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ABSTRACT
Map labeling encounters unique issues in the context of dy-
namic maps with continuous zooming and panning—an ap-
plication with increasing practical importance. In consistent
dynamic map labeling, distracting behavior such as popping
and jumping is avoided. In the model for consistent dynamic
labeling that we use, a label becomes a 3d-solid, with scale
as the third dimension. Each solid can be truncated to a
single scale interval, called its active range, corresponding
to the scales at which the label will be selected. The active
range optimization (ARO) problem is to select active ranges
so that no two truncated solids overlap and the sum of the
heights of the active ranges is maximized. The simple ARO
problem is a variant in which the active ranges are restricted
so that a label is never deselected when zooming in. We in-
vestigate both the general and simple variants, for 1d- as
well as 2d-maps. The 1d-problem can be seen as a schedul-
ing problem with geometric constraints, and is also closely
related to geometric maximum independent set problems.

Different label shapes define different ARO variants. We
show that 2d-ARO and general 1d-ARO are NP-complete,
even for quite simple shapes. We solve simple 1d-ARO op-
timally with dynamic programming, and present a toolbox
of algorithms that yield constant-factor approximations for
a number of 1d- and 2d-variants.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling
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1. INTRODUCTION
Recent years have seen tremendous improvements in Inter-

net-based, geographic visualization systems that provide con-
tinuous zooming and panning (e.g., Google Earth), but rel-
atively little attention has been paid to special issues faced
by map labeling in such contexts. In addition to the need
for interactive speed, several desiderata for a consistent dy-
namic labeling were identified by Been et al. [2]: labels do
not pop in and out or jump (suddenly change position or
size) during panning and zooming, and the labeling does
not depend on the user’s navigation history. As an example,
Google Earth does not currently satisfy these desiderata.

Model.
We adapt the labeling model of Been et al. [2] as fol-

lows. In static labeling the key operations are selection and
placement—select a subset of the labels that can be placed
without overlap. Let each label L be defined in its own label
coordinates. A static placement of L is its image L̂ in world
coordinates under a transformation composed of translation,
rotation, and dilation (see Figure 1a). A further transfor-
mation takes a portion of world coordinates to the screen,
dilating by factor 1/s; we define s to be the scale. Note
that s is the inverse of cartographic scale.

In dynamic labeling we select at each scale a subset of
labels that can be placed without overlap. To meet the
desiderata for consistent dynamic labeling we (1) define a
dynamic placement of L to be a function that assigns a
static placement L̂s to each scale s ≥ 0; (2) require that
each dynamic placement be continuous with scale; (3) de-
fine dynamic selection to be a Boolean function of scale; and
(4) require that each label Li, 1 ≤ i ≤ n, be selected pre-
cisely on a single interval of scales, [ai, Ai], which is called
the active range of Li.
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Figure 1: (a) Label, world and screen coordinates. (b) A dy-
namic placement of a 2d-label is a solid in extended world
coordinates. Here: with invariant point placement and pro-
portional dilation. (c) A 1d-label with constant dilation,
available range [si, Si], and active range [ai, Ai].

Define extended world coordinates by adding a scale di-
mension to world coordinates. We can think of dynamic
placement as mapping a label L into extended world co-
ordinates such that the cross section of the image of L at
scale s is the static placement L̂s. Let Smax be a univer-
sal maximum scale for all labels. We define the available
range of Li to be an interval of scales, [si, Si] ⊆ [0, Smax], in
which label Li “wants” to be selected. For example, street
labels are available at low scales and country labels at high
scales. We require [ai, Ai] ⊆ [si, Si]. Let Ei =

S

s∈[si,Si]
L̂s

i .
Since dynamic placement is continuous with scale, Ei is a
solid defined by sweeping the label shape along a continuous
curve that is monotonic in scale, with the rotation and di-
lation factors at each scale given by continuous functions as
in Fig. 1b. Let Ti be the restriction of Ei to s ∈ [ai, Ai]. We
call Ei the extrusion of Li and Ti its truncated extrusion.

The extrusion shapes are determined by the label shape
and the translation, rotation and dilation functions that
compose the dynamic placement. We restrict our attention
to certain classes of extrusions. Our 2d-labels are rectangu-
lar; we also consider 1d-labels, which are segments [xi, Xi]
on the x-axis—see Fig. 1c. For translation, we consider only
invariant point placements, in which a particular point on
the label always maps to the same location in world coordi-
nates, so the label never “slides”. Our rotation functions are
constant, and yield axis-aligned labels.

Let DL be the dilation function embedded in the dynamic
placement of L. We consider three classes of such functions.
If DL(s) = c for a constant c > 0, then label size is fixed
in world coordinates and inversely proportional to scale on
screen, like the geographic features. The solid is then a

“straight” extrusion. If DL(s) = bs for a constant b > 0,
then label size is fixed on screen and proportional to scale
in world coordinates. The solid is then a label-shaped cone
with apex at s = 0 as in Fig. 1b. With invariant point
placements, the cone contains the vertical line through its
apex. The cone might be symmetric to that line (e.g., for
labeling a region) or might have a vertical side incident to
it (e.g., for labeling a point). Finally, we also consider, in a
more general setting, functions of the form DL(s) = bs + c
for constants b > 0 and c 6= 0. The solid in this case is a
portion of a cone with apex at −c/b.

Objective.
Let E denote the set of all extrusions, and assume we are

given an available range for each. For a set T of truncated
extrusions, define H(T ) =

Pn

i=1(Ai − ai) to be the total
active range height. This is the same as integrating over all
scales the function f(s) that counts the number of labels
selected at scale s. The (general) active range optimization
(ARO) problem is to choose the active ranges so as to max-
imize H , subject to the constraint that no two truncated
extrusions overlap. This is the dynamic analogue of placing
the maximum number of labels without overlap in the static
case. We concentrate solely on maximizing H since alterna-
tive optimization criteria like maximizing the minimum ac-
tive range height do not make much sense in practice, e.g., if
there is a label with a very small available range. We call any
set of active ranges that correspond to non-overlapping trun-
cated extrusions a solution. It is of theoretical and practical
interest to also consider a version of the problem in which
all labels are available at all scales and a label is never dese-
lected when zooming in—i.e., [si, Si] = [0, Smax] and ai = 0
for all i. We call this variant of ARO simple. Note that
the 1d-version of ARO can be seen as a scheduling prob-
lem with geometric constraints, and is also closely related
to geometric maximum independent set problems.

Previous Work.
Map labeling has been identified as an important appli-

cation area by the ACM Computational Geometry Impact
Task Force [3], and has been the focus of extensive algo-
rithmic investigation [14]. The vast majority of research on
this topic covers static labeling. A typical goal is to select
and place labels without overlap while optimizing an objec-
tive function. The objective function might be simply the
number of labels [1, 13], or it might incorporate multiple car-
tographic criteria [5]. There are many variations possible,
and most have been shown to be NP-hard [6, 8, 13].

For dynamic labeling, Petzold et al. [10, 11] use a prepro-
cessing phase to generate a data structure that is searched
during interaction to produce a labeling for the current scale
and view area. Poon and Shin [12] build a hierarchy of pre-
computed solutions, and interpolation between these pro-
duces a solution for any scale. Neither of these approaches
satisfies the consistency desiderata. In addition to intro-
ducing consistency for dynamic map labeling, Been et al. [2]
show that simple 2d-ARO is NP-complete for arbitrary star-
shaped labels, and implement a simple heuristic solution.

Outline.
We investigate the complexity of ARO in Section 2. We

prove that general 1d-ARO with constant dilation is NP-
complete, even if all extrusions are squares, and that simple
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d extrusion shape – technique ARO dilation NP-compl. approx. running time see

triangles – dynamic program simple bs no optimal O(n3) Thm. 3

unit squares – line stabbing c ? 2/3 O(n log n) Thm. 6
unit-height rect. – MIS c yes 1/3 O(n log n) Thm. 4

1 unit-width rect. – line stabbing c yes 1/2 O(n log n) Thm. 5
rectangles – divide & conquer

general
c yes 1/ log n O(n log n) Thm. 7

segments of congruent triangles bs ? 1/2 O((k + n) log n) Thm. 10
congruent trapezoids bs + c ? 1/2 O(k log n + n log2 n) Thm. 8

congruent square cones bs yes 1/4 O((k + n) log2 n) Cor. 1
congruent square cones simple bs yes 1/8 O(n log3 n) Cor. 2

2 arbitrary square cones bs yes 1/24 O(n log3 n) Thm. 12

segments of congruent square cones bs yes 1/4 O((k + n) log2 n) Thm. 11
congruent frusta

general
bs + c yes 1/(4W ) O(n4) Thm. 9

Table 1: Results attained in this paper, where k is the number of pairwise intersections between extrusions, W is the width
ratio of top over bottom side, and d is the dimension of the ARO problems.

2d-ARO with proportional dilation is NP-complete, even if
all extrusions are congruent square cones. Both proofs are by
reduction from Planar3SAT, the latter using 3d gadgets.
We present an algorithmic study of ARO in Section 3 by de-
veloping an algorithmic toolbox containing both new tech-
niques and new applications of known techniques to solve
several variants of ARO problems. One of our algorithms is
exact, the others yield approximations. Table 1 summarizes
our results.

Since we have just started to investigate these new prob-
lems, many questions remain unsolved—most notably: does
any of our problems have a polynomial-time approximation
scheme (PTAS)?—and require future effort, see Section 4.

2. COMPLEXITY
In this section, we prove that two variants of ARO are NP-

complete. Both proofs use a reduction from the NP-hard
problem Planar3SAT [9]. An instance of Planar3SAT is
a 3SAT formula ϕ whose variable-clause graph Gϕ is planar.
Note that Gϕ can be laid out such that all variables corre-
spond to points on the x-axis and clauses to non-crossing
three-legged “combs” above or below the x-axis [8].

Theorem 1. General 1d-ARO with constant dilation is
NP-complete; i.e., given a set E = {E1, . . . , En} of axis-
aligned rectangular extrusions in the plane and a real K > 0,
it is NP-complete to decide whether there is a set of pairwise
disjoint truncated extrusions T = {T1, . . . , Tn} with T1 ⊆
E1, . . . , Tn ⊆ En and H(T ) ≥ K. The problem remains NP-
complete when restricted to instances where all extrusions
are squares and each has one of three sizes, all extrusions
are unit-width rectangles and each has one of two heights,
or all extrusions are unit-height rectangles and each has one
of two widths.

Proof. For membership in NP , decompose each Ei into
O(n) horizontal strips determined by the lines {s = si, s =
Si | 1 ≤ i ≤ n}. Clearly there is an optimal solution that
corresponds to a union of such strips. So we can guess a sub-
set of the strips and then check in polynomial time whether
(a) strips from the same square are consecutive, (b) no two
strips overlap, and (c) their total height is at least K.

To show hardness, let ϕ be an instance of Planar3SAT.
We first treat square extrusions; i.e., we construct a set Eϕ

of squares as illustrated in Fig. 2 and fix a threshold K > 0
such that H(S(Eϕ)) ≥ K for an optimal solution S(Eϕ) if
and only if ϕ is satisfiable.

The squares in Eϕ have side lengths 1, 5, and 7. We refer to
a square of side length j as a j-square. In Fig. 2 all 5-squares
are highlighted by bold boundaries. Each 7-square contains
a vertically and horizontally centered chain of five (unique)
1-squares. Thus the 7-square can contribute at most three
units to H if the 1-squares contribute one unit each. Note
that this is more than if the 7-square contributes seven units
and all 1-squares contribute zero. The contribution of a 7-
square is a (7 × 3)-rectangle that can either appear above
or below the chain of 1-squares. We say that the 7-square
is in upper or lower state, which gives us a means to encode
Boolean values. The contributing part of each square is
shaded in Fig. 2, and each type of square has its own degree
of shading.

Each square in Eϕ belongs to a variable gadget, a literal
gadget, or a clause gadget. These gadgets correspond one-
to-one to the n variables, 3m literals, and m clauses of ϕ,
respectively.

The gadget of a variable x consists of a horizontal chain
of nx 7-squares (thus containing 5nx 1-squares), where nx

is a constant that depends on the appearance frequency of
x in ϕ. Adjacent 7-squares overlap so that their states must
alternate. We let x being true correspond to the leftmost
7-square of the gadget being in upper state. It is clear that
the gadget of x contributes at most 8nx units to H .

The gadget of a literal λ in ϕ consists of a 5-square Eλ

containing five 1-squares, vertically centered. Number the
7-squares in each variable gadget from left to right. If λ is
negated, then Eλ intersects the top edge of an odd-numbered
(or bottom-edge of an even-numbered) 7-square of the cor-
responding variable gadget. Otherwise parity flips; see the
positions of Ey and E¬z in Fig. 2. Each literal gadget con-
tributes at most seven units to H .

The clause gadget forms the afore-mentioned three-legged
comb, with a leg for each literal. Each leg has a vertical
segment, and the left and right legs also have horizontal
segments that contain an even number of 7-squares. The
literal gadgets connect the variable to the clause leg, see
Fig. 2. The leg of literal λ consists of a fixed number mλ

(depending on ϕ) of 7-squares and 5mλ 1-squares, contribut-
ing at most 8mλ units to H .
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Figure 2: The gadgets of our reduction for the clause C = (¬x∨y∨¬z). Figure 3: Gadgets for unit-width rectangles: ver-
tical chain (a), horizontal chain (b), clauses that
evaluate to true (c) and to false (d).

At the center of the gadget for clause C are two 5-squares
QC and Q′

C , each containing eight 1-squares as depicted in
Fig. 2. Let Q ∈ {QC , Q′

C}. Note that there are three ways
that Q can contribute (one unit) to H , and that Q overlaps
with the last squares of two legs corresponding to literals
in C. Assume that the legs and the literal gadgets contribute
maximally to H . Then, if the two literals corresponding to
legs overlapping Q evaluate to false, only the middle unit-
height strip of Q can contribute (one unit) to H . However,
if all three literals evaluate to false, the two middle strips of
QC and Q′

C together can contribute at most one unit since
they overlap. In this case the clause gadget center (QC , Q′

C

and the sixteen 1-squares in their union) contributes 17 units
in total. On the other hand, if a literal in C evaluates to
true , both QC and Q′

C contribute one unit, and the clause
gadget center contributes 18 units.

To justify the assumption that the variable gadgets, literal
gadgets, and clause legs contribute maximally to H , note
that a gain of one unit in the clause gadget center would not
pay for a loss of at least two units in any other location.

Let K = (8
P

v∈Var(ϕ) nv) + 7 · 3m + (8
P

λ∈Lit(ϕ) mλ) +

18m, where Var(ϕ) and Lit(ϕ) denote the variables and lit-
erals in ϕ, respectively. The summands of K correspond to
the maximum contributions of all variable gadgets, literal
gadgets, gadget legs, and clause gadget centers. A contribu-
tion to H of K can only be achieved if ϕ is satisfiable.

The set Eϕ consists of O(m2) squares. The positions of
all squares can be encoded in space quadratic in the length
of an encoding of ϕ. The reduction can be performed in
polynomial time.

The construction for unit-width rectangles is similar, see
Fig. 3. Switching the roles of horizontal and vertical, the
same construction holds for unit-height rectangles.

Surprisingly, in 2d even the simple ARO problem is hard.

Theorem 2. Simple 2d-ARO with proportional dilation
is NP-complete; i.e., given a set {E1, . . . , En} of congruent
square cones and a real K > 0, it is NP-complete to decide
whether there is a set of pairwise disjoint truncated extru-
sions T = {T1, . . . , Tn} with T1 ⊆ E1, . . . , Tn ⊆ En and
H(T ) ≥ K.

Proof. To see membership in NP , note that in any op-
timal solution S all cones either reach Smax or touch another
cone. Thus S can be constructed by guessing an order and
inserting cones greedily. To show hardness, let ϕ be a planar
3SAT formula with m clauses. We construct a set Eϕ of unit
square cones and show that there is a threshold K > 0 such
that H(S(Eϕ)) ≥ K iff ϕ is satisfiable.

Similar to the 1d-case, we construct variable gadgets and
three-legged combs connecting them to clause gadgets. Fig. 4
shows 3d-models of the gadgets; Fig. 5 shows 2d-projections.
Each gadget consists of chains of cones. Their apices lie on a
half-integer grid. Cones whose apices have L∞-distance 1/2
(1) touch at Smax/2 (Smax). Therefore, all cones are active
and do not interfere in the range [0, Smax/2], but only every
other cone in a chain can extend up to Smax.

The variable gadget consists of an even cyclic chain. Num-
bering the cones clockwise starting at the top left, we de-
note the state where the odd (even) cones extend to the full
height as true (false); see Fig. 4a, 5a, and 5b. At those po-
sitions where the cycle has an indentation we can connect
literal pipes: a positive literal at the beginning (in clockwise
order) of an indentation, and a negative literal at the end.
Thus, if a literal evaluates to false (true), the corresponding
literal pipe starts with a half (full) cone.

The clause gadget (Fig. 4b, 4c, 5c, 5d) consists of three
pairwise adjacent cones so that at most one can be full size.
Each of them is also adjacent to the last cone in a literal
pipe. The literal pipes have an even number of cones, so
the pipe for a true (false) literal ends in a half (full) cone.
Thus, none of the clause cones can be full size iff all literals
are false.

By construction, the total active range H of the variable
and literal gadgets is independent of their truth values. A
clause gadget contributes 2Smax (1.5 Smax) to H if the cor-
responding clause is true (false). Thus ϕ is satisfiable iff the
clause cones in total contribute 2mSmax to H .

3. ALGORITHMIC TOOLBOX
We give a toolbox of six different algorithms to tackle

several variants of 1d- and 2d-ARO problems. Some are
only briefly covered since they are based on well-known tech-
niques: dynamic programming, a left-to-right greedy algo-
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(a) Variable gadget for x = true.

(b) One literal is true (green).

(c) All literals are false (red).

Figure 4: 3d-models of the variable and clause gadgets in Theorem 2 (with partial literal gadgets).
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Figure 5: 2d-projections of the variable and clause gadgets in Theorem 2 (with partial literal gadgets).

rithm, line stabbing, and divide and conquer. We concen-
trate on two algorithms that apply new techniques: a top-
to-bottom fill-down sweep, and a level-based small-to-large
greedy algorithm.

3.1 Dynamic programming

Triangles.
We start by considering simple 1d-ARO with proportional

dilation: each extrusion Ei is a triangle with apex on the x-
axis and top side on the horizontal line s = Smax. The trun-
cated extrusions Ti differ only by having (possibly) lower top
sides. Observe that in an optimal solution at least one Ti

has height Smax, and thus divides the problem into two in-
dependent subproblems. This is the essence of the dynamic
programming solution.

Theorem 3. Simple 1d-ARO with proportional dilation
can be solved in O(n3) time.

Proof. Let pi be the apex of wedge-shaped extrusion Ei

on the x-axis. For ease of notation define dummy wedges
E0 and En+1 with apexes p0 and pn+1, and assume that
p0, . . . , pn+1 are sorted from left to right. For i < j, define
the free space ∆(i, j) between pi and pj to be the triangular
or trapezoidal space enclosed by s = 0, the right side of Ei,
the left side of Ej , and possibly s = Smax. Let A[i, j] be
the optimal solution for pi+1, . . . , pj−1 in ∆(i, j). In A[i, j],
at least one of Ti+1, . . . , Tj−1 must touch a non-bottom side
of ∆(i, j), thus dividing the problem into two independent
subproblems. For each k = i + 1, . . . , j − 1, we denote by
hk the scale at which Tk first reaches a non-bottom side of
∆(i, j). Then A[i, j] = maxj−1

k=i+1(A[i, k]+hk +A[k, j]), and
the optimal solution for our problem is A[0, n + 1]. Each
of the O(n2) entries in the dynamic programming table is
computed in O(n) time, giving O(n3) time in total.

3.2 Left-to-right greedy algorithm

Unit-height rectangles.
Van Kreveld et al. [13] presented the following greedy al-
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gorithm for maximum independent set (MIS) among axis-
aligned rectangles of unit height. We are given a set E of
unit-height rectangles. Until E is empty, repeatedly select
the rectangle E ∈ E with leftmost right edge, and remove
from E all remaining rectangles intersecting E. This takes
O(n log n) time, and is a (1/2)-approximation for MIS [13].
It is not hard to see that the same algorithm yields a (1/3)-
approximation for 1d-ARO.

Theorem 4. The maximum total active range height for
a set of n rectangular extrusions of unit height can be ap-
proximated by a factor of 1/3 in O(n log n) time.

3.3 Line stabbing
We use line stabbing for unit squares and unit-width rect-

angles, i.e., general 1d-ARO with constant dilation and equal-
size labels. Line stabbing is a special case of the shifting
technique by Hochbaum and Maass [7]. The idea is to stab
all extrusions with vertical lines of distance at least 1 such
that each extrusion is stabbed by exactly one line and each
line stabs at least one extrusion. The stabbing lines are
numbered l1 to lk from left to right. Since all extrusions
have unit width, those intersecting li do not overlap those
intersecting li+2. Our approximate solutions make use of
the optimal solutions for either the extrusions stabbed by a
single line or those stabbed by two adjacent lines.

Unit-width rectangles.
For unit-width rectangles we partition the vertical stab-

bing lines into sets Λ1 and Λ2, containing all the stabbing
lines with odd and even indices, respectively. A simple
greedy algorithm computes the maximum total active range
height for the rectangles intersecting a single stabbing line.
Thus the solution Ai for all rectangles intersecting lines in
Λi can be computed optimally. By the pigeon-hole princi-
ple it is clear that the solution Ai maximizing H is a (1/2)-
approximation. It can be computed in O(n log n) time. Thus
we obtain the following.

Theorem 5. The maximum total active range height for
a set of n rectangular extrusions of unit width can be ap-
proximated by a factor of 1/2 in O(n log n) time.

Unit squares.
To obtain a (2/3)-approximation for this case, we parti-

tion the vertical stabbing lines into three sets, Λi = {lj |
j = i (mod 3)} for i = 1, 2, 3. Deleting all squares stabbed
by one of the sets Λi divides the problem into independent
subproblems defined by two consecutive stabbing lines each.
A greedy sweep-line algorithm finds the optimal solution for
each of these subproblems as follows. Sweep a line from bot-
tom to top stopping at event points si and Si. We maintain
an active pair of at most two independent squares that con-
tains at each scale the leftmost square on the left stabbing
line and the rightmost square on the right line if they are
independent. If they overlap, then whichever was made ac-
tive first remains active. For a square Ei, set ai to the scale
at which Ei enters the active pair, and set Ai to the scale
at which it leaves the active pair.

Lemma 1. The above algorithm computes, in O(n log n)
time, the maximum active range height of a set of n unit
squares stabbed by two vertical lines of distance at least 1.

ε

Figure 6: Instance with n squares in a (3× 3)-block. In the
optimal solution (shaded) each square has an active range.

Proof. Obviously the algorithm activates the maximum
number of independent squares (one or two) at each scale.
It remains to show that the active range is set at most once
for each square. If a square Ei leaves the active list before
the sweep line reaches Si, it must be replaced by a more
extremal (left or right) square Ej . But clearly Sj > Si, so
Ei will never again be extremal. It is not hard to see that
this can be implemented in O(n log n) time.

Using this method, we optimally solve the three subprob-
lems created by removing the squares stabbed by, respec-
tively, one of the sets Λi. By the pigeon-hole principle,
the subsolution that maximizes H is a (2/3)-approximation.
This yields the following theorem.

Theorem 6. The maximum total active range height for
a set of n unit-square extrusions can be approximated by a
factor of 2/3 in O(n log n) time.

Note that the above technique cannot be easily extended
to a PTAS by defining sets Λ1, . . . , Λk for some k > 3 since it
is not clear how to solve the remaining (k− 1)-line subprob-
lems (near-) optimally in polynomial time. Unlike the situa-
tion in Lemma 1, greedily activating the maximum number
of independent squares at each scale for k > 3 can result
in a square being activated more than once, i.e., its active
range is not a contiguous interval. Partitioning the plane
into square blocks (as Hochbaum and Maass [7] do) instead
of vertical strips does not help either since any optimal so-
lution inside a (t × t)-block may contain active ranges from
an arbitrary number of unit squares; see Figure 6. Any k-
element subset E ′ of the depicted n-square instance E has
H(E ′) ≈ 3 + k/n, whereas H(E) = 4 − Θ(ε).

3.4 Divide and conquer

Arbitrary rectangles.
Agarwal et al. [1] gave an O(n log n)-time divide-and-con-

quer algorithm to compute a (1/ log n)-approximation for
MIS among axis-aligned rectangles. Their algorithm readily
adapts to ARO. First, the given set E of rectangles is split
at the vertical line g : x = xmed, where xmed is the median
of the at most 2n abscissae of the left and right sides of the
given rectangles. This yields the three disjoint subsets E1,
E2, and E12 of the rectangles in E lying left of g, lying right of
g, and intersecting g, respectively. The solutions A1 and A2

for E1 and E2 are computed recursively. The solution A12 for
E12 can be solved optimally by a simple greedy algorithm.
Finally, among the two sets A1 ∪A2 and A12, the one with
the larger value of the objective function is returned. The
proof of the following theorem is similar to that in [1].
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Theorem 7. The divide-and-conquer algorithm computes
in O(n log n) time a (1/ log n)-approximation to the maxi-
mum total active range height for a set of n rectangles.

3.5 Top-to-bottom fill-down sweep
A number of variants of 1d- and 2d-ARO are approxi-

mated by a constant factor with Algorithm 1, below. The
idea is to sweep down over the extrusions in E , and if Ei ∈ E
is selected at scale s, we“fill”Ei from s down to its bottom—
i.e., we set [ai, Ai] = [si, s]. Thus we have ai = si for every
Ei that contributes to the objective function H at all.

Say that Ei is available if its available range includes the
current sweep scale s, and active if its active range has al-
ready been set and covers s. We are interested in event
points at which the conflict graph over the available extru-
sions changes. This happens at each Si and si, and with
some extrusion shapes it also happens at additional scales.
If Ei and Ej are both available at s and at s′ > s, and they
intersect at s′ but not at s, then let sij refer to the lowest
scale at which they intersect. Let k be the number of sij

events over E . We make use of a subroutine, “try to pick”
Ei, which means, “if Ei does not intersect the interior of any
extrusion already chosen to be active at the current sweep
scale s, then make Ei active and set [ai, Ai] = [si, s]”.

Algorithm 1. Top-to-bottom sweep algorithm.

Sweep a line or plane from top to bottom. At
each event point of type Si, si, or sij , try to pick
each available but inactive extrusion Ej , in non-
increasing order of Sj .

The following lemma will help prove the approximation
factors. Let A = {(ai, Ai)} be the solution computed by
Algorithm 1. Say that Ej blocks Ei at scale s under a given
solution if Ei and Ej overlap (i.e., their interiors intersect)
at s and s ∈ [aj , Aj ]. Note that this implies that s /∈ [ai, Ai].
Say that two extrusions are independent at s if their restric-
tions to the horizontal plane at scale s are non-overlapping.

Lemma 2. If, for any E ∈ E and s ≥ 0, E can block no
more than c pairwise independent extrusions at s, then A is
a (1/c)-approximation for the maximum total active range
height of E .

Proof. Suppose that E ∈ E is inactive at scale s un-
der A. Then E must be blocked at the nearest event point
above (or at) s since otherwise it would be picked by Algo-
rithm 1. Since the extrusion conflict graph only changes at
event points, E is blocked at s. Thus, in A, if E is inactive
at any scale s then E is blocked at s.

If at any scale no extrusion can block more than c mutually
independent extrusions, and in A every inactive extrusion is
blocked, then at any scale the number of active extrusions in
an optimal solution can be no more than c times the number
in A. Integrating over all scales proves the lemma.

For each of the extrusion shapes covered in this section
we determine a value for c, usually 2 or 4. For example, it
is easy to see that c = 2 for unit-width rectangles (or, more
generally, for any set of rectangles where the x-order of the
left edges is the same as the x-order of the right edges),
so Algorithm 1 yields a (1/2)-approximation. It runs in
O(n log n) time. (Compare Theorem 5.)

Congruent trapezoids.
The top-to-bottom nature of Algorithm 1 ensures that if

Ej blocks Ei at scale s then Ei intersects at least one side
edge of Ej at s. This implies c = 2 in Lemma 2.

Theorem 8. Algorithm 1 computes a (1/2)-approximation
for the maximum total active range height of a set of n con-
gruent trapezoids in O(k log n + n log2 n) time, where k is
the number of pairs of intersecting trapezoids.

Proof. We first show that with congruent trapezoids, if
Ej blocks Ei at scale s under solution A, then Ei must
intersect at least one side edge of Ej at scale s. This implies
c = 2 in Lemma 2, and thus the 1/2 approximation factor.

Suppose Ej blocks Ei at s. If Si ≤ Sj then Ei is at
least as wide as Ej at s, so it must intersect a side edge of
Ej . If Si > Sj then Ei is also available at scale Aj , when
Algorithm 1 selects Ej , and since the trapezoids are wider at
higher scales, Ei and Ej also intersect at Aj . But Ei must
also be blocked by another trapezoid at Aj since otherwise
Algorithm 1 would choose it over Ej . Thus, Ei intersects a
side edge of Ej at Aj , and since they are congruent, it must
also at s.

It remains to justify the time complexity. Initially we
use a simple plane-sweep algorithm to find the sij events in
O((k + n) log n) time. Then we create the sorted event list
with si, Si, and sij events. If multiple events occur at the
same scale, then say that the si events come first, then the
sij events, and finally the Si events.

We use the fact that all trapezoids are congruent to trans-
form them into a dual space. For a trapezoid E denote the
abscissae of the intersections of the x-axis and the down-
ward extensions of the left and right edges of E by λ(E)
and ρ(E), respectively. (Notice that all trapezoids lie above
the x-axis.) This defines a point δ(E) = (λ(E), ρ(E)) in the
dual space. Similarly, an arbitrary point p above the x-axis
is mapped to a point δ(p) in the dual space using lines with
the same slopes as the left and right edges of the trapezoids.
See Fig. 7a. Most importantly, note that we can activate the
trapezoid E′ in the free space defined by the line segment
[p, q] if λ(E′) ≥ λ(p) and ρ(E′) ≤ ρ(q).

We use a balanced binary search tree for the active list,
where the active trapezoids are ordered left to right by their
segment intersections with the sweep line. For the available
list, we use a 2-dimensional “dynamic priority range tree”,
which stores δ(Ei) for each available but inactive trapezoid
Ei. A query on this structure asks for the point with maxi-
mum Si among those in a rectangular region of (λ, ρ) space.
Specifically, the query region [λ(p),∞)× (−∞, ρ(q)] returns
the highest trapezoid that can be made active in the free
space defined by line segment [p, q].

We modify the usual plane sweep algorithm as follows: if
multiple si events, or multiple sij events, share the same
scale, then we consider the group of events together.

For one or more si events at the current sweep scale, re-
move each Ei from the active list, maintaining a new list of
[p, q] intervals freed by each. If any free interval contains a
previously found interval, retain only the larger one. Then
we traverse the interval list until it is empty. For each [p, q]
on the interval list, query the available list for the topmost
trapezoid Ej that can be made active in [p, q]. If an Ej is
found, add it to the active list. This splits [p, q] into two
parts [p, p′] and [q′, q] to the left and right of Ej . Append
[p, p′] and [q′, q] to the interval list.
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Figure 7: Transformation to (λ, ρ)-coordinates.

For each of one or more sij events at the current sweep
scale, if either of Ei or Ej is active then add the inactive
trapezoid to a candidate list C sorted non-increasingly by Si.
Once the group of sij events is exhausted, try to pick each
extrusion in C in order. For each Si event, try to pick Ei.

Creating the event list requires O((k+n) log n) time. The
si events require O(n log2 n) time in total since there will be
O(1) searches on the available list for each trapezoid. Events
of type sij require O(k log n) time in total for k searches of
the active list. Events of type Si require O(n log n) time in
total for n searches of the active list. Thus the time com-
plexity of the whole algorithm is O(k log n + n log2 n).

Congruent frusta.
With congruent frusta, a blocked frustum must intersect

a side face of its blocker. The number of independent frusta
that can intersect a single face depends on W , the ratio of
the side length of the (square) top side of each frustum to
that of the bottom.

Theorem 9. Algorithm 1 computes a 1/(4W )-approxi-
mation for the maximum total active range height of a set
of n congruent frusta in O(n4) time.

Proof. We first show that with congruent frusta, if Ej

blocks Ei at scale s under solution A, then Ei must intersect
at least one side face of Ej at scale s. Suppose Ej blocks
Ei at s. If Si ≤ Sj then Ei is at least as large as Ej at s,
so it must intersect a side face of Ej . If Si > Sj then Ei is
also available at scale Aj , when Algorithm 1 selects Ej , and
since the frusta are larger at higher scales, Ei and Ej also
intersect at Aj . But Ei must also be blocked by another
frustum at Aj since otherwise Algorithm 1 would choose it
over Ej . Thus, Ei intersects a side face of Ej at Aj , and
since they are congruent, it must also at s.

This implies that E ∈ E can block at most 4W indepen-
dent extrusions at any scale s, and the 1/4W approximation
factor follows from Lemma 2. (See Fig. 9 for an example
with W = 3.)

At each of O(n2) event points we try to pick each of O(n)
extrusions, and the try-to-pick routine traverses O(n) active
extrusions, giving O(n4) time.

Trapezoidal segments of congruent triangles.
Here we consider as extrusions a set of trapezoidal seg-

ments of congruent underlying triangles with their apexes
on a horizontal line.

Theorem 10. Given a set of n trapezoidal segments of
congruent triangles, Algorithm 1 computes a (1/2)-approx-
imation for the maximum total active range height in O((n+
k) log n) time.

Proof. At each scale the width of every trapezoid is the
same, which implies that any trapezoid blocked by E ∈ E
intersects a side edge of E. Thus, at most two extrusions
blocked by E at s can be independent at s, and the approx-
imation factor 1/2 follows from Lemma 2.

We have a natural order on the extrusions given by the
x-value of the apexes of the underlying cones. We can easily
determine the interval on the x-axis containing cones that
are within a given free interval at the current sweep scale.

We use a priority search tree for the available list, with
Si values as the priority. The active list will be a balanced
binary search tree. The event heap is initialized with all Si

and si events in O(n log n) time.
At event points of type Si we try to pick Ei, and search

the available list for events qij , which are then added to the
event list. In total, the Si events require O(n log n) time
for searching and updating the active list, O(k + n log n)
time for searching the available list, and O(k log n) time for
adding the qij events.

At event points of type si we remove Ei from the available
list. If Ei was active, then remove it from the active list and
compute the free interval determined by its predecessor and
successor. Query the available list for the extrusion with
the highest Si in this free interval. If one is found, then
also query the two new intervals on either side of it. At
most two extrusions will be added to the active list. The si

events require O(n log n) time in total.
At event points of type qij , if Ei or Ej is active then try

to pick the other. These events total O(k log n) time.
In summary, the time complexity is O((k + n) log n).

Frustal segments of congruent square cones.
This is the 2d-equivalent of the trapezoidal segments of

congruent triangles in the previous paragraph.

Theorem 11. Given a set of n frustal segments of axis-
aligned unit square cones, Algorithm 1 computes a (1/4)-
approximation for the maximum total active range height in
O((n + k) log2 n) time.

Proof. Any extrusion blocked by an extrusion E at scale
s must intersect one of the four corner edges of E at s, so
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at most four such extrusions can be independent. Thus the
approximation factor 1/4 follows from Lemma 2.

In the implementation we use a range tree for the active
extrusions, a range tree for the available extrusions, and a
heap for the event list. The event list initially has all Si and
si events. The range trees store the apex locations in the
(x, y) plane of the underlying cones. We can easily compute
a range in the (x, y) plane containing cones that intersect a
given cone at a particular scale.

At event Si we first try to pick Ei. This requires O(n log2 n)
time over all Si events. Next we compute sij for each
Ej in the available list that intersects Ei. This requires
O(k′ + log2 n) time for each Ei, or O(k + n log2 n) over-
all. Each computed sij is added to the event list, requiring
O(k log n) time in total. Finally, Ei is added to the available
list, requiring O(n log2 n) time in total.

At event si we first remove Ei from the available list, and
from the active list if it is active, requiring O(n log2 n) time
in total. If Ei has been active we search the available list
for extrusions that intersect Ei at si. This requires O(k′ +
log2 n), or O(k + n log2 n) time overall. We can sort the
extrusions found in O(k′ log k′) time, or O(k log n) overall,
and then try to pick each one in order of their heights, which
will require O(k log2 n) time overall.

At event sij , if one of Ei and Ej is active, then try to pick
the other. This requires O(k log2 n) time overall.

Altogether, the time complexity is O((n + k) log2 n).

Simple ARO with congruent square cones is a special case
of the above, with each [si, Si] = [0, Smax], so we immedi-
ately get the following corollary.

Corollary 1. Given a set of n congruent square cones,
Algorithm 1 computes a (1/4)-approximation for the maxi-
mum total active range height in O((n + k) log2 n) time.

3.6 Level-based small-to-large greedy algorithm
In this section we give an algorithm for simple 2d-ARO

with square cones. It computes a (1/8)-approximation when
the cones are congruent, and a (1/24)-approximation other-
wise. The algorithm intersects the given cones with O(log n)
horizontal planes, starting at Smax and proceeding down-
ward.

Algorithm 2. Level-based algorithm for 3d-cones

Initially no extrusion is active. In phase i, i =
0, . . . , ⌈log n⌉, let πi be the horizontal plane at
scale s = Smax/2i. Let Ei

j be the intersection

of extrusion Ej with πi and call Ei
j active if Ej

is already active. As long as there is an inac-
tive object Ei

j that does not intersect any active

object, choose the smallest such object Ei
j⋆ and

make Ej⋆ (and Ei
j⋆) active by setting Aj⋆ = s.

We first consider arbitrary square cones that are symmet-
ric to the vertical axes passing through their apexes. When
the algorithm terminates, all squares at level i that are not
active must intersect an active square—they are blocked. We
associate each blocked square Ei

j to one of the active squares

in the following way: (i) If Ei
j was not blocked at the be-

ginning of phase i but became blocked by a newly activated
square Ei

k, then associate Ei
j to Ei

k. (ii) If Ei
j was blocked

in the beginning of phase i then associate Ei
j to any of its

blocking squares that were active at the beginning of phase
i. Next, we show that the squares associated to an active
square cannot be arbitrarily small.

Lemma 3. Let Ei
j be an active square at level i with side

length ℓi
j . Then any square associated to Ei

j has side length

at least ℓi
j/3 and intersects the boundary of Ei

j.

Proof. Let Ei
k be associated to Ei

j with ℓi
k < ℓi

j . By
the greedy choice of the algorithm, all squares associated
to a newly active square are larger than it. This implies
that Ej must have been activated at a higher level, and that
Ek must have been reassigned to Ej at some level h ≤ i.
Thus, at level h − 1 square Eh−1

k was associated to another

square Eh−1
l . Note that for this reassignment to take place

at level h, Eh−1
j must have been active. Thus we know that

Eh−1
j and Eh−1

l do not intersect, but they both intersect

Eh−1
k ; see Fig. 8a. At level h the reassignment takes place

because Eh
k no longer intersects Eh

l but still intersects Eh
j ;

see Fig. 8b. Now suppose ℓh
k < ℓh

j /3. Then by going from
level h to h − 1 the side lengths of the squares are doubled
and it is easy to verify that Eh−1

k would be contained in

Eh−1
j , a contradiction to the fact that Eh−1

k ∩ Eh−1
l 6= ∅.

As ℓh
k ≥ ℓh

j /3 this also holds for level i, and since Eh−1
k

intersects the boundary of Eh−1
j this is also still true for

level i.

Define π⌈log n⌉+1 as the plane s = 0. We denote the active
segments of the extrusions between planes πi−1 and πi in the
optimal solution S by Si and in the solution of our algorithm
by Ai, respectively. We charge the active range height H(Si)
to that of H(Ai+1).

Lemma 4. For each level i ∈ 1, . . . , ⌈log n⌉ − 1 it holds
that H(Ai+1) ≥ 1/24 H(Si).

Proof. Let square Ei
j be active in A and consider the

set D(Ei
j) of squares in πi associated to it. The squares

in D(Ei
j) that correspond to active extrusions in Si cannot

intersect each other.
By Lemma 3, all squares in D(Ei

j) have side length at least

ℓi
j/3 and intersect the boundary of Ei

j . Thus, at most 12 of
those squares can be independent in πi and hence active in
Si like in Fig. 9. Now the height between levels i and i − 1
is twice the height between levels i + 1 and i. Hence the
active height of Ej in Ai+1 is at least 1/24 times the sum of
heights of active extrusions in Si whose squares at level i are
associated to Ei

j . It follows that H(Ai+1) ≥ 1/24 H(Si).

Theorem 12. Algorithm 2 computes a (1/24)-approxi-
mation to the maximum total active range height of a set
of arbitrary square cones in O(n log3 n) time.

Proof. It remains to compare H(S⌈log n⌉)+H(S⌈log n⌉+1)
to H(A⌈log n⌉+1) + H(A1). The height of π⌈log n⌉−1 is at
most 2Smax/n and obviously there are at most n active cone
segments in S below π⌈log n⌉−1, so their total active range
height is at most 2Smax. On the other hand, there is at least
one active cone segment in A1 of height Smax/2. Together
with Lemma 4 this implies the approximation factor 1/24.

For an efficient implementation of Algorithm 2 we store
the squares in each level i in a two-dimensional segment tree
τi, which supports deletion in O(log2 n) time [4]. For each
square Ei

j that has been activated at a previous level we
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Figure 8: Intersection behavior of Ej , Ek, El at two consecutive levels.
Figure 9: At most 12 pairwise in-
dependent squares intersect Ei

j .

delete all intersecting squares as follows. Place vertices at
each corner of Ei

j and two vertices on each edge equidis-
tantly. Query τi with each of these 12 vertices and delete
the returned squares from τi. As the side length of inter-
secting squares is at least ℓi

j/3 (see Lemma 3) these points
suffice to find all intersecting squares. From the remain-
ing squares the algorithm iteratively chooses the smallest
one. By querying τi with the four corner points of the cho-
sen square we identify and remove all intersecting squares,
which are larger and thus must contain one of the corner
points. Since a deletion takes O(log2 n) time, Algorithm 2
needs O(n log2 n) time per level.

There are log n levels and thus the total running time is
O(n log3 n).

With congruent square cones, all intersection squares on a
plane are the same size, so at most four independent squares
can intersect a given square. Thus a similar argument gives
the following corollary.

Corollary 2. Algorithm 2 computes a (1/8)-approxima-
tion to the maximum total active range height of a set of
congruent square cones in O(n log3 n) time.

4. OPEN PROBLEMS
ARO is an exciting new problem inspired by interactive

web-based mapping applications, and this is the first pa-
per with an extensive, rigorous algorithmic study. We have
described a number of approximation algorithms; an obvi-
ous question is whether any approximation factor can be
improved, or whether any of the problems admits a PTAS.
(Some obvious attempts for a PTAS do not work, see Sec-
tion 3.3.) Furthermore, the complexity of general 1d-ARO
is still unknown for regular shapes such as unit squares and
congruent trapezoids.

Mapping applications in practice often need to work with
different label models, such as labels of different lengths and
fonts; non-axis-aligned labels; non-rectangular labels, such
as a road label that follows a curvy road; and sliding labels—
i.e., non-invariant point placements. Any of these raises a
number of interesting theoretical questions.
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