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1 Motivation

Placing extra information – usually in the form of textual labels – next to features of

interest within an illustration constitutes an important task in the process of informa-

tion visualization. The interest in algorithms that automate this task has increased, due

to the large number of applications that stem from diverse areas such as cartography,

geographical information systems, etc.

Current research on map labeling has been devoted to labeling point-features of

a map, so that each label is placed next to the point that it describes (an extensive

bibliography about map labeling is maintained by Strijk and Wolff [17]). In this case,

the basic requirement is that the labels should be pairwise disjoint. However, this is

not always possible, e.g., in the case where the labels are too large or the feature set is

too dense. In practice, large labels are quite usual, e.g., in medical atlases and technical

drawings. In such drawings, a commonly used approach is to explain certain features

of the drawing with blocks of text, arranged on its boundary. Towards this direction,

Bekos et al. [6] focussed on boundary labeling and were the first to algorithmically study

this labeling approach. In boundary labeling, the labels are attached to the boundary

of a rectangle R enclosing all features and each feature is connected with its associated

label by using polygonal lines, called leaders.

Several authors have proposed algorithms to produce boundary labelings in dif-

ferent settings [5,6,8,12]. Recently, Benkert et al. [8] studied the boundary labeling

problem with do-leaders, i.e., polygonal lines consisting of two line segments, where

the first line segment is “diagonal” (d) to the side of R containing the label it leads to,

whereas the second one is orthogonal (o) to that side (see Figures 1 and 2c). do-leaders

maintain a uniform shape and result in simple and easy-to-read labelings that are used

in real applications (see for example Figure 1). However, in the work reported in [8],

Benkert et al. studied the case where the labels can be attached only to one side of

the rectangle R and they state that the production of a boundary labeling with such

leaders is not always feasible. Extending their work, we examine the case of four-sided

boundary labeling. We also introduce two new types of leaders and we show that by

combining them, the boundary labeling problem becomes always feasible. To the best

of our knowledge, this is also the first attempt, where different types of leaders are

combined to produce boundary labelings.

2 Problem Definition

The input of a boundary labeling problem consists of a set P = {s1, s2, . . . , sn} ⊆
R

2 of n points (referred to as sites), where si = (xi, yi), i = 1, 2, . . . n. The site

set P is enclosed in an axis-parallel rectangle R = [0, W ] × [0, H], which is called

enclosing rectangle. Each site si is associated with an axis-parallel, rectangular label li
of dimensions wi × hi.

The output of a boundary labeling problem is a placement of the labels at distinct

positions on the boundary of the enclosing rectangle R and a set of leaders connecting

each site with its associated label, so that i) the labels do not overlap each other and

ii) the leaders do not intersect or overlap each other. Such labelings are referred to as

valid boundary labelings (or simply as valid labelings).
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Fig. 1: Boundary labeling applied in a weather forecast map; courtesy of DW-TV.

Following the naming scheme of Bekos et al. [6], we focus on three different types

of leaders each of which consists of two line segments, where the first one is incident

to the site and directed towards the label and the second one incident to the label:

od-leaders: The first line segment of an od-leader is orthogonal (o) to the side of R

containing the label it leads to. Its second line segment is “diagonal” (d) to that

side (see Figure 2a).
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Fig. 2: Different types of leaders

pd-leaders: The first line segment of a pd-leader is parallel (p) to the side of R containing

the label it leads to. Its second line segment is “diagonal” (d) to that side (see Figure

2b).

do-leaders: The first line segment of a do-leader is “diagonal” (d) to the side of R

containing the label it leads to. Its second line segment is orthogonal (o) to that

side (see Figure 2c).

In general, the labels are of arbitrary size (non-uniform labels; see Figure 2b). We

separately consider the case where the labels are of the same width and height (uniform

labels; see Figures 2a and 2c). The point where each leader touches its associated label

(referred to as port) can be fixed, e.g., the middle point of the label’s side that faces

the enclosing rectangle R (see Figures 2a–2c) or sliding, i.e., any point of the label’s

side. Throughout this paper, we assume fixed ports and we explicitly state it when our

algorithms also work for sliding ports. The labels are usually attached to one, two or

all four sides of the enclosing rectangle and are either placed at predefined locations

(fixed labels) along the sides or can slide (sliding labels).

Keeping in mind that we want to obtain simple and easy-to-read labelings, we

consider the leader length minimization problem, i.e., the problem of determining a

valid labeling, such that the total leader length is minimized. This aesthetic criterion

is traditionally associated with several optimization problems in the graph drawing

literature [2, pp.15], [13, pp.20]. It is important from an aesthetic and cognitive sense,

since it is generally agreed that having short edges in the drawing is always preferred

from long edges that are difficult-to-follow for the eye especially in the case where they

also have bends.

2.1 Preliminaries

We denote the number of sites (and consequently the number of labels) by n. We also

denote by ci the leader of site si. We use the notation (p, q) for the unique do- or

pd-leader between points p and q (depending on the context od-leaders must be used

instead of do-leaders). In that sense ci = (si, li), where li is (the port of) the label of

si. A set of sites is considered to be in general positions if i) no two sites share the same

x- or y-coordinate, ii) no two sites lie on the same diagonal line and iii) the horizontal,

vertical and diagonal lines that pass through the ports of the labels do not coincide

with the sites. In order to avoid leader overlaps, we usually assume that the input site

set P is in general positions. We also assume that the sites, the leader bends and label

corners have integer coordinates. Consider a leader ci which originates from site si and

is connected to a label li on the right side AB of R (i.e., A and B are corners of R;

see Figure 3). The horizontal line which coincides with si divides the plane into two
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half-planes (see the dashed line l of Figure 3). We say that leader ci is oriented towards

corner A of the enclosing rectangle R if both corner A and the port of label li are in

the same half-plane, otherwise, we say that leader ci is oriented away from corner A.

R
A

B

l
si

ci

li

Fig. 3: ci is oriented towards corner A.

A

B

li

Ri,4Ri,3

Ri,2 Ri,1

Fig. 4: Connecting site si to label li.

Consider a site si that has to be connected to a label li on the right side AB of

the enclosing rectangle R. The lines that pass through the port of label li and form

45◦, 90◦ and 135◦ angles with the left side of label li, partition the enclosing rectangle

into four regions Ri,1, Ri,2, Ri,3, and Ri,4, as in Figure 4. If the site si lies within a

region incident to A or B (i.e., Ri,1 or Ri,4; refer to the light-gray colored regions of

Figure 4), then it can only be connected to label li using a pd-leader. Otherwise (i.e.,

site si lies within Ri,2 or Ri,3; refer to the dark-gray colored regions of Figure 4), it can

be connected to li using either a do- or an od-leader. Also, observe that connecting a

site to its label with a do-leader, requires the same leader length as with an od-leader.

So, depending on the location of site si, one has to use an appropriate leader to connect

it to its label li.

We can define a metric doct : R
2 × R

2 → R, such that given two points p and q

in R
2, doct(p, q) equals the length of the shortest pd-, od- or do-leader between them.

Let |pq|x and |pq|y be the absolute distances in the x- and y-coordinates, respectively

between p and q. Then, the length of the d-segment of the leader connecting p and

q is
√

2 min(|pq|x, |pq|y). Similarly, the length of the p- or o-segment of the leader is

max(|pq|x, |pq|y) − min(|pq|x, |pq|y). Let d1 : R
2 × R

2 → R and d∞ : R
2 × R

2 → R

be the Manhattan and maximum metrics, respectively1. Then, we can express doct as

a linear combination of those metrics (which guarantees that doct satisfies the metric

axioms) as follows:

doct(p, q) = (
√

2 − 1) min(|pq|x, |pq|y) + max(|pq|x, |pq|y)

= (
√

2 − 1)(d1(p, q) − d∞(p, q)) + d∞(p, q)

= (
√

2 − 1)d1(p, q) + (2 −
√

2)d∞(p, q)

3 Previous Work and Our Results

Several authors have proposed algorithms to produce valid boundary labelings in dif-

ferent settings.The first results that come with asymptotic bounds on the running time

were presented by Bekos et al. [6] (see also [7], who studied a variety of models based on

1 Recall that d1(x, y) = |x1−y1|+ |x2−y2| and d∞(x, y) = max |xi−yi|, where x = (x1, x2)
and y = (y1, y2).
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the type of the leaders (i.e., s-leaders2, po-leaders3 or opo-leaders4), the location (i.e.,

one, two-opposites or all four sides of R) and the size (i.e., uniform of non-uniform) of

the labels. In their work, they presented several algorithms for obtaining valid labelings

of either minimum total leader length or of minimum total number of leader bends. In

subsequent work, Bekos et al. studied variations of boundary labeling where the labels

are arranged in multiple stacks on one side of the enclosing rectangle [4], or where the

features to be labeled occupy polygonal regions [5].

Kao, Lin and Yen [12] presented another variation of boundary labeling (referred

to as many-to-one boundary labeling), where several sites are associated with the same

label. Unlike the conventional boundary labeling, the many-to-one boundary labeling

inevitably leads to crossings among leaders. Therefore, in their work, they presented

several algorithms, approximations and heuristics for minimizing the total number of

leader crossings.

Recently, Benkert et al. [8] studied the boundary labeling problem with po- and

do-leaders, in the case where uniform labels are allowed to be placed on one side of

the enclosing rectangle. They presented algorithms for minimizing the total leader

length and they further formulated the boundary labeling problem as an optimization

problem, where the objective function is a general quality function which evaluates

the niceness of the resulting labeling and then, using dynamic programming, presented

several results for obtaining optimal solutions.

Table 1 reviews the most related previous results on boundary labeling and it also

presents our contribution (shaded in gray problems).

This paper is structured as follows: In Section 4 we prove that the problem of

determining a valid boundary labeling of minimum total leader length with do- and

pd-leaders and non-uniform labels is NP -complete. In Sections 5 and 6, we present

polynomial time algorithms for obtaining either optimal (in terms of total leader length)

or simply valid boundary labelings with labels of uniform size. We conclude in Section 7

with open problems and future work.

4 Boundary Labeling with non-uniform labels

In this section, we consider the boundary labeling problem with labels of non-uniform

size. We are given a set P of n sites si, i = 1, 2, . . . n, each associated with an axis-

parallel, rectangular label li of height hi. The labels are allowed to be placed on the

right side of the enclosing rectangle R. We further assume fixed label ports, i.e., each

leader is connected to its corresponding label using the middle point of the label side

that faces the enclosing rectangle. We prove the following theorem:

Theorem 1 Given a set P of n sites, a label li of height hi for each site si and an

integer k ∈ Z
+, it is NP -complete to decide whether there exists a valid boundary

labeling with do- and pd-leaders of total leader length no more than k.

2 An s-leader consists of a single line segment from the site to the label.
3 A po-leader consists of two line segments: The first one is parallel (p) to the side of R

containing the label it leads to, whereas the second one is orthogonal (o) to that side.
4 An opo-leader consists of three line segments: The first one and the third ones are orthog-

onal (o) to the side of R containing the label it leads to, whereas the second one is parallel (p)
to that side.
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Ref.

s 1 n log n ref.[7] n2+ǫ n3 [7]
s 4 n log n ref.[7] n2+ǫ n3 [7]

po 1 n log n n log n [8]
po 2 n2 n2 [7]

opo 1 [n log n] ref.[7] n log n [n2] [7]
opo 2 n2 [nH2] n2 [7]
opo 4 n log n ref.[7] n2 log3 n n3 [7]

do 1 n2⋆ n2⋆ [8]
do-pd 1 n3 [NP-complete] n3 Thm. 1,2
od-pd 1 log n Thm.5 n3 n3 Thm. 2
do-pd 2 n3 n3 Thm. 3
od-pd 2 log n Thm.6 n3 n3 Thm. 3
od-pd 4 log n Thm.6 n3 n3 Thm. 4

Table 1: Running times of known algorithms and new algorithms (appear shaded) presented
in this paper (in big-Oh-Notation) for various versions of boundary labeling, where ǫ is an
arbitrarily small positive constant. The time bounds in square parentheses refers to the case of
non-uniform labels. The algorithms for the problems marked by ⋆ do not always result in valid
labelings. Entries in column “Valid solution” are filled only if we can compute a valid solution
asymptotically faster than a length-optimal solution.

Proof For simplicity, we relax the general position restriction i.e., we assume that the

sites can be placed in arbitrary positions. At the end of the proof, we briefly describe

how it can be adopted to also hold for sites in general position.

Membership of NP follows from the fact that a non-deterministic algorithm only

needs to guess a positioning of the labels on the boundary of R, a set of leaders

connecting each site with its associated label and check in polynomial time that i) the

labels do not overlap each other, ii) the leaders do not intersect each other and iii) the

sum of the lengths of all leaders is not more than k.

We will reduce the following single-machine scheduling problem (known as to-

tal discrepancy problem [11]) to our problem: We are given a set J of 2n + 2 jobs

J0, J1, J2, . . . , J2n, J2n+1, which are to be executed on one machine non-preemptively.

Each job Ji is associated with a known deterministic processing time pi ∈ N, such that

0 < p0 < p1 < . . . < p2n and p2n+1 = 2. We are also given a single preferred midtime

M ∈ Z
+, which corresponds to the time at which we would like the first half of each of

the first 2n + 1 jobs (i.e., J0, J1, . . . , J2n) to be completed. Without loss of generality,

we assume that M is large (e.g. M >
P2n

i=0 pi). Given a schedule σ, we denote the

starting (completion) time of job Ji in σ by Si(σ) (Ci(σ)) and we use Mi(σ) to denote

its midtime, i.e., Mi(σ) = Si(σ) + pi/2, or equivalently, Mi(σ) = Ci(σ) − pi/2. Under

a schedule σ:

– A job Ji, i = 0, 1, . . . , 2n is considered to be on-time if its midtime Mi(σ) is equal

to the preferred midtime M and in this case, it incurs no penalty. On the other

hand, if the midtime Mi(σ) of Ji commences prior to M (exceeds M), an earliness

(tardiness) penalty Ei(σ) = M − Mi(σ) (Ti(σ) = Mi(σ) − M) incurs.
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– The last job J2n+1 is considered to be on-time if its midtime M2n+1(σ) is equal

to M ′ = 2M + p2n+1/2 = 2(M + 1), and as in the previous case it incurs no

penalty. If its midtime M2n+1(σ) commences prior to M ′ (exceeds M ′), an earliness

(tardiness) penalty E2n+1(σ) = M ′ − M2n+1(σ) (T2n+1(σ) = M2n+1(σ) − M ′)

incurs.

The objective is to determine a schedule σ, so that the total earliness-tardiness

penalty
P2n+1

i=0 (Ei(σ)+Ti(σ)) =
P2n

i=0 |M −Mi(σ)|+ |M ′ −M2n+1(σ)| is minimized.

Garey, Tarjan and Wilfong [11] proved that an optimal schedule σopt of the first 2n+1

jobs J0, J1, . . . , J2n has the following properties:

1) σopt does not have any gaps between the jobs.

2) M0(σopt) = M , i.e., the job with scheduled midpoint M is the task with the shortest

processing time.

3) If A(σopt) = {Ji : Mi(σopt) < M} & B(σopt) = {Ji : Mi(σopt) > M}, then

|A(σopt)| = |B(σopt)| = n.

4) σopt = [An, An−1, . . . , A1, J0, B1, B2, . . . , Bn], where {Ai, Bi} = {J2i, J2i−1}, i.e.,

if Ai = J2i then Bi = J2i−1 otherwise Ai = J2i−1 and Bi = J2i.

5) The minimum total earliness-tardiness penalty is equal to

ETP =
n

X

i=1

(p2i + p2i−1)(n − i + 1/2) + np0

Garey, Tarjan and Wilfong [11] further proved that a schedule of all jobs (i.e.,

including the (2n + 2)-th job) with total earliness-tardiness penalty equal to ETP

should also have the above properties for the first 2n + 1 jobs and therefore that the

total cost due to the J2n+1 should be zero. However, the decision problem whether

such a schedule exists is NP -complete [11].

The reduction we propose can be achieved in linear time. Let IS be an instance of

the total discrepancy problem mentioned above. We proceed to construct an instance

IL of our problem as follows: For each job Ji, i = 0, 1, . . . , 2n, we introduce a site si

placed at point (2n + 1 − i, M), i.e., the sites that correspond to the first 2n + 1 jobs

are collinear, lie on the horizontal line y = M and the horizontal distance between

two consecutive sites is one unit. We also introduce a site s2n+1 associated with job

J2n+1 and placed at (2n + 1, M ′). For i = 0, 1, . . . , 2n + 1, the label li associated

with site si has height hi equal to the processing time pi of job Ji. The bottom left

corner of the enclosing rectangle R is (0, M − P2n+1
i=0 pi). The height H of R is equal

to
P2n+1

i=0 pi, which ensures that all labels can be placed at the right side of R without

gaps between them. We seek to exclude the case where a site can be connected to its

label through a pd-leader. So, the enclosing rectangle should be of appropriate width.

We set its width W to be equal to H/2 + 2n + 1 (see Figure 5). This ensures that the

gray-colored triangular area contains no sites and therefore, all sites can be connected

to their associated labels through do-leaders only.

In the following, we show that a schedule σ of IS with total earliness-tardiness

penalty ETP implies a valid labeling L of IL with total leader length (
√

2− 1)ETP +

(2n + 1)(W − n − 1) + H/2 and vice versa.

Suppose that we can derive a schedule σ of IS with total earliness-tardiness penalty

ETP . We place each label li, so that the y-coordinate of its bottom boundary edge is

equal to Si(σ), i.e., equal to the starting time of job Ji under schedule σ. We connect

each of these labels to their associated sites by using do-leaders, except labels l0 and
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(0, M −

∑2n+1

i=0
pi)

s0s1

s3s4

s5
y = M H =

∑2n+1
i=0 pi

H/22n + 1

s6

Fig. 5: For each job Jj , i = 0, 1, . . . , 2n we introduce a site si placed at (2n + 1 − i, M).

l2n+1 which can be connected using o-leaders, since the jobs J0 and J2n+1 do not

incur penalties in σ. Obviously, the length of the leader from the site s2n+1 is equal

to H/2 (see Figure 5). From the location of the labels, it follows that the length of

the d-segment of any other leader ci (i.e., i 6= 2n + 1) which connects site si to its

associated label, is equal to
√

2 |M − Mi(σ)|. The length of its o-segment is equal to

W − (2n +1− i)− |M −Mi(σ)|. This implies that the total length of leader ci is equal

to (
√

2 − 1) |M − Mi(σ)| + W − (2n + 1 − i). However the total earliness-tardiness

penalty of schedule σ is equal to ETP , which implies that
P2n

i=0 |M −Mi(σ)| = ETP .

Summing up the length of all leaders, the total leader length of labeling IL is equal to

(
√

2− 1)ETP +(2n+1)(W −n− 1)+H/2. Also, from the fourth property of schedule

σ, it follows that IL is valid.

Suppose now that there exists a valid labeling L of IL with total leader length

(
√

2 − 1)ETP + (2n + 1)(W − n − 1) + H/2. Due to the position of the sites, the

construction ensures that labeling L contains only do-leaders. We further observe that

in any valid labeling of IL, the leader c2n+1 from the site s2n+1 should be of an o-leader

(and thus its label should be placed topmost as in Figure 5), since otherwise at least

one leader would cross c2n+1. We proceed to derive a schedule σ for IS as follows: We

set the starting time Si(σ) of each job Ji to be equal to the y-coordinate of the bottom

boundary edge of label li. Since the leader c2n+1 is an o-leader, the total cost due to

the J2n+1 should be zero in σ. Let dsi
and osi

be the d- and o-segment of leader ci,

respectively. Then, simple geometric properties show that:

– length(dsi
) =

√
2 penalty(Ji), i = 0, 1, . . . , 2n.

– length(osi
) = W − (2n + 1) + i − penalty(Ji), i = 0, 1, . . . , 2n.

>From the above relations, it follows easily that the total earliness-tardiness penalty

of IS is ETP .

Finally, we note that for the case where the general position restriction holds, the

sites have to have distinct y-coordinates. To achieve this, we can modify the construc-

tion by distributing the sites in a strip of height 2n + 1 (each site now has a distinct

y-coordinate) and by appropriately scaling up the size of all labels. ⊓⊔

Note: The NP-completeness result of Theorem 1 also holds in the case of boundary

labelings with po leaders. The proof is almost identical. Instead of measuring the length

of each leader using the Euclidean metric, we have to use the Manhattan metric.
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5 Boundary Labeling with uniform labels

Theorem 1 implies that, unless P = NP , we cannot efficiently determine an optimal

solution of the boundary labeling problem with non-uniform labels. Therefore, we pro-

ceed to consider the case of uniform labels, which is a reasonable assumption, since in

real applications the labels usually contain single line texts (for example a place name

or an integer used as a legend).

Let P = {s1, s2, . . . sn} and L = {l1, l2, . . . ln} be the sets of sites and labels,

respectively. We assume that the sites are in general positions and the labels are placed

in fixed positions on the boundary of R. For simplicity, we assume fixed label ports. At

Section 5.4, we explain how to extend the presented algorithm to also support sliding

ports. Since the labels are of uniform size, each site si can be connected to any label

lj . We seek to connect each site si to a label lj , so that the total leader length is

minimized. Our approach is outlined in Algorithm 1.

Algorithm 1: Generic Min-Length Algorithm

input : A set P = {s1, . . . , sn} of n sites and a set L = {l1, . . . , ln} of n uniform labels
placed on the boundary of R.

output : A crossing free boundary labeling of minimum total leader length.
require : If the labels are placed on one or two opposite sides of R, then the leaders

should be i) either of do- and pd-leaders or ii) od- and pd-leaders. Otherwise,
the leaders should be od- and pd-leaders only.

Step A: Construct a complete weighted bipartite graph.
Construct a complete weighted bipartite graph G = (P ∪ L, E, w) between all sites
si ∈ P and all labels lj ∈ L. The weight w(eij) of an edge eij = (si, lj) ∈ E is the length
of the leader, say dij , which connects si with lj .

Step B: Compute a Minimum Cost Bipartite Matching.
Compute a minimum-cost perfect bipartite matching M of G, i.e., compute a matching
between sites and labels that minimizes the total distance of the matched pairs.

Step C: Obtain an optimal boundary labeling M .
foreach (edge eij = (si, lj) ∈ M) do

Connect site si to label lj s.t. length(ci) = w(eij)
Step D: Eliminate crossings.

Eliminate all crossings among pairs of leaders and obtain a valid boundary labeling M ′,
keeping the total leader length unchanged, i.e., equal to that of M .

Initially, we construct a complete weighted bipartite graph G = (P ∪ L, E, w)

between all sites si ∈ P and all labels lj ∈ L, where E = {(si, lj); si ∈ P, lj ∈ L} and

w : E → R is a cost function (see step A of Algorithm 1). Each edge eij = (si, lj) ∈ E

of G is assigned a weight w(eij) = dij , where dij is equal to the length of the leader

which connects site si with label lj . Recall that the type of the leader that will be used

to connect site si to label lj depends on their relative positions, as stated in Section 2.1.

Also, recall that if a site can be connected to its associated label with a do-leader, it can

also be connected using an od-leader. However, in both cases the total length required

is the same and consequently, the edge eij is assigned the same weight, regardless the

type of the leader that will be eventually used (i.e., do or od).

We proceed by computing a minimum-cost bipartite matching on G, i.e., we com-

pute a matching between the sites and the labels that minimizes the total distance of

the matched pairs (see step B of Algorithm 1). Since G is a complete bipartite graph,
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a perfect matching always exists. Then, we can obtain a labeling M of minimum total

leader length as follows: If an edge eij = (si, lj) ∈ E is selected in the matching, then

we connect site si with label lj using a leader of length w(eij) (see step C of Algo-

rithm 1). Labeling M is of optimal total leader length, but it might contain crossing

leaders. In the remainder of this section, we will prove that all crossings can be elim-

inated while keeping the total leader length unchanged, i.e., equal to that of M (see

step D of Algorithm 1), in the case where the leaders are i) either do- and pd-leaders or

ii) od- and pd-leaders and the labels are allowed to be attached to one or two opposite

sides of R. In the more general case, where the labels are allowed to be placed to all

four sides of the enclosing rectangle R, we will prove this result only for combinations

of od- and pd-leaders.

Note: Algorithm 1 can be also applied for the case where more uniform labels are

available at the boundary of the enclosing rectangle R than the number of sites. In

this case, the perfect bipartite matching of Step B will assign one distinct label to each

site, while the remaining labels will not be used.

5.1 One-sided boundary labeling

We first describe how to eliminate all crossings of labeling M (obtained from Step C

of Algorithm 1), assuming that the labels are allowed to be attached to one side of the

enclosing rectangle R, say the right side AB. Note that labeling M is of minimum total

leader length and the leaders used to produce it in Step C of Algorithm 1, are i) either

do- and pd-leaders or ii) od- and pd-leaders. Our aim is to eliminate all crossings and

obtain a valid labeling M ′ that keeps the total leader length unchanged.

Lemma 1 Let M be an optimal one-sided boundary labeling either with do- and pd-

leaders or with od- and pd-leaders (which may contain crossings) obtained from Step

C of Algorithm 1. Let ci and cj be a pair of intersecting leaders originating from sites

si and sj , respectively. Then the following hold:

i) Leaders ci and cj are oriented towards the same corner of R.

ii) Leaders ci and cj are of the same type.

iii) Leaders ci and cj can be rerouted so that they do not cross each other, the sum of

their leader length remains unchanged, their type remains unchanged and they are

oriented towards the same corner of R.

Proof We will only show the proof for the combination of do- and pd-leaders. Analogous

reasoning yields the result for od- and pd-leaders.

i) For the sake of contradiction let’s assume that ci and cj are directed into opposite

directions. Figure 6 shows an example of a pd- and a do-leader that intersect

in a point p. We can assume that ci is directed towards B and cj is directed

towards A; thus we know y(li) < y(lj) and y(sj) < y(si). The length of leader

ci is doct(si, li) = doct(si, p) + doct(p, li) and the length of cj is doct(sj , lj) =

doct(sj , p)+doct(p, lj). Now the triangle inequality yields doct(si, lj) ≤ doct(si, p)+

doct(p, lj) and doct(sj , li) ≤ doct(sj , p) + doct(p, li) for the dotted leaders in the

figure, that is, doct(si, lj) + doct(sj , li) ≤ doct(si, li) + doct(sj , lj). In fact, the

dotted leaders are shorter than ci and cj : the point p is not inside the bounding
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box (shaded in dark gray in Figure 6) of at least one of the dotted new leaders

since p ∈ Sij = (R× [max(y(sj), y(li)), min(y(si), y(lj))])∩R, the horizontal strip

that is occupied by both ci and cj , see Figure 6. Therefore, the pd- or do-path via

p that leaves the bounding box of site and label must be longer than the direct

pd- or do-path inside the bounding box. This is a contradiction to the optimality

of M .

A

B

lj

li

si

sj

p

R

ci

cjSij

Fig. 6: The total length of two oppositely directed leaders can be decreased. The bounding
boxes of the new (dotted) leaders are shaded in dark gray.

ii) To show property (ii) we can now assume that both leaders are directed towards

corner A. Further assume that ci is a do-leader and cj is a pd-leader as depicted

in Figure 7. Doing an exhaustive case analysis we show that in all cases the leader

length can be reduced, which contradicts the optimality of the initial solution. In

Figure 7a the crossing is between the d-segment of ci and the p-segment of cj . By

swapping the label assignment (dotted leaders), the total leader length decreases:

the new leader from si to lj has the same length as the combination of the segments

(si, p) and (p, lj), but the new leader from sj (or ŝj) to li is shorter than (sj , p)

(or (ŝj , p)) and (p, li) as it shortcuts the detour via p. Note that the difference

between sj and ŝj is that (sj , li) is a do-leader while (ŝj , li) remains a pd-leader.

This is because sj ∈ Ri,2 while ŝj ∈ Ri,1.

ŝj

si
sj

p

lj

li
ci

cj

ŝj

si sj

p

lj

li
ci

cj

ŝj

si sj

p

lj

lici

cj

(a) (b) (c) (d)

ŝj

si

sj

p

lj

li
ci

cj

Fig. 7: The total length of two leaders of different type that cross can be decreased.

Figures 7b and 7c show a crossing between the o-segment of ci and the p-segment

of cj . The difference is that in the first case we have si ∈ Rj,1 and in the second

case si ∈ Rj,2; this yields either a pd- or a do-leader for si after the swap (dotted

leaders). In both cases the length of the new leader from si to lj is smaller than
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the length of (si, p) and (p, lj), and the length of the new leader from sj (or ŝj)

to li is smaller than the length of (sj , p) (or (ŝj , p)) and (p, li).

In the last case (Figure 7d) the crossing is between the o-segment of ci and the

d-segment of cj . Similar to Figure 7a the length of the new leader from si to lj
equals the length of (si, p) and (p, lj), while the new leader from sj (or ŝj) to li is

shorter than (sj , p) (or (ŝj , p)) and (p, li). So for any pair of different type crossing

leaders we can strictly decrease their total length. This contradicts the optimality

of M and thus shows property (ii).

iii) We now proceed to show property (iii), i.e., how crossings between two leaders of

the same type and with the same orientation can be removed without increasing

the sum of their lengths and without changing their type and orientation. Fig-

ure 8a shows the case of two do-leaders and Figure 8b shows two pd-leaders that

intersect. In both cases the total length of the swapped dotted leaders equals the

sum of the lengths of ci and cj : we know that doct(si, li) = doct(si, p) + doct(p, li)

and doct(sj , lj) = doct(sj , p) + doct(p, lj) since p lies on ci and cj . By the tri-

angle inequality we have doct(si, lj) ≤ doct(si, p) + doct(p, lj) and doct(sj , li) ≤
doct(sj , p)+doct(p, li). Now doct(si, lj)+doct(sj , li) ≤ doct(si, li)+doct(sj , lj) and

since M is an optimal solution the two sums must indeed be equal. Furthermore,

neither orientation nor leader type has been changed. This concludes the proof of

the lemma.

(a) (b)

A

B

lj

li

si
sj

p

R

ci

cj

A

B

lj

li

si

sj

p

R

ci

cj

Fig. 8: Swapping two crossing leaders removes the crossing and keeps the total length.

⊓⊔

Lemma 2 Let M be an optimal one-sided boundary labeling either with do- and pd-

leaders or with od- and pd-leaders (which may contain crossings) obtained from Step

C of Algorithm 1. We can always determine a crossing-free labeling M ′ with total

leader length equal to that of M (step D of Algorithm 1). Moreover, labeling M ′ can

be obtained in O(n2) time.

Proof By Lemma 1, it follows that leaders involved in a crossing are of the same type

and oriented towards the same corner of R. We show how to eliminate all crossings of

labeling M by rerouting the crossing leaders. Our method performs four passes over

the sites. In the first and second pass, we eliminate all crossings among the pd-leaders,

which are oriented towards the top right and bottom right corner of R, respectively. In

the third and fourth pass, we eliminate all crossings among the remaining leaders (i.e.

either do-leaders or od-leaders), which are oriented towards the top right and bottom
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right corner of R, respectively. For simplicity, we will restrict our proof for combinations

of do- and pd-leaders.

As already mentioned, in the first pass we consider the sites whose leaders are pd-

leaders oriented towards the top right corner, say A, of the enclosing rectangle R. We

examine these sites from right to left. We are interested only in those sites, that have

crossing leaders. Let si be the first such site and let ci be the leader that connects it

to its corresponding label on the right side AB of R (see the left part of Figure 9).

By Lemma 1.(i) and Lemma 1.(ii), all leaders that intersect ci are also pd-leaders and

oriented towards corner A. Let sk be the site whose leader ck intersects ci and its label

is placed bottommost. From Lemma 1.(iii), it follows that we can reroute leaders ci and

ck so that the total leader length remains unchanged (see the right part of Figure 9).

Note that the rerouting possibly eliminates more than one crossing but, in general, it

may also introduce new crossings with other pd-leaders, oriented towards corner A5.

However, the crossings are now located to the left of the vertical line that coincides with

si (within the gray-colored region of Figure 9). Continuing in the same manner, the

line which forms the region containing the crossings in the right-to-left pass is pushed

to the left (i.e., the area of this region is reduced at each iteration, in the right-to-left

pass), which guarantees that all crossings –among pd-leaders that are oriented towards

corner A– are eventually eliminated. The second pass is handled in a similar fashion.

R
A

B

reroute(ci, ck)

sisk

ci

ck

R
A

B
sisk

c′i

c′k

Fig. 9: Rerouting the crossing pd-leaders ci and ck.

In the third pass, we seek to eliminate the crossings among the sites whose leaders

are do-leaders oriented towards the top right corner A of the enclosing rectangle R.

To achieve this, we follow a similar approach as in the first and second pass, i.e., we

examine the sites in turn and we perform appropriate reroutings. More precisely, in

this case, we examine the sites according to the order in which they are intersected by

the sweep line ℓ : y = x, which sweeps the plane in the north-west direction. Then,

assuming that si is the first site in the order, whose leader ci is involved in a crossing,

and ck is the leader whose label is placed bottommost and intersects ci, we proceed

to reroute ci and ck (see Figure 10). By Lemma 1.(iii), the total leader length remains

unchanged. Also, the crossings are located to the left of the line that coincides with the

d-segment of the new leader c′i (within the gray-colored region of Figure 10). Continuing

in the same manner, the line which forms the region containing the crossings is pushed

to the left, towards the top left corner of R, which guarantees that all crossings will

eventually be eliminated. The fourth pass is handled in a similar fashion.

When the four independent passes over the site set are completed, we have elimi-

nated all crossings, resulting in a labeling M ′ without any crossings and of total leader

5 From Lemma 1.(iii), it follows that the new leaders c′i and c′
k

are also pd-leaders, oriented
towards corner A. This implies that crossings with pd-leaders oriented away from corner A or
od/do-leaders cannot occur, since that would violate the optimality of the initial labeling M .
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R
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reroute(ci, ck)

si

sk
ci

ck

R
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B
si

sk
c′i

c′k

Fig. 10: Rerouting the crossing do-leaders ci and ck.

length equal to that of M , i.e., of minimum total leader length. To complete the proof

of the lemma, it remains to explain how to obtain the new labeling M ′ in O(n2) time,

given that labeling M is of minimum total leader length. At each pass, we sort the

site set appropriately. This can be done in O(n log n) time. At each iteration over the

sorted sets of sites, we are interested in finding a specific leader, which crosses the

leader of the site that we currently consider. In a straight-forward manner, this can

be computed in O(n) time6. This results in a total of O(n2) time for each pass and,

consequently, for the elimination of all crossings. ⊓⊔

Theorem 2 Given a site set P of n sites and a set L of n labels of uniform size

placed at fixed positions on one side of the enclosing rectangle R, we can compute a

valid boundary labeling of minimum total leader length with either do- and pd-leaders

or with od- and pd-leaders in O(n3) time.

Proof In Step A of Algorithm 1, we construct a complete weighted bipartite graph

G = (P ∪ L, E, w) between all sites si ∈ P and all labels lj ∈ L, where the weight

of an edge eij = (si, lj) ∈ E is the length of the leader connecting site si to label lj .

The computation of each edge weight requires constant time. Hence, the construction

of G can be done in O(n2) time. In Step B of Algorithm 1, we have to compute

a minimum cost bipartite matching on the graph G, which can be done efficiently

by means of the Hungarian method in O(n3) time [14]. Note that we cannot use

Vaidya’s algorithm [15] to reduce the time complexity of Step B, since the leaders

are neither straight lines (Euclidean metric) nor rectilinear (Manhattan metric). The

solution obtained from Step C of Algorithm 1 is optimal. However, it may contain

crossings. In Step D of Algorithm 1, the crossings are eliminated in O(n2) time. Thus,

the total time complexity of Algorithm 1 for the case of one-sided boundary labeling

with either do- and pd-leaders or with od- and pd-leaders is O(n3). ⊓⊔

5.2 Two-sided boundary labeling

In this subsection, we consider the case where the labels are allowed to be attached to

two opposite sides of the enclosing rectangle R. To cope with this case, we use Algo-

rithm 1 to obtain a boundary labeling M (not necessarily crossing-free) of minimum

total leader length. This can be done in O(n3) time. We observe that a possible cross-

ing, between two leaders ci and cj that lead to labels located at opposite sides of the

enclosing rectangle, cannot occur (as an example see Figure 11), since the rerouting of

6 We note that it is also not too difficult to achieve O(1) amortized time. We do not present
the details since the established time complexity will not play the dominant role in the asymp-
totic analysis of Algorithm 1.
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the leaders ci and cj results in a solution with smaller total leader length. This result

is summarized in the following lemma.

li

lj

si

sj

p

R

cicj

Tij

Fig. 11: Crossing leaders to opposite sides can be shortened.

Lemma 3 In an optimal two-sided boundary labeling, crossings between leaders that

connect labels located at opposite sides of the enclosing rectangle cannot occur.

Proof Let’s assume that in an optimal solution two leaders ci and cj intersect, where

ci is connecting si to its label li on the right side of R and cj is connecting sj to lj
on the left side of R. An example is given in Figure 11, where ci is a do-leader and

cj is a pd-leader. Since ci and cj intersect it follows directly that x(si) < x(sj). The

intersection point p must be located in the vertical strip Tij = ([x(si), x(sj)]×R)∩R.

Now rerouting the two leaders as (si, lj) and (sj , li) (dotted leaders in Figure 11) yields

doct(si, lj) ≤ doct(si, p) + doct(p, lj) and doct(sj , li) ≤ doct(sj , p) + doct(p, li) by the

triangle inequality. Therefore, doct(si, lj)+doct(sj , li) ≤ doct(si, li)+doct(sj , lj). More

precisely, this inequality is strict, since p is not inside the bounding box (shaded in

gray in Figure 11) of at least one of the dotted new leaders, i.e., the path from the site

to its label via p is longer than the corresponding pd- or do-leader. This contradicts

the optimality of the solution and thus there cannot be a crossing between two leaders

connecting to labels at opposite sides of R. ⊓⊔

>From Lemma 3, it follows that we can independently eliminate the crossings along

the two opposite sides of R. The following theorem summarizes our result.

Theorem 3 Given a site set P of n sites and a set L of n labels of uniform size, placed

at fixed positions, on two opposite sides of the enclosing rectangle R, we can compute

a valid boundary labeling of minimum total leader length with either do- and pd-leaders

or with od- and pd-leaders in O(n3) total time.

5.3 Four-sided boundary labeling with od- and pd-leaders

In this subsection, we consider the general case of determining a valid boundary labeling

of minimum total leader length with od- and pd-leaders, where the labels are allowed to

be attached to all four sides of the enclosing rectangle R. Note that it is essential to use

od-leaders and not do-leaders in combination with the pd-leaders. The reason is that

there are instances that do not have a valid labeling consisting of do- and pd-leaders

only, see Figure 12. In this example the black leaders ci and cj intersect. But swapping
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Fig. 12: An instance that does not have a valid labeling with do- and pd-leaders.

the label assignment the two dotted leaders still intersect. The only way to avoid the

crossing is to use ci and the gray od-leader c′j instead of the do-leader cj .

Again, we use Algorithm 1 to obtain a labeling M of minimum total leader length.

By Lemma 1, it follows that crossing leaders that connect labels placed at the same

side of R are of the same type and oriented towards the same corner of R. Crossings

between leaders that connect labels placed at opposite sides of R cannot occur, because

of Lemma 3. For the case where two crossing leaders connect to labels placed at two

adjacent sides of R, we can show the following lemma.

Lemma 4 Let M be an optimal four-sided boundary labeling with od- and pd-leaders

(which may contain crossings) obtained from Step C of Algorithm 1. Let ci and cj be

a pair of intersecting leaders originating from sites si and sj , respectively. Let li and

lj be their associated labels, which lie on two adjacent sides of the enclosing rectangle

R. Then the following hold:

i) Leaders ci and cj are oriented towards the same corner of R.

ii) Leaders ci and cj are of different type (i.e., the diagonal segments of the leaders

of ci and cj are parallel to each other, whereas the non-diagonal ones are either

horizontal or vertical).

iii) Leaders ci and cj can be rerouted so that they do not cross each other, the sum

of their leader length remains unchanged, their type remains unchanged and they

remain oriented towards the same corner of R.

Proof We can assume that the two adjacent sides of R are the top and the right side,

so that their incident corner is A. Let ci be the leader to the top and cj the leader to

the right.

i) To prove property (i), we lead any combination of different orientations to a con-

tradiction. If ci is oriented towards A and cj towards B we can reuse Lemma 1

by a simple reduction to the one-sided case. The idea is to extend the diagonal

segment of the leader ci towards A and the side AB of R until they intersect. This

is illustrated in Figure 13. The intersection point of the extension lines can be seen

as the port of a virtual label l′i, which is now on the right side of R. Also note that,

due to the fact that we only use od- and pd-leaders, any leader connecting virtual

label l′i will use the diagonal and thus will also pass through the original port for

li. For this situation Lemma 1.(i) gives a contradiction to the optimality of M .

The same reduction holds for the symmetric case where ci is oriented towards D

and cj towards A.
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Fig. 13: An od-leader to the top side of R is extended into a pd-leader to the right side of R.
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Fig. 14: Two intersecting pd-leaders (a) and a pair of intersecting pd- and od-leaders (b)
directed towards D and B can be shortened by swapping the label assignment.

The final case we need to consider is that ci is oriented towards D and cj towards

B. Figure 14 shows the case where ci is a pd-leader. It can either be intersected

by a pd-leader directed towards corner B (Figure 14a shows all three possibilities)

or by an od-leader oriented towards B (Figure 14b shows all three possibilities).

In both examples the fact that their intersection point lies outside the bounding

boxes of the swapped (dotted) leaders yields a contradiction to the optimality of

M using the triangle inequality. The case where ci is an od-leader is analogous.

ii) To prove property (ii), we can assume that both ci and cj are oriented towards

corner A. First consider the case that both leaders are pd-leaders. In that case,

however, it is impossible that there is an intersection between ci and cj since ci is

inside Ri,4, cj is inside Rj,1, but Ri,4 ∩Rj,1 = ∅, see Figure 15. The other case, in

which both ci and cj are od-leaders, is again reduced to the one-sided situation by

extending ci, the od-leader to the top, such that it becomes a pd-leader to the right

(recall Figure 13). Now Lemma 1.(ii) yields that if there is a crossing between two

leaders going to the same side of R then both leaders must be of the same type –

but this is not the case for the od-leader cj and the pd-extension of ci to the right.

This completes the proof of property (ii).

iii) Property (iii) can be shown in a similar way as in Lemma 1.(iii).

⊓⊔

Lemma 5 Let M be an optimal four-sided boundary labeling with od- and pd-leaders

(which may contain crossings) obtained from Step C of Algorithm 1. We can determine

a valid labeling M ′ with total leader length equal to that of M (step D of Algorithm 1).

Moreover, labeling M ′ can be obtained in O(n2) time.
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Fig. 15: Two pd-leaders towards corner A cannot intersect.
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Fig. 16: Sets SA, SB , SC and SD.

SA,1

R

Fig. 17: Extending a pd-leader

Proof We partition the set of sites into four disjoint sets SA, SB , SC and SD, each of

those contains the sites whose leaders are oriented towards the top-right, bottom-right,

bottom-left and top-left corner of R, respectively (see Figure 16). From Lemma 1 (one-

sided case), Lemma 3 (case of two opposite sides) and Lemma 4 (case of two adjacent

sides), it follows that in an optimal labeling, possible crossings can only occur between

leaders that are oriented towards the same corner of R. Therefore, we can independently

eliminate the crossings at each of the sets SA, SB , SC and SD.

We describe in detail how to eliminate the crossings of set SA. The remaining cases

are treated similarly. Recall that the set SA contains sites whose leaders are oriented

towards the top-right corner of R. We proceed to partition the set SA into two disjoint

subsets SA,1 and SA,2, as follows: Set SA,1 (SA,2) contains the sites of SA whose

leaders are either i) od-leaders leading to a label placed at the right (top) side of R or

ii) pd-leaders leading to a label placed at the top (right) side of R. In Figure 16, the

sites that constitute set SA,1 are the ones whose leaders are drawn as solid lines.

>From Lemma 4.(ii), it follows that the leaders, which are involved in a crossing and

lead to labels placed at two adjacent sides of R, should be of different type. Furthermore,

crossing leaders that connect labels placed at the same side of R, should be of the same

type. This directly follows from Lemma 1.(ii). Hence, we can independently eliminate

the crossings at each of the sets SA,1 and SA,2.

Consider the set SA,1 and let s ∈ SA,1 be a site whose leader c is a pd-leader.

Leader c leads to a label placed at the top side of R. By extending appropriately its

d-segment, leader c can be viewed as an od-leader leading to a label at the right side

of R (see Figure 17). This implies that we can make use of the algorithm described in

the proof of Lemma 2 to eliminate all crossings of SA,1. Since all leaders of the sites

of SA,1 have the same orientation (this holds because SA,1 ⊆ SA), their d-segments

are parallel to each other, which guarantees that all crossings will occur within the

enclosing rectangle. This ensures that our approach will find a valid labeling. Similarly,
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we eliminate the crossings of the set SA,2. The total time needed in order to eliminate

the crossings at each of the sets SA, SB , SC and SD, is O(n2). Therefore, labeling M ′

can be obtained in O(n2) time. ⊓⊔

Theorem 4 Given a site set P of n sites and a set L of n labels of uniform size placed

at fixed positions on all four sides of the enclosing rectangle R, we can compute a valid

boundary labeling of minimum total leader length with od- and pd-leaders in O(n3)

time.

5.4 Sliding ports

In order to simplify the description of Algorithm 1 and make the study of the accom-

panying case analysis simpler, we have so far restricted our presentation to the case

where the label ports are fixed, i.e., the label port is the middle point of the label’s

side that faces R. In the remainder of this section we briefly discuss how Algorithm 1

can be easily modified so that Theorems 2, 3 and 4 also hold for the case of sliding

label ports.

In Step A of Algorithm 1, we compute a complete weighted bipartite graph G

between all sites si ∈ P and all labels lj ∈ L, where the weight w(eij) of an edge

eij = (si, lj) of G is equal to the length of the leader from si to lj . Obviously, in the

case of fixed label ports the leader from si to lj is unique and thus the computation of

the edge weight w(eij) is easy.

In the case of sliding label ports, we have to compute the lengths of the shortest

leaders from each site si to each label lj , in order to obtain an optimal (in terms of

total leader length) labeling. Towards this direction, consider a pair (si, lj) consisting

of a site si and a label lj and assume, without loss of generality, that label lj is on

the right side AB of R. As illustrated in Figure 18, label lj defines a horizontal strip

Hj , two diagonal strips Dj,1 and Dj,2 and four regions Rj,1, . . . , Rj,4. Then, it is easy

to characterize the shortest leader from site si to label lj , depending on the relative

positions of si and lj . More precisely:

– If si ∈ Hj , then the shortest leader from si to lj should be an o-leader.

– If si ∈ Rj,2 ∪ Dj,1 (si ∈ Rj,3 ∪ Dj,2), then the shortest leader from si to lj leads

to the bottom (top) corner of lj and is an od-leader or, alternatively, a do-leader of

identical length.

– If si ∈ Rj,1 (si ∈ Rj,4), then the shortest leader from si to lj leads to the bottom

(top) corner of lj and a pd-leader.

From the above, we observe that, except for the case of o leaders, the label corners

are used as ports. Thus, based on condition (iii) of the general position condition, we

assume that no site lies on the horizontal, vertical and diagonal lines that pass through

the corners of the labels and, consequently, there do not exist any d-leaders.

Having computed the shortest leader from each site si to each label lj , we can

proceed to Steps B and C of Algorithm 1. We now observe that in a solution of

minimum total leader length, the o-leaders are not involved in any crossing. This can

be easily established by showing that a crossing that involves at least one o-leader can

be resolved so that the two leaders i) they do not cross and ii) their total leader length

is reduced. This contradicts the optimality of the labeling.
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Fig. 18: Computing the shortest leader from site si to label lj .

Now, since in the crossing elimination procedure (Step D of Algorithm 1) we do

not have any d-leaders or any o-leaders involved in a crossing, no new combination of

crossing leader types exists. Thus, the proofs for lemmata 1, 3 and 4 which cover all

existing combinations still hold.

6 An algorithm for obtaining valid boundary labelings

In this section, we consider the problem of determining a valid boundary labeling with

od- and pd-leaders, i.e., we relax the optimality constraint on the resulting labeling.

Our aim is to obtain a more efficient algorithm in terms of time complexity. Again, we

assume that the sites are in general positions, the labels are of uniform size, placed at

fixed positions on all four sides of the enclosing rectangle R. We further assume fixed

label ports, i.e., each leader is connected to its corresponding label using the middle

point of the label side that faces the enclosing rectangle.

Our basic idea is simple: We first develop an algorithm which determines a valid

labeling in the case where the labels are allowed to be attached to one side of the

enclosing rectangle R (see Section 6.1). Then, using standard plane sweep algorithms

[9], we partition R into four disjoint regions such that the algorithm for the one-sided

case can be applied to each region separately (see Section 6.2).

6.1 An Algorithm for valid one-sided boundary labelings

Let P = {s1, s2, . . . sn} and L = {l1, l2, . . . ln} be the sets of sites and labels, respec-

tively. W.l.o.g. we assume that the labels are placed at the right side AB of R. Our

approach is outlined in Algorithm 2.

We process the labels from bottom to top. Let li be the i-th label in the order. Let

also P ′ be the set of sites that have not been routed yet. The lines that pass through

the port of li and form 45o, 90o and 135o angles with the left side of li partition R

into four regions Ri,1, Ri,2, Ri,3 and Ri,4 (see Figure 19). We distinguish the following

cases:

Case (a): P ′ ∩ Ri,1 6= ∅.
Refer to Figure 19a. In the case where there exist sites within the region Ri,1 that

haven’t been routed yet (case A of Algorithm 2), we determine the rightmost one

and we proceed to connect it to label li, through a pd-leader.
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Algorithm 2: One-Sided Valid Algorithm

input : A set P = {s1, . . . , sn} of n sites and a set L = {l1, . . . , ln} of n uniform labels
placed on the right side of R, s.t. the y-coordinate of the top left corner of li is
smaller than the y-coordinate of the top left corner of lj , ∀i < j.

output : A crossing free one-sided boundary labeling with od- and pd-leaders.
P ′ ← P ;
for i = 1 to n do

if (P ′ ∩ Ri,1 6= ∅) then s ← rightmost site of P ′ ∩ Ri,1 ; /* Case A */

else
if (P ′ ∩ (Ri,2 ∪ Ri,3) 6= ∅) then /* Case B */

s ← bottommost site of P ′ ∩ (Ri,2 ∪ Ri,3)
else s ← leftmost site of P ′ ∩ Ri,4 ; /* Case C */

connect label li to site s;
P ′ = P ′ − {s}

Case (b): P ′ ∩ Ri,1 = ∅ and P ′ ∩ (Ri,2 ∪ Ri,3) 6= ∅.
Refer to Figure 19b. In the case where region Ri,1 contains no sites, whereas region

Ri,2∪Ri,3 does (case B of Algorithm 2), we choose to connect the bottommost site

of Ri,2 ∪ Ri,3 to label li, through an od-leader.

Case (c): P ′ ∩ (Ri,1 ∪ Ri,2 ∪ Ri,3) = ∅ and P ′ ∩ Ri,4 6= ∅.
Refer to Figure 19c. In the case where neither Ri,1 nor Ri,2 ∪ Ri,3 contain sites

(i.e. all sites that haven’t been routed yet lie within the region Ri,4; case C of

Algorithm 2), we choose to connect the leftmost site of Ri,4 to label li, using a

pd-leader.

Ri,2 ∪Ri,3 Ri,4

Ri,1

li

(a) Case A.

Ri,2 ∪Ri,3

Ri,1

li

Ri,4

(b) Case B.

Ri,2 ∪Ri,3

Ri,1

li

Ri,4

(c) Case C.

Fig. 19: Illustration of the different cases of Algorithm 2.

Observe that the connection of the i-th label to its site does not affect connections

with labels later in the order. Therefore, we can inductively show that this approach

yields a crossing free boundary labeling. Moreover, in a straight-forward approach,

Algorithm 2 needs O(n2) time. However, the time-complexity can be further improved

to O(n log n) by means of more sophisticated data structures. We state the following

theorem.

Theorem 5 Given a site set P of n sites and a set L of n labels of uniform size

placed at fixed positions on one side of the enclosing rectangle R, we can compute a

valid boundary labeling with od- and pd-leaders in O(n log n) time.

Proof To achieve the desired O(n log n) time complexity, we use the following data

structures:
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1. Three sets of sites R1, R2,3 and R4 to store the sites in regions Ri,1, Ri,2 ∪ Ri,3

and Ri,4 during the ith iteration of Algorithm 2, respectively. The sites in R1 (resp.

R4) are kept sorted in decreasing (resp. increasing) order of their x-coordinates.

The sites in R2,3 are kept sorted in increasing order of their y-coordinates. These

three site sets can be easily implemented by using a balanced binary search tree

scheme such as AVL trees [1] or Red-Black trees [3]. Insertions, deletions, as well as

search, successor and predecessor queries are supported in O(n log n) time where n

is the number of elements in the data structure.

2. Recall that P is the set of sites and let Lp be the set of label ports. We use two

sorted lists of points, denoted by D1 and D2, to store the points in P ∪ Lp in

increasing order according to the direction of the diagonal thought the lower-right

and lower-left corners of the enclosing rectangle, respectively, as we move away of

them in the interior of the rectangle. Both lists can be created in O(n log n) time

and support O(1) successor and predecessor queries. Moreover, we also keep cross

pointers between the two copies of each point in the two lists are kept we can move

between lists.

Set R1 is initialized by inserting into it all sites of D1 that are before the port of

label l1. Similarly, R4 is initialized by inserting into it all sites of D2 that are after

the port of label l1 and are not in R1. The remaining sites are inserted in R2,3. The

initialization of all three site sets is completed in O(n log n) time.

During the ith iteration of Algorithm 2, the site s to be labeled is easily identified

(and removed) from either R1, R2,3 or R4, as well as from both lists D1 and D2.

Following the deletion of site s, we have to update set R1, R2,3 and R4 to prepare them

for the labeling of the next site. The update of these sets can done in as following:

– Insert into R1 all sites of list D1 located between the ports of labels li and li+1.

Before the selection of the ith site to be labeled, each of these sites was located in

either R2,3 or R4. Thus, it has to be first deleted from the corresponding set before

it is inserted to R1.

– Insert into R1 or R2,3 (whichever appropriate for each site) the sites of list D2

located between the ports of labels li and li+1. Before the selection of the ith site

to be labeled, each of these sites was located in R4. Thus, it has to be first deleted

from it before it is inserted to the appropriate set.

During the course of the algorithm, each site moves sets at most two times, that is

from R4 to R2,3 to R1. Thus, the total cost for the maintenance of these three ordered

set is O(n log n). ⊓⊔

6.2 Partitioning R into four disjoint regions

We partition R into four disjoint regions R1, R2, R3, and R4 so that Algorithm 2

can be applied to each region separately. We have two requirements for a region Ri

(i = 1, 2, 3, 4) in the partition of R: (a) Ri must be adjacent to a specific side bi of R

and (b) each site in Ri can be connected to any label attached on bi either through a

do- or a pd-leader.

Let A, B, C, and D be the corners of R from the top right corner in clockwise order,

and let b1 = AB, b2 = BC , b3 = CD and b4 = DA be the sides of R (see Figure 20).
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We also assume that we know how many labels have to be attached to each side of R.

Let n1, n2, n3, and n4 be the number of labels attached to the sides b1, b2, b3, and b4,

respectively and ℓA, ℓB, ℓC, and ℓD the diagonal lines that pass through the corners

A, B, C, and D, respectively and intersect R.

C B

AD

b3

b2

b1

b4

ℓC ℓB

ℓA
ℓD

R4

R3

R2

R1

r

R4

R3

R2

R1
r

R4

R3

R2

R1

r

b3 b3b1 b1

AD b4 AD b4

ℓC ℓCC Bb2 C Bb2ℓB

(a) The first two formed regions are adjacent.
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ℓA
ℓD
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R3

R2

R1

r

R4

R1
r

R4

R1b1 b1

AD b4 AD b4

b3 R3 b3 R3

R2 R2

C Bb2 C Bb2ℓBℓC

(b) The first two formed regions are not adjacent.

Fig. 20: Partitioning R into four disjoint regions R1, R2, R3, and R4.

Let r be a rectangle which initially coincides with R. We start simultaneously

sliding its vertices along the lines ℓA, ℓB, ℓC, and ℓD towards the center of R (see the

left drawing of Figure 20a). During this procedure, the sides of R, the lines ℓA, ℓB, ℓC,

and ℓD and the sides of r form four disjoint regions R1, R2, R3, and R4 adjacent to the

sides b1, b2, b3, and b4, respectively. We stop sliding the vertices of r when Ri contains

ni sites of P , for some i ∈ {1, 2, 3, 4} (R4 in Figure 20a). This is the first region of

the partition. We remove the diagonal lines that are adjacent to this region and we

continue by simultaneously sliding the vertices of r along the remaining diagonal lines

(see the middle drawings of Figure 20). Again we stop when one of the formed regions

contains the same number of sites as the number of labels attached to the side of R

to which it is adjacent (R1 in Figure 20a or R2 in Figure 20b). This constitutes the

second region of the partition. Similarly, we proceed by removing the diagonal lines

that are adjacent to the newly formed region and we distinguish two cases. If the two

regions that are already formed are adjacent (refer to Figure 20a), we similarly proceed

by sliding the vertex of r along the remaining diagonal line. In the case where these

regions are not adjacent, a horizontal or vertical sliding is required (see Figure 20b).

Using standard plane sweep algorithms [9], the partition of R can be constructed in

O(n log n) time.

Theorem 6 Given a site set P of n sites, a set L of n labels of uniform size placed at

fixed positions on all four sides of the enclosing rectangle R and numbers n1, n2, n3, and

n4 that express how many labels are to be attached to each side of R, we can compute

a valid boundary labeling with od- and pd-leaders in O(n log n) time.
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Proof We first partition the enclosing rectangle R into 4 regions so that each region is

adjacent to exactly one side of R and it contains as many sites as the number of labels

at its adjacent side. Then, we apply Algorithm 2 separately to each region. Both of

these steps can be completed in O(n log n) time.

To complete the proof, it remains to prove that the above procedure produces

a valid labeling. To establish this, it is enough to show that each of the 4 one-sided

boundary labeling problems can be solved entirely within its respective region. Without

loss of generality, consider region R1 and its respective side AB (see Figure 20; the

proof is identical for all regions) and observe that no od- or pd-leader that exits R1 can

connect a site in R1 with a label next to side AB. Since Algorithm 2 produces a valid

labeling and uses only od- and pd-leaders, it follows that these leaders must be routed

entirely within R1, as required. ⊓⊔

7 Conclusions

In this paper, we studied boundary labelings with octilinear leaders. Several new prob-

lems arise from our research and remain to be addressed. Among them, we distinguish

the following:

– The complexity of our algorithm for the leader length minimization problem is

determined in Step B of Algorithm 1, where we have to compute a minimum-cost

bipartite matching. Unfortunately, we cannot use Vaidya’s algorithm [15] to reduce

it, since the leaders are neither straight lines (Euclidean metric) nor rectilinear

(Manhattan metric). It is worth trying to derive a more efficient matching algorithm

for this metric.

– In the case where the labels are of arbitrary size, we proved that the total leader

length minimization problem is NP -complete. So, it is worth trying to derive an

approximation algorithm for this problem.

– Clearly, the focus of our work was on the leader length minimization problem. The

evaluation of different optimization criteria (e.g, the one of minimizing the total

number of leader bends) would also be of particular interest.

– By combining different types of octilinear leaders, we proved that the boundary

labeling problem becomes always feasible. However, it is intuitive that the quality of

the labelings can be improved by allowing combinations of octilinear and rectilinear

(po or opo) leaders. The evaluation of such mixed model would be of interest.

– Another line of research would be to try to derive labelings that combine the

traditional labeling models (fixed [10] or sliding [16]) with our model, i.e., labelings

that use leaders to connect labels with their corresponding sites only in the case

where it is not possible to place the labels using the traditional models.
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