
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings
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Abstract

Ortho-Radial drawings are a generalization of orthog-
onal drawings to grids that are formed by concentric
circles and straight-line spokes from the center.

We show that bend-free planar ortho-radial draw-
ings can be combinatorially described in terms of the
distribution of the angles around the vertices. Pre-
viously, such a characterization was only known for
paths, cycles, and theta graphs [5], and in the spe-
cial case of rectangular drawings for cubic graphs [4],
where the contour of each face is required to be a rect-
angle. This is an important ingredient in establish-
ing an ortho-radial analogue of Tamassia’s Topology-
Shape-Metrics Framework for bend minimization in
planar orthogonal drawings.

1 Introduction

Grid drawings of graphs map vertices to grid points,
and edges to internally disjoint curves on the grid lines
connecting their endpoints. Orthogonal grids, where
the grid lines are horizontal and vertical lines, are pop-
ular and widely used in graph drawing. Their strength
lies in their simple structure, their high angular reso-
lution, and the limited number of directions. Graphs
admitting orthogonal grid drawings must be 4-planar,
i.e., they must be planar and have maximum degree 4.

It is well known that, a bend-free planar orthogonal
drawing Γ of a 4-plane graph G, i.e., a 4-planar graph
with a fixed combinatorial embedding, can be combi-
natorially described by the distribution of the angles
around the vertices. For any incidence between a ver-
tex v and a face f that lies to the right of the edges
uv, vw, we measure the counterclockwise angle a ∈
{90◦, 180◦, 270◦, 360◦} between vu and vw. In this
way, we assign an angle to each vertex–face incidence.
Consider two edges uv, vw not necessarily bounding
a common face and let α be the sum of all the angles
that lie locally to the right of uvw. We define the ro-
tation of the path uvw as rot(uvw) = 2− α/90◦, i.e.,
intuitively left and right turns correspond to rotations
of −1 and 1, respectively, whereas going straight cor-
responds to a rotation of 0. We further generalize
this to arbitrary paths P = v1, . . . , vk as rot(P ) =
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Figure 1: (a) An ortho-radial drawing on an ortho-
radial grid, the small numbers give the rotations at
the vertices in the central face. (b,c) Ortho-radial
representations with locally correct angle sums that
cannot be realized; the dotted curve is a single edge.

∑k−1
i=2 rot(vi−1vivi+1) and to cycles C = v1, . . . , vk, v1

as rot(C) =
∑k

i=1 rot(vi−1vivi+1), where v0 = vk and
vk+1 = v1. For a face f , we define rot(f) = rot(Cf ),
where Cf is the boundary of f directed such that f
lies to its right. It is not hard to see that an an-
gle assignment stemming from an orthogonal drawing
satisfies the following conditions.

1. The sum of the angles around each vertex is 360◦.
2. For each internal face f it is rot(f) = 4 and

rot(f) = −4 for the outer face.
An angle assignment satisfying these conditions is
called orthogonal representation. Tamassia [6] showed
that, conversely, for any orthogonal representation
there exists a corresponding planar orthogonal draw-
ing with the given angles. It is this characterization,
which decouples the shape of an orthogonal draw-
ing (described in the form of an orthogonal represen-
tation) from its geometric realization, that has en-
abled a three-step framework for computing orthog-
onal planar drawings, the Topology-Shape-Metrics
(TSM) framework, that is at the heart of various
bend minimization algorithms for orthogonal draw-
ings [6, 1, 2, 3]. Note that bends can be seen as sub-
division vertices with a 90◦ and a 270◦ angle.

The goal of this work is to provide a similar re-
sult and thus to establish the existence of an analo-
gous framework for ortho-radial drawings, which are
based on ortho-radial grids formed by concentric cir-
cles and spokes emanating from the circles’ center c;
see Fig. 1a. In this case, our 4-plane input graph G
comes with two designated faces, an outer face, which
shall form the outer face of the drawing and a central
face whose interior shall contain c. All other faces are
regular. A simple cycle in G is essential if it contains c
in its interior, otherwise it is non-essential. Through-
out this paper we assume that G contains at least one
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essential cycle. If it does not, then the central and the
outer face are identical, and the ortho-radial drawing
is equivalent to an orthogonal drawing [5].

It is not hard to see that also ortho-radial draw-
ings induce angle assignments as above, which we call
ortho-radial representations. It is clear that again the
angle sums around each vertex must be 360◦, and fur-
ther similar to the orthogonal case, it is rot(f) = 4 for
regular faces and rot(f) = 0 for the central and the
outer face (recall that we assume them to be distinct).
However, there are examples of such assignments that
have no geometric realization; see Fig. 1b. Up to this
point a characterization of the ortho-radial represen-
tations that have a corresponding drawing has been
achieved only for paths, cycles, and theta-graphs [5]
and for 3-regular rectangular graphs [4], whose ortho-
radial representation is such that internal faces have
exactly four 90◦ angles, while all other incident angles
are 180◦, and the central and outer face have only
180◦ angles. Our main result is a characterization of
the ortho-radial representations of arbitrary 4-plane
graphs that correspond to an ortho-radial drawing.

We introduce some notation and our definition of a
valid ortho-radial representation in Section 2. After-
wards, we first show in Section 3 that valid ortho-
radial representations characterize the ortho-radial
drawings of rectangular graphs. Based on that special
case of 4-planar graphs, we then present the charac-
terization for general 4-planar graphs in Section 4.

2 Preliminaries and Ortho-Radial Representations

In this paper, all paths and cycles are directed. We
implicitly direct cycles that do not cross themselves,
e.g., facial cycles, such that their interior lies to the
right, and we consider a cycle to be part of both its
interior and its exterior, i.e., the interior and the exte-
rior are closed. We further assume that paths are sim-
ple but cycles may be non-simple, though they may
contain each edge at most once in each direction.

Making use of the view of ortho-radial drawings
as orthogonal drawings of a cylinder, we classify the
edges of a drawing as pointing left, right, down or up,
respectively. Edges pointing left or right are horizon-
tal edges and edges pointing up or down are vertical
edges. Note further, that an ortho-radial representa-
tion determines the directions of all edges. Consid-
ering again the example from Fig. 1b it can be seen
that the essential cycle C contains an up edge but no
down edge, and thus there is no corresponding draw-
ing. However, the existence of a down edge on each
essential cycle containing an up edge is not sufficient
for the existence of a drawing even in the case of cy-
cles; see Fig. 1c. The reason is that, in some sense,
the down edge in this case is too wound up to be of
any help. Instead we need a somewhat more global
measure than up and down, which we introduce next.

Ortho-Radial Representations For a 4-plane graph
G with a given ortho-radial representation Γ, we fix
an arbitrary reference edge e? = rs on the outer face
that points to the right, i.e., the outer face lies on
its left. Let C be a simple essential cycle and let
P be a path from s to a vertex v of C. We now
define a labeling of the edges of C with respect to P
and e? as `PC(e) = rot(e? + P +C[v, e]), where C[v, e]
denotes the part of C from v to e. In the following we
are mostly interested in labelings with respect to so-
called elementary paths P , where v is the first vertex
of C that lies on P . It can be shown that in this
case the labeling does not depend on the choice of the
elementary path. Thus, the labeling of C depends
only on Γ, and we omit the superscript P . We are
now ready to present our characterization.

Definition 1 An ortho-radial representation is valid
if the following conditions hold.
1. The sum of angles around each vertex is 360◦.
2. For each face f , it is

rot(f) =

{
4, if f is a regular face

0, if f is the central/outer face.

3. For each simple essential cycle C in G, it is
`C(e) = 0 for all edges e of C, or there are edges
e+ and e− on C with `C(e+) > 0 and `C(e−) < 0.

We have already seen that the first two conditions
are necessary. The last condition is new and guaran-
tees that all cycles in the graph can be drawn consis-
tently. For an essential cycle C that violates condi-
tion 3 either all labels of edges on C are non-negative
or all are non-positive. Then C is called decreasing
and increasing, respectively. Both increasing and de-
creasing cycles are called monotone. Note that an
increasing (decreasing) cycle contains an edge with a
negative (positive) label. Cycles with only the label 0
are not monotone. Our main result is as follows.

Theorem 1 Let G be a 4-plane graph with an ortho-
radial representation Γ. Then G has an ortho-radial
drawing that corresponds to Γ if and only if Γ is valid.

3 Rectangular Graphs

Let G be a 4-planar graph and let Γ be an ortho-radial
representation of G where every face is rectangular.
We use a flow method similar to Tamassia [6]. For
each edge e, we find an arbitrary path P from e? to
e, and we determine e as pointing right, down, left or
up, if rot(P ) mod 4 is 0, 1, 2, or 3, respectively. We
note that conditions 1 and 2 of valid ortho-radial rep-
resentations guarantee that this is well-defined. We
then reverse the downward and left edges so that all
edges point either up or right. The rectangular prop-
erty of the faces guarantees that each internal face is
bounded by two vertical and by two horizontal paths.



EuroCG 2017, Malmö, Sweden, April 5–7, 2017

We create a radial flow network Nrad with a vertex
for each face, and an edge from a face f to a face g
if and only if there is a horizontal edge with f to
its right and g to its left; see Fig. 2. Similarly, we
define a vertical flow network Nver that has a vertex
for each internal face and an edge from f to g if and
only if there is a vertical edge with f to its left and g
to its right. We set the capacities of all edges to ∞
and require a minimum flow of 1 on each edge. It
is then readily seen that drawings of Γ correspond
bijectively to pairs (Frad, Fver) where Frad is a flow
from the central face to the outer face in Nrad and
Fver is a circulation in Nver. The fact that such a flow
exists in Nrad is analogous to the orthogonal case [6].

The key is to show that a circulation in Nver ex-
ists if Γ is valid. The main idea is to determine for
each arc a of Nver a cycle Ca in Nver that contains a.
If Fa denotes the circulation that pushes one unit of
flow along the arcs of Ca and is 0 elsewhere, then
Fver =

∑
a∈A Fa, where A denotes the arc set of Nver,

is the desired flow. The only reason why such a cycle
might not exist is if there is a set S of vertices in Nver

such that there exists an arc entering S but no arc ex-
iting S. Without loss of generality, we assume Nver[S]
is weakly connected, which implies that S corresponds
to a connected set S of faces in G. Note that S con-
tains a directed cycle of Nver, which is an essential
cycle. Let C and C ′ denote the smallest and largest
essential cycle of G, respectively, such that all faces
in S lie in the interior of C and in the exterior of C ′.
We show that C is increasing or C ′ is decreasing.

Assume there is an incoming arc a that crosses C
(an incoming arc crossing C ′ is analogous). Since all
faces are rectangles, there is an elementary path P
from e? to a vertex v on G only using right and down
edges of G. Thus, if w is the first vertex of C after
v, it is `C(vw) = 0 if vw is horizontal and `C(vw) =
−1 if vw points up. Since no edge on C is pointing
downward, i.e., its label is congruent to 1 mod 4, and
the labels between adjacent edges differ by −1, 0, or 1,
it follows that `C(e′) ∈ {−2,−1, 0} for all edges e′ of
C, i.e., `C(e′) ≤ 0. However, the edge e corresponding
to the incoming arc a of S is pointing upwards, and
therefore `C(e) = −1. Hence C is increasing.

Theorem 2 Let (G,Γ) be a rectangular graph and
its ortho-radial representation. There exists a bend-
free ortho-radial drawing of G respecting Γ if and only
if Γ is valid.

4 General 4-planar Graphs

In this section we present the proof of Theorem 1.
Following Tamassia’s approach for orthogonal draw-
ings [6], our approach is based on augmenting a graph
G and its valid ortho-radial representation with addi-
tional edges so that it remains valid and becomes rect-

(a) (b)

Figure 2: NetworksNrad (a) andNver (b) for assigning
the lengths of radial and vertical edges, respectively.

angular. Then the claim follows from Theorem 2. For
the sake of simplicity, we assume that the outer face
and the central face are already bounded by a hori-
zontal cycle, if not, we can simply add these cycles
and suitably attach them to our graph.

A regular face f that is not a rectangle contains a
left bend at a vertex on its boundary, and since it con-
tains four more right bends than left bends by cond. 2,
the boundary of f actually contains a vertex u that
is followed by two right bends; see Fig. 3a. We call
this a U-shape. Let z be a subdivision vertex on the
edge e immediately after the second right bend of the
U-shape and consider the graph G′ and its represen-
tation Γ′ obtained by adding the edge uz and setting
the angles at u and z in the face left of uz to 90◦; see
Fig. 3a. Tamassia shows that Γ′ is a valid orthogonal
representation of G′. Since G′ has fewer left bends
at internal faces than G, this procedure eventually
terminates with a rectangular graph.

In the case of ortho-radial drawings the situation
is not so simple, since we additionally have to ensure
that the insertion does not create any monotone cy-
cles. However, this case cannot occur if the edge uz
is vertical. Namely, if inserting the vertical edge uz
created a monotone cycle C ′ in G′, then, instead of
the edge uz, one can use the cycle C ′−uz and (a part
of) the U-shape to find a monotone cycle C in G.

Lemma 3 Vertical augmentation does not create
monotone cycles.

There are, however, faces that do not have a U-
shape whose last segment is horizontal; see Fig. 3b.
Fix again a vertex u with a U-shape in face f . Indeed,
it can be the case that subdividing the last edge of
the U-shape by a vertex z and inserting uz as above
creates a monotone cycle. In this case, instead of
just considering subdividing the last edge of the U-
shape as above, we consider all the candidate edges
ei incident to f that are opposite of u in the sense
that rot(Cf [u, e]) = 2, where Cf denotes the facial
cycle of f . Let e1, . . . , ek denote the candidate edges
as they occur clockwise starting from u. We call the
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Figure 3: (a) U-shape (thick black) leading to a ver-
tical augmentation (dashed edge). (b) Face f whose
U-shapes all require horizontal augmentations and the
candidates ei for u. (c) Structure for simulating the
simultaneous augmentation with edges vw and v′w′.

process of subdividing ei with a new vertex z and
adding the edge uz augmenting with ei. Intuitively,
augmenting with ei makes a jump further downwards
as i increases. Indeed, using similar arguments as the
ones for the vertical case, one can show that the first
candidate never creates an increasing cycle, and the
last candidate never creates a decreasing cycle.

Lemma 4 Augmenting with e1 (resp. with ek) never
creates an increasing (resp. decreasing) cycle.

Moreover, it can be shown that an increasing and a
decreasing cycle cannot intersect strictly, and there-
fore, it is not possible that augmenting with a candi-
date creates both an increasing and a decreasing cycle.
Thus, if each augmentation with respect to the edges
ei yields an increasing or a decreasing cycle, then by
Lemma 4, there exists a pair of candidates such that ei
creates a decreasing cycle and ei+1 creates an increas-
ing cycle. Let ei = vw and ei+1 = v′w′ be directed
so that f lies to their right and note that possibly
v′ = w. Let z and z′ denote subdivision vertices of
ei and ei+1, respectively. We simulate augmentation
with both candidates simultaneously by inserting two
vertices x and y as shown in Fig. 3c. By construction,
we then find both a decreasing cycle C using the edges
ux, xz and a cycle C ′ using the edges ux, xy, yz′ that
is increasing except for possibly the edge xy. Since
these cycles both contain u but one is decreasing and
the other one is increasing, and such cycles cannot
strictly intersect, we can infer that, outside of the
face f both cycles actually coincide, i.e., their edges
all have label 0 outside of f . We thus find a path P
in G consisting of only horizontal edges that starts at
v′ or at w, ends at u and contains all these vertices.
Thus, augmenting the graph G by adding the edge
from u to the starting point of P creates a cycle con-
sisting of only horizontal edges. It can be argued that
such an augmentation is always safe. In fact one can
show that no monotone cycle can share a vertex with
a horizontal cycle. The following lemma summarizes
this discussion.

Lemma 5 Let f be a face and let u be a vertex on the
boundary of f that forms a left bend in f . Let further
e = vw and e′ = v′w′ be two consecutive candidates.
If augmentation with e creates an increasing cycle and
augmenation with e′ creates a decreasing cycle, then
augmenting with one of uw or uv′ does not create a
monotone cycle.

Altogether, this proves that for each left bend in
a regular face f there exists an augmentation such
that the resulting graph and ortho-radial representa-
tion are still valid. Eventually, we thus arrive at a
rectangular graph, and Theorem 2 applies.

5 Conclusion

In this work we considered orthogonal drawings of
graphs on cylinders. Our main result is a charac-
terization of the 4-plane graphs that can be drawn
bend-free on a cylinder in terms of a ortho-radial rep-
resentation of such drawings.

While our proof for both the rectangular case and
the general case are algorithmic, only the former cur-
rently has an efficient implementation, e.g., in terms
of a flow algorithm. In contrast, the rectangulation
procedure from Section 4 requires checking whether
augmentations create monotone cycles. Our most im-
portant open problem is whether such a check can be
performed in polynomial time.
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