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Abstract. In this paper we consider a new problem that occurs when
drawing wiring diagrams or public transportation networks. Given an
embedded graph G = (V, E) (e.g., the streets served by a bus network)
and a set L of paths in G (e.g., the bus lines), we want to draw the
paths along the edges of G such that they cross each other as few times
as possible. For esthetic reasons we insist that the relative order of the
paths that traverse a node does not change within the area occupied by
that node.
Our main contribution is an algorithm that minimizes the number of
crossings on a single edge {u, v} ∈ E if we are given the order of the
incoming and outgoing paths. The difficulty is deciding the order of the
paths that terminate in u or v with respect to the fixed order of the
paths that do not end there. Our algorithm uses dynamic programming
and takes O(n2) time, where n is the number of terminating paths.

1 Introduction

In wiring diagrams or public transportation networks many paths must be drawn
on the same underlying graph, see Figures 1 and 2. In order to make the resulting
layout as understandable as possible it is desirable to (a) avoid crossings wherever
possible and (b) insist that the relative order of the lines that traverse a node
does not change in that node. For example, note that the subway line 5, which
passes under the main station of Cologne (Köln Hbf), crosses lines 16–19 south
of the station in the clipping of the public transport map of Cologne in Figure 2.
The crossing is not hidden under the rectangle that represents the station. This
makes it easier to follow the subway lines visually.

We model the problem as follows. We assume that we are given an undirected
connected graph G = (V, E) together with an embedding in the plane. The graph
represents the underlying structure of the wiring or the road/tracks in the case of
a transportation network. We are also given a set L of lines in G. They represent
the cables in a wiring diagram or the lines in a transportation network. A line
ℓ ∈ L is an edge sequence e1 = {v0, v1}, e2 = {v1, v2}, . . . , ek = {vk−1, vk} ∈ E

⋆ Supported by grant WO 758/4-2 of the German Research Foundation (DFG).
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Fig. 1: Clipping of a wiring diagram. Fig. 2: Clipping of the public transport net-
work of Cologne.

that forms a simple path in G. The stations v0 and vk are the terminal stations

for line ℓ while v1, . . . , vk−1 are intermediate stations. Our aim is to draw all lines
in L such that the number of crossings among pairs of lines in L is minimized.

To get a flavor of the problem observe that the structure of G enforces cer-
tain crossings, see Figure 3a: lines ℓ1 and ℓ2 use exactly the path 〈u, w1, w2, v〉
together. The graph structure (indicated by the first and last line segments of
each line) enforces that ℓ1 enters station u above ℓ2 while it leaves v below ℓ2,
thus ℓ1 and ℓ2 have to cross somewhere between u and v. However, fixing the
location of the crossing of ℓ1 and ℓ2 determines crossings with other lines that
have a terminal stop in w1 or w2. If there is a line ℓ that enters u between ℓ1 and
ℓ2 and terminates at w2 (see Figure 3b), the crossing between ℓ1 and ℓ2 should
be placed between w2 and v. Now suppose there is another line ℓ′ that enters
v between ℓ2 and ℓ1 from the right and terminates at w2, see Figure 3c. Then
at least one of the lines ℓ and ℓ′ intersects one of the lines ℓ1 or ℓ2, no matter
where the crossing between ℓ1 and ℓ2 is placed.

u v

w1 w2

u v

w1 w2

u v

w1 w2

ℓ1 ℓ1ℓ1

ℓ2 ℓ2ℓ2

ℓℓ ℓ
′

(a) (b) (c)

Fig. 3: Different placements of the necessary intersection between lines ℓ1 and ℓ2 on
the path u, w1, w2, v. In (c) at least one of the lines ℓ and ℓ′ has to intersect one of the
lines ℓ1 or ℓ2.



Minimizing Intra-Edge Crossings 3

We can abstract from geometry as follows. Given an edge {u, v} in G and
the orders of the lines in u and v that traverse u and v, respectively, we ask
for the order of all lines that enter {u, v} in u and for the order in which all

lines leave {u, v} in v. Then the number of crossings on {u, v} is the number
of transpositions needed to convert one order into the other. The difficulty is
deciding the order of the lines that terminate in u or v with respect to the fixed
order of the lines that traverse both u and v. This is the one-edge layout problem
that we study in Section 2.

In contrast to the well-known NP-hard problem of minimizing crossings in a
two-layer bipartite graph [3] the one-edge layout problem is polynomially solv-
able. The main reason is that there is an optimal layout of the lines that pass
through edge {u, v} such that no two lines that terminate in u intersect and no
two lines that terminate in v intersect. This observation allows us to split the
problem and to apply dynamic programming. It is then rather easy to come up
with an O(n5)-time solution and with some effort we could reduce the running
time to O(n2), where n is the number of lines that do not terminate in u or v.

A solution of the general line layout problem, i.e., a simultaneous crossing-
minimal solution for all edges of a graph, would be of interest as a second (and
mostly independent) step for drawing bus or metro maps, a topic that has re-
ceived some attention lately, see the work of Nöllenburg and Wolff [4] and the
references therein. However, in that direction of research the focus has so far
been exclusively on drawing the underlying graph nicely, and not on how to em-
bed the bus or metro lines along the network. We give some hints in Section 3
why already the two-edge layout problem seems to be substantially harder than
the one-edge layout.

A vaguely similar problem has been considered by Cortese et al. [1]. Given
the drawing of a planar graph G they widen the edges and vertices of the drawing
and ask if a given combinatorial cycle in G has a plane embedding in the widened
drawing.

2 A Dynamic Program for One-Edge Layout

In this section we consider the following special case of the problem.

Problem 1. One-edge layout

We are given a graph G = (V, E) and an edge e = {u, v} ∈ E. Let Le be the
set of lines that use e. We split Le into three subgroups: Luv is the set of lines
that pass through u and v, i.e., neither u or v is a terminal station. Lu is the set
of lines that pass through u and for which v is a terminal station and Lv is the
set of lines that pass through v and for which u is a terminal station. We assume
that there are no lines that exclusively use the edge {u, v} as they could be
placed top- or bottommost without causing any intersections. Furthermore we
assume that the lines for which u is an intermediate station, i.e., Luv ∪Lu, enter
u in a predefined order Su. Analogously, we assume that the lines for which v is
an intermediate station, i.e., Luv ∪Lv, enter v in a predefined order Sv. The task
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is to find a layout of the lines in Le such that the number of pairs of intersecting
lines is minimized.

u v

ℓv
ℓu

Fig. 4: The lines in Luv are drawn
solid. In an optimal solution ℓu ∈
Lu and ℓv ∈ Lv intersect.

Note that the number of crossings is de-
termined by inserting the lines in Lu into the
order Sv and by inserting the lines in Lv into
Su. The task is to find insertion orders that
minimize the number of crossings. Observe
that the orders Su and Sv themselves already
determine the number of crossings between
pairs of lines in Luv and that the insertion
orders of Lu in Sv and of Lv in Su do not
change this number. Thus, we will not take
crossings between lines in Luv into account anymore. On the other hand, fixing
an insertion order affects the number of crossings between lines in Lu ∪ Lv and
Luv and the number of crossings between lines in Lu and Lv in a non-trivial way.
Figure 4 shows that a line ℓu ∈ Lu can indeed cross a line ℓv ∈ Lv in the unique
optimal solution. Throughout the paper lines in Luv are drawn solid, lines in Lu

dotted and lines in Lv dashed. We will now show that no two lines in Lu (and
analogously in Lv) cross in an optimal solution. This nice property is the key for
solving the one-edge layout in polynomial time.

Lemma 1. In any optimal solution for the one-edge layout problem no pair of

lines in Lu and no pair of lines in Lv intersects.

Proof. Assume to the contrary that there is an optimal solution σ with a pair of
lines in Lu that intersects. Among all such pairs in σ let {ℓ, ℓ′} be the one whose
intersection point p is rightmost. W.l.o.g. ℓ is above ℓ′ in u. Let ℓp and ℓ′p be the
parts of ℓ and ℓ′ to the right of p, see Figure 5a. Since σ is crossing minimal, the
courses of ℓp and ℓ′p intersect the minimum number of lines in Luv ∪Lv in order
to get from p to v. In particular, the number of crossings between ℓp and lines
of Luv ∪ Lv and between ℓ′p and lines of Luv ∪ Lv must be the same otherwise
we could place ℓp parallel to ℓ′p (or vice versa) which would reduce the number
of crossings. However, since the number of crossings to the right is the same we
can easily get rid of the crossing between ℓ and ℓ′ by replacing ℓp by a copy of ℓ′p
infinitesimally close above ℓ′p, see Figure 5b. The proof for Lv is analogous. ⊓⊔

From now on we assume that no two lines of Lu are consecutive in Su and
analogously no two lines of Lv are consecutive in Sv. The reason for this as-
sumption is that a set of consecutive lines can simply be drawn parallelly in an
optimal layout. Thus a single line suffices to determine the optimal course for
the whole bundle. Technically, we can deal with this case by merging a bundle
of k consecutive lines of Lu or Lv to one line and assigning a weight of k to
it. The dynamic program will then run in a weighted fashion that counts k · k′

crossings for a crossing of two lines with weights k and k′. For simplification we
only explain the unweighted version of the problem in detail.

Let n, nu and nv be the number of lines in Luv, Lu and Lv, respectively. Note
that by the above assumption nu, nv ≤ n + 1 holds.
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Fig. 5: Two lines of Lu do not intersect in an optimal solution.

Recall that by assumption the lines in Luv ∪Lu enter u in a predefined order
and the lines in Luv ∪ Lv leave v in a predefined order. Let Su = (su

1 < · · · <

su
n+nu

) be the bottom-up order of lines in Luv ∪ Lu in u and Sv = (sv
1 < · · · <

sv
n+nv

) be the bottom-up order of lines in Luv ∪ Lv in v. A line ℓ in Lv can
terminate below su

1 , between two neighboring lines su
i , su

i+1, or above su
n+nu

. We
denote the position of ℓ by the index of the lower line and by 0 if it is below
su
1 . Let Sv|Lv = (sv

π(1) < . . . < sv
π(nv)) denote the order on Lv induced by Sv

and let Su|Lu = (su
µ(1) < . . . < su

µ(nu)) denote the order on Lu induced by Su.
Here, π and µ are injective functions that filter the lines Lv out of all ordered
lines Luv ∪Lv in Sv and the lines Lu out of all ordered lines Luv ∪Lu in Su, see
Figure 6.

Preprocessing. The orders Su and Sv already determine the number of necessary
crossings between pairs of lines in Luv. Let cruv denote this number. Since cruv

is fixed there is no need to consider the corresponding crossings in the minimiza-
tion. We will now fix the course of a line in Lv. This line, say ℓ = sv

π(j), has

index π(j) in Sv, and we fix the course of ℓ by choosing its terminal position i

in the order Su. We denote the number of crossings between ℓ and all lines in
Luv by crv(i, j). This number is determined as follows. The line ℓ crosses a line
ℓ′ ∈ Luv with left index i′ and right index j′ if and only if either it holds that
i′ ≤ i and j′ > π(j) or it holds that i′ > i and j′ < π(j). The table crv for all
lines in Lv has (n + nu + 1) × nv = O(n2) entries. For fixed i we can compute
the row crv(i, ·) as follows. We start with j = 1 and compute the number of
lines in Luv that intersect line ℓ with indices i and π(j). Then, we increment j

and obtain crv(i, j +1) by crv(i, j) minus the number of lines in Luv that are no
longer intersected plus the lines that are newly intersected. As any of the n lines
in Luv receives this status ’no longer’ or ’newly’ at most once and this status
can easily be checked by looking at Sv, this takes O(n) time per row. Thus, in
total we can compute the matrix crv in O(n2) time.

We define cru(i, j) analogously to be the number of crossings of the lines in
Luv with a line in Lu that has index µ(i) in Su and position j in Sv. Computing
cru is analogous to crv.

Dynamic Program. Assume that we fix the destination of sv
π(j) to some i ∈

{0, . . . , n + nu}. Then we define F (i, j) as the minimum number of crossings of
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Fig. 6: The order Su and the induced
suborder Su|Lu = (su

2 < su
4 ).

u v

s
v
π(j)

s
u
i

i

Fig. 7: Configuration corresponding to F (i, j):
line sv

π(j) terminates at position i in u.

(a) the lines in {su
1 , . . . , su

i } ∩ Lu with the lines in Luv ∪ Lv and (b) the lines
in {sv

1, . . . , s
v
π(j)} ∩ Lv with the lines in Luv ∪ Lu. This situation is depicted in

Figure 7, where only the crossings indicated by gray disks are counted in F (i, j).
Then the values F (i, j) define an (n + nu + 1) × nv-matrix F .

Once the last column F (·, nv) of the matrix F is computed, i.e., all lines in
Lv are placed, we can determine the optimal solution for Le as

F ∗ := min{F (i, nv) + C(i, n + nu, nv + 1) | i = 0, . . . , n},

where C(i, n + nu, nv + 1) is the remaining number of crossings of lines in Lu ∩
{su

i+1, . . . , s
u
n+nu

} with Luv ∪ Lv, which are not yet counted in F (i, nv).
Before turning to the recursive computation of F (i, j) we introduce an-

other notation. Let us assume that sv
π(j−1) terminates at position k and sv

π(j)

terminates at position i, where 0 ≤ k ≤ i ≤ n + nu and j ∈ {1, . . . , nv}.
Then let C(k, i, j) denote the minimum number of crossings that the lines
Lu

k,i := {su
k+1, . . . , s

u
i }∩Lu cause with Luv ∪Lv. In other words C(k, i, j) counts

the minimal number of crossings of all lines of Lu in the interval defined by
the endpoints of the two lines sv

π(j−1) and sv
π(j). This situation is illustrated in

Figure 8, where those crossings that are marked with gray disks are counted in
the term C(k, i, j). The following theorem gives the recursion for F and shows
its correctness.

Theorem 1. The values F (i, j), i = 0, . . . , n + nu, j = 1, . . . , nv, can be com-

puted recursively by

F (i, j) =







mink≤i{F (k, j − 1) + C(k, i, j) + crv(i, j)} if i ≥ 1, j ≥ 2
∑j

l=1 crv(0, l) if i = 0, j ≥ 1
C(0, i, 1) + crv(i, 1) if i ≥ 1, j = 1.

(1)

Proof. The base cases of Equation (1) consist of two parts. In the first row, an
entry F (0, j) means that all lines sv

π(1), . . . , s
v
π(j) terminate at position 0 in u and

hence the required number of crossings is just the number of crossings of these
lines with Luv, which equals the sum given in Equation (1). In the first column,
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an entry F (i, 1) reflects the situation that line sv
π(1) terminates at position i.

The required number of crossings in this case is simply crv(i, 1), the number of
crossings of sv

π(1) with Luv, plus C(0, i, 1), the number of crossings of Lu
0,i with

Luv ∪ Lv.

The general case of Equation (1) means that the value F (i, j) can be com-
posed of the optimal placement F (k, j − 1) of the lines below and including
sv

π(j−1) (which itself terminates at some position k below i), the number C(k, i, j)
of crossings of lines in Lu in the interval between k and i, and the number of
crossings crv(i, j) of sv

π(j) at position i.
Due to Lemma 1 we know that sv

π(j) cannot terminate below sv
π(j−1) in an op-

timal solution. Hence, for sv
π(j) terminating at position i, we know that sv

π(j−1)

terminates at some position k ≤ i. For each k we know by the induction hy-
pothesis that F (k, j − 1) is the correct minimum number of crossings as defined
above. In order to extend the configuration corresponding to F (k, j − 1) with
the next line sv

π(j) in Lv we need to add two terms: (a) the number of crossings

of Lu
k,i with Luv ∪Lv, which is exactly C(k, i, j), and (b) the number crv(i, j) of

crossings that the line sv
π(j) (terminating at position i) has with Luv. Note that

potential crossings of sv
π(j) with lines in Lu

k,i are already considered in the term

C(k, i, j). Figure 8 illustrates this recursion: sv
π(j) is placed at position i in the

order Su, and sv
π(j−1) terminates at position k. The crossings of the configuration

corresponding to F (i, j) that are not counted in F (k, j − 1), are the C(k, i, j)
crossings of the marked, dotted lines of Lu (indicated by gray disks) and the
crv(i, j) encircled ones of sv

π(j) with Luv.
Finally, we have to show that taking the minimum value of the sum in Equa-

tion (1) for all possible terminal positions k of line sv
π(j−1) yields an optimal

solution for F (i, j). Assume to the contrary that there is a better solution
F ′(i, j). This solution induces a solution F ′(k, j − 1), where k is the position
of sv

π(j−1) in Su. Lemma 1 restricts k ≤ i and hence sv
π(j−1) runs completely

below sv
π(j). Therefore we have F ′(k, j − 1) ≤ F ′(i, j) − C(k, i, j) − crv(i, j) <

F (i, j) − C(k, i, j) − crv(i, j) ≤ F (k, j − 1). This contradicts the minimality of
F (k, j − 1). ⊓⊔

If we store in each cell F (i, j) a pointer to the corresponding predecessor
cell F (k, j − 1) that minimizes Equation (1) we can reconstruct the optimal
edge layout: starting at the cell F (i, nv) that minimizes F ∗, we can reconstruct
the genesis of the optimal solution using backtracking. Obviously, using the
combinatorial solution to place all endpoints of Le in the correct order and then
connecting them with straight-line segments results in a layout that has exactly
F ∗ crossings in addition to cruv, the invariable number of crossings of Luv.

Now, we can give a first, naive approach: As mentioned earlier the tables cru

and crv can be computed in O(n2) time. For the computation of one cell entry
C(k, i, j) we only have to look at the at most n lines Lu

k,i and their possible n+1
terminal positions in v. Once we have fixed a terminal position of a line ℓ ∈ Lu

k,i,
we have to compute the number of crossings that ℓ has with Luv ∪ Lv. For the
crossings with Luv we simply have to look at the corresponding value of cru. For
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u v

sv
π(j−1)

{

crv(i, j)

C(k, i, j)
su

i

sv
π(j)

su
k

i

k

Fig. 8: The recursion for F (i, j): lines sv
π(j−1) and sv

π(j) terminate at pos. k and i, resp.

C(k, i, j) = min. # crossings of the marked dotted lines Lu
k,i with Luv ∪ Lv =here 4

crv(i, j) = number of crossings of sv
π(j) with Luv =here 2

the crossings with Lv it is sufficient to look at the index of the terminal position
because we know that position k is the terminal position of sv

π(j−1) and position

i is the terminal position of sv
π(j). Thus, computing one of the O(n3) cells of the

table C requires O(n2) time, so in total we need O(n5) time for filling C. This
dominates the computation of the table F . In the remainder of this section we
show how to speed up the computation of F and C.

Improving the Running Time. Let us—for the moment—assume that the values
C(k, i, j) and crv(i, j) are available in constant time. Then the computation of
the (n + nu + 1) × nv matrix F still needs O(n3) time because the minimum
in Equation (1) is over a set of O(n) elements. The following series of lemmas
shows how we could bring the running time down to O(n2). First we show a
relation for the entries of the matrix C.

Lemma 2. C(k, i, j) is additive in the sense that C(k, i, j) = C(k, l, j)+C(l, i, j)
for k ≤ l ≤ i.

Proof. Since C(k, i, j) denotes the number of crossings of the lines in Lu ∩
{su

k+1, . . . , s
u
i } and no two of these lines intersect each other (recall Lemma 1)

we can split the layout corresponding to C(k, i, j) at any position l, k ≤ l ≤ i

and get two (possibly non-optimal) configurations for the induced subproblems.
This implies C(k, i, j) ≥ C(k, l, j) + C(l, i, j).

Conversely, we can get a configuration for C(k, i, j) by putting together the
optimal solutions of the subproblems. W.l.o.g. this introduces no additional
crossings (they could be removed as in the proof of Lemma 1). Hence we have
C(k, i, j) ≤ C(k, l, j) + C(l, i, j). ⊓⊔

Now we show that we do not need to compute all entries of C.

Lemma 3. Given the matrix C, the matrix F can be computed in O(n2) time.

Proof. Having computed entry F (i − 1, j) we can compute F (i, j) in constant
time as follows:
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F (i, j) = min

{

F (i − 1, j) + C(i − 1, i, j)− crv(i − 1, j) + crv(i, j),
F (i, j − 1) + crv(i, j).

(2)

The correctness follows from Equation (1), Lemma 2, and the fact that C(i, i, j)
vanishes:

F (i, j)
(1)
= min

{

min
k<i

{F (k, j − 1) + C(k, i, j) + crv(i, j)},

F (i, j − 1) + C(i, i, j) + crv(i, j)

L. 2
= min

{

min
k≤i−1

{F (k, j − 1) + C(k, i − 1, j) + C(i − 1, i, j) + crv(i, j)},

F (i, j − 1) + crv(i, j)

(1)
= min

{

F (i − 1, j) − crv(i − 1, j) + C(i − 1, i, j) + crv(i, j),
F (i, j − 1) + crv(i, j)

In the first column, we can reformulate the recursion for i ≥ 1 as follows:

F (i, 1)
(1)
= C(0, i, 1) + crv(i, 1)

Lemma 2
= C(0, i − 1, 1) + C(i − 1, i, 1) + crv(i, 1)
(1)
= F (i − 1, 1) − crv(i − 1, 1) + C(i − 1, i, 1) + crv(i, 1)

Hence the whole matrix F can be computed in O([n+nu]·nv) = O(n2) time. ⊓⊔

Observe that due to the reformulation in Lemma 3 we only need the values
C(i − 1, i, j) explicitly in order to compute F . Now we will show that we can
compute these relevant values in O(n2) time. For simplification we introduce the
following notation: C′(i, j) := C(i − 1, i, j).

Lemma 4. The values C′(i, j) (i = 1, . . . , n + nu, j = 1, . . . , nv) can be com-

puted in O(n2) time.

Proof. We compute C′(i, j) row-wise, i.e., we fix i and increase j. Recall that
C(k, i, j) was defined as the minimal number of crossings of the lines in Lu

k,i =
{su

k+1, . . . , s
u
i } ∩ Lu with the lines in Luv ∪ Lv under the condition that sv

π(j−1)

ends at position k and sv
π(j) ends at position i. For C′(i, j) = C(i − 1, i, j) this

means we have to consider crossings of the set Lu
i−1,i = {su

i } ∩ Lu. Hence, we
distinguish two cases: either su

i is a line in Luv and then Lu
i−1,i is empty or

su
i ∈ Lu and we have to place the line su

i optimally. Clearly, in the first case we
have C′(i, j) = 0 for all j as there is no line to place in Lu

i−1,i.
Now we consider the case that su

i ∈ Lu. For each j we split the set of can-
didate terminal positions for su

i into the intervals [0, π(j − 1)), [π(j − 1), π(j)),
and [π(j), n + nv]. Let LM(i, j), MM(i, j), and UM(i, j) denote the minimum
number of crossings of su

i with Luv ∪ Lv for terminal positions in [0, π(j −
1)), [π(j − 1), π(j)), and [π(j), n + nv], respectively. Now we have C′(i, j) =
min{LM(i, j), MM(i, j), UM(i, j)} as the minimum of the three distinct cases.
The situation is illustrated in Figure 9.
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u

v

su
i+1 ∈ Luv

[

π(j), n + nv

]

[

0, π(j − 1)
)

[

π(j − 1), π(j)
)

su
i ∈ Lu

sv
π(j−1) ∈ Lv

sv
π(j) ∈ Lvsu

i+1 ∈ Luv

−→ LM(i, j)

−→ UM(i, j)

−→ MM(i, j)

Fig. 9: Splitting the candidate terminal positions for su
i into three intervals w.r.t.

π(j − 1) and π(j).

Next, we have to show how to compute MM, LM, and UM. First, we consider
MM. Recall that cru(i, j) was defined as the number of crossings of the lines in
Luv with the line su

µ(i) that terminates at position j in v. It follows that

MM(i, j) = min{cru(µ−1(i), k) | π(j − 1) ≤ k < π(j)}, (3)

where π(0) is defined as 0. Because of Lemma 1 there are no lines of Lv inter-
secting the tunnel between sv

π(j−1) and sv
π(j). Hence, if the line su

i terminates at

position k ∈ [π(j − 1), π(j)) it does not cross any line of Lv and Equation (3) is
correct. We can calculate MM(i, j) by a straight-forward minimum computation
through j = 1, . . . , nv which takes O(n + nv) = O(n) time for each value of i.

Secondly, we consider LM. Initially, in the case that j = 1 there is no line
sv

π(j−1) and the corresponding interval is empty. Hence we set LM(i, 1) = ∞.
Then we recursively compute

LM(i, j + 1) = min{LM(i, j) + 1, MM(i, j) + 1}. (4)

Observe that for LM(i, j + 1) we merge the previous intervals corresponding
to LM(i, j) and MM(i, j). Moreover the line sv

π(j), which previously ended at
position i, now terminates at position i−1. Hence, in order to reach its terminal
position in the interval [0, π(j)), the line su

i has to cross sv
π(j) in addition to the

crossings counted before by MM(i, j) and LM(i, j). This explains the recursion
in Equation (4). The computation again requires O(n) time for each value of i.

Finally, we initialize UM(i, nv) = 1 + min{cru(µ−1(i), k) | π(nv) ≤ k ≤
n + nv} as for j = nv the line su

i crosses the line sv
π(nv) but no other line of Lv.

In decreasing order we compute

UM(i, j − 1) = min{UM(i, j) + 1, MM(i, j) + 1} (5)

analogously to LM, which again requires O(n) time. As the whole procedure
needs linear time for each i = 1, . . . , n + nu the total running time is O(n2). ⊓⊔

Putting the intermediate results in Lemmas 3 and 4 together, we conclude:
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Theorem 2. The one-edge layout problem can be solved in O(n2) time.

So far, the algorithm requires O(n2) space to store the tables F, C′, crv, and
cru. If we are only interested in the minimum number of crossings this can easily
be reduced to O(n) space as all tables can be computed row-wise: in F we need
only two consecutive rows at a time and we can discard previous rows; in the
other tables the rows are independent and can be computed on demand. This
does not affect the time complexity. However, to restore the optimal placement
we need the pointers in F to do backtracking and hence we cannot easily discard
rows of the matrix. But we can still reduce the required space to O(n) with
a method similar to a divide-and-conquer version of the Needleman-Wunsch
algorithm for biological sequence alignment [2] adding a factor of 2 to the time
complexity. Basically, the idea is to keep only the pointers in one column of the
matrix to reconstruct the optimal position of the corresponding line. This line
cuts the problem into two smaller subproblems which are solved recursively.

3 Generalization to a Path

Surely it is desirable to draw lines on a more general fraction of the graph than
only on a single edge. However, the problem seems to become significantly harder
even for two edges. Let us first define the problem on a path.

Problem 2. Path layout

Given a graph G = (V, E) and a simple path P = 〈u, w1, . . . , wm, v〉 in G. Let
LP be the set of lines that use at least one edge in P . We split LP into three sub-
groups: LP

uv is the set of lines that have no terminal station in {u, w1, . . . , wm, v},
LP

u is the set of lines for which u is an intermediate station and that have a ter-
minal station in {w1, . . . , wm, v}, and LP

v is the set of lines for which v is an
intermediate station and that have a terminal station in {u, w1, . . . , wm}. We
assume that there are no lines having both terminal stations in {u, w1, . . . , v}
as these could be placed top- or bottommost causing the minimum number of
crossings with lines in LP

uv. We also assume that any two lines ℓ1, ℓ2 that use
exactly the subpath x, . . . , y ⊆ P together and for which neither x nor y is a
terminal station enter P in x in a predefined order and leave P in y in a prede-
fined order. The task is to find a layout of the lines in LP such that the number
of pairs of intersecting lines is minimized.

We tried to apply the same dynamic-programming approach as for the one-
edge case. However, the dilemma is that the generalized version of Lemma 1 does
not hold, namely that no two lines in LP

v intersect. Thus, the problem instance
cannot be separated into two independent subproblems, which seems to forbid
dynamic programming. In Figure 10a we give an instance where two lines of
LP

v cross in the optimal solution. Here, the lines in LP
uv are drawn solid. Recall

that we do not have to take the intersections of lines in LP
uv into account as

these are again given by the orders in Su and Sv. The two lines ℓu and ℓ′u ⊆ LP
u

are only needed to force the bundle crossings between the bundles L′ ⊂ LP
uv and
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u vw1

ℓv

ℓ′
v

{
{L′′

L′′′

{L′

ℓu, ℓ′
u

(a) Optimal solution (7 crossings).

u vw1

ℓv

ℓ′
v

{
{L′′

L′′′

{L′

ℓu, ℓ′
u

(b) Manipulating ℓv (8 crossings).

Fig. 10: The two lines ℓv,ℓ′v ∈ LP
v cross in the optimal solution.

L′′′ ⊂ LP
uv to be on the edge {w1, v}. In the optimal solution the lines ℓv, ℓ

′
v ∈ LP

v

intersect causing a total number of 7 crossings between lines in LP
v with lines

in LP
v ∪ LP

uv. We have to argue that any solution in which ℓv and ℓ′v do not
cross produces more than 7 crossings. We look at the optimal solution and argue
that getting rid of the crossing between ℓv and ℓ′v by manipulating the course
of either ℓv or ℓ′v produces at least 8 crossings. First, we consider manipulating
the course of ℓv, see Figure 10b. However then, as ℓv has to be above ℓ′v, it has
to cross the 4 lines in the bundle L′′′ resulting in a total number of 8 crossings.
Similarly, manipulating the course of ℓ′v would also result in at least 8 crossings.

Concluding Remarks

Clearly our work is only a first step in exploring the layout of lines in graphs.
What is the complexity of the problem if two edges of the underlying graph are
considered, what about longer paths, trees and finally, general plane graphs? A
variant of the problem where lines must terminate bottom- or topmost in their
terminal stations is also interesting. This requirement prevents gaps in the course
of continuing lines.
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