
Dynamic Graph Drawing in Visone

Michael Baur and Thomas Schank∗

April 22, 2008

Abstract

In early 2008 a new testing branch of the network analysis software
visone has been made publicly available [Baur et al., 2008]. This realease
includes the ability to process dynamic networks. A central feature is a
dedicated dynamic layout algorithm which we present here from a metho-
logical and application oriented point of view.

We first describe this algorithm from an algorithmic perspective. More
precisely we show how the local majorant method of the related layout
algorithm given by Kamada and Kawai can be adapted to layout dynamic
networks.

Following the methodological part we also address some problems and
some other features of our implementation. Given the information in
this document users of the dynamic layout procedure in visone should be
able to employ the various available options efficiently to get the desired
results.

1 Introduction

Visualization of dynamic networks can be achieved by a sequence of static draw-
ings, possibly with many of those such that they can be shown as an animation
e.g. in a movie. As well as in the visualization of static networks achieving a
pleasant drawing [Di Battista et al., 1999; Kaufmann and Wagner, 2001] is one
of the key problems. Additionally the preservation of the mental map between
successive layouts has been identified as the crucial objective in dynamic graph
drawing [Misue et al., 1995]. How this can be realized has been fundamentally
discussed e.g. in [Brandes and Wagner, 1997] and [Friedrich and Eades, 2002].
In the following several papers have been published which detail, improve, and
moreover also present a reference implementation or a software that produces
an animation for a specific instance e.g. [Brandes et al., 2000; Erten et al., 2004].

∗schank@ira.uka.de

1

Software that can visualize and animate general dynamic networks in a produc-
tive environments has been introduced rather recently, for example in SoNIA
[Moody et al., 2005] or has been added to existing network analysis software,
e.g. in the case of PAJEK [Batagelj and Mrvar, 1998; de Nooy et al., 2004]. The
preservation of the mental map relies in both cases on feeding an initial layout
to an iterative method, which is expected to produce an result that is not far
from the initial. We go one step further by adding a layout method for dynamic
networks with inherent stability to the network analysis tool visone.

The rest of this work is organized as follows. Section 2 contains basic definitions
and declarations. The core of this work is presented in Section 3 where the
dynamic layout method is described. This is followed by some details and
additional remarks with respect to the actual implementation in Section 4.

2 Preliminaries

2.1 Aggregation Graph

A undirected graph or in context of dynamic graphs the aggregation graph

Ga = (V a, Ea)

consists of a set of Nodes V a and a set of Edges Ea ⊂ {{u,w} : u,w ∈ V }, see
for example Figure 1. We define n = |V a| and m = |Ea] and assume that the
nodes are indexed from 1 to n. We will not distinguish between the elements of
V a, denoted by u, v, w, . . . and the indexes, denoted by i, j, . . . in the following.

2.2 Temporal or Dynamic Graph

A dynamic graph consists of the aggregation graph, an interval T = {1, 2, . . . , N}
in N, and two functions

δV : V a × T → {0, 1}

δE : Ea × T → {0, 1}

with the meaning that an node exists at time t ∈ T if and only if δV (u, t) = 1.
The existence of edges is defined and interpreted analogously. For t ∈ T we
require δ({u,w}, t) = 0 if δ(u, t) = 0 or δ(w, t) = 0, i.e. an edge can only exist
if both endpoints exist. In the following we simply use δ for δV or δE .

We can now define a time dependent set of nodes Vt = {v ∈ V : δ(v, t) = 1}
and a time dependent set of edges Et analogously. The time dependent graph
is finally defined as

G = {Gt = {Vt, Et} : t ∈ T}.

2

2.3 Layouts

A (static) layout is mapping of the nodes to Rd

x : V → Rd

.

In a (straight line) drawing the nodes are placed according to the layout in
the plane, hence d = 2 usually. An edge {u,w} is drawn as a straight line
segment between the points x(u) and x(w). Quality measures and computation
of layouts are discussed in [Di Battista et al., 1999] and [Kaufmann and Wagner,
2001] for example.

A dynamic layout is a series of |T | static layouts

xt : Vt → Rd.

Besides the objectives of a static layout it is required that the mental map
between two consecutive layouts x(t) and x(t+ 1) does not “differ much”, such
that the observer can easily identify corresponding structures [Misue et al.,
1995]. See [Brandes and Wagner, 1997; Branke, 1999; Diehl and Görg, 2002] for
a more extensive discussion of dynamic layouts.

3 The Dynamic Layouter

As mentioned various methods exist to compute layouts. A popular principle is
to associate the layout with a energy or stress and iteratively relayout such that
this energy becomes lesser. This principle has been used in different variations,
e.g. analogously to physical springs [Fruchterman and Reingold, 1991], or by
gradient decent methods of an energy defined by graph distances [Kamada and
Kawai, 1989]. See [Brandes, 1999] for an overview.

In the following we will use an adaptation of an energy minimizing method to
compute dynamic layouts. We start with a short review of the original algorithm
as it is used for static graphs before discussing how to adapt it to layout dynamic
networks.

3.1 Static Layouts by Local Majorant Minimization

The layout method of Kamada and Kawai can be seen as a special version of the
more general concept of multidimensional scaling. The target distances dij for
each pair of nodes is usually set to the graph theoretic distance distij , i.e. the
length of the shortest path between i and j. Kamada and Kawai associate each
target distance dij additionally with a weight wij indicating how important it

3

is to obey the distance dij in the final layout. The weight is usually set to
wij = dist−2

ij .

For a layout x the energy or stress between a pair of nodes is then defined as

sij = wij (dij − ||xi − xj ||)2 . (1)

Expressed in words it is the square of the difference between actual distance in
the layout ||xi − xj || and the target distance dij multiplied by the weight or
importances wij of obeying this target distance. The total stress of the layout
is then given by summing up the stress of all pairs of nodes

S =
∑
j 6=i

d−2
ij (dij − ||xi − xj ||)2 . (2)

Kamada and Kawai use a gradient decent method to iteratively minimize the
stress according to Equation 2 and compute the layout. Gansner, Koren, and
North propose to minimize a majorant of S instead. The authors show that
their method has several benefits. The majorant can be minimized efficiently
by matrix methods and is less likely to get stuck in local minima [Gansner et al.,
2004].

Additionally this minimization can be performed by a simple localized algorithm
which can be easily modified. The localized method moves a node i in dimension
d to its new location according to

new-x(d)
i =

∑
j 6=i

wij

(
x

(d)
j + dij

x
(d)
i −x

(d)
j

‖xi−xj‖

)
∑
j 6=i

wij
. (3)

An iterative layout algorithm can be constructed accordingly:

repeat
for each node i

in each dimension d

x
(d)
i ← new-x(d)

i

until the total stress is minimized appropriatly

The outer loop is usually repeated for a fixed number of steps or until the stress
does not improve by more than a small fraction. If we assume that it is carried
out for a fixed number of steps the algorithm runs in O(n2) time.

4

3.2 Dynamic Layouts by Local Majorant Minimization

We extend Equations 1, 2, and 3 to relate positions of xi,t with the position
of its predecessor xi,t−1 and successor xi,t+1. Thereby we limit the distance of
those and provide stability to consecutive layouts.

For a dynamic graph G let dij,t and be wij analogously defined as before. An
additional parameter ω ∈ R≥0 influences the stability of of the dynamic layout.
For ω = 0 the layout for each time step is independent from the previous or
following layout. For ω > 0 the position xi,t is related to xi,t−1 by adding terms
to the corresponding equations with target distance zero.

The stress for a pair of nodes within Vt is equivalent to the stress for a pair of
nodes in the static case (Equation 1):

sij,t = wij (dij,t − ||xi,t − xj,t||)2 . (4)

The total stress consists of the stress of all pairs in Vt summed up over all steps
of time, and the stress arising from stability which is reflected in the second
term of the following equation

S =

∑
t

∑
i 6=j

sij,t

+

 ∑
1≤t<|T |

δi,t δi,t+1 ω ||xi,t − xi,t+1||2
 . (5)

The iteratively computed new coordinate for xi,t is accordingly

new-x(d)
i,t =

[∑
j 6=i

wij

(
x

(d)
j,t + dij,t

x
(d)
i,t−x

(d)
j,t

‖xi,t−xj,t‖

)]
+ ω(δi,t−1x

(d)
i,t−1 + δi,t+1x

(d)
i,t+1)[∑

j 6=i wij

]
+ ω(δi,t−1 + δi,t+1)

.

(6)
The δ-Functions in Equation 5, and 6 can be replaced by factor 1 instead (Equa-
tion 6 has to be adopted slightly) in this case stability will be provided if a node
disappears and reappears some time later.

The derived algorithm would look like the following:

repeat
for each time t

for each node i
in each dimension d

x
(d)
i,t ← new-x(d)

i,t

until the total stress is minimized appropriately

5

With the same assumptions as previously the running time is in O(n2 · |T |).
Note, that we disregard the costs of computing the values dij,t here.

Conclusion 1 The proposed dynamic layout algorithm does not impose a larger
asymptotic running time as compared to computing the static layouts for each
step of time separately.

4 Details and Options in the Implementation

We list some of details of our implementation here that can be influenced by
options in the dialog of the layouter. Figure 5 shows a screenshot of this dialog.

4.1 Stability

The value for the stability ω as in Equation 5 respectively 6 can be set. Higher
values of ω provide more stability. Setting ω = 0 is equivalent to compute the
layout for each step of time independently.

4.2 Improving the Resolution by Edge Length Variation

By replacing the uniform edge lengths in computing standard graph theoretic
distances by other values it is possible to improve some aspects of the layout.

If the sized of the nodes vary largely, e.g. due to a analysis visualization, it is
possible add the radii of both end nodes to the target edge length.

Stepping further in this direction dense regions of the network can be expanded,
see Figure 7 for an example. This is done by considering also the sizes of adjacent
nodes for each endpoint.

4.3 Influence of the Initial Layout

As our methods improves a given layout iteratively the quality of the final
layout, the stability, and also the number of required iterations to achieve a
certain quality and hence the execution time can depend on the initial layout.

In cases where the dynamic network does only change little over time it may
suffice to iterate from a common layout of the aggregation in order to provide
stability even if ω is set to zero. The description in [Moody et al., 2005] is not
very clear. However, it suggest that such an approach alone is used to provide
stability there.

In practice we find that the quality and final stress seems not to depend dras-
tically on the initial layout. However the number of iterations can increase
significantly for example when using independent random layouts for each Gt.

6

The default in the current implementation is to use the coordinates from the
layouted aggregation graph as an initial values. This layout of the aggregation
itself is computed first by Pivot-MDS [Brandes and Pich, 2007] followed by
static stress minimization as discussed in Section 3.1. We find that the number
of required iterations is reduced efficiently. Furthermore, the procedure has also
the benefit of being deterministic.

4.4 Handling Disconnected Components and Separation

The method of Kamada and Kawai and its derivations does not work on discon-
nected graphs without modifications. If Gt is disconnected some of the target
distances dij,t will become infinity in the distance computation.

In the current implementation we substitute these values by the maximum non
infinite distances in Gt

dmax,t = max
i 6=j
{dij,t : dij,t 6=∞}

or optionally by the maximum over all of those

dmax = max
t
{dmax,t}.

However, we found that both of these options tend to separate the components
more than desired. To ameliorate this dmax,t or dmax can be optionally scaled
by an factor between 0 and 1.

Even though we are able to produce pleasant drawings of dynamic networks
with disconnected components, we have to recognize that finding the appropiate
values requires experience as well as iterative manual procedure and is therefore
not optimal. We consider it as an open problem to find a better solution that
will give good results without the need of setting parameters.

4.5 Termination

The number of iterations can be limited by a constant factor. Additionally it is
also possible to set a threshold that terminates if a “normalized” modification
of the stress given by Equation 5 does not improve by more as this threshold
from the previous to the current iteration.

References

Vladimir Batagelj and Andrej Mrvar. Pajek – program for large network anal-
ysis, 1998.

7

Michael Baur, Ulrik Brandes, Thomas Schank, and Dorothea Wagner. Dynamic
network analysis and visualization with visone. In 401. Wilhelm and Else
Heraeus Seminar: Evolution and Physics Concepts, Models and Applications,
2008. poster.

Ulrik Brandes. Drawing on physical analogies. In Kaufmann and Wagner [2001],
pages 71–86. ISBN 3-540-42062-2.

Ulrik Brandes and Christian Pich. Eigensolver methods for progressive multidi-
mensional scaling of large data. In Michael Kaufmann and Dorothea Wagner,
editors, Graph Drawing, Karlsruhe, Germany, September 18-20, 2006, pages
pp. 42–53. Springer, 2007.

Ulrik Brandes and Dorothea Wagner. A Bayesian paradigma for dynamic graph
layout. In Giuseppe Di Battista, editor, Proceedings of the 5th Symposium on
Graph Drawing (GD’97), volume 1353 of Lecture Notes in Computer Science,
pages 236–247, Rome, Italy, 18–20 September 1997. Springer-Verlag.

Ulrik Brandes, Vanessa Kääb, Andres Löh, Dorothea Wagner, and Thomas
Willhalm. Dynamic www structures in 3d. J. Graph Algorithms Appl., 4(3):
183–191, 2000.

Jürgen Branke. Dynamic graph drawing. In Kaufmann and Wagner [2001],
pages 228–246. ISBN 3-540-42062-2.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social
Network Analysis with Pajek. Cambridge University Press, New York, NY,
USA, 2004. ISBN 0521602629.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice
Hall, Upper Saddle River, NJ, 1999.

Stephan Diehl and Carsten Görg. Graphs, they are changing -dynamic graph
drawing for a sequence of graphs. In Michael T. Goodrich and Stephen G.
Kobourov, editors, Graph Drawing, Irvine, CA, USA, August 26-28, 2002,
pages pp. 23–30. Springer, 2002.

Cesim Erten, Philipp J. Harding, Stephen G. Kobourov, Kevin Wampler, and
Gary V. Yee. Graphael: Graph animations with evolving layouts. In Giuseppe
Liotta, editor, Graph Drawing, Perugia, Italy, September 21-24, 2003, pages
98–110. Springer, 2004.

Carsten Friedrich and Peter Eades. Graph drawing in motion. J. Graph Algo-
rithms Appl., 6(3):353–370, 2002.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw., Pract. Exper., 21(11):1129–1164, 1991.

8

Emden R. Gansner, Yehuda Koren, and Stephen C. North. Graph drawing by
stress majorization. In János Pach, editor, Graph Drawing, volume 3383 of
Lecture Notes in Computer Science, pages 239–250. Springer, 2004. ISBN
3-540-24528-6.

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7–15, 1989. ISSN 0020-0190.

Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, Methods
and Models (the book grow out of a Dagstuhl Seminar, April 1999)., volume
2025 of Lecture Notes in Computer Science, 2001. Springer. ISBN 3-540-
42062-2.

Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment
and the mental map. J. Visual Languages and Computing, 6(2):183–210, June
1995. ISSN 1045-926X.

J. Moody, D. Mcfarland, and Bender S. Demoll. Dynamic network visualization.
American Journal of Sociology, 110(4):1206–41, 2005.

9

A Figures

4

1

2

5

3

Figure 1: Aggregation Graph

3

4

1

2

(a) Gt=1

3

4

1

2

5

(b) Gt=2

4

1

2

5

(c) Gt=3

Figure 2: Dynamic Graph

4

1

2

3

(a) Gt=1

4

1

2

3

5

(b) Gt=2

4

1

2

5

(c) Gt=3

Figure 3: Independent Layouts of the Dynamic Graph

10

Figure 4: Visone Window

Figure 5: Dialog of the Dynamic-Layouter

11

Figure 6: Include Size of Nodes

Figure 7: Expanding dense Regions

12

(a) Start (b) Fading-out

(c) Moving and Morphing (d) Moving and Morphing

(e) Fading-in (f) End

Figure 8: Snapshots of an Animation

13

