Optimizing Active Ranges for Consistent Dynamic Map Labeling

Ken Been®, Martin Nollenburg®!, Sheung-Hung Poon®2, Alexander Wolff4

@ Cyrus Innovation, LLC, New York, NY, U.S.A.
bFaculty of Informatics, Universitit Karlsruhe and Karlsruhe Institute of Technology (KIT), Germany
¢Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
d Faculteit Wiskunde en Informatica, TU Eindhoven, The Netherlands

Abstract

Map labeling encounters unique issues in the context of dynamic maps with continuous zooming and
panning—an application with increasing practical importance. In consistent dynamic map labeling, dis-
tracting behavior such as popping and jumping is avoided. We use a model for consistent dynamic labeling
in which a label is represented by a 3d-solid, with scale as the third dimension. Each solid can be truncated
to a single scale interval, called its active range, corresponding to the scales at which the label will be
selected. The active range optimization (ARO) problem is to select active ranges so that no two truncated
solids intersect and the sum of the heights of the active ranges is maximized. Simple ARO is a variant in
which the active ranges are restricted so that a label is never deselected when zooming in. We investigate
both the general and simple variants, for 1d- as well as 2d-maps.

Different label shapes define different ARO variants. We show that 2d-ARO and general 1d-ARO are
NP-complete, even for quite simple shapes. We solve simple 1d-ARO optimally with dynamic programming,
and present a toolbox of algorithms that yield constant-factor approximations for a number of 1d- and
2d-variants.

Key words: consistent dynamic map labeling, active range optimization, NP-hardness, approximation
algorithms

1. Introduction

Recent years have seen tremendous improvements in Internet-based, geographic visualization systems
that provide continuous zooming and panning, but relatively little attention has been paid to special issues
faced by map labeling in such contexts. In addition to the need for interactive speed, several desiderata for
a consistent dynamic labeling were identified by Been et al. [2]: labels should not pop in and out or jump
(suddenly change position or size) during panning and zooming, and the labeling should not depend on
the user’s navigation history. Currently available systems (for example, Google Earth, NASA World Wind,
Microsoft Virtual Earth, and KDE Marble) do not satisfy these desiderata and their labeling algorithms
may produce rather unattractive dynamic labelings—at least during user interaction.

In static labeling we want to select a (maximum) subset of labels that can be placed without intersection,
given certain constraints on the size, location and orientation of each label. A natural extension of this to
dynamic labeling is to select at each scale a maximum subset of labels that can be placed without intersection,
subject to similar constraints on the label placements. We take the aforementioned consistency desiderata
as additional constraints. Clearly the desiderata mandate that the labeling at scale s must take into account
labelings at scales in the neighborhood of s. In fact we can go further: by taking scale as our “vertical”
dimension, the desiderata mandate that the label placement must be continuous with scale—that is, the

Email addresses: kbeen@cyrusinnovation.com (Ken Been), spoon@cs.nthu.edu.tw (Sheung-Hung Poon)
URL: illwww.iti.uka.de/group/noelle (Martin Nollenburg), www.win.tue.nl/~awolff (Alexander Wolff)
ISupported by grant WO 758/4-3 of the German Research Foundation (DFG).
2Supported by grant 97-2218-E-007-006 of the National Science Council (NSC), Taiwan, R.O.C.

Preprint submitted to CGTA May 6, 2009

(a) Input: a set of extrusions. (b) Output: a set of disjoint truncated extrusions.

Figure 1: The active range optimization problem.

dynamic placement of a two-dimensional label becomes a three-dimensional solid formed by extruding the
label shape through the scale dimension, possibly with a continuous morph and a continuous change in
position. Figure la shows a simple example with three one-dimensional labels and scale as the vertical
dimension.

Dynamic label “solids”, as in Figure la, define the potential placement of each label—in other words,
its location, shape, and size—at any scale at which the label is selected. The next step in labeling, and
the subject of this paper, is to determine at which scales to select each label. Once again, the consistency
desiderata constrain and simplify our problem: since there can be no popping during zooming, each label
must be selected (if at all) on a single range of scales, which we call its active range. Figure 1b shows a
selection of an active range for each label, so that no two selected labels intersect at any scale. The active
range optimization (ARO) problem is to select a set of active ranges that maximizes the sum of the heights
of these ranges. Clearly this sum of heights is equivalent to the integral, over all scales, of the number of
labels selected at each scale, and so this optimization is equivalent to our original goal of maximizing the
number of labels selected at each scale.

Model. A highly detailed model for dynamic labeling is given by Been et al. [2]. The model we present here
is similar in spirit but significantly reformulated, with many of the details abstracted out.

In static labeling the key operations are selection and placement—select a subset of the labels that can be
placed without intersection. Let each label L be defined in its own label coordinates. A static placement of L
is its image L in world coordinates under a transformation composed of translation, rotation, and scaling
(see Figure 2). To clearly distinguish from “map scale”, we refer to the scaling operation as dilation. A

A

‘ .

L

‘& l dilateby 1/s ,
\ —

placement / 77777 ! \

>
>

label coordinates world coordinates screen coordinates

Figure 2: Label, world, and screen coordinates.

further transformation takes a portion of world coordinates to the screen, dilating by factor 1/s; we define s
to be the map scale, or just scale. Note that s is the inverse of cartographic scale, and that if s < 1 world
coordinates are magnified on screen; for maps in cartography we generally have s > 1.

We define extended world coordinates by adding a scale dimension to world coordinates. We define a
dynamic placement of a label L to be a solid E = E(L) in extended world coordinates formed by sweeping
a rotated and dilated image of L along a continuous curve segment that is monotonic in scale, with the

2

Y

T
(a) (b) (c)

Figure 3: (a) A dynamic placement of a 2d-label is a solid in extended world coordinates. Here: with
proportional dilation and invariant point placement with the center as the invariant point. (b) A 1d-label
with constant dilation, selectable range (sr,, Sr), and active range (ar, Ar). (c) A 1d-label with proportional
dilation and the left endpoint of the label as the invariant point.

rotation and dilation factors given by continuous functions of scale. We call E the extrusion of L. An
example is given in Figure 3a. Let the lower and upper endpoints of the sweep curve segment have scale sy,
and S, respectively. Let the trace trg«(E) of E at scale s* be the intersection of E with the horizontal
line or plane s = s* for 1d and 2d labels, respectively. Then try(F) is a static placement of L for each
s € (SL, SL)

We define the selectable range of L to be the open interval (sr,Sr). The selectable range defines the
scales at which L is available for selection. For example, street labels are selectable at smaller scales and
country labels at larger scales. Let Sy ax be a universal maximum scale for all labels. Then we require that
(SL7 SL) Q (O, Smax).

We define dynamic selection to be a Boolean function of scale. We require that each label L be selected
precisely on a single interval of scales, (ar,Ar) C (sz,SL), which is called the active range® of L. Tt
defines the scales at which L is actually selected or active. We define the truncated extrusion of L to be the
restriction of E to the active range (ar, Ar). If its active range is empty then L is never selected.

This model is quite general. The extrusion shapes are determined by the label shape and the translation,
rotation and dilation functions that compose the dynamic placement, the only restriction being that these
functions are continuous. For the specific ARO variants that we consider in this paper, however, we now
restrict our attention to certain classes of extrusions that are simple and yet arise naturally in applications.

Our 2d-labels are open rectangles (for example, bounding boxes of textual labels); we also consider 1d-
labels, which are open intervals on the z-axis—see Figure 3b. For rotation and translation, we consider only
azxis-aligned invariant point placements: the rotation component is constant and maps L to an axis-aligned
rectangle at each scale, and the translation component is constant and maps a particular reference point of
the label always to the same location in world coordinates. In other words, our labels never slide or rotate.
For the dilation component we consider only linear functions of the form D¥(s) = bs + ¢, and only three
classes of these:

o If b =0 and c > 0, that is, D¥(s) = ¢, then the label size is fixed in world coordinates and inversely
proportional to scale on screen. Thus labels shrink at the same rate as the geographic features when
zooming out and grow when zooming in. The solid is then a “straight” extrusion, as in Figure 3b.

e If b > 0 and ¢ = 0, that is, D" (s) = bs, then L has constant size on screen and size proportional to
scale in world coordinates. The solid is then a label-shaped cone with apex at s = 0 as in Figure 3a.
With invariant point placements, the cone contains the vertical line through its apex. The cone might

3TFor visualization we should consider the active range of L a half-open interval (ar,, Ar] since this gives a seamless transition
from one label to the next during zooming. For notational convenience, simplicity, and symmetry, however, we use open
intervals. This does not change our results.

be symmetric to that line (for example, for labeling a region) as in Figure 3a, or it might be slanted
and have this line as a vertical corner edge (for example, for labeling a point) as in Figure 3c.

o If DL (s) = bs + ¢ for constants b > 0 and c # 0, then label size is disproportionate to scale in world
coordinates and on screen. The solid in this case is a portion of a label-shaped cone with apex at
—c/b.

Objective. In principle, our input is a set of labels, each with a selectable range, for which we want to
compute suitable active ranges. Since our results in this paper, however, are based on the shape of the
corresponding extrusions and their intersection behavior, whereas the underlying labels are used only to
define the extrusions, it simplifies our notation to consider from now on the set £ of induced extrusions as
the input. In this regard, we refer to the selectable and the active range of the extrusion £ = E(L) of a
label L as the intervals (sg, Sg) = (s, Sr) and (ag, Ag) = (ar, AL), respectively.

So assume we are given a set £ of extrusions, each with a selectable range. We will compute an assign-
ment A of active ranges to &, that is, for each extrusion E € £ an interval (ag, Ag) C (sg,Sg). We say
that A is valid (or a solution) if the resulting truncated extrusions are pairwise disjoint. For a solution A
we say that an extrusion E is active in A at scale s if s € (ag, Ag); otherwise E is inactive in A at scale s.
If the active range of E in A is empty, we stipulate ag = Ag and say that E is inactive in A; otherwise E
is active in A. Define the total active range height of A to be H(A) =3 pcc(Arp —ag). This is the same
as integrating over all scales a function that counts the number of labels selected at scale s. The (general)
active range optimization (ARO) problem is to choose the active ranges so as to maximize H, subject to the
constraint that A is valid. It is of theoretical and practical interest, for example in technical maps showing
measurements, to also consider a version of the problem in which all labels are selectable at all scales and a
label is never deselected when zooming in—that is, (sg, Sg) = (0, Smax) and ag = 0 for all E € £. We call
this variant of ARO simple.

Although we concentrate solely on maximizing H, other objectives are possible. One may want to
maximize the average percentage that each label uses of its selectable range. This objective, however, has
the disadvantage that every label must be placed at some scale range. Maximizing the minimum active
range height does not seem useful either since a few labels could have a very small selectable range.

Related problems. Consider the special case of 1d-ARO where all extrusions are axis-aligned unit squares.
We do not know the complexity of this packing problem, but we give an efficient (2/3)-approximation
algorithm (Theorem 7) and we do show that the problem is hard if the squares can choose between two
sizes (Theorem 1). Clearly, the problem is closely related to geometric maximum independent set problems,
that is, maximum independent set problems in intersection graphs of geometric objects. Such problems
are usually NP-hard and admit—if the geometric representation is given—polynomial-time approximation
schemes, for example in the case of axis-aligned unit squares [9], even if the size restriction is dropped [7]. In
those problems, however, one can choose only to put or not put a complete object into the solution, whereas
in ARO one can put an arbitrarily small fraction of an object into the solution. We insist only that each
object contributes at most one connected component to the solution and that such a component must fill
the whole width of the object.

The above-mentioned special case of 1d-ARO can also be viewed as a scheduling problem with geometric
constraints. To see this, use line stabbing [1]: stab the unit squares with vertical lines of distance greater
than 1 such that each square is stabbed and each line stabs a square. Now each stabbing line corresponds
to a machine, each square corresponds to a job that is run on the corresponding machine, and the y-axis is
the time axis. Each machine executes at most one job at a time, and a job can be started at most once.
While a job is being processed, it blocks other jobs if the corresponding squares intersect.

Finally, there is some similarity to dynamic storage allocation, where one gets requests for blocks of
contiguous bytes of memory. Each request has a start and an end time. In this problem, the z-axis is
the time axis and the positive integers on the y-axis correspond to memory cells. A request corresponds
to a rectangle of fixed size that can slide vertically. Each request must be placed, and the aim is to
minimize the amount of memory that has to be allocated, that is, the smallest y-coordinate occupied by a

l d ‘ extrusion shape ‘ ARO ‘ dilation ‘ NPC ‘ approx. ‘ running time O(-) ‘ see

triangles simple bs no | optimal | n® Thm. 4

unit squares c ? 2/3 nlogn Thm. 7

unit-height rectangles c ? 1/3 nlogn Thm. 5

1 | unit-width rectangles | 1/2 nlogn Thm. 6
genera

rectangles c yes 1/logn | nlogn Thm. 8

segments of congruent triangles bs ? 1/2 (k+n)logn Thm. 10

congruent trapezoids bs + ¢ ? 1/2 (k+n)logn Thm. 9

congruent square cones . bs yes | 1/4 (k +n)log®n Cor. 1

simple bs yes | 1/4—¢ | nlogn-log(n/e)/e | Thm. 14

2 | arbitrary square cones bs yes | 1/24 nlog®n Thm. 13

segments of congruent square cones general bs yes 1/4 (k +n)log’n Thm. 12

congruent square frusta bs+c yes | 1/(4W) | n? Thm. 11

Table 1: Results attained in this paper, where d is the dimension of the ARO problems, NPC means NP-
complete, k is the number of pairwise intersections between (side edges/faces of) extrusions, € > 0, and W is
the width ratio of top over bottom side.

rectangle. Buchsbaum et al. [3] give a (2+¢)-approximation algorithm for this problem and polynomial-time
approximation schemes for a number of special cases.

Previous work. Map labeling has been identified as an important application area by the Computational
Geometry Impact Task Force [4], and has been the focus of extensive algorithmic investigation [17]. The vast
majority of research on this topic covers static labeling. A typical goal is to select and place labels without
intersection while optimizing an objective function. The objective function might be simply the number of
labels [1, 16], or it might incorporate multiple cartographic criteria [5]. There are many variations possible,
and most have been shown to be NP-hard [8, 10, 16].

For dynamic labeling, Petzold et al. [13, 14] use a preprocessing phase to generate a data structure that
is searched during interaction to produce a labeling for the current scale and view area. Popping can occur
because a small change in scale or location leads to a recomputation of the labeling on a different set of
labels. Poon and Shin [15] precompute solutions for a number of scales; interpolating between these yields
solutions for any scale. Popping and jumping effects can occur because during zooming the labeling solution
for the current scale is computed regardless of the solution for the previous scale. In addition to introducing
consistency for dynamic map labeling, Been et al. [2] show that simple 2d-ARO is NP-complete for arbitrary
star-shaped labels, and implement a simple heuristic solution.

Outline. We investigate the complexity of ARO in Section 2. We prove that general 1d-ARO with constant
dilation is NP-complete, even if all extrusions are squares, and that simple 2d-ARO with proportional
dilation is NP-complete, even if all extrusions are congruent square cones. Both proofs are by reduction
from PLANAR 3SAT, the latter using 3d gadgets. We present an algorithmic study of ARO in Section 3,
developing a toolbox of techniques to solve several variants of ARO problems. One variant is solved exactly,
the others with approximations. Table 1 summarizes our results. Note that all our results for 2d-ARO with
congruent square cones can be generalized to congruent and non-rotated rectangular cones by dilating the
input space in z- or y-direction. Similarly, the result for arbitrary square cones can be generalized to similar,
non-rotated rectangular cones.

Dynamic labeling is a new sub-discipline of map labeling and our work presents a first extensive collection
of complexity and algorithmic results. Many questions, however, remain unsolved—most notably: does any
of our problems have a polynomial-time approximation scheme?—and require future effort. We conclude
the paper with a list of open problems in Section 4.

2. Complexity

In this section, we prove that two variants of ARO are NP-complete, namely general 1d-ARO with
constant dilation (see Section 2.1) and simple 2d-ARO with proportional dilation (see Section 2.3). We also
show that we can reduce a variant of 1d-ARO with constant dilation to 1d-ARO with proportional dilation,
see Section 2.2.

Both hardness proofs use a reduction from the NP-hard problem PLANAR 3SAT [11]. An instance of
PLANAR 3SAT is a Boolean 3SAT formula ¢ whose variable-clause graph G, is planar. Note that G, can
be laid out (in polynomial time) such that variables correspond to rectangles centered on the z-axis and
clauses correspond to non-crossing three-legged “combs” completely above or completely below the z-axis
[10], see Figure 4.

Figure 4: Layout of a planar 3SAT formula.

2.1. General 1d-ARO with constant dilation for rectangles

Theorem 1. General 1d-ARO with constant dilation is NP-complete; that is, given a set £ of n axis-aligned
rectangular extrusions in the plane and a real number K > 0, it is NP-complete to decide whether there is a
valid assignment S of active ranges to £ with H(S) > K. The problem remains NP-complete when restricted
to instances where all extrusions are squares and each has one of two sizes.

Proof. For membership in NP, decompose each E € £ into O(n) horizontal strips determined by the lines
{s =sg,s=Sg | E € £}. It is not hard to see that there is an optimal solution that corresponds to a union
of such strips. So we can guess a subset of the strips and then check in polynomial time whether (a) all
strips from the same square are consecutive, (b) the strips are pairwise disjoint, and (c) their total height is
at least K.

To show hardness, let ¢ be an instance of PLANAR 3SAT. We construct a set £, of squares as illustrated
in Figure 5 and fix a threshold K > 0 such that H(S) > K for an optimal solution S if and only if ¢ is
satisfiable.

The squares in £, have side length 1 or 5. We refer to a square of side length j as a j-square. A regular
5-square is a b-square that contains a vertically and horizontally centered chain of four disjoint 1-squares.
Thus the 5-square can contribute at most two units to H if the 1-squares contribute one unit each. This is
a total of six units for the group of five squares, which is more than if the 5-square contributed five units
and the 1-squares zero. Geometrically, the contribution of a 5-square is a (5 x 2)-rectangle that can either
appear above or below the chain of 1-squares. We say that the 5-square is in upper or lower state, which
gives us a means to encode Boolean values. The contributing part of each square is shaded in Figure 5.

Each square in £, belongs to a variable gadget, a literal gadget, or a clause gadget. These gadgets
correspond one-to-one to the n variables, 3m literals, and m clauses of ¢, respectively.

Variable gadgets. The gadget of a variable x consists of a horizontal chain of n, regular 5-squares, where n,
is proportional to the number of times that x appears in ¢. Two adjacent 5-squares are joined by two
connectors, that is, pairs of 1-squares as depicted in Figure 5. Each 1-square of a connector intersects both
the adjacent 5-square and the other 1-square in the connector. Since the two 1l-squares of a connector
intersect, a connector can contribute at most one unit in total. Moreover, if two adjacent 5-squares were
in the same state, one of the connectors would contribute zero. Therefore, in any optimal solution for a
variable gadget the states of adjacent 5-squares alternate. We let x being true correspond to the leftmost
5-square of the gadget being in upper state. Summing up yields that the total contribution of the gadget
of z to H is 6ny; + 2(n, — 1) = 8n, — 2 units, irrespective of its truth state.

6

clause

gadget
literal Qc Qe
gadget | |0 o T
[EEEE [EEEE O
variable —x y —
gadget I
x = true y = false z = false o

Figure 5: The gadgets of our reduction for the clause C = (—x Vy V —z).

Literal gadgets. A clause of ¢ consists of three literals. A literal gadget connects a variable gadget to a
clause gadget, implementing one of the three legs of the aforementioned comb. The gadget of a literal A
consists of a vertical part and, if A corresponds to the left or right leg of a comb, a horizontal part. A vertical
part consists of a chain of regular 5-squares where consecutive squares overlap by one unit. A horizontal
part is identical to a variable gadget, see Figure 5. The last square of the vertical part is the first square of
the horizontal part.

Number the 5-squares in each variable gadget from left to right. If X\ is negated, the first 5-square of
the gadget of A overlaps the top of an odd-numbered (or the bottom of an even-numbered) 5-square of
the corresponding variable gadget by one unit. Otherwise parity flips; see the positions of the gadgets of
literals =« and y in Figure 5.

Note that the vertical part of a literal gadget contributes maximally to H (that is, with six units per
regular 5-square) if all 5-squares are in the same state as the intersected 5-square of the variable gadget.

If the gadget of a literal A has a horizontal part, then the states of the 5-squares in that horizontal part
alternate as in a variable gadget. We insist that any horizontal part consists of an even number of 5-squares.
Thus the state of the final 5-square of the gadget of A is opposite to that of the first 5-square. The literal
gadget can be seen as a mechanical construction that transmits pressure from the variable gadget into the
clause gadget: if the 5-square where a literal gadget is attached to its variable gadget from the top is in
upper state (corresponding to false) then the active ranges of all 5-squares of the literal gadget are “pushed”
towards the clause gadget; otherwise, if the literal is true, there is no pressure towards the clause.

For a literal A, let my be the number of regular 5-squares, and let m) be the number of connectors in
the gadget of A\. Then X contributes at most 6my + m/ units to H.

Clause gadgets. The final square of each literal gadget connects to a clause gadget. A clause gadget consists
of two intersecting 5-squares Q¢ and Q. containing six l-squares as depicted in Figure 5. If the six 1-
squares contribute one unit each, the two 5-squares can also contribute at most one unit each. This is by
construction also the maximum contribution of a clause gadget. Let Q € {Qc,Q}. Note that there are
three scale intervals in which @ might contribute one unit to H, and that @ intersects the final 5-square
of two of the three legs corresponding to literals in C. Note that the literal gadgets have enough slack to
make the final 5-squares intersect) as shown in Figure 5. Assume that the literal legs contribute maximally
to H. Then, if the two literal legs intersecting @ evaluate to false, only the middle unit-height strip of () can
contribute (one unit) to H. But since Q¢ and Q) intersect, their two middle strips together can contribute
at most one unit. Thus, if all three literals evaluate to false, the clause gadget (Q¢, Q. and the six 1-squares
in their union) contributes 7 units in total. On the other hand, if at least one literal in C' evaluates to true,

both Q¢ and Qf can contribute one unit, and the clause gadget contributes 8 units. This is the case in
Figure 5, where Q¢ contributes its middle strip and @}, contributes its top strip.

Reduction. The variable, literal, and clause gadgets form the set £, of extrusions representing . It remains
to fix the threshold K such that ¢ is satisfiable if and only if H(S) > K. Note that a variable gadget
contributes maximally to H if and only if the states of its 5-squares alternate, that is, it correctly encodes
either the value true or the value false. Similarly, a literal leg contributes maximally to H if and only if it
correctly transfers the value of the literal (or false) to its final 5-square. Finally, a clause gadget contributes
maximally to H if and only if at least one of its literal legs encode the value true. Thus ¢ is satisfiable if
and only if all gadgets in our construction contribute maximally to H.

Let K = (8, cvar(p) v — 2) + (X sewit(p) 6ma + m)) + 8m, where Var(p) and Lit(yp) denote the sets
of variables and literals in ¢, respectively. The summands of K correspond to the maximum contributions
of all variable gadgets, literal gadgets, and clause gadgets. By the above observation a total active range
height of at least K can be achieved if and only if ¢ is satisfiable.

The set £, consists of O(m?) squares since the variable-clause graph of ¢ can be drawn on a grid of size
O(m?) [10]. The positions of all squares can be encoded in space quadratic in the length of an encoding
of ¢. The reduction can be performed in polynomial time. O

2.2. General 1d-ARO with proportional dilation

We have not succeeded in showing that general 1d-ARO is hard when all extrusions are () unit squares,
(44) unit-width rectangles, or (iii) trapezoidal segments of congruent triangles with apexes on the x-axis. By
specialization, problem (47) is at least as hard as problem (7). It turns out that problem (iii) is at least as
hard as problem (i¢). The idea behind the proof (see the appendix) is that an instance of (i7) can be scaled
(in polynomial space) such that the resulting trapezoidal segments nearly look like unit-width rectangles
and behave like them, too.

Theorem 2. There is a polynomial-time reduction from general 1d-ARO with constant dilation for unit-
width rectangles (problem (ii)) to general 1d-ARO with proportional dilation (problem (iii)).

2.3. Simple 2d-ARO with proportional dilation
In contrast to 1d-ARO, in 2d even the simple ARO problem is hard.

Theorem 3. Simple 2d-ARO with proportional dilation is NP-complete; that is, given a set £ of axis-aligned
rectangular cones and a real number K > 0, it is NP-complete to decide whether there is a valid assignment S
of active ranges to € with H(S) > K. The problem remains NP-complete when restricted to instances where
all extrusions are congruent square cones.

Proof. To see membership in AP, note that in any optimal solution S each cone either reaches Spa.x or
touches another cone. Thus S can be constructed by guessing an order in which the cones are greedily
“filled” from bottom to top as far as possible.

To show hardness, let ¢ be a planar 3SAT formula with n variables and m clauses. We construct a
set &, of congruent unit square cones and show that there is a threshold K > 0 such that H(S) > K for an
optimal solution & if and only if ¢ is satisfiable.

Similar to the 1d-case, we construct variable gadgets and three-legged combs connecting them to clause
gadgets. Figure 6 shows a variable gadget and Figure 7 shows a clause gadget. Variable gadgets and
comb legs consist of chains of cones whose apexes lie on a half-integer grid, that is, a grid whose grid point
coordinates are integer multiples of 1/2. Cones whose apexes have L -distance 1/2 intersect at scale Syax/2
while those with L..-distance 1 touch at scale Sp,.x. Therefore, in an optimal solution all cones are active
and do not interfere in the range (0, Smax/2), but only every other cone in a chain can extend up to Smax-
We say that two cones are adjacent if their Lo-distance is 1/2.

(a) Variable gadget for x = true.

cone 1

(b) Variable gadget for z = false.

Figure 6: 3d-models and 2d-projections of a variable gadget (thick edges) with partial literal gadgets (thin
edges). Cones of gadgets carrying the value true are green, cones of gadgets carrying the value false are red.

Variable gadgets. A variable gadget consists of a cyclic chain of an even number of adjacent cones. By the
above observation this chain contributes maximally to H if every other cone is active in the range (0, Smax)
and the remaining cones in the range (0, Smax/2). Numbering the cones clockwise starting with the leftmost
cone in the top row of the gadget, we denote the state where the odd cones extend to the full scale Syax as
true and the state where the even cones extend to Snax as false; see Figure 6.

Literal gadgets. Each variable gadget has indentations. Their number depends on how often the variable
occurs in the clauses of ¢. At each indentation we can connect a leg of a three-legged comb that serves as a
literal gadget. Each leg consists of an even chain of adjacent cones leading towards the clause gadget. The
middle leg of a comb is a simple vertical chain, whereas the left and right leg start vertically and then bend
90 degrees in order to reach the clause gadget horizontally. For a positive literal the leg is adjacent to the
beginning (in clockwise order) of the indentation, for a negative literal the leg is adjacent to the end of the
indentation, see Figure 6. Thus, if a literal evaluates to false, the corresponding literal leg must start with a
cone of height Syax/2; otherwise it can start with a cone of height Spax. A literal leg contributes maximally
to H if every other cone reaches Sya.x. Hence it has two maximal states—either the odd or the even cones
reach Sipax.

false

false

(a) Clause gadget, where one literal is true. (b) Clause gadget, where all literals are false.

BN green B red [yellow

(c) Color legend.

Figure 7: 3d-models and 2d-projections of a clause gadget (three yellow cones with thick edges in the center)
with partial literal gadgets (thin edges). Cones of literal gadgets carrying the value true are green, cones of
literal gadgets carrying the value false are red.

Clause gadgets. The clause gadget in Figure 7 consists of three pairwise adjacent cones, that is, at most one
of them can extend to Spax, and their maximal total contribution to H is 2S,.x. Each of the clause cones
is adjacent to the last cone of one of the three incoming literal legs. Since the literal legs consist of an even
number of cones, the leg for a true literal ends in a cone of height Sy.x/2, while a false literal leg ends in a
cone of height Sp,.x—at least if the literal legs contribute maximally to H. Thus, none of the three clause
cones can be of height Sy,.x if and only if all literals in the clause are false.

We claimed above that literal gadgets always consist of an even number of cones. This ensures that
in both states, they contribute the same amount to H. Now assume that a specific literal gadget actually
consists of an odd number of cones. Then we replace a straight part consisting of twelve cones by the parity
inverter gadget depicted in the top part of Figure 8. For comparison, the bottom part of Figure 8 shows a
straight chain of cones. Note that the inverter gadget and the straight chain span the same distance on the
grid; the inverter with an odd number of cones, the chain with an even number.

410~ -0 [0+ -

Figure 8: Parity inverter gadget (top).

Reduction. As before we determine the threshold K such that ¢ is satisfiable if and only if H(S) > K and
all variable, literal, and clause gadgets contribute maximally to H. Variable and literal gadgets contribute
maximally if they correctly encode their truth values, and clause gadgets contribute maximally if at least
one of their literals evaluates to true and thus if the clause is satisfied.

We denote the number of cones for the variable gadget of variable x by n, and the number of cones for
the literal leg of literal A by my. These numbers depend on ¢ and are fixed in the construction. Let

K=3/4 Smax Y. No+3/4 Smax > mx+2m- Smax,

vEVar(p) A€Lit(p)

where Var(y) and Lit(¢) denote the variables and literals in ¢, respectively. The summands of K correspond
to the maximum contributions of all variable gadgets, literal gadgets, and clause gadgets. By the above

10

observation on maximal contributions, a total active range height H(S) of at least K can be achieved by an
optimal solution § if and only if ¢ is satisfiable.

As in the proof of Theorem 1, the set &, consists of O(m?) extrusions placed on a grid of size O(m?),
and the reduction takes polynomial time. O

3. Algorithmic toolbox

We give a toolbox of six different algorithms to tackle several variants of 1d- and 2d-ARO problems, using
dynamic programming, a left-to-right greedy algorithm, line stabbing, divide and conquer, a top-to-bottom
fill-down sweep, and a level-based small-to-large greedy algorithm.

3.1. Dynamic programming

Triangles. We start by considering simple 1d-ARO with proportional dilation: each extrusion F is a triangle
with apex on the z-axis and top edge on the horizontal line s = Syax. The truncated extrusions differ only
by having (possibly) lower top edges. Observe that in an optimal solution at least one truncated extrusion
has height Sp.x, and thus divides the problem into two independent subproblems. This is the essence of
our dynamic program. Details can be found in the appendix.

Theorem 4. Simple 1d-ARO with proportional dilation can be solved in O(n®) time using O(n?) space.

3.2. Left-to-right greedy algorithm

Unit-height rectangles. Van Kreveld et al. [16] presented the following greedy algorithm for maximum in-
dependent set (MIS) among axis-aligned rectangles of unit height. We are given a set £ of unit-height
rectangles. Until £ is empty, repeatedly select the rectangle E € £ with leftmost right edge, and remove
from £ all rectangles intersecting E. This takes O(nlogn) time, and is a (1/2)-approximation for MIS [16].
It is not hard to see that the same algorithm yields a (1/3)-approximation for 1d-ARO.

Theorem 5. The mazimum total active range height for a set of n rectangular extrusions of unit height
can be approximated within a factor of 1/3 in O(nlogn) time.

3.3. Line stabbing

We use line stabbing for unit squares and unit-width rectangles, that is, general 1d-ARO with constant
dilation and equal-size labels. Line stabbing is a special case of the shifting technique by Hochbaum and
Maass [9]. Agarwal et al. [1] have used line stabbing to design a PTAS for maximum independent set among
unit-width rectangles. The idea is to stab the extrusions with vertical lines such that two lines have distance
at least 1, each extrusion is stabbed by exactly one line, and each line stabs at least one extrusion. Such
a set of lines can be computed greedily in linear time if the extrusions are given in left-to-right order. We
assume that the resulting lines are numbered [; to [from left to right, where £ < n. Since all extrusions
are open and have unit width, those intersecting line I; for some 1 < ¢ < k — 2 are disjoint from those
intersecting line ;2. The problem for a single stabbing line can be solved optimally by a simple greedy
algorithm, see the appendix.

Lemma 1. The mazimum total active range height of a set £ of n rectangles stabbed by a vertical line can
be computed in O(nlogn) time.

Unit-width rectangles. For unit-width rectangles we partition the vertical stabbing lines into sets A; and Ag,
containing all the stabbing lines with odd and even indices, respectively. By Lemma 1 the solution for each
individual stabbing line, and thus also the solution A; for all rectangles intersecting lines in A;, can be
computed optimally for ¢ € {1,2}. From the candidate solutions .4; and .45 we choose the one maximizing H
as our approximate solution A. Re-using arguments of Agarwal et al. [1], it is easy to see that A is a (1/2)-
approximation. Now Lemma 1 yields the following.

Theorem 6. The mazimum total active range height for a set of n rectangular extrusions of unit width can
be approzimated within a factor of 1/2 in O(nlogn) time.

11

Unit squares. For unit squares, we partition the vertical stabbing lines into three sets, A; = {l; | j =i mod 3}
for ¢+ = 1,2,3. Deleting all squares stabbed by one of the sets A, As, or A3 divides the problem into
independent subproblems defined by two consecutive stabbing lines each. A greedy sweep-line algorithm
finds the optimal solution for each of these subproblems as follows.

Lemma 2. The mazimum total active range height of a set £ of n unit squares stabbed by two vertical lines
of distance at least 1 can be computed in O(nlogn) time.

Proof. The algorithm sweeps a line from top to bottom over &, greedily activating the maximum number of
independent squares at each scale. Specifically, we greedily activate the leftmost square on the left stabbing
line and the rightmost square on the right stabbing line, if they are disjoint. If they intersect then preference
is given to whichever was activated first.

Clearly the activated portions are pairwise disjoint and the sum of their heights is no less than optimal.
We now show that each square is activated over at most one range. Once a square E is activated it can
be deactivated before the end of its selectable range only if it is superseded by a more extremal square E’
(farther left on the left line or farther right on the right line). This can happen only at scale Sgr < Sg.
Thus, E’ will continue to be more extremal through scale sg, and E can never be reactivated.

The running time is obvious. O

Using the algorithm described above, we optimally solve the three subproblems created by removing the
squares stabbed by, respectively, one of the sets Aj, Az, and As. Again, using arguments of Agarwal et
al. [1], one easily sees that the sub-solution that maximizes H is a (2/3)-approximation.

Theorem 7. The mazimum total active range height for a set of n unit-square extrusions can be approxi-
mated within a factor of 2/3 in O(nlogn) time.

3.4. Divide and conquer

Arbitrary rectangles. Agarwal et al. [1] gave an O(nlogn)-time divide-and-conquer algorithm to compute a
(1/log n)-approximation for MIS among axis-aligned rectangles. Their algorithm readily adapts to ARO. In
both cases the one-dimensional subproblems can be solved optimally (see Lemma 1), which yields the base
of the inductive proof of the approximation factor.

Theorem 8. The divide-and-conquer algorithm computes in O(nlogn) time a (1/logn)-approximation to
the maximum total active range height for a set of n rectangles.

3.5. Top-to-bottom fill-down sweep

In this subsection we introduce a simple sweep-line algorithm that yields constant-factor approximations
for several variants of 1d- and 2d-ARQO. The idea is to sweep a line or plane downwards over the extrusions
in £, and when reaching a scale s at which E € £ can be selected without conflicting with any previously
selected extrusion, we “fill” E from s down to its bottom—that is, we set (ag, Ag) = (sg,s). Once the
active range of an extrusion F is set, we call E fized. Whenever we have the choice of selecting one of two
intersecting extrusions, we select the one whose selectable range has the higher upper end point. Figure 9
shows the importance of breaking ties in the correct order. This order ensures that we can derive the
approximation factors in Lemma 5 and Theorem 11.

Note that with this algorithm we have agp = sg for every F that contributes to the objective function H.
This corresponds to the effect that during zoom-in a label only disappears when its selectable range ends.
This is likely to be desirable in applications.

For the pseudo-code of this algorithm—see Algorithm 1—we need one new piece of notation. Refer to
Figure 10. For each pair of distinct extrusions E, E’ € £, let sgpr < min{Sg, Sg'} be the largest scale such
that EN E' N7 = (), where 7 is a horizontal plane at s = sgg/. Due to the types of dilation we consider,
we know that £ N E' N«’ # () for any horizontal plane 7’ strictly between 7 and the horizontal plane at
s = min{Sg, Sg/}. For the types of dilation we consider, we can compute sgp/ in constant time.

12

E2 E2
s E3 E3 .
B mln{SE,SE/}
E, Es E, fop SEE'
1 zo z
(a) E3 is correctly selected first (b) Es3 is selected first

Figure 9: It matters in which order extrusions Fy and E5 are Figure 10: For a pair of distinct extru-
considered when the algorithm reaches scale sg,. (At that sions E,E' € &, spp < min{Sg, S/} is
point we have Ag, = Ag, and Sg, > Sg,.) The total active the largest scale such that ENE' N =0,
range height in case (b) is less than in case (a). where 7 is a horizontal plane at s = sgg:.

Algorithm 1: Top-to-bottom fill-down sweep

Input : aset £ of extrusions, a selectable range (sg, Sg) for each E € £
Output: an active range (ag, Ag) for each F € €

foreach F € £ do (ag, Ag) < (sg,SE)
Q « priority queue for & sorted lexicographically by (Ag, Sg)
while Q # () do
remove first element F from Q and fix its current active range
foreach £’ € Q do
if F'NE # () then
AE/ — min(AE/,SEE/)
if Ap/ = ap then remove E’ from Q

The correctness of Algorithm 1 is clear: each extrusion is assigned at most one active range that is a
subset of its selectable range, and none of the truncated extrusions intersect.

We now describe a generic implementation, that is, one that makes no further assumption about the
shapes of the extrusions. Our algorithm makes at most n steps. In each step, we make two passes through
the extrusions that are not fixed yet. In the first pass, we select the extrusion E with the lexicographically
largest pair (Ag, Sg). In the second pass, we adjust the upper end points of the active ranges of the others.
This immediately gives the following result.

Lemma 3. A generic implementation of Algorithm 1 runs in O(n?) time and uses O(n) space.

Let A = {(ag,Ag) | E € £} be the solution computed by Algorithm 1. Recall that the trace trs«(F)
of an extrusion E at scale s* is the intersection of E with the horizontal line or plane s = s* in 1d- and
2d-ARO, respectively. We say that an extrusion F blocks another extrusion E’ at scale s under a given
solution if the traces of E and E’ at s intersect and s € (ag, Ag). Note that this implies that s ¢ (ag:, Ag).
We say that two extrusions are independent at s if their traces at scale s are disjoint. The following lemma
will help prove all approximation factors in this section.

Lemma 4. If, for any set £ of extrusions, for any E € £, and for any scale s > 0, E blocks no more than c
pairwise independent extrusions at s, then Algorithm 1 computes a (1/c)-approxzimation for the mazimum
total active range height.

Proof. In Algorithm 1, each extrusion F starts with Ap = Sg, and Ag is lowered only as far as is necessary
to avoid conflicts with fixed extrusions. Thus, if E € £ is inactive in A at scale s, then E must be blocked
at s.

13

If at any scale s no extrusion can block more than ¢ mutually independent extrusions, and in A every
extrusion that is inactive at s is blocked at s, then the number of extrusions that are active in an optimal
solution at scale s can be no more than c¢ times the number in A. Integrating over all scales proves the
lemma. O

For each of the extrusion shapes covered in this section we determine a value for ¢, usually 2 or 4. For
example, it is easy to see that ¢ = 2 holds for unit-width rectangles (or, more generally, for any set of
rectangles where the z-order of the left edges is the same as the z-order of the right edges), so Algorithm 1
yields a (1/2)-approximation. (Theorem 6 states the same result via a different algorithm based on line
stabbing.)

In the remainder of this subsection we discuss different extrusion types. For each type we analyze the
performance of Algorithm 1 in terms of approximation factor, as well as time and space complexity, which
can in most cases be improved over the generic implementation.

Congruent trapezoids. In this part we consider the 1d-ARO problem for congruent trapezoids as the extru-
sion shapes.

Lemma 5. Algorithm 1 approzimates the maximum total active range height of a set of n congruent trape-
zoids within a factor of 1/2.

Proof. Note first that the trace of each trapezoid at any scale s is a line segment. We claim that if a
trapezoid E blocks another trapezoid E’ at scale s under solution .4, then trs(E’) must contain at least one
endpoint of trg(E). This immediately implies ¢ = 2 in Lemma 4, and thus yields the approximation factor
of 1/2.

We now prove our claim above. Suppose that under A, F blocks E’ at s, meaning that their traces at s
intersect and that A < s < Ag. If Sgpr < Sg, then, since E and E’ are congruent, try(E’) is at least as
wide as try(E) and clearly trs(E’) must contain at least one endpoint of trs(E), see Figure 9a using F = Fy
and E' = E3. If S, > Sg, then, due to the order in which Algorithm 1 selects extrusions, Ag/ must have
been reduced below Ag before E was selected. This means that E’ is blocked by some other extrusion E”
at scale Ag. Since E is not blocked by E” at Ag, tra,(E’) is not completely contained in tra, (F). Thus
tra,(E’) must contain at least one endpoint of tra, (E) as they have to intersect. Finally, since the two
trapezoids F and E’ are congruent and their traces at s still intersect, trg(E’) must still contain at least one
endpoint of try(E). O

The order of breaking ties when selecting extrusions in Algorithm 1 matters, see the example in Figure 9.
Figure 9a shows the output of Algorithm 1 based on the fact that at scale sg,, extrusion E, has higher
priority than Es5 (since Ag, = Ag, and Sg, > Sg,). Figure 9b shows that switching this order would allow
one extrusion (FE3) to block three independent extrusions (Es, E4, and Es).

For congruent trapezoids we can improve on the generic implementation by using more specific data
structures. We build upon the standard algorithm for finding intersections among a set of line segments [6,
Theorem 2.4]. That algorithm stores a set of line segments intersecting a horizontal sweep line in a binary
search tree ordered horizontally, and considers only intersections between neighboring segments.

We run this algorithm in parallel with maintaining our priority queue Q. In our case, the line segments
are the side edges of the fixed trapezoids. We replace the body of the main loop in Algorithm 1 with the
following. Remove the top-priority extrusion E from Q and check (in O(logn) time) whether it intersects
any fixed extrusion. If not, fix F by fixing its active range and insert the side edges of F into the binary
search tree. Otherwise, reduce A to ming g Spp, where £ contains the (at most two) fixed extrusions
intersecting F, and put E back into Q with its new priority (Ag, Sg).

In order to bound the running time of this improved algorithm, note that we can attribute each time we
put the current extrusion back into @ to a unique pair of trapezoid side edges that intersect. Together with
Lemma 5 this yields the following.

Theorem 9. A (1/2)-approzimation for the mazimum total active range height of a set of n congruent
trapezoids can be computed in O((k + n)logn) time and O(n) space, where k is the number of side-edge
intersections between pairs of trapezoids.

14

Trapezoidal segments of congruent triangles. Here we consider the 1d-ARO problem with proportional dila-
tion, where the extrusions are trapezoidal segments of congruent underlying triangles that have their apexes
on the z-axis.

Theorem 10. A (1/2)-approzimation for the mazimum total active range height of a set of n trapezoidal
segments of congruent triangles can be computed in O((k + n)logn) time and O(n) space, where k is the
number of side-edge intersections between pairs of trapezoids.

Proof. Since the underlying triangles are congruent and horizontally aligned, the width of every trapezoid
is the same at each scale. This implies that any trapezoid blocked by another trapezoid F intersects a
side edge of E. Thus, at most two extrusions blocked by F at scale s can be independent at s, and the
approximation factor 1/2 follows from Lemma 4.

We can use the same implementation as for congruent trapezoids. O

Congruent frusta. Axis-aligned congruent square frusta are the 2d-ARO analogues of congruent trapezoids.
Here, a blocked frustum must intersect a side face of its blocker. The number of independent frusta that
can intersect a single face depends on W, the ratio of the length of the top edges of each frustum to the
length of their bottom edges.

Theorem 11. A 1/(4W)-approzimation for the mazimum total active range height of a set of n axis-aligned
congruent square frusta can be computed in O(n?) time and O(n) space, where W is the ratio of the length
of the top edges of each frustum to the length of its bottom edges.

Proof. Using an argument similar to that used in the proof of Lemma 5, it can be shown that if a frustum E
blocks another frustum E’ at scale s under solution A, then trgs(E’) must intersect the boundary of trs(E).
Therefore, since at any scale s the side length of a trace of E is no more than W times the side length of a
trace of E’, E can block at most 4WW independent extrusions at s. For an example with W = 3, see Figure 12.
The approximation factor of 1/(4W) follows from Lemma 4. Running time and space requirements follow
directly from Lemma 3. O

Frustal segments of congruent square cones. In this part we are concerned with extrusions that are frustal
segments of underlying axis-aligned congruent square cones with their apexes at s = 0. This is the 2d-ARO
equivalent of trapezoidal segments of congruent triangles, which we have treated in Theorem 10. As in the
case of trapezoids, we want to efficiently compute the set of (active) fixed extrusions that intersect a given
non-fixed extrusion. Now, however, the line-intersection approach is not sufficient. Instead, we represent
each extrusion by the position of the apex of its underlying cone. Using this representation, we maintain
the set of active fixed extrusions in a range tree [6, Chapter 5.3].

Theorem 12. A (1/4)-approzimation for the maximum total active range height of a set of n frustal
segments of axis-aligned congruent square cones can be computed in O((k + n) log? n) time and O(nlogn)
space, where k is the number of side-face intersections between pairs of frusta.

Proof. Since the trace of every extrusion at some scale s has the same constant size, we know that any
extrusion blocked by an extrusion E at s must intersect one of the four corner edges of F at s. (Two side
faces meet at a corner edge.) This means that at most four blocked extrusions can be independent and the
approximation factor of 1/4 follows from Lemma 4.

The implementation is the same as for congruent trapezoids, except that the range tree requires O(nlogn)
space and that updates and queries in a range tree take O(log2 n) time. The query time is due to the fact
that every query returns O(1) results. O

Simple ARO with axis-aligned congruent square cones is a special case of the above, where (sg, Sg) =
(0, Smax) for each E € £, so we immediately get the following corollary.

Corollary 1. A (1/4)-approxzimation for the maximum total active range height of a set of n axis-aligned
congruent square cones can be computed in O((k 4+ n)log®n) time and O(nlogn) space, where k is the
number of pairs of intersecting cones.

15

Recall that the generic implementation requires O(n?) time and O(n) space, which might be preferable
to the above implementation, depending on the size of k£ and on the relative importance of space and time.

3.6. Level-based small-to-large greedy algorithm

In this section we give an algorithm for simple 2d-ARO with cones whose bases are axis-aligned squares.
Rather than sweeping the events defined by the extrusions themselves, the algorithm in this section is based
on intersecting the cones with O(logn) horizontal planes or levels. On each of these levels we activate some
extrusions before we proceed to the next (lower) level. This yields a (1/24)-approximation for arbitrary
cones and a (1/4 — ¢)-approximation for congruent cones. The latter result is slightly worse than the 1/4-
approximation stated in Corollary 1, but the running time of the level-based algorithm is independent of k,
the number of pairs of intersecting cones, which may be quadratic in n. We start with the general result.

Arbitrary axis-aligned square cones. Note that for any extrusion F and any scale s, the trace trs(E) is a
square. We call trg(F) (in-)active if E is (in-)active at scale s. Analogously, we call trs(E) blocked if E is
blocked at s. Since we consider simple ARQO, it holds that for each E € £, ag = 0, and it remains to set Ag.

See Algorithm 2 for the pseudo-code of our algorithm. It works in O(logn) phases, where phase 4
deals with the situation on a horizontal plane m; at scale s; = max/ai. The phases are numbered 0 to
Ni. = [log,, kn], where o = (k + 1)/k and k > 1 is an integer-valued parameter that will become important
only when we treat congruent square cones below. Here we set k = 1, which yields & = 2 and Ny = [log, n].
For ease of presentation we add a dummy plane 7y, +1 at scale s = 0.

Algorithm 2: Level-based algorithm for 2d-ARO

Input : set of square cones &, each with selectable range (0, Spmax)
Output: active range (0, Ag) for each F € £

foreach I ¢ £ do initialize E as inactive and set Ag <+ 0
for i =0 to N do
{ phase i }
Si max/al
C; < set of traces that are inactive at s; and that intersect no traces active at s;
while C; # 0 do
T + smallest trace in C;
mark T as active and set Ag < s;, where F is the extrusion of T’
remove T and all traces intersecting it from C;

Let 0 < i < Ni. When the algorithm finishes phase ¢, all traces that are inactive at level ¢ intersect an
active trace—they are blocked. Let s = s;. For analyzing the performance of our algorithm, we consider
level i and associate each blocked trace T' to one of the active traces in the following way:

(i) if T was not blocked at the beginning of phase ¢ but became blocked by the trace T* of a newly
activated extrusion, then associate T to T™;

(ii) if T was blocked in the beginning of phase i, then associate T to any trace that is blocking T and that
was active at the beginning of phase i.

Next, we show that the traces associated to an active trace cannot be arbitrarily small.

Lemma 6. Let 0 < i < N and let T be a trace active at level i with side length £. Then any trace associated
to T has side length at least £/3 and intersects the boundary of T.

Proof. For an extrusion E and a level i we denote the trace trs,(E) in short by E;. Then for the given
trace T we have T = E; for some extrusion FE.

16

\77777777777777777;‘-;‘ Ei—1 le
: Ey | .‘2—.
[
! \ E;
! \
! \ 3
I Fo | £ * Eel
| h | e
[| ‘
| W | 7 [x
! Byl \ B
: \ E_
7777777777777777777 4
(a) Trace Ej is associated to E}/. (b) Trace E;_1 contains E_;.

Figure 11: Intersection behavior of the traces of E, E’, and E” at different levels.

Let T’ be a trace associated to T'. If T is associated to T by case (i) above we know that the side length
of T" is at least £ by the order in which Algorithm 2 selects the squares.

So assume 1" = E is associated to T = E; by case (ii) and let & < ¢ be the largest level in which Ej is
not associated to Ep,. (If there is no such level h then case (i) applies to E{, and Ej and the statement of the
lemma holds.) Thus at level h we have Ej associated to some other active trace Ej. Since Ej ;1 blocks Ej
in the beginning of phase h + 1 we know that Ej, is already active and hence does not intersect E}/. On the
other hand, both Ej, and Ej’ must intersect Ej. This situation is depicted in Figure 11a.

Let ¢ be the side length of 7" and suppose ¢/ < /3. Now consider level ¢ — 1. There, the side lengths
of the traces E]_; and E;_; are doubled, which means that E]_, is fully contained in F;_;, see Figure 11b.
This also holds for level A < ¢ — 1 and thus Ej cannot intersect the active trace E}, since E} is disjoint
from Ep—a contradiction. For the same reason T’ must intersect the boundary of T O

We now fix an optimal solution S. Let A denote the solution of Algorithm 2. For ¢ = 1,..., Ny + 1
we denote the active segments of the extrusions between planes m;_1; and 7; in S by S; and in A by A;,
respectively. We charge H(Sy,) and H(Sy,+1) to H(A;), and for 1 <14 < Nj, we charge H(S;) to H(A;41).

Lemma 7. It holds that H(A;) > (H(Sn,) + H(Sn,+1))/a?, and if no more than c traces of extrusions
in S are associated to any given trace in A, then fori=1,2,..., Ny—1 it holds that H(A;+1) > H(S;)/(ca).

Proof. We first compare H(Sn,) + H(Sn,+1) to H(A1). The scale of my, 1 is at most « - Smax/(kn) and
obviously there are at most n active cone segments in S below 7y, —1, so their total active range height is at
most a/k - Smax. On the other hand, there is at least one active cone segment in A; of height Syax/(k + 1).
Using o = (k + 1)/k yields H(A;) > (H(Sn,) + H(Sn,+1))/a?.

Now let E € € and let 1 < i < Nj. If try, (E) is active in S, either try, (E) is active also in A or trs, (F)
is associated to a trace T = trg, (E’) that is active in A.

In the first case, E contributes to H(A;11) at least 1/« times what it contributes to H(S;) since the
height difference between m;_1 and 7; is a times the height difference between m; and m;41.

In the second case, let S(T”) be the set of extrusions in & whose traces are associated to T’. By
assumption we have |[S(T")| < ¢. Since we must also take into account the ratio of the height differences, we
get that the contribution of E’ to H(A;11) is at least 1/(ca) times the contribution of S(trs, (E’)) to H(S;).
Summing up over all extrusions yields the statement. O

Theorem 13. Algorithm 2 computes a (1/24)-approximation for the mazimum total active range height of
a set of n azis-aligned arbitrary square cones in O(nlogd n) time and O(nlogn) space.

Proof. In order to analyze the performance of Algorithm 2, we consider a level ¢ with 1 < i < Ny and
an extrusion E € £ that is active at s; in A, that is, the trace trs, (F) is active. Let ¢ be the side length
of try,(F). By Lemma 6, all traces associated to try, (E) have side length at least ¢/3 and intersect the

17

EE

N

T
1

| I —

[
Figure 12: The boundary of a square of side length ¢ is intersected by at most twelve pairwise independent
squares of side length ¢/3.

boundary of trg, (E). Thus, at most twelve such traces can be independent in 7; and hence active in S;, see
Figure 12. Setting ¢ = 12 and o = 2 in Lemma 7 and summing up over all levels yields H(A) > H(S)/24.

For an efficient implementation of Algorithm 2 we store the traces (which are in fact squares) in each
level ¢ in a two-dimensional segment tree 7;, which supports deletion in O(log2 n) time [6, Chapter 10.3].
Let 0 < 7 < Nj. For each extrusion FE that has been activated at a level less than i we delete all traces
intersecting try, (E) as follows. We place a vertex at each corner of trg, (E), plus two more evenly spaced
vertices on each edge. We then query 7; with each of these 12 vertices and delete the returned traces from 7;.
As the side length of intersecting traces is at least £/3 (see Lemma 6) these points suffice to find all traces
intersecting trs,(E). From the remaining traces we iteratively choose the smallest one. By querying 7;
with the four corner points of the chosen trace, we identify and remove all intersecting traces, which are
larger and thus must contain one of the corner points. Since a deletion takes O(log?n) time, Algorithm 2
takes O(nlog®n) time per level. The space consumption of 7; is O(nlogn).

Since there are O(logn) levels, the total running time is O(n log® n). O

Congruent axis-aligned square cones. For axis-aligned congruent square cones, all traces in any horizontal
plane have the same size. This has two consequences. First, it simplifies implementing Algorithm 2: any
trace is “smallest.” Second, at most four independent traces can intersect a given one. Thus the analysis in
the previous section immediately yields a (1/8)-approximation. We can however, do better in this case by
using a denser set of planes, that is, by setting the parameter k to a value larger than 1.

Recall that a = (k+1)/k and that m; denotes the horizontal plane at scale s; = Spax/a’ fori = 0,..., Ny,
where N = [log, kn]. As before, S; and A; denote the active segments of the extrusions between m;_;
and 7; in the optimal solution and the solution of our algorithm, respectively.

Theorem 14. Algorithm 2 computes a (1/4 — €)-approximation for the mazimum total active range height
of a set of n axis-aligned congruent square cones in O(nlogn -log(n/e)/e) time and O(nlogn) space.

Proof. Let € be the given set of extrusions. In order to analyze the performance of Algorithm 2, we consider
a level ¢ with 1 <4 < Nj and an extrusion E € £ that is active at s; in A, that is, trs, (E) is active. Since
all traces in m; are congruent squares, there are at most four traces intersecting trg, (E) that are active in S.
Setting ¢ = 4 in Lemma 7 and summing up over all levels yields H(A) > H(S)/(4a). With k = 1/(4e) — 1,
we get o = 1/(1 — 4¢) and thus a (1/4 — €)-approximation.

Our implementation of Algorithm 2 uses an augmented dynamic range tree [12] for each level . It
stores, for each E € &, the trace trg, (E) represented by the apex of F in the (x,y)-plane. This is possible
since all cones are congruent and thus the mapping between apexes and traces is bijective. A query for
all traces that intersect a given trace trs,(FE) easily translates into a range query for the corresponding
apexes in the range tree. The augmented dynamic range tree can be constructed in O(nlogn) time and
space since only deletions and no insertions need to be supported. FEach deletion takes O(logn) time;
hence the running time per level is O(nlogn) (see the proof of Theorem 13). The number of levels in
Algorithm 2 is O(log, kn) = O((logkn)/loga). For k > 1 we have o > 2 and thus 1/loga < k. Now
we can bound the number of levels by O(klog(kn)) = O(log(n/e)/e). This yields the desired running time
of O(nlogn -log(n/e)/e). The space consumption remains O(nlogn). O

18

4. Open problems

ARO is an exciting new problem inspired by interactive web-based mapping applications, and this is the

first paper with an extensive, rigorous algorithmic study. We have described a number of approximation
algorithms, see Table 1 for an overview. An obvious question is whether any approximation factor can be
improved, or whether any of the problems admits a polynomial-time approximation scheme. Furthermore,
the complexity of general 1d-ARO is still unknown for regular shapes such as unit squares, congruent
trapezoids, and segments of congruent triangles.

Mapping applications in practice often need to work with different label models, such as labels of different

lengths and fonts; non-axis-aligned labels; non-rectangular labels, such as a road label that follows a curvy
road; and sliding labels—that is, non-invariant point placements. Any of these raises a number of interesting
theoretical questions.

Acknowledgments. We thank the anonymous referees for their valuable comments. They helped us in
particular to simplify and speed up Algorithm 1.

References

(1]
2]
(3]

4]

(6]
7]
(8]
[9]
(10]
[11]
[12]
[13]
(14]
[15]

[16]
(17]

P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in rectangles. Comput. Geom.
Theory Appl., 11:209-218, 1998.

K. Been, E. Daiches, and C. Yap. Dynamic map labeling. IEEE Trans. Visualization € Comput. Graphics, 12(5):773-780,
2006.

A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup. OPT versus LOAD in dynamic storage allocation.
SIAM J. Comput., 33(3):632-646, 2004.

B. Chazelle and 36 co-authors. The computational geometry impact task force report. In B. Chazelle, J. E. Goodman,
and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223, pages 407-463. American
Mathematical Society, Providence, RI, 1999.

J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature label placement. ACM Trans.
Graphics, 14(3):203-232, 1995.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, third edition, 2008.

T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM
J. Comput., 34(6):1302-1323, 2005.

M. Formann and F. Wagner. A packing problem with applications to lettering of maps. In Proc. 7th Annu. ACM Sympos.
Comput. Geom. (SoCG’91), pages 281-288, 1991.

D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI.
J. ACM, 32:130-136, 1985.

D. E. Knuth and A. Raghunathan. The problem of compatible representatives. SIAM J. Discr. Math., 5(3):422-427,
1992.

D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329-343, 1982.

K. Mehlhorn and S. Ndher. Dynamic fractional cascading. Algorithmica, 5:215-241, 1990.

I. Petzold, G. Groger, and L. Plimer. Fast screen map labeling—data-structures and algorithms. In Proc. 23rd Internat.
Cartographic Conf. (ICC’03), pages 288-298, Durban, South Africa, 2003.

I. Petzold, L. Pliimer, and M. Heber. Label placement for dynamically generated screen maps. In Proc. 19th Internat.
Cartographic Conf. (ICC’99), pages 893-903, Ottawa, Canada, 1999.

S.-H. Poon and C.-S. Shin. Adaptive zooming in point set labeling. In M. Liskiewicz and R. Reischuk, editors, Proc.
15th Internat. Sympos. Fundam. Comput. Theory (FCT’05), volume 3623 of Lecture Notes Comput. Sci., pages 233-244.
Springer-Verlag, 2005.

M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels. Comput. Geom. Theory Appl., 13:21-47, 1999.
A. Wolff and T. Strijk. The Map-Labeling Bibliography. http://illwww.ira.uka.de/map-labeling/bibliography, 1996.

19

Appendix

Theorem 2. There is a polynomial-time reduction from general 1d-ARO with constant dilation for unit-
width rectangles (problem (ii)) to general 1d-ARO with proportional dilation (problem (iii)).

Proof. We transform an instance I of general 1d-ARO with constant dilation for unit-width rectangles into
an instance I’ of general 1d-ARO with proportional dilation—that is, a set of n unit-width rectangles into
a set of n trapezoidal segments of congruent triangles with apexes on the z-axis—such that H(I) = H(I').

For simplicity, we first assume that all vertical edges of rectangles in I lie on distinct vertical lines. We’ll
remove this restriction later. Let € be the minimum separation of any two of these vertical lines. The idea
is to widen each rectangle into a trapezoid. As long as we widen by no more than /2 on either side, we do
not introduce any new intersections, and thus do not change the solution. The trick is to ensure that the
resulting set of trapezoids forms a valid instance I'.

Let B be the height of the tallest rectangle in I. We first vertically compress I to a height of at most nB
by removing empty horizontal strips. We then translate I onto a horizontal strip bounded by the lines
S = Smin := nB/e and s = Syax = nB/e + nB. Finally, we embed each rectangle, and its associated
trapezoid, in a triangle with apex on the x-axis vertically below the rectangle center and with side edges of
slope +2nB/e, see Figure 13. Each triangle has unit width at s = $pin and width 1+ & at s = Spax. This
yields the correctness of our reduction. The reduction is polynomial in the size of a binary encoding of I
since B and ¢ are differences between values specified in the description of I.

S A

SRy

\ [1<B |,

11
Smin t--------- 2 ; 2§ -
slope
nB
Pt nB
€ €
O

Figure 13: Transforming a rectangle (shaded) into a trapezoidal segment (bold boundary) of a skinny
triangle.

If several vertical rectangle edges are collinear, we introduce gaps as follows. Let Az be the minimum
non-zero horizontal distance between any two vertical edges in I, and let &’ = Az /n. Scan I from right to left.
For each vertical line ¢ that contains vertical edges of ¢ > 1 rectangles F1, ..., F;, numbered lexicographically
with respect to their upper left corners, shift each rectangle that lies completely to the right of £ by (t—1)&’,
and shift each rectangle E; to the right by (i — 1)e’. In the end, each pair of vertical edges is separated by at
least &', and, since every rectangle has moved to the right by at most (n — 1)e’ < Az, no two have reversed
their z-order. O

Theorem 4. Simple 1d-ARO with proportional dilation can be solved in O(n®) time using O(n?) space.

Proof. Let € = {E1,...E,} be the set of extrusions, and let p; be the apex of wedge-shaped extrusion E; on
the z-axis. For ease of notation define dummy wedges Ey and E, 1 with apexes pg and p,t1, and assume

20

that po,...,pn41 are sorted from left to right. For ¢ < j, define the free space A(i, j) between p; and p; to be
the triangular or trapezoidal space enclosed by s = 0, the right side edge of E;, the left side edge of F;, and
possibly s = Siax. Let Afi,] (¢ < j) be the optimal solution for p;+1,...,p;—1 in A(4,). In A, j], at least
one of the truncated extrusions must touch a non-bottom edge of A(,j), thus dividing the problem into
two independent subproblems. For each k =i+ 1,...,j7 — 1, we denote by h;” the scale at which Ej, first
reaches a non-bottom edge of A(i, j). We initialize A[i,i 4+ 1] = 0 for ¢ = 0, ...,n and recursively compute

Ali, §] = max{A[i, k] + b}’ + Alk,j] | i +1 <k <j—1}.

Obviously, the optimal solution for our problem is A[0,n + 1]. Each of the O(n?) entries in the dynamic
programming table is computed in O(n) time, resulting in a total running time of O(n?). O

Theorem 5. The maximum total active range height for a set of n rectangular extrusions of unit height
can be approximated within a factor of 1/3 in O(nlogn) time.

Proof. For ARO the greedy algorithm for MIS of van Kreveld et al. [16] yields a (1/3)-approximation, for
the following reason. Let S be any optimal solution. If an extrusion F with a non-empty active range in &
is inactive in the solution A of the algorithm, there must be an extrusion E’ # FE that is selected in A
such that the right edge of E’ intersects E; therefore E has been removed from £ in the algorithm and is
inactive in A. But since all extrusions are unit-height rectangles and E’ has the leftmost right edge when
it is selected, E’ cannot be responsible for removing from S rectangles with a total active range height of
more than three height units. O

Lemma 1. The maximum total active range height of a set £ of n rectangles stabbed by a vertical line can
be computed in O(nlogn) time.

Proof. Clearly the active range height of £ equals the height of the union of £. To compute a set of truncated
extrusions with this active range height, we sweep the extrusions from top to bottom. We repeatedly pick
the topmost extrusion E, set Ag to the current scale, set ag to sg, and discard all extrusions E’ with
sgr > sg. Correctness and running time are obvious. O

21

