertices u1 and u2 such that ui, i = 1, 2 is an
endpoint of gi and every edge of Π is separating.

We sweep the plane with a horizontal line l from top to bottom. We maintain
a list L of edges intersecting l. An edge e ∈ L with is good if its part above
l satisfies the definition of the separating edge; otherwise e is called bad. The
good and bad edges satisfy the property that the list L consists of three sublists
L1, L2, and L3 such that all good edges are in L2, see Fig. 7. We just store

Straightening Drawings of Clustered Hierarchical Graphs 183

the first and last good edge of L2. Suppose that l approaches layer i. In the
list of vertices of layer i, we find two consecutive vertices a and b from different
clusters, see Fig. 7. We proceed as follows.

1. Delete edges that end at layer i. If a good edge ending at a or b is deleted
then it is a separating edge.

2. Reduce the list L2 using the positions of a and b in L.
3. Insert new edges into L. A new edge falls into L2 if it starts at a or b.

bad good

bad good bad

bad

a
b. . .

i

Fig. 7. Traversing layer i. Vertices a and b
are consecutive vertices from different clusters.
The separating edge is bold.

The sweep can be done in lin-
ear time since we maintain only
the first and last edges of L2 and
the rest is just traversing a pla-
nar graph. We create a directed
graph G′ using separating edges
by orienting them from top to
bottom. Any monotone separating
path in G connects two vertices
that belong to different gates g1
and g2. A path connecting gates
in G′ can be found in linear time. Note that a separating path may not ex-
ist, see Fig. 6.

Shortcuts. We compute shortcuts in the separating path. There are two types
of shortcuts—left and right. The shortest path using left (right) shortcuts is
called left path (resp. right path). We find two graphs G1 and G2 using these
paths, see Fig. 8 (a). We draw the left and right paths using parallel line segments
and compute drawings of G1 and G2 using the algorithm of Eades et al. [2].

Final drawing. Let ξ, δ > 0 be two parameters. We place the drawings of G1
and G2 at distance ξ from each other. The remaining vertices are placed on two
arcs a1, a2 using distance δ as shown in Fig. 8 (c). The values of ξ and δ are
subject to the following restrictions. Consider a face abc. If its two vertices b
and c are in G2 (or G1), then the restriction is ξ < ξ0, see Fig. 9 (a). If exactly
one vertex is in G2 (or G1), then the restriction is ξ < ξ1, see Fig. 9 (b). If a, b
and c lie on the arcs a1, a2, then the drawing of the face abc is correct if δ is
chosen small, see Fig. 9 (c). This procedure yields the following theorem.

(a)

b
G1 G2

(b) (c)

cG1

b

d

e

G2 cG1

b
G2

e

a a a a aξ

c

d

e d
e

δ

e

Fig. 8. (a) Shortcuts in the separating path—the left path is ace, the right path abde,
(b) recursive drawing of G1 and G2, (c) the two parameters ξ and δ

184 S. Bereg et al.

(a)

G2

ax0

b

c

(b)

G2

a

b

c

ξ
(c)

G2

a

b

c

ξ

a′

b′

Fig. 9. Restrictions for the correct drawing of the face abc that belongs to G1 and G2:
(a) ξ < ξ0, where ξ0 is the distance of x0 from G2, (b) ξ < ξ1, where ξ1 is derived from
the condition that the slope of b′c is less than the slope of a′b′, (c) δ > 0 such that a is
above bc

Theorem 2. Given a clustered hierarchical c-plane graph G with two clusters
and a monotone separating path, a straight-line drawing of G with convex cluster
regions can be computed in linear time.

5 Linear Programming Formulation

In this section we describe how a clustered hierarchical graph (G, T, λ) can be
drawn “nicely”, i.e., with straight-line edges and disjoint convex cluster regions.
We give an LP formulation that decides whether the input graph has a nice draw-
ing. Note that this is always the case if the layer assignment is strongly consistent.
If a nice drawing exists, then the objective function of our LP formulation yields
an especially nice drawing. A great advantage of our LP in comparison with
other algorithms is that it can handle unconnected and non-planar graphs. The
edge crossings of the input are preserved and no new ones are produced. In the
description of our LP formulation we only consider clusters on the top level of
the cluster hierarchy, i.e., children of the root of T . Clusters at lower levels can
be treated analogously. We have implemented the LP. For results, see Fig. 10.
Our LP can easily be adapted to more complex drawings, e.g., for graphs with
labeled vertices and edges or for graphs with icons as vertices (see full version).

For three points p = (px, py), q = (qx, qy), and r = (rx, ry) 	= q in the plane,
let their relative position RelPos(p, q, r) be defined by the following determinant:

RelPos(p, q, r) =

∣
∣
∣
∣
∣
∣

px py 1
qx qy 1
rx ry 1

∣
∣
∣
∣
∣
∣

.
RelPos(·, q, r) < 0q

rRelPos(·, q, r) > 0

Observe that RelPos(p, q, r) > 0 iff p lies to the left of the line from q to r. Note
that these are linear constraints if the y-coordinates of the points are known.

5.1 Constraints

Our LP formulation has to fulfill three requirements. First, the x-orders λ1, . . . , λk

must be preserved. Second, the edges must be straight-line segments. Third, the
convex hulls of the clusters must be disjoint.

Straightening Drawings of Clustered Hierarchical Graphs 185

For the first requirement we do the following. For each vertex v ∈ V we
introduce a variable xv that will express the x-coordinate of v. Similarly, for
each edge e ∈ E and each level y ∈ {1, . . . , k} spanned by e we introduce the
variable xe,y if the immediate predecessor or successor of e on level y is a vertex
(and not another edge). Since on each level y the x-order of the vertices and the
edges spanning the level is part of the input, we preserve this order by constraints

xa < xb, (1)

where a and b are either vertices or edge-level pairs and a is the immediate
predecessor of b in the x-order λy . We can also use these constraints to ensure
a certain minimum horizontal distance dmin between a and b:

xa + dmin ≤ xb. (2)

Since each vertex is the immediate neighbor of at most two edges, the first
requirement needs O(n) variables and constraints.

For the second requirement we proceed as follows. For each pair of an edge
e = {u, w} ∈ E and a level y ∈ {1, . . . , k} for which we have introduced the
variable xe,y above, we now introduce the constraint

RelPos
(

(xe,y, y), u, w
)

= 0. (3)

This makes sure that the intersection point of edge e and level y lies on the
straight line through u and w. Since there are O(n) variables of type xe,y, the
second requirement needs O(n) new constraints.

For the third requirement it is simple to come up with a solution that needs
Θ(n3) constraints. We only need O(n) constraints, basically by observing that
the cluster adjacency graph is planar. We introduce two new variables xij and Xij

for each pair (Ci, Cj) of adjacent clusters, i.e., clusters with vertices v ∈ Ci and
w ∈ Cj where v is the immediate predecessor of w in the x-order on level
λ(v) = λ(w). Let {yij , . . . , Yij} = λ(Ci)∩λ(Cj). The idea is to define two points
pij = (xij , yij) and Pij = (Xij , Yij) such that the line segment from pij to Pij

will separate the two clusters Ci and Cj . To ensure this separation we introduce
the following constraint for each vertex u with yij ≤ λ(u) ≤ Yij that is rightmost
in Ci, i.e., xu > xu′ for all u′ ∈ Ci with λ(u) = λ(u′):

RelPos(pij , Pij , u) < 0 (4)

The constraint for the leftmost vertices is symmetric. Since each vertex v ∈ V is
leftmost or rightmost relative to at most two clusters, the number of constraints
of this type is also linear. By construction the system of Equations (1), (3),
and (4) has a solution if and only if the clustered graph can be drawn nicely.

5.2 Objective Functions

If a nice drawing exists, then we would like to choose a particularly nice one.
Therefore we try to produce balanced drawings, in which the angular space of

186 S. Bereg et al.

180◦ above and below each vertex is distributed uniformly among the respective
vertices. We treat the vertices one by one. Let v be the current vertex. For
each vertex u adjacent to v an optimal position relative to v can easily be com-
puted. For this purpose the adjacent vertices above and below v are uniformly
distributed. As the vertical distances are fixed, we are able to calculate δ∗uv, the
optimal x-offset of u relative to v, using trigonometric functions. The actual
horizontal offset δuv between u and v is given by δuv = xu − xv. The absolute
difference μuv of δuv and δ∗uv can now be expressed as follows:

μuv ≥ +δ∗uv − δuv and μuv ≥ −δ∗uv + δuv (5)

The variable μuv indicates how much the actual position of u relative to v differs
from the ideal one. We normalize μuv:

μ̄uv =
μuv

|yv − yu| (6)

Summing up μ̄uv over all edges {u, v} ∈ E yields the following objective function:

minimize
∑

{u,v}∈E

(μ̄uv + μ̄vu) (7)

Note that in general μ̄uv and μ̄vu differ. Instead of optimizing angles, it is also
possible to optimize the width of the drawing. This is achieved by

μuv ≥ −δuv and μuv ≥ +δuv. (8)

Recall that constraint (2) makes sure that the minimum distance between ver-
tices is kept. Equation (6) and objective function (7) remain as before. For
example drawings see Fig. 10. Note that graph G2 is not plane. Also note that
H3 is not clustered; the drawing shows that our LP nicely keeps the symmetry.

References

1. Brockenauer, R. and Cornelsen, S.: Drawing Clusters and Hierarchies. In M. Kauf-
mann and D. Wagner (eds), Drawing Graphs: Methods and Models, Springer-Verlag,
Lecture Notes in Computer Science 2025 (2001) 193–227

2. Eades, P., Feng, Q., Lin, X., and Nagamochi, H.: Straight-Line Drawing Algorithms
for Hierarchical Graphs and Clustered Graphs. Algorithmica 44 1 (2005) 1–32

3. Forster, M. and Bachmaier, C.: Clustered Level Planarity. In P. van Emde Boas,
J. Pokorny, M. Bielikova, and J. Stuller, (eds), Proc. 30th Int. Conf. Current Trends
in Theory and Practice of Computer Science (SOFSEM’04), Springer-Verlag, Lec-
ture Notes in Computer Science 2932 (2004) 218–228

4. Sander, G.: Graph Layout for Applications in Compiler Construction. Theoretical
Computer Science 217 (1999) 175–214

5. Sugiyama, K. and Misue, K.: Visualization of Structural Information: Automatic
Drawing of Compound Digraphs. IEEE Transactions on Systems, Man, and Cyber-
netics 21 4 (1991) 876–891

6. Sugiyama, K., Tagawa, S., and Toda, M.: Methods for Visual Understanding of Hi-
erarchical System Structures. IEEE Transactions on Systems, Man, and Cybernetics
11 2 (1981) 109–125

Straightening Drawings of Clustered Hierarchical Graphs 187

(a) Graph H3 from [2], width optimized (b) Graph G1, input

(c) Graph G1, width optimized (d) Graph G1, angle optimized

(e) Graph G2, width optimized (f) Graph G2, angle optimized

Fig. 10. Graph drawings produced by our LP formulation. Note that G2 is not plane.

	Introduction
	Preliminaries
	Recursive Algorithm
	Separating-Path Algorithm
	Linear Programming Formulation
	Constraints
	Objective Functions

