
Improved algorithms for length-minimal one-sided boundary labeling

Marc Benkert∗ Martin Nöllenburg?

Abstract

We present algorithms for labeling n points that are
contained in a rectangle R by labels that lie on one
side of R. The points are connected to their labels
by non-intersecting curves (leaders) that each have
at most one bend. We consider two types of curves:
rectilinear leaders, called po-leaders, and leaders that
consist of a horizontal and a diagonal segment, called
do-leaders. To obtain a good readability of the la-
beling we minimize the total leader length. For the
po-leaders we give an O(n log n) and for do-leaders an
O(n2)-time algorithm. This type of labeling has ap-
plications for geographic maps or illustrations in med-
ical atlases in which the labels should not be inserted
directly because labels would obscure important in-
formation or if points lie too dense.

1 Introduction

Our work ties up to a work of Bekos et al. [2]: for n
points contained in a rectangle R and n labels that lie
either on one, two or all four sides of R they gave sev-
eral algorithms for different types of polygonal lines
that are allowed to connect the points with the labels.
For a good readibility of the labeling they demand
that the leaders should be non-intersecting. Further
criteria that serve for a good quality are minimiz-
ing the total leader length and the total number of
bends. One of the leader types that they introduced
are the po-leaders: the leader starts with a (possibly
empty) vertical segment followed by a horizontal seg-
ment that connects to the label, see Figure 1(a). For
the case that the labels are located only on one side
of R, they gave a quadratic algorithm that computes
the length-minimum labeling with po-leaders. Ali et
al. [1] propose several heuristic labeling methods us-
ing straight-line and rectilinear leaders. They first
compute an initial labeling and then eliminate inter-
sections between leaders. In Section 2 we improve the
po-leader result of Bekos et al. by giving an O(n log n)
algorithm. Furthermore, we introduce the notion of a
do-leader. The only difference to a po-leader is that
the leader starts with a diagonal segment of fixed an-
gle oriented towards the label, see Figure 1(b). To our

∗Fakultät für Informatik, Universität Karlsruhe,
P.O. Box 6980, D-76128 Karlsruhe, Germany,
http://i11www.iti.uni-karlsruhe.de/research/geonet/,
GeoNet is supported by grant WO 758/4-2 of the DFG.

best knowledge, there is no literature yet that algo-
rithmically deals with do-leaders. In practice the do-
leaders seem to produce nicer labelings because their
smoother shape makes the comprehension of the as-
signment from points to labels easier. In Section 3
we present a quadratic algorithm that computes the
length-minimum do-labeling with labels on one side.

R

(a) po-leaders.

Rp

`

(b) do-leaders.

Figure 1: Valid labelings for labels on the left side.

2 po-leaders

For simplicity we assume that the labels are uniform
and located on the left side of R. We briefly sketch
Bekos et al. quadratic algorithm [2] as we will prove
the correctness of our algorithm by showing that it
produces exactly the same labeling.

Their algorithm proceeds in two steps: first, they
produce a non-crossing-free labeling that obviously
minimizes the total leader length. This labeling
is simply found by sorting the points according to
their y-coordinate and then assigning the bottommost
point to the bottommost label, the second bottom-
most point to the second bottommost label and so on.
Then, in the second step, they purge all crossings by
changing the assignment of two points at a time in an
appropiate order. In this second step the total leader
length does not change, see Figure 2. Hence, their
output is a valid length-minimum labeling. However,
in the second step their algorithm potentially has to
deal with a quadratic number of crossings which is the
bottleneck for the running time.

`1

`2

`3

s1

s2

s3

Figure 2: Exchanging the labels of two intersecting
leaders without changing the total length.

The key idea for bringing the running time down
to O(n log n) is to couple these two steps and to not

1

make an assignment for a point until we know that
this assignment will not produce any crossings in the
remainder of the algorithm. We accomplish this by a
sweep-line algorithm.

Let `1, . . . , `n be the numbering of the labels from
bottom to top and let s1, . . . , sn denote the horizontal
strips to the right of the according labels, see Figure 2.
In a preprocessing step that takes O(n log n) time we
determine point lists P1, . . . , Pn, where Pi contains
exactly the points in si, and sort each list according
to increasing y-coordinate. Throughout the algorithm
we maintain a list L of points that are ordered accord-
ing to increasing x-coordinate, L contains the points
that, for some state of the algorithm, all have to be
labeled by a label above or below the current sweep
line, initially L is empty. For the sweep itself, there
is one event point for every label, namely the hori-
zontal line through the upper horizontal side of the
label rectangle. We denote the event point for `i by ı̂
and the number of points in s1 ∪ · · · ∪ si by n∪i . We
distinguish three possible states for an event point ı̂:

Need if i > n∪i ,
Surplus if i < n∪i and

Equilibrium if i = n∪i .
The three states are illustrated in Figure 3. Need

means that there are too few points in s1 ∪ · · · ∪ si

for labeling `1, . . . , `i. Surplus means that there are
too many points in s1 ∪ · · · ∪ si for labeling `1, . . . , `i

and Equilibrium means that there are exactly i points
in s1 ∪ · · · ∪ si. Note that then, in the length-
minimum labeling, these points are assigned to the
labels `1, . . . , `i. We can see this by Bekos et al.’ al-
gorithm: in their first step the i points are obviously
assigned to `1, . . . , `i, meaning that they could have
crossings amongst each other but never with other
points above. Since Bekos et al. switch labels only of
points whose leaders intersect, this means that in the
end, these i points remain assigned to `1, . . . , `i.

`i

(a) Need

`i

(b) Surplus

`i

(c) Equilibrium

Figure 3: The three possible states at event point ı̂.

According to the state that we found at ı̂ we do the
following: For Need we do nothing at all and proceed
with the next event point. The label `i will get its
assigned point during a backtracking later on.

For Surplus we check the state of the previous event
point. If it was Equilibrium we assign the bottommost
point in Pi to `i, insert the remaining points of Pi in
the then empty list L, remove the first point of L and

assign it to `i+1. If it was Surplus, label `i will already
have its point assigned by the processing of ı̂− 1. We
insert the points Pi into L. After that L must be
non-empty because either there were points in Pi or
L was still non-empty after processing ı̂ − 1. Again,
we remove the first point of L and assign it to `i+1.
If it was Need, we check for which point p in si we
have an ’artificial’ Equilibrium and assign p to `i. We
insert the points below p into L and backtrack : we set
a counter c to i− 1, as long as L is not empty we do
the following: we assign the first point of L to `c and
delete it from L. Then we insert the points Pc into L
and decrease c by one. After the backtrack we insert
the points above p into L and proceed as above.

For Equilibrium we look at Pi. If Pi = ∅ the pre-
vious state was Surplus and `i will already have its
point assigned. we have nothing to do. If |Pi| = 1, we
assign the point in Pi to `i. If |Pi| > 1, the previous
state was Need, we assign the topmost point of Pi to
`i, insert the remaining points in Pi into the list L
and backtrack as described above.

Theorem 1 For labels on one side, the length-
minimum labeling using po-leaders can be computed
in O(n log n) time requiring O(n) space.

Proof. Obviously, each point is inserted in and
deleted from L at most once, which establishs the
running time since an insertion in the ordered list L
is in O(log n). The linear space requirement is also
obvious. It remains to prove that the algorithm finds
a valid labeling and that this labeling has indeed mini-
mum length. As mentioned earlier we do this by show-
ing that our algorithm computes exactly the same la-
beling as Bekos et al.’ algorithm. We omit the details
but point out that taking the first point of L, i.e.
the point with minimum x-coordinate in L, for as-
signing it to `c (backtracking) or to `i+1 (treating a
Surplus state) is necessary for the prevention of pro-
ducing crossings in the further run of the algorithm.

�

3 do-leaders

For simplicity we assume that the labels are uniform
and located on the left side of R. We note that the al-
gorithm will work for any fixed angle for the diagonal
segments between 0◦ and 90◦ to the x-axis.

We cannot use the same approach as for the po-
leaders simply as not every point can connect to any
label by a do-leader, look e.g. back to Figure 1(b)
where p cannot connect to `. Roughly speaking we
will use a generalization of Bekos et al.’ algorithm
for the po-leaders that takes these restrictions into
account.

We start by introducing necessary conditions for
the existence of a do-labeling and show how to algo-

2

rithmically make use of them. In the end, we con-
structively get that the conditions are even sufficient.

Each label ` induces a funnel-shaped subregion R`

in which all points that could be assigned to this label
are located. The arrangement of all these regions de-
fines O(n2) cells, see Figure 4. All points in the same
cell of this arrangement can connect to the same set
of labels and these sets are distinct for any two cells.

cell (5, 6)

1 2 3 4 5 6 70

1 2 3 4 5 6 70

4 5,
6{L5,6

Figure 4: The cell arrangement.

A cell itself is the intersection of an ascending and a
descending diagonal strip and after numbering these
strips we can index each cell, e.g. the white cell in Fig-
ure 4 has index (5, 6), when we take the index of the
descending strip as first coordinate. For a cell (i, j) we
denote the label set that can be reached by Li,j and
the smallest triangle bordering to Li,j and containing
(i, j) by 4i,j , see Figure 4. Now, a necessary condi-
tion for the existence of a do-labeling is obviously that
the number ni,j of points in 4i,j does not exceed the
number of labels in Li,j which is i + j−n. Otherwise
there will be unassigned points left over in 4i,j that
cannot connect to any other labels beside Li,j . We
say that i + j − n is the level of cell (i, j).

Lemma 2 There can only be a valid do-labeling if
for each k-level cell (i, j) it holds that ni,j ≤ k.

We can check these necessary conditions in O(n2)
time. For this we have to compute all numbers ni,j :
initially we set each ni,j to zero. For each input point
we determine its containing cell (i, j) and increment
ni,j by one. Then, each ni,j gives the number of points
in the cell (i, j) but we aim for the number of points in
4i,j . We traverse the cells in increasing order of their
levels. Apparently, all 1-level cells already contain the
desired values, for all other cells ni,j is updated based
on three predecessor values (see Figure 4):

ni,j ← ni,j + ni,j−1 + ni−1,j − ni−1,j−1.

This counts each point in 4i,j exactly once. The time
complexity per cell is obviously constant.

Now, we present our algorithm to compute the
length-minimum labeling. We assume that we com-
puted the numbers ni,j in a preprocessing and neither

of the necessary conditions has been violated. For a
k-level cell (i, j) for which ni,j is k we say that 4i,j is
full, meaning that in any valid do-labeling each of the
ni,j points in 4i,j connects to a label in Li,j . For the
algorithm we generalize the above definition: a trian-
gle 4i,j is full if the numbers of points in 4i,j and
labels in Li,j that have not been assigned yet match.
From now on we call such points and labels open.

The algorithm traverses the cells in increasing order
of their levels and for each level from bottom to top.
Whenever we find a k-level cell (i, j) for which 4i,j

is full, we call the subroutine complete(4i,j) which
computes a length-minimum valid labeling for the re-
maining open items in 4i,j . Then, 4i,j is marked
as completed. Eventually the traversal will examine
the n-level cell (n, n) and if not all points have been
assigned yet, an assignment for the remaining open
points and labels will be found.

In the procedure complete(4i,j) we process the
open labels from bottom to top. Basically for each
open label ` the point that we assign to ` is the first
open point that we find when we sweep R`∩4i,j by a
horizontal line from bottom to top. If the placement
of the leader inserts any crossing with earlier drawn-
in leaders we purge the crossings by flipping assigned
labels without changing the total leader length.

However, we have to pay attention during the com-
pletion of a triangle 4i,j : each time we assign a point
that does not lie in a 1-level cell, we artificially shift
this point into the 1-level cell adjacent to the assigned
label, see Figure 7. This decreases the number of open
labels for incompleted subtriangles of 4i,j while the
number of open points in them stays the same, thus,
these triangles can become full. If this happens we
have to bring the completion of these recently filled
subtriangles forward to the usual completion of 4i,j .

For describing the full operation mode of com-
plete(4i,j) we have to distinguish two cases:

complete(4i,j): First, we traverse the incom-
pleted cells of 4i,j by a breadth-first search starting
from (i, j). This yields lists of the remaining open
points and labels in 4i,j . If the lists of points and
labels are empty we mark (i, j) as completed and are
done, otherwise we sort both lists according to in-
creasing y-coordinate.

Together with the BFS we purge redundant cells:
due to already completed subtriangles of 4i,j cells
can have become equivalent in the sense that they
now can reach the same set of open labels. We merge
these equivalent cells and assign the number and level
of the topmost-level cell to the newly emerged cell.
Obviously, this maintains the number of points and
labels in the triangle associated with the new cell, see
Figure 5. This step is indispensable for the mainte-
nance of a quadratic running time as the update of
the cell entries that we have to do when we make an
assignment later on would cause the runtime to get

3

super-quadratic if the number of cells was quadratic.

1
2

0
1

2
3

2

2
3

Figure 5: Merging redundant cells.

After finishing these initilizations we start with as-
signing points to the open labels. For this, we sweep
the labels from bottom to top. For an open label ` we
do the following: we traverse the list of open points
and assign the first point p that we find and that is
in R` to `. We remove ` and p from the lists of open
labels and points. If the leader from p to ` intersects
earlier drawn-in leaders we take the leader of the top-
most label among them and flip the assigned points
with `, we repeat this step until there are no crossings
anymore, see Figure 6.

` ``

p

Figure 6: Purging crossings after assigning p→ `.

After making an assignment, we update the cell
structure and data of4i,j . For cells that have become
redundant by the assigment this works analogously as
for the initilization. For the numbers ni′,j′ we have
shifted the assigned point from its original cell to the
cell c` adjacent to `. We trace the leader from ` back
to p and update the affected cells accordingly, see Fig-
ure 7. This update can cause subtriangles (i′, j′) to
become full. If this happens we have to bring their
completion forward. For this, we prepare the lists of
open labels and points in 4i′,j′ and start the sub-
routine subtriangle-complete(4i′,j′). Then, we mark
(i′, j′) including the according points and labels as
completed and proceed with the completion of 4i,j .

Finally, after the last open label in 4i,j is assigned
we mark 4i,j as completed.

subtriangle-complete(4i′,j′): As before, only
the lists of open points and labels are handed over
by the overall procedure.

Theorem 3 For labels on one side, a valid length-
minimum labeling using do-leaders can be computed
in O(n2) time requiring O(n2) space, if there is any.

4i′,j′6 7
`

`′
pq

Figure 7: 4i′,j′ becomes full by assigning p→ `. The
open point q in 4i′,j′ now has to be assigned to `′ in
order to find a valid labeling.

Proof. We assume that the necessary conditions
from Lemma 2 hold, otherwise we report infeasibil-
ity after the O(n2)-time preprocessing.

For the correctness of the described algorithm it is
obviously sufficient to show that the procedure com-
plete(4i,j), not called within the completion of a su-
pertriangle, computes a valid length-minimum label-
ing within 4i,j . We do this in the following stages:
after complete(4i,j) has finished it holds that ...

1. ... each of the labels Li,j is assigned to a distinct
point in 4i,j .

2. ... the computed labeling is valid. Any flip that
is performed to purge crossings leaves the total
leader length unchanged.

3. ... the computed labeling is length-minimum.

For space reasons we have to omit the details of
1.–3. and conclude the proof by showing that the
algorithm requires quadratic time and space. Storing
the cell structure dominates the space consumption
and is quadratic. A call to complete(4i,j), where4i,j

has κ open points, requires at most O(κ2) time: after
the lists of open points in 4i,j have been generated
and sorted in O(κ log κ) time, finding the point for an
open label and updating the list of remaining items is
in O(κ). For the crossing purges we have to deal with
at most O(κ2) crossings in total. Since each point
appears as an open point for exactly one full triangle
this settles the total running time to O(n2). �

References

[1] K. Ali, K. Hartmann, and T. Strothotte. Label layout for
interactive 3D illustrations. J. of WSCG, 13:1–8, 2005.

[2] M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff.
Boundary labeling: Models and efficient algorithms for rect-
angular maps. Computational Geometry: Theory & Appli-
cations, 36:215–236, 2007.

4

