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Abstract 

The computer--aided solution to algorithmic problems is becoming 
more and more important in various application domains. This is in 
particular true for computational geometry. For example, geomet- 
ric problems naturally arise in image processing, computer graph- 
ics, and all kinds of computer-aided design, just to mention a few. 
Even more, the general tendency towards the application of visual 
aids in virtually all fields of science, technology, and business raises 
many new, unexpected geometric challenges. 

A sound mathematical treatment of these problems and a sys- 
tematic computational study on the resulting algorithms are desir- 
able. However, in practice, there are often obstacles to such an 
attempt. In this paper, we will systematically discuss our expe- 
riences with a few obstacles that occurred in four of our projects 
and significantly influenced our reasoning on algorithms in each of 
them. 

1 Introduction 

In applied algorithmic projects one is often confronted with obsta- 
cles that are usually not addressed in the literature on algorithms. 
In fact, most of these obstacles might be rather technical in nature 
and do not have any impact on the design and analysis of the al- 
gorithms. However, in various projects we were also faced with 
obstacles that are inherent in the respective real-world problems 
and had to be taken into account both in the theoretical and the 
empiricial algorithmic research. 

This paper is about these obstacles and about four of our projects, 
in which obstacles of this kind occurred in a geometric setting. 
These projects stem from different application domains (traffic lo- 
gistics, computer-aided design and numerical analysis, sociology) 
and address geometric problems that do not seem to be related in 
any way. However, in retrospect, it has turned out that the obsta- 
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cles and the strategies to tackle them were quite similar. It seems 
to us that this coincidence is not by chance, so a general, compar- 
ative, retrospective analysis of finished and on-going projects may 
be worth the effort. 

More specifically, we will restrict the discussion to the follow- 
ing obstacles, which occurred in various ways: 

Formalization Obstacle: The algorithmic problem is too com- 
plex to understand all relevant details and their interrelations. 
Obvious reductions to intelligible formulations seem to miss 
crucial aspects. In the worst case, the outputs of an algo- 
rithm that is based on such a reduced problem definition may 
be useless or even misleading in view of the real problem. 
Moreover, the algorithmic. problem may involve subjective 
aspects. These aspects may be at the heart of the matter and 
thus must not be abstracted away. 

MaintenanceNolatility Obstacle: Good performance in terms 
of run time and space consumption is always desirable. How- 
ever, further criteria may require a compromise. For exam- 
ple, maintenance cost is immediately affected by the “smart- 
ness” of an algorithm: the more sophisticated an algorithm 
is, the more difficult it is to maintain (especially since main- 
tenance is usually done by software developers who are not 
experts in computational geometry). 
Maintenance may be infeasibly expensive if the “logic” of 
an algorithm is affected. Tbis may indeed happen in practice 
because the specification of the algorithmic problem may de- 
pend on context-specific, “volatile” aspects of the application 
domain. 
High maintenance cost of a piece of software may result in 
a very short life time [ 151, which means that, after all, the 
project was not really a success. 

Data Obstacle: Typically, real-world data are not worst- 
case data, nor do they necessarily come close to the average- 
case data produced by obvious artificial (e.g. random) in- 
stance generators. The intrinsic properties that determine the 
tractability of real-world data are not always sufficiently un- 
derstood to formalize them. Nonetheless, it may be neces- 
sary to make use of these properties in order to design an 
appropriate algorithm.3 

3 An extreme example was encountered in [ 181: an application of 
the h&ring-ser problem, which is NP-hxd. The real-world instances 
were large, however, a few simple reduction techniques made all of them 
amenable to a straightforward brute-force approach. The crucial intrinsic 
properties of the data, which made this strategy a success, are by no means 
understood up to now. 



Intent of the paper. We will discuss these obstacles in view of 
the four above-mentioned projects. Since these four projects are 
quite different by nature, we believe that a summary and analysis 
of common aspects may give interesting new insights (even beyond 
computational geometry). 

Roughly speaking, the general idea is to replace the formal def- 
inition of the algorithmic problem by some kind offramework for 
the problem definition, in which various degrees of freedom (the 
“little screws”) can be used to approximate the real problem inter- 
actively step-by-step. The idea is to make use of domain knowledge 
beyond the degree to which we can formalize it. 

In fact, if the outputs are well presented graphically, a domain 
expert may at least compare two or more outputs ‘by eye” and give 
a profound opinion which output is preferable.4 In turn, this in- 
formation may be used to adjust the “screws” a little bit better and 
submit the result to the human observer again. The hope is that 
an “expert judgement” based on such a presentation suffices to ad- 
just the screws appropriately in an iterative process. Our concrete 
experiences suggest that this hope is justified in practice. 

These “screws” and a meaningful graphical presentation do not 
necessarily come for free; they must be treated as first-class algo- 
rithmic design goals like correctness and efficiency. Fortunately, 
there is often some space for a reasonable compromise. In fact, the 
rigorous mathematical meaning of correctness must anyway be re- 
laxed in the presence of the Formalization Obstacle; on the other 
hand, a certain, suboptimal degree of eficiency is sufficient in many 
applications. 

Methodology of the analysis. In Section 2, we will illustrate these 
obstacles by reflecting on the four above-mentioned projects. Af- 
terwards, in Section 3, we will summarize the common conclusions 
in retrospect. 

Throughout the last few years, people from the computational 
geometry community and related theoretical communities have been 
collecting a large body of experiences with various applications. 
For example, two invited talks given in the WAE ‘97 conference 
demonstrated this [9, 111. 

These talks reflected on experiences gained from past work, and 
this is also our approach. In fact, in various fields of natural and 
engineering sciences, and even more in social sciences and liberal 
arts, reflection has a long-standing, established tradition as one of 
the main research methodologies. In case of interdisciplinary ef- 
forts, the traditions of all participating disciplines might be valuable 
for narrowing the gap between theory and practice. 

2 Projects 

In the four subsections of this section, we will discuss the individ- 
ual projects. Each of these subsections follows a common format: 
an Introduction, a discussion of the above-mentioned Obstacles, a 
description of an algorithmic Framework for the respective prob- 
lem definition, and a description of an attempt for visual Validation 
based on implicit human domain knowledge. 

2.1 Mesh Generation in CAD 

introduction. Mesh generation is an automatic step in the computer- 
aided design (CAD) of traffic vehicles, machines, engines, and the 
like. In our concrete case, we are faced with surfaces in the three- 
dimensional space, which are modeled as coarse meshes of non- 
plane polygons (so-called free-form sulfates). Some of them are 
surfaces of solid bodies; other surfaces approximate hollow bod- 
ies, which are regarded as two-dimensional objects in the three- 
dimensional space. See Figure 1 for an example of hollow bodies. 

The algorithmic problem is to refine such a coarse mesh into a 
conforming all-quadrilateral mesh (Figure 2). In that, conforming 
means that adjacent quadrilaterals share a whole side (or a single 
vertex). Figure 1 demonstrates that input meshes are usually not 
conforming. 

The purpose of this refinement is to prepare the mesh for a nu- 
merical analysis by means of the finite-element method. The ob- 
jective is a refinement on which the finite-element method is effi- 
cient and provides a solution of high quality.5 Roughly speaking, 
a mesh is suitable if it meets some specified density requirements, 
all quadrilaterals are approximately square-shaped, and the overall 
structure of the mesh looks very regular (like in Figure 2).6 

Technical reasons may induce further side constraints. For ex- 
ample, the original problem formulation given to us included a 
small set of templates, and each polygon of the input mesh has 
to be refined according to one of them. Figure 3 shows typical tem- 
plates to refine a quadrilateral into quadrilaterals only (except for 
part (e), which shows an “emergency template” with one isolated 
triangle). 

Previous work on this problem either uses the template ap- 
proach [16], advancing-front based heuristics like paving [3], or 
grid-based approaches [lo]. To our knowledge, none of the algo- 
rithmic work published so far was based on a rigorous mathemat- 
ical model that captures more than a few selected aspects of the 
problem. 

A general survey on mesh generation can be found in [8], more 
recent overviews of this active research field are available on the 
Web.7 A few related questions have been considered from a com- 
putational geometry viewpoint (see [l, 171 for a survey). 

5Efficiency of the refinement algorithm itself (though not negligible) is 
not a major concern, since the overall run time of a CAD cycle is usually 
totally dominated by the finite-element method. This is an example of a 
point we mentioned in the Inaoduction (“Intent of the paper”): the practical 
efficiency requirements leave enough space to incorporate other criteria as 
well. 

6 A domain expert once told us as a general rule of thumb: 
“a mesh is good if it looks beautiful.” 

*Of course, in an interdisciplinary project the algorithmician has to be- 7http://www.andrew.cmu.edu/user/sowen/mesh.html 
come a “quasi-expert” in the application domain anyway and may thus take and http://www.users.informatik.rtwh-aachen.de/ 
over the role of the domain expert to some extent. -roberts/meshgeneration.html 
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Obstacles. First we consider the Formalization Obstacle.
In principle, the goal that every quadrilateral in the refinement

should be roughly square-shaped can be expressed in well-defined
terms such as internal angles and so-called aspect ratios (the ra-
tio of the lengths of opposite sides). However, the exact impact of
these criteria on the solution quality is not at all understood: does it
suffice to avoid extremely bad angles and aspect ratios, or is the av-
erage quality over all quadrilaterals more important; does the loca-
tion of badly-shaped quadrilaterals make a difference; how impor-
tant is it to avoid clusters of badly-shaped quadrilaterals? Various
questions of this kind have not been answered satisfactorily so far.
Hence, though certainly important, statistics on criteria like these
are of a rather limited meaningfulness.

Even worse, it is not at all clear how to put the purely intu-
itive notion of mesh regularity in formal terms. One possibility
discussed in the literature is the degree of mesh nodes. In that, a
degree of four is regarded as optimal. However, analogous ques-
tions come up: does it suffice to avoid extremely high degrees; is
the average degree more important; what about locations and clus-
ters of bad mesh nodes? Even if these questions were answered
satisfactorily, it is obvious that the node degrees do not really cap-
ture the intuitive sense of regularity.

Two further ideas to capture the regularity of a mesh are some-
times mentioned: symmetry and contour lines. Clearly, as a quality
criterion, every kind of symmetry is of limited applicability. The
imagination behind the other idea, contour lines, is that the ideal di-
rections of mesh edges would be locally chosen parallel/orthogonal
to the expected direction of the vector field that models the crucial
physical phenomenon (e.g. local direction of power or heat flow).
The goal is then to find a refined mesh such that the edges of the
quadrilaterals roughly conform to these two directions. However,
again it is not clear how to balance penalties for different kinds of
deviations from such an ideal mesh.

The above-mentioned templates are an example of the Mainte-
nance/Volatility Obstacle. In fact, the set of templates did change
during the course of our project.

Finally, we consider the Data Obstacle. The nip-completeness

proofs [13] rely on certain classes of worst-case instances. How-
ever, these instances are highly pathological, so there is no hope
that an experimental study based on them may be meaningful for
real-world instances. On the other hand, we do not see any perspec-
tive to define a class of realistic random workpieces either (what is
a realistic “random pump”?).

Framework. The following discussion is based on [12], [13], and
[14]. Details are taken from [14].

The main idea is to abstract from the concrete geometric and
numerical details as far as possible and to reduce the problem to
a combinatorial core problem. In fact, our mesh-refinement prob-
lem can then be modeled as a capacitated minimum-cost bidirected-
flow problem [7] in a certain variant of the dual graph of the mesh.
Roughly speaking, the condition that the mesh be conforming can
be translated into a certain kind of flow conservation conditions,
which turns out to be a special case of the general bidirected flow
conditions.

The intuition behind this translation is this: every quadrilateral
in a conforming mesh (Figure 2) may be viewed as belonging to two
strings of quadrilaterals. For a quadrilateral Q, let ,571 and S2 be two
opposite sides and Sa and St the other two opposite sides. Then
one of the strings containing Q also contains the two quadrilaterals
incident to 5’1  and SZ, and the other string also contains the two
quadrilaterals incident to Sa and 5’~.

Each such string in a conforming refinement like in Figure 2
corresponds to a path in the dual graph of the input mesh in Fig-
ure 1, and these paths can be summed up to a “flow” in the dual
graph. The exact definition of this flow turns out to be a special
case of the bidirected flow definition.’

‘Under  some circumstances an almost-all qudrilateral mesh, which con-
tains a small number of triangles, is also acceptable or even necessary
(see Figure 3(e)). In [14], we show that this case is also covered by our
framework.
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(a) (b) (c) (d) W 

Figure 3: Typical examples of templates for the refinement of 
quadrilaterals into quadrilaterals. Part (e) shows an example of a 
template that deviates from the pure quadrilateral style and pro- 
duces an isolated triangle. 

In this flow model, each edge is assigned three values: an upper 
and lower capacity and a cost value. These three edge vectors allow 
a fine-grained, local control over various aspects. In [14], we de- 
scribe how angles, aspect ratios, contour lines, local densities, and 
various further criteria can be controlled exclusively in terms of 
these vectors. Each criterion may be modeled as a “soft” or “hard” 
constraint, namely exclusively through the cost values or through 
cost values and capacities. If all criteria are modelled as “soft,” an 
optimal solution is guaranteed in (low-degree) polynomial time.g 

Since all relevant degrees of freedom are expressed as numer- 
ical values, it is technically easy to adjust all “screws” within this 
framework by experiments on benchmark instances. In principle, 
each criterion may be expressed by a large range of possible value 
settings in these three vectors, which express different possibilities 
to penalize deviations from the ideal realization of this criterion. 
Of course, these possibilities are not equally suitable. However, 
since everything is expressed in terms of three edge vectors, a suit- 
able setting can be found by experiments. Moreover, the simulta- 
neous incorporation of different aspects may be simply expressed 
by a superimposition of the corresponding triples of vectors (e.g. 
a component-wise weighted mean value). Hence, a good balance 
between different aspects can also be found experimentally. 

Most “volatile” details (MuintenanceNolatility Obstacle) only 
affect the values of these three vectors. So an adaptation to a 
new problem variant might be manageable (even for non-experts 
in computational geometry). 

Validation. We performed all of our experiments on real-world 
data from the German automobile industry. 

In our experience, even the eye of a non-expert is quite good 
in estimating the quality of a mesh when presented graphically like 
in Figure 2 (provided it is a real-world mesh and not an artificial 
instance). In fact, the crucial characteristics of good meshes seem 
to be closely correlated with the human sense of aesthetics (recall 
Footnote 6). Due to this surprising insight, a domain expert can 
indeed train our algorithm on a given set of test data. 

gIf certain criteria (e.g. template restrictions) are incorporated as “hard,” 
the problem becomes NP-hard. 

2.2 CAD Data Repair 

Introduction. The input is a CAD model as described in Sec- 
tion 2.1 (see Figure 1). More specifically, such a model is only 
given as an unstructured set of polygons. The algorithmic problem 
here is to reconstruct the information which polygons are to be re- 
garded as neighbored (incident) and in which order the neighbored 
polygons appear around each polygon. 

This information is usually called the topology of the model, 
and the reconstruction of the topology is another crucial prepro- 
cessing step in the CAD process. Although the problem appears in 
the same application domain as the mesh-refinement problem from 
Section 2.1, it is obviously very different by nature. 

Figure 1 suggests that two neighbored mesh elements always 
meet geometrically. However, in general, two mesh elements that 
are intended to be neighbored are only located (more or less) close 
to each other in the three-dimensional space. Figures 4 and 5 demon- 
strate this fact. It is this subtlety which makes the problem non- 
trivial. 

A mesh of a hollow body may also contain intended holes, 
namely wherever the modeled hollow body has an opening. So we 
may reformulate the problem as follows: the problem is to distin- 
guish unintended gaps between neighbored elements from intended 
holes inherent in the workpiece. 

For example, unintended gaps may be due to errors in the in- 
teractive design of a mesh or caused by conversions between in- 
compatible data formats. The on-going trend towards simplistic 
standard exchange formats will make the task of reconstructing the 
topologies of faulty meshes even more urgent in the future. 

To our knowledge, all previous work is mainly based on the 
following straight approach: a distance function on pairs of poly- 
gons is defined (e.g. the minimal Euclidean distance), anda certain 
threshold value is chosen. Two polygons are regarded as neigh- 
bored if and only if their distance is smaller than this threshold 
value. However, the typical scenario in the literature is quite dif- 
ferent, namely that every mesh approximates the surface of a solid 
three-dimensional body. In this scenario, intended holes do not ap- 
pear, so the main problem of our scenario simply vanishes. 

Obstacles. The information to be reconstructed is the distinction 
between intended holes and unintended gaps. In other words, this 
is an example of an algorithmic problem with inherent subjectivity 
as described in the Formalization Obstacle in the Introduction. 

This evidence is supported by an empirical study [21]. The 
main outcome of this study is the conclusion that the above-men- 
tioned approach (a distance function and a distinguishing threshold 
value) is probably generally inadequate for real-world data like the 
ones available to us. 

More specifically, we evaluated a broad range of distance func- 
tions, which might sufficiently cover all natural definitions. It turned 
out that none of these distance functions admits a threshold value 
that distinguishes correct from incorrect neighborhoods with an ac- 
ceptable number of errors. In fact, the data is much “dirtier” than 
suggested by pictures like Figure 1. For instance, the interior parts 
of the models are much dirtier than the outer parts (as in Figure 5). 

We also looked for “patterns” in the statistics, which could give 
a hint to better formalizations. However, we failed. In our opinion, 
this gives strong evidence that the inherent subjectivity cannot be 
disregarded and does not allow a sufficiently simple mathematical 
model. 

For the same reasons as in Section 2.1, the Data Obstacle is a 
serious handicap. Even worse, here an artificiaLinstance generator 
would also have to generate “artificial intended holes” and “arti- 
ficial unintended gaps.” However, any artificial definition of holes 
and gaps would inevitably reflect our (limited) understanding rather 
than the holes and gaps in real instances. 
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Figure 4: A significant example of gaps that are obviously unin- 
tended. 

Framework. In the case of surfaces of solid bodies, we may rely on 
a strong assumption: the mesh is intended to form a single, closed, 
orientable manifold. However, for hollow bodies, all we know in 
formal terms is that the mesh should form a set of openly disjoint, 
two-dimensional manifolds in the three-dimensional space.” A 
hollow body may be internally structured by dividing walls, rims, 
and the like, so the composition from manifolds may be quite com- 
plex. 

Nonetheless, in [20], we have demonstrated that the intuitive 
insights into the nature of real-world instances are strong enough 
to develop certain logical inference rules, which may well detect 
and resolve impossible local configurations. A simple, illustrative 
example is transitivity of neighborhoods: if a polygon P is neigh- 
bored to polygons PI and P2 and if the boundary segment of P 
neighbored to PI significantly overlaps with the boundary segment 
of P neighbored to Pz , then PI and P2 also have to be regarded as 
neighbored. (Such a configuration occurs whenever different man- 
ifolds meet.) Formulated the other way round: if we know that PI 
and P2 are not neighbored, then P cannot be neighbored to both 
PI and PZ simultaneously via mutually overlapping segments. 

This is but one illustrative example of possible logical inference 
rules. See [20] for further details. 

In our approach, these logical inference rules are applied to a 
systematic overestimation of the real neighborhoods. Hence, an 
impossible local configuration is resolved by removing one of the 
involved neighborhood relations in the current, overestimating can- 
didate set. This approach gives two major degrees of freedom: how 
to compute the initial overestimation and which candidate to re- 
move in case an impossible configuration is detected. Moreover, 
some of the inference rules are parameterized by numerical values, 
which also serve as “little screws.” 

Roughly speaking, the initial overestimation is computed as fol- 
lows. We select a finite set of straight lines and project each poly- 
gon orthogonally onto each of these straight lines. For every pair 
of polygons we count the number of straight lines on which their 

loEven these weak conditions are not really guaranteed. However, for 
ease of exposition we will disregard this point in the following discussion. 

Figure 5: An excerpt from inside the pump shown in Figure 1. 
Only the additional background knowledge about the purpose of 
the workpiece proves that the black semicircular hole has to be re- 
garded as an unintended gap. 

projections overlap. If this number is too small, this pair of poly- 
gons is disregarded henceforth. An appropriate choice of straight 
lines and of a minimal number of overlaps can quite well be deter- 
mined experimentally, based on the quality of the output computed 
for benchmark instances. 

To our surprise, the above-mentioned distance functions have 
turned out to be quite suitable for the decision which candidate to 
remove in case of an impossible configuration: just remove the can- 
didate of highest distance. Hence, in our concrete application this 
particular degree of freedom need not be adjusted experimentally. 
Other applications may fall back to this opportunity if necessary. 

Validation. Our aim at an insightful visualization has significantly 
influenced the design of the algorithm. More specifically, the fol- 
lowing observation guided the design: if the output of the algorithm 
is still a systematic overestimation of the real result, then a coloring 
of all mesh edges according to the number of incident polygons un- 
ambiguously reveals all errors in the output to a human observer.” 
See Figure 6 for a simple example. 

In particular, we did not tune the individual degrees of freedom 
so as to minimize the number of errors; we rather tuned them to 
minimize the number of errors subject ro a side constraint, which 
reflects the above discussion: that the result is guaranteed to be an 
overestimation. 

Hence, this project nicely demonstrates a point we emphasized 
in the Introduction (see “Intent of the paper”): a meaningful visual- 
ization does not come for free and was hence treated as a first-class 
algorithmic design goal. 

l1 For example, if the output is not an overestimation, the following kind 
of error, which may often occur in the interior of a complex-structured hol- 
low body, cannot be detected by such a coloring: polygons Pt and 9 are 
intended to be neighbored and likewise polygons P3 and P4, however, the 
algorithm may instead deliver a neighborhood relation between Pt and k’s 
and between P2 and P4. Hence, the result is wrong, however, the visualiza- 
tion displays the same colors as if the correct neighborhoods were found. 
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Figure 6: An edge is colored black if it is incident to exactly one 
polygon. This simple visualization technique reveals that the ob- 
viously unintended gap was erroneously regarded as an intended 
hole. 

2.3 Inferring a Railroad Network from Time Tables 

Introduction. We have the problem of inferring the structure of a 
railroad network when only time tables of trains operating on that 
network are given. 

We are given train time tables of long distance, regional, and 
local trains of most European countries consisting of more than 
140 000 trains. Together, they stop at about 25 000 train stations 
all over Europe which are given with coordinates describing their 
geographical locations. Each time table contains a list of consec- 
utive stops for one particular train, indicating the times of arrival 
and departure for each stop, as illustrated by the following excerpt 
from a time table for a train through the Black Forest: 

Offenburg 
. . . 
Villingen 
Donaueschingen 
Imendingen 
Engen 
Singen 
Radolfzell 
Allensbach 
Konstanz 

08 
08 
08 
08 
08 
09 
09 
09 

09 
20 
33 
45 
55 
03 
10 
19 

07:02 

oa:m 
08:2x 
08:33 
08:45 
08:56 
09:05 
09:ll 

Figure 7 suggests that, on its way from Donaueschingen to Im- 
mendingen, the train passes through another train station without 
stopping there, while from Immendingen to Engen, there are no ad- 
ditional stations on the way that are merely being passed through. 
So the line between hnmendingen and Engen in Figure 7 represents 
a segment of the physical railroad network, while the line between 
Donaueschingen and Immendingen does not. The problem to be 
solved is now to decide, for each (unordered) pair of consecutive 
stops appearing in some time table, whether it represents a segment 
of the physical railroad network or not. To our knowledge, this 
problem has not been studied before. 

When looking at a visualization of time table data as depicted in 
Figure 7, the identification of the physical railroad network seems 
intuitively clear from the picture, because we can draw on our ex- 
perience what physical railroad networks normally look like. But 
it is difficult to translate our intuition into precisely defined prop- 
erties that yield an algorithm. Besides, we need to keep in mind 
that our intuition might fail: it is for example not clear that we 
would identify the line between Tuttlingen and Engen as belonging 
to the physical railroad network, because alternatively, the trains 

to Scbaftliausen 

Figure 7: In order to visualize train time table data we place each 
train station according to its geographical location. Stations a and b 
are connected by a line if and only if a and b are consecutive stops 
of at least one train. In this example, pairs of consecutive stops 
representing the physical railroad network are drawn in black, and 
the other pairs of consecutive stops are drawn in grey. 

with Engen and Tuttlingen as consecutive stops could pass through 
Immendingen. 

The relevance of the Darn Obstacle is empirically supported by 
the experiences gained from the treatment of another algorithmic 
problem on the same data (see Footnote 3). 

Framework. Consider the undirected time table graph G = (V, E) 
induced by a set of time tables: Each train station appearing in some 
time table is a vertex of the graph, and {a, b} is an edge of the graph 
if and only if there is at least one train that has a and b as (an un- 
ordered pair of) consecutive stops. By definition, a time table graph 
has no multiple edges. 

Since the train time tables are the only available information, 
we cannot but assume that every segment of the physical railroad 
network is also contained as an edge in the time table graph and 
hence part of the input. Given a set of time tables and the time 
table graph G = (V, E) it induces, the problem is then to find the 
physical railroad subgraph G’ = (V, E’) of G so that each edge 
in E’ represents a segment of the physical railroad network, and so 
that each edge in E \ E’ does not. 

As visualizations such as Figure 7 suggest, considering local 
properties such as Euclidean lengths of edges, angles between edges, 
or vertex degrees lead to the classification of edges as belonging or 
not belonging to the physical railroad subgraph. For a simple exam- 
ple, if a vertex has degree two and the incident edges are opposite 
of each other, then it is likely that these edges belong to the physical 
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Figure 8: The time table graph induced by trains in Germany. The 
black edges indicate a heuristically determined physical railroad 
subgraph. Close inspection suggests that some grey edges actu- 
ally should belong to the physical railroad subgraph but were not 
recognised by the heuristic. 

railroad subgraph. How wide an angle between two such edges has 
to be for the edges to be considered opposite is one of the “screws” 
of a classification algorithm. Figure 8 shows a physical railroad 
subgraph determined heuristically using such local properties. 

Our main approach, however, is based on the structure of the 
time table graph rather than on local properties. Observe that along 
a line of railroad tracks where the railroad network does not branch 
(in Figure 7 for example between Konstanz and Radolfzell), it is 
easy to identify the physical railroad subgraph edges: Since the 
sequence of train stations visited by trains is known from the time 
tables, the train stations along such a line of railroad tracks can 
be linearly ordered, and the edges connecting two vertices that are 
consecutive in this linear ordering are exactly the ones belonging to 
the physical railroad subgraph. Edges connecting two train stations 
where the physical railroad network branches (such as {Radolfzell, 
Rottweil} in Figure 7) remain unclassified with this approach. 

Even though it is not clear how the branching points may be 
reliably identified, we can guess a set V’ E V of branching points 
and partition the edge set of the time table graph according to V’. 

For each edge set of the partition we can determine whether or not 
it does contain all edges along one line of railroad tracks, and if it 
does, we can easily classify each of its edges. 

There are many degrees of freedom within this framework, for 
example in the way we guess a set of branching points for the struc- 
tural approach, or in the way we combine the structural approach 
and the approaches based on local properties to classify as many 
edges of a given time table graph as possible. 

Validation. One necessary condition that an edge classification 
algorithm is performing well is a high number of classified edges 
versus the number of edges of the graph, but we obviously have 
no way of checking the correctness of the classifications. We can 
only visualize the result of the algorithm (or, because of the size of 
the time table graph, parts of it) as in Figure 7 and inspect the pic- 
ture to see whether it corresponds to our intuition what the physical 
railroad network should look like. For small geographical areas we 
can even compare the result to a conventional map. So a human 
being can check for small parts of a result whether it is, or at least 
looks, correct. As a consequence, the classification algorithm may 
be modified and the result inspected again and so on until a seem- 
ingly good classification algorithm has been obtained. 

2.4 Social Network Visualization 

Introduction. Social network analysis is a research methodology 
from the social sciences, in which social structures are modeled by 
means of a graph [ 191. Relevant actors, i.e. persons, organizations 
or other social entities, are represented as nodes of the graph. Edges 
are formed by relations of affective, political, economic, interac- 
tional,’ organizational, or similiar type. Depending on the type of 
relation, the graph is directed or undirected. For example, the rela- 
tion “influences” would naturally induce directed edges, whereas a 
symmetric relation such as “collaborates with” would induce undi- 
rected edges. 

Social network theory is the attempt to account for the con- 
straining influence of other actors in decision making. An observed 
network is therefore analyzed in order to explain the behavior of a 
set of actors, or particular outcomes of a decision making process 
in which they were involved. An example of an important research 
question is, which actors are “central” to the structure (see Fig- 
ure 9), because these actors are assumed to be the most influential. 

Both the exploration of social structures and the communica- 
tion of results greatly benefit from appropriate visual presentation 
of the data [5]. For ease of exposition, we here restrict ourselves to 
the form most common for graphical presentation of networks, that 
is to represent each node by a point, and each edge by a connecting 
straight line segment. The layout problem then reduces to the po- 
sitioning of nodes. Experiments show that node positioning has a 
significant impact on the perception of structural properties [2]. 

Obstacles. First we consider the Formalization Obstacle. 
The variety of possible aspects that can make a particular net- 

work interesting to an analyst is immense, and often closely related 
to the specific context of the network. When exploring network 
data, the researcher cannot be assumed to precisely know in ad- 
vance what he or she is looking for. Therefore, a visualization sug- 
gesting unfounded properties may easily misguide the researcher’s 
intuition. The ultimate goal would be a drawing that reveals exactly 
the essential structural properties inherent in the network, without 
distortion. Hence, this problem is another example of aspects that 
are difficult to capture formally, and highly interrelated. 
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Figure 9: Visualization of a network of political actors (data taken 
from [6]). Each node represents a person, and two persons are con- 
nected by an edge if they have strong political ties. The radius onto 
which a node is positioned is determined by the sum of distances to 
all other nodes (so-called closeness centrality). The radians were 
determined through interaction potentials that penalize long edges, 
vertex-vertex and vertex-edge overlaps, and edge crossings. 

Several structural variables are employed in an analysis. Of 
course, a strong focus on one variable may cause a distortion in the 
display of others. When a user asks for a more accurate represen- 
tation of a particular aspect, he/she is often dissatisfied because the 
simultaneous understanding of other properties is not necessarily 
supported anymore. We have to be prepared that the inevitable 
compromise is subject to change (h4aintenanceNolatility Obsta- 
cle). 

Since it is important to have a sufficiently large set of test net- 
works, we are also faced with the Data Obstacle. In order to evalu- 
ate the quality of a visualization, it is important to have a good un- 
derstanding of the conclusions that an observer should draw. The 
data used in Figure 9 is one of the rare examples that have been 
analyzed over and over again. Quite conversely, experiments on ar- 
tificial data would reveal the properties that we deliberately put in 
the instance generator and could not be cross-checked. 

Framework. To protoype our layout models, we make use of a 
very general framework. We briefly outline its specialization to 
straight-line representations of undirected graphs G = (V, E). 
See [4] for a more elaborate description and a different special- 
ization. Here, each node w E V is assigned a position zu from a 
feasible set X,. In the case of Figure 9, X, is formed by the respec- 
tive circle. Any layout of the network is fully described by a vector 
from the Cartesian product of all X,, v E V. 

Criteria for good layout are formulated locally by interaction 
potentials defined on subsets of V. These potentials depend on the 
positions of nodes in their associated subset, but not on the position 
of any other node. They are additively combined into an objective 
function evaluating the total layout quality. For example, the crite- 
rion that an edge {u, u} E E should have a certain length can be 

expressed by measuring the deviation of the Euclidean distance be- 
tween 2% and xv from this target length. Desired edge lengths are 
hence local criteria defined on two-element subsets of V. Similarly, 
vertex-edge distances are formulated in terms of three-element sub- 
sets of v, and edge crossing can be counted on four-element sub- 
sets. Using parameters and weights, these criteria can be scaled. 

This framework generalizes a number of approaches known 
from the literature. The selection and parametrization of interac- 
tion potentials are the essential degrees of freedom (“screws”) in 
our model. Parameters of the potentials used in Figure 9 have been 
adjusted experimentally so as to yield a readable layout. 

Validation. In the first phase of our (on-going) project, we have 
chosen the important operational concept of centrality and a con- 
centric style of presentation as shown in Figure 9. This style proved 
to highlight the relative centrality of each actor better than other 
styles we tried out. A number of classical data sets from the lit- 
erature and new ones from our associates (researchers in political 
science) are used to experiment with different variants of centrality- 
oriented layout. Feedback is incorporated by matching the infor- 
mation conveyed by our layouts with known substance of these 
networks and results of quantitative analysis. Together with cog- 
nitive psychologists, more systematic experiments are planned to 
validate our preliminary results. 

3 Summary 

In the four projects discussed above, the obstacles to a precise 
mathematical problem formulation were quite versatile.. For ex- 
ample, we have seen that subjective aspects cannot always be dis- 
regarded. However, even if the problem is purely objective, it may 
be too complex to allow more than a very rough approximation. 
Anyway, an appropriate reduction to a set of formal rules does not 
seemto be in our reach. 

Nonetheless, it has turned out that a common perspective is 
quite promising: instead of a detailed problem definition, a “prob- 
lem framework” was defined, which spans a large range of possible 
tailored definitions but also allows a very “fine-granted” customiza- 
tion: due to the various numerical “screws,” it should be possible 
to come quite close to the real problem because these screws al- 
low the incorporation of aspects that resist the reduction to explicit, 
formalizable criteria. 

Since the real problem definition is not known in formal terms, 
we need something beyond that. This is the reason why each of 
these projects “discovered” the power of human interaction and its 
support by appropriate visual aids. This is not surprising, since vi- 
sual aids are generally a favorable means of presentation. It has 
turned out that intuitive, “unconscious” domain knowledge can in- 
deed be utilized on such a visual basis, namely to iteratively ap- 
proach a good adjustment of the “screws.” 

It seems that such a generalized framework is much simpler and 
thus easier to understand by non-experts than a tailored, sophisti- 
cated problem definition, because many difficult details do not ex- 
plicitly appear in the problem definition but implicitly, in the values 
chosen for the degrees of freedom, and thus do not require a deep 
understanding from the maintainer. 

In particular, the repetition of the iterative customization pro- 
cess should also be feasible for non-experts in computational ge- 
ometry, so chances are high that maintenance is successful even in 
case the logic of the algorithmic problem is affected by “volatile” 
details of the application domain (see the Maintenance/Vdatility 
Obstacle in the Introduction). 
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In such an iterative, empirical convergence process towards a 
probl.em definition, the need for real-world data (Data Obstacle) is 
even more vimlent than in other approaches: it seems that a do- 
main expert needs certain characteristics of the real-world data to 
fit the visual presentation of the output into his or her intuition of 
the problem. Artificial classes of instances do not necessarily cap- 
ture these characteristics, because an artificial instance generator 
may only reflect the characteristics understood by its creator. 

The topics discussed in this paper are certainly not restricted 
to computational geometry. However, the individual projects have 
demonstrated that these topics are relevant in various settings which 
are more or less close to computational geometry. Even more, the 
strong connection to visualization makes them geometric topics in 
the first place. 
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