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Abstract. A major factor affecting the readability of an illustration that
contains textual labels is the degree to which the labels obscure graphi-
cal features of the illustration as a result of spatial overlaps. Boundary
labeling addresses this problem by attaching the labels to the boundary
of a rectangle that contains all features. Then, each feature should be
connected to its associated label through a polygonal line, called leader,
such that no two leaders intersect.

In this paper we study the boundary labeling problem along a new line
of research, according to which different pairs of type leaders (i.e. do and
pd, od and pd) are combined to produce boundary labelings. Thus, we are
able to overcome the problem that there might be no feasible solution
when labels are placed on different sides and only one type of leaders
is allowed. Our main contribution is a new algorithm for solving the
total leader length minimization problem (i.e., the problem of finding
a crossing free boundary labeling, such that the total leader length is
minimized) assuming labels of uniform size. We also present an NP-
completeness result for the case where the labels are of arbitrary size.

1 Introduction

Placing extra information—usually in the form of textual labels—next to fea-
tures of interest within an illustration, constitutes an important task in the
process of information visualization. The interest in algorithms that automate
this task has increased, due to the large number of applications that stem from
diverse areas such as cartography, geographical information systems etc.
Current research on map labeling has been devoted to labeling point-features,
so that each label is placed next to the point that it describes (an extensive
bibliography about map labeling is maintained by Strijk and Wolff [14]). In
this case, the basic requirement is that the labels should be pairwise disjoint.
However, this is not always possible, e.g., in the case where the labels are too
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large or the feature set is too dense. In practice, large labels are quite usual,
e.g., in technical drawings, where it is common to explain certain features of the
drawing with blocks of text, arranged on its boundary. As a response to this
problem, Bekos et al. [4] proposed boundary labeling. In boundary labeling, the
labels are attached to the boundary of a rectangle R enclosing all features and
each feature is connected with its label by using polygonal lines, called leaders.
Several authors have proposed algorithms to produce boundary labelings in
different settings [2-6, 11]. Recently, Benkert et al. [5, 6] studied the boundary
labeling problem along a new line of research, according to which the leaders are
of type do, i.e., polygonal lines consisting of two line segments, where the first
one is “diagonal” to the side of R containing the label it leads to, whereas the
second one is orthogonal to that side (see Figure 1c). Leaders of type do maintain
a uniform shape and result in simple and easy-to-read labelings. However, in the
work reported in [5] and [6], Benkert et al. study the case where the labels
can be attached only to one side of R and they state that the production of a
boundary labeling with such leaders is not always feasible. Extending their work,
we examine the case of four-sided boundary labeling. We also introduce two new
types of leaders and we show that by combining them, the boundary labeling
problem is always feasible. To the best of our knowledge, this is the first attempt,
where different types of leaders are combined to produce boundary labelings.

2 Problem Definition

The input of a boundary labeling problem consists of a set P of n points (referred
to as sites) s; = (x4,¥i), ¢ = 1,2,...n. The site set P is enclosed in an axis-
parallel rectangle R = [0, W] x [0, H], which is called enclosing rectangle. Each
site s; is associated with an axis-parallel, w; x h; rectangular label [;.

The output of a boundary labeling problem is a placement of the labels at
distinct positions on the boundary of R and a set of leaders connecting each site
with its associated label, so that i) the labels do not overlap with each other
and ii) the leaders do not intersect or overlap with each other. Such labelings
are referred to as legal boundary labelings (or simply as legal labelings).

Following the naming scheme of Bekos et al. [4], we focus on three different
types of leaders, each of which consists of two line segments:

Type-od leaders: The first line segment of a leader of type od is orthogonal
(0) to the side of R containing the label it leads to. Its second line segment
is “diagonal” (d) to that side (see Figure la).

Type-pd leaders: The first line segment of a leader of type pd is parallel (p)
to the side of R containing the label it leads to. Its second line segment is
“diagonal” (d) to that side (see Figure 1b).

Type-do leaders: The first line segment of a leader of type do is “diagonal” (d)
to the side of R containing the label it leads to. Its second line segment is
orthogonal (0) to that side (see Figure 1c).
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(a) od-leaders (b) pd-leaders (c) do-leaders

Fig. 1: Different types of leaders

In general, the labels are of arbitrary size (non-uniform labels; see Figure 1b).
We separately consider the case, where the labels are of the same width and
height (uniform labels; see Figures la and 1c). We further assume that the point
where each leader touches its associated label (referred to as port) is fixed, e.g.,
the middle point of the label’s side that faces the enclosing rectangle R (see
Figures la, 1b and 1c). Also, the labels are usually attached to one, two or all
four sides of the enclosing rectangle and are either placed at predefined locations
(fized labels) along the sides or can slide (sliding labels).

Keeping in mind that we want to obtain simple and easy-to-read labelings, we
consider the leader length minimization problem, i.e., the problem of determining
a legal labeling, such that the total leader length is minimized.

2.1 Preliminaries

We denote the number of sites (and consequently the number of labels) by n.
We also denote by ¢; the leader of site s;. A set of sites is considered to be in
general position if 1) no three sites are collinear, ii) no two sites share the same
a- or y-coordinate, iii) no two sites lie on the same diagonal line and iv) the
horizontal, vertical and diagonal lines that pass through the ports of the labels
do not coincide with the sites. In order to avoid leader overlaps, we usually
assume that the input site set P is in general position. We also assume that the
sites, the leader bends and the label corners have integer coordinates. Consider
a leader ¢; which originates from site s; and is connected to a label [; on the
right side AB of R. The horizontal line which coincides with s; divides the plane
into two half-planes (see the dashed line I of Figure 2). We say that leader ¢;
is oriented towards corner A if both A and the port of label /; are on the same
half-plane, otherwise, we say that leader ¢; is oriented away from corner A.

Consider a site s; that has to be connected to a label I[; on the right side
AB of R. The lines that pass through the port of label I; and form 45°, 90° and
135° angles with the left side of label [;, partition R into four regions R; 1, R; 2,
R; 3 and R; 4, as in Figure 3. If the site s; lies within a region incident to A or
B (i.e., R;1 or R; 4; refer to the light-gray colored regions of Figure 3), then it
can only be connected to label I; using a leader of type pd. Otherwise (i.e., site
s; lies within R; 5 or R; 3; refer to the dark-gray colored regions of Figure 3), it
can be connected to [; using either a leader of type do or od. Also, observe that
connecting a site to its label with a leader of type do, requires the same leader
length as with a leader of type od. So, depending on the location of site s;, one
has to use an appropriate leader to connect it to its label I;.
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Fig. 2: ¢; is oriented towards corner A. Fig. 3: Connecting site s; to label ;.

This paper is structured as follows: In Section 3 we prove that the problem
of determining a legal boundary labeling of minimum total leader length with
leaders of type do and pd and non-uniform labels is N P-complete. In Sections 4
and 5, we present polynomial time algorithms for obtaining either optimal (in
terms of total leader length) or simply legal boundary labelings with labels of
uniform size. We conclude in Section 6 with open problems and future work.

3 Boundary Labeling with Non-Uniform Labels

In this section, we consider the boundary labeling problem with labels of non-
uniform size. We are given a set P of n sites s;,4 = 1,2,...n, each associated
with axis-parallel, rectangular label I; of height h;. The labels are allowed to be
placed on the right side of the enclosing rectangle R. We further assume fixed
label ports, i.e., each leader is connected to its corresponding label using the
middle point of the label side that faces the enclosing rectangle. For the case
where the sites can be placed in arbitrary position, i.e., the general position
restriction is relaxed, we can prove:

Theorem 1. Given a set P of n sites, a label I; of height h; for each site s;
and an integer k € Z%, it is N P-complete to decide whether there exists a legal
boundary labeling of total leader length no more than k assuming type do and pd
leaders.

Proof. Membership in NP follows from the fact that a nondeterministic algo-
rithm needs only guess a positioning of the labels on the boundary of R, a set
of leaders connecting each site with its associated label and check in polynomial
time that i) the labels do not overlap with each other, ii) the leaders do not
intersect with each other and iii) the sum of the lengths of all leaders is no more
than k.

We will reduce the following single machine scheduling problem (known as
total discrepancy problem [8]) to our problem: We are given a set J of 2n+1 jobs
Jo, J1,J2, ..., Jan, which are to be executed on one machine nonpreemptively
and a single preferred midtime M € Z%, which corresponds to the time at
which we would like the first half of each job to be completed. Each job J; is
also associated with a known deterministic processing time p;. Without loss of
generality, we assume that M is large (e.g. M > Z?go p;) and the jobs are
ordered so that p; < p;, Vi < j. Given a schedule o, we denote the starting



(completion) time of job J; in o by S;(0) (Ci(0)) and we use M;(o) to denote
its midtime, i.e., M;(0) = S;i(o) + pi/2, or equivalently, M;(c) = C;(0) — pi/2.
Under a schedule o, a job J; is considered to be on-time if its midtime M; (o) is
equal to the preferred midtime M and in this case, it incurs no penalty. On the
other hand, if the midtime M;(o) of J; commences prior to M (exceeds M), an
earliness (tardiness) penalty E;(0) = M — M;(o) (T;(c) = M;(c) — M) incurs.
The objective is to determine a schedule o, so that the total earliness-tardiness
penalty 2" (Ei(0) +Ti(0)) = 32" |M — M;(0)| is minimized*. Let aop be an
optimal schedule of the total discrepancy problem. Then, the following hold [§]:

1) oopt does not have any gaps between the jobs.

2) Mo(oopt) = M.

3) If A(oopt) = {Ji : My(S) < M} and B(oop) = {J; + M;(S) > M}, then
|A(opt)| = [B(0opt)| = n.

4) Oopt = [AnaAn—ly ey Al, J(), Bl, BQ, [N ,Bn}, where {Al, Bl} = {Jgi, JQ»L'_l},
i.e., if Az = JQZ' then Bl = J27;,1 otherwise Az = J2i71 and Bz = J27;.

5) The minimum total earliness-tardiness penalty is equal to

ETP = Z(p% +p2i—1)(n—i+1/2) + npo.
i=1

The reduction we propose, can be achieved in linear time. Let Ig be an
instance of the total discrepancy problem mentioned above. We proceed to con-
struct an instance I, of our problem as follows: For each job J;, we introduce a
site s; placed at point (2n+ 1 —14, M), i.e., the sites are collinear, lie on the hor-
izontal line y = M and the horizontal distance between two consecutive sites is
one unit. The label [; associated with site s; has height h; equal to the processing
time p; of job J;. The bottom left corner of the enclosing rectangle R is (0, 0).
The height H of R is equal to 2M, which ensures that all labels can be placed
at the right side of R, since M > Z?ZO pi. We seek to exclude the case where a
site can be connected to its label through a leader of type pd. So, the enclosing
rectangle should be of appropriate width. We set its width W to be equal to
%H +2n+1 (see Figure 4). This ensures that the gray-colored triangular area
contains no sites and therefore, all sites can be connected to their associated
labels through leaders of type do only.

Then, we can show that we can derive a schedule o of Ig with total earliness-
tardiness penalty ET P if and only if we can determine a legal labeling L of Iy,
with total leader length at most (v2 — 1)ETP + (2n + 1)(W —n —1). O

Note. The NP-completeness result of Theorem 1 also holds in the case of bound-
ary labelings with po leaders. The proof is almost identical. Instead of measuring
the length of each leader using the Euclidean metric, we have to use the Man-
hattan metric.

4 Surveys on the most important aspects of scheduling research are given at [1,9].
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Fig. 4: For each job J;, we introduce a site s; placed at (2n + 1 — i, M).

4 Boundary Labeling with Uniform Labels

Theorem 1 implies that, unless P = N P, we cannot efficiently determine an opti-
mal solution of the boundary labeling problem with non-uniform labels. There-
fore, we proceed to consider the case of uniform labels, which is a reasonable
assumption, since in real applications the labels usually contain single line texts
(for example a place name or an integer used as a legend).

Let P = {s1,82,...8,} and L = {ly,ls,...1,} be the sets of sites and labels,
respectively. We assume that the sites are in general position and the labels are
placed in fixed positions on the boundary of R. Since the labels are of uniform
size, each site s; can be connected to any label [;. We seek to connect each site
s; to a label 5, so that the total leader length is minimized.

Initially, we construct a complete weighted bipartite graph G = (PUL, E, w)
between all sites s; € P and all labels [; € L, where E = {(s;,1;);s; € P,l; € L}
and w : E — R is a cost function (see step A of Algorithm 1). Each edge
eij = (8i,1;) € E of G is assigned a weight w(e;;) = d;;, where d;; is equal to the
length of the leader which connects site s; with label ;. Recall that the type of
the leader that will be used to connect site s; to label [; depends on their relative
positions, as stated in Section 2.1. Also, recall that if a site can be connected
to its associated label with a leader of type do, it can also be connected using
an od leader. However, in both cases the total length required is the same and,
consequently, the edge e;; is assigned the same weight, regardless the type of the
leader that will eventually used (i.e., do or od). Observe that G is regular.

We proceed by computing a minimum-cost bipartite matching on G, i.e., a
matching between the sites and the labels that minimizes the total weight of the
matched pairs (see step B of Algorithm 1). Since G is regular and bipartite, by
Hall’s theorem a perfect matching exists [10]. Then, we obtain a labeling M of
minimum total leader length as follows: If an edge e;; = (s;,1;) € E is selected
in the matching, then we connect site s; with label [; using a leader of length
w(e;;) (see step C of Algorithm 1). However, labeling M may contain crossings,
which have to be eliminated while keeping the total leader length unchanged,
i.e., equal to that of M (see step D of Algorithm 1). The crossing elimination
procedure is described in the remainder of this section and depends on i) the
location of the labels and ii) the type of the leaders that are used to produce M.



Algorithm 1: Generic Algorithm

input : Aset P={s1,...,s,} of nsites and aset L = {l1,...,l,} of n uniform
labels placed on the boundary of R.
output : A crossing free boundary labeling of minimum total leader length.

Step A: Construct a complete weighted bipartite graph.
Construct a complete weighted bipartite graph G = (P U L, E, w) between all
sites s; € P and all labels I; € L. The weight w(e;;) of an edge e;; = (si,1;) € E
is the length of the leader, say d;;, which connects s; with ;.
Step B: Compute a Minimum Cost Bipartite Matching.
Compute a minimum-cost perfect bipartite matching M of G, i.e., compute a
matching between sites and labels that minimizes the total distance of the
matched pairs.
Step C: Obtain an optimal boundary labeling M.
foreach (edge e;; = (s;,1;) € E) do
if e;; = (si,1;) € M then connect site s; to label I; s.t. length(c;) = w(es;)
Step D: FEliminate crossings.
Eliminate all crossings among pairs of leaders and obtain a legal boundary
labeling M’, keeping the total leader length unchanged, i.e., equal to that of M.

4.1 One-sided boundary labeling

We first describe how to eliminate all crossings of labeling M (obtained in Step
C of Algorithm 1), assuming that the labels are allowed to be attached to one
side of the enclosing rectangle R, say the right side AB. Note that labeling M
is of minimum total leader length and the leaders, we have used to produce it in
Step C of Algorithm 1, are i) either of type do and pd or ii) of type od and pd.
Our aim is to eliminate all crossings and obtain a legal labeling M’ that keeps
the total leader length unchanged.

Lemma 1. Let M be an optimal one-sided boundary labeling either with type
do and pd leaders or with type od and pd leaders (which may contain crossings)
obtained in Step C of Algorithm 1. Let ¢; and c; be a pair of intersecting leaders
originating from sites s; and s;, respectively. Then the following hold:

i) Leaders c¢; and c; are of the same type.
it) Leaders c¢; and c; are oriented towards the same corner, say A, of the en-
closing rectangle R.
iii) Leaders ¢; and c; can be rerouted so that they do not cross each other, the
sum of their leader length remains unchanged, their type remains unchanged
and they remain oriented towards corner A of R.

Sketch of proof. Due to space constraints, the detailed proof is omitted. It is
based on an exhaustive case analysis on a) the types of the two leaders, b) the
orientation of the two leaders (towards the same or different corners) and c) the



different regions the two sites may reside. It also makes use of several geometric
properties (e.g. triangle inequality, properties of isosceles triangles, orthogonal
triangles etc.). Another important property that is heavily used is the assumption
that the sites are in general position. a

Lemma 2. Let M be an optimal one-sided boundary labeling either with type
do and pd leaders or with type od and pd leaders (which may contain crossings)
obtained in Step C of Algorithm 1. We can always determine a crossing-free
labeling M’ with total leader length equal to that of M (step D of Algorithm 1).
Moreover, labeling M’ can be obtained in O(n?) time.

Proof. By Lemma 1, it follows that leaders involved in a crossing are of the same
type and oriented towards the same corner of R. We show how to eliminate all
crossings of labeling M by rerouting the crossing leaders. Our method performs
four passes over the sites. In the first and second pass, we eliminate all crossings
among the leaders of type pd, which are oriented towards the top right and
bottom right corner of R, respectively. In the third and fourth pass, we eliminate
all crossings among the remaining leaders (i.e. either leaders of type do or of
type od), which are oriented towards the top right and bottom right corner of R,
respectively. Due to space constraints, we describe in detail the first pass only.

We examine these sites from right to left. We are interested only in those sites,
that have crossing leaders. Let s; be the first such site and let ¢; be the leader
that connects it to its corresponding label on the right side AB of R (see the left
part of Figure 5). By Lemma 1.(i) and Lemma 1.(ii), all leaders that intersect ¢;
are also, of type pd, oriented towards corner A. Let s be the site whose leader ¢y,
intersects ¢; and its label is placed bottommost. From Lemma 1.(iii), it follows
that we can reroute leaders ¢; and c; so that the total leader length remains
unchanged (see the right part of Figure 5). Note that the rerouting possibly
eliminates more than one crossing but, in general, it may also introduce new
crossings with other type pd leaders, oriented towards corner A. However, the
crossings are now, located to the left of the vertical line that coincides with s;
(within the gray-colored region of Figure 5). Continuing in the same manner,
the line which forms the region containing the crossings in the right-to-left pass
is pushed to the left (i.e., the area of this region is reduced at each iteration, in
the right-to-left pass), which guarantees that all crossings among leaders of type
pd that are oriented towards corner A, are eventually eliminated.

When the four independent passes over the site set are completed, we have
eliminated all crossings, resulting in a labeling M’ without any crossings and of
total leader length equal to that of M, i.e., of minimum total leader length. To
complete the proof of the lemma, it remains to explain how to obtain in O(n?)
time the new labeling M’. At each pass, we sort appropriately the site set. This
can be done in O(nlogn) time. At each iteration over the sorted sets of sites, we
are interested in finding a specific site, which crosses the leader of the site that
we currently consider. In a straight-forward manner, this can be computed in
O(n) time. This results in a total of O(n?) time for each pass and, consequently,
for the elimination of all crossings. a
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Fig. 5: Rerouting the crossing pd-leaders ¢; and ck.

Theorem 2. Given a set P of n sites and a set L of n labels of uniform size
placed at fized positions on one side of the enclosing rectangle R, we can compute
in O(n3) total time a legal boundary labeling of minimum total leader length with
type do and pd leaders.

Proof. In Step A of Algorithm 1, we construct a complete weighted bipartite
graph G = (PUL, E,w) between all sites s; € P and all labels I; € L, where the
weight of an edge e;; = (s;,1;) € E is the length of the leader connecting site s;
to label ;. The computation of each edge weight requires constant time. Hence,
the construction of G can be done in O(n?) time. In Step B of Algorithm 1, we
compute a minimum cost bipartite matching on the graph G, which can be done
by means of the Hungarian method in O(n?) time [12]. Note that we cannot
use Vaidya’s algorithm [13] to reduce the time complexity of Step B, since the
leaders are neither straight lines (Euclidean metric) nor rectilinear (Manhattan
metric). The solution obtained in Step C' of Algorithm 1 is optimal. However, it
may contain crossings. In Step D of Algorithm 1, the crossings are eliminated
in O(n?) time. Thus, the total time complexity of Algorithm 1 for the case of
one-sided boundary labeling with type do and pd leaders is O(n?). O

4.2 Two-sided boundary labeling

In this subsection, we consider the case where the labels are allowed to be at-
tached to two opposite sides of R. Again, we use Algorithm 1 to obtain a bound-
ary labeling M (not necessarily crossing-free) of minimum total leader length.
This can be done in O(n?) time. We can observe that a possible crossing, between
two leaders that lead to labels located at opposite sides of R, cannot occur, since
the rerouting of the leaders ¢; and c; results in a solution with smaller total
leader length. This result is summarized in the following lemma.

Lemma 3. In an optimal two-sided boundary labeling, crossings between leaders
that connect labels located at opposite sides of the enclosing rectangle, cannot
occur.

From Lemma 3, it follows that we can independently eliminate the crossings
along the two opposite sides of R. The following theorem summarizes our result.

Theorem 3. Given a set P of n sites and a set L of n labels of uniform size,
placed at fixed positions, on two opposite sides of the enclosing rectangle R, we
can compute in O(n3) total time a legal boundary labeling of minimum total
leader length with either type do and pd leaders or with od and pd leaders.



4.3 Four-sided boundary labeling

In this subsection, we consider the general case of determining a legal boundary
labeling of minimum total leader length with type od and pd leaders, where the
labels are allowed to be attached to all four sides of R. Again, we use Algorithm 1,
to obtain a labeling M of minimum total leader length. By Lemma 1, it follows
that crossing leaders that connect labels placed at the same side of R, are of the
same type, oriented towards the same corner of R. Crossings between leaders that
connect labels placed at opposite sides of R cannot occur, because of Lemma 3.
For the case, where the leaders which cross each other connect labels placed on
two adjacent sides of R, we can show that the following lemma holds.

Lemma 4. Let M be an optimal four-sided boundary labeling with type od and
pd leaders (which may contain crossings) obtained in Step C of Algorithm 1.
Let ¢; and c; be a pair of intersecting leaders originating from sites s; and s;,
respectively. Let also l; and l; be their associated labels, which lie on two adjacent
sides of the enclosing rectangle R. Then the following hold:

i) Leaders ¢; and c; are of different type.
it) Leaders ¢; and c; are oriented towards their incident corner, say corner A.
iti) Leaders ¢; and c; can be rerouted so that they do not cross each other, the
sum of their leader length remains unchanged, their type remains unchanged
and they remain oriented towards corner A of R.

Lemma 5. Let M be an optimal four-sided boundary labeling with type od and
pd leaders (which may contain crossings) obtained in Step C of Algorithm 1.
We can determine a legal labeling M’ with total leader length equal to that of M
(step D of Algorithm 1). Moreover, labeling M' can be obtained in O(n?) time.

Proof. We partition the site set into four disjoint sets Stgr, Str, Spr and Sgpr,
each of those contains the sites whose leaders are oriented towards the top-right,
top-left, bottom-right and bottom-left corner of R, respectively (see Figure 6).
From Lemma 1 (one side case), Lemma 3 (two opposite sides case) and Lemma 4
(two adjacent sides case), it follows that possible crossings can only occur be-
tween leaders that are oriented towards the same corner of R. Thus, we can
independently eliminate the crossings at each of the sets Srr, Str, SBr, SBL-
We describe in detail how to eliminate the crossings of Str. The remaining
are treated similarly. We further partition Srg into two disjoint subsets Si rr
and Sz v as follows: St rr (S2,rr) contains the sites of Spr whose leaders are
either i) of type od leading to a label placed at the right (top) side of R or ii) of
type pd leading to a label placed at the top (right) side of R. In Figure 6, the
sites that constitute S; rr are the ones whose leaders are drawn as solid lines.
From Lemma 4.(i), it follows that the leaders, which are involved in a crossing
and lead to labels placed at two adjacent sides of R, should be of different type.
Furthermore, crossing leaders that connect labels placed at the same side of R,
should be of the same type. This directly follows from Lemma 1.(i). Hence, we
can independently eliminate the crossings at each of the sets S 7r and S27r.
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Fig. 6: Sets Str, Srr, SBr and Spr. Fig. 7: Extending a pd leader

Let s € S1,7r be a site whose leader c is of type pd. Leader c leads to a label
at the top side of R. By extending its d-segment, leader ¢ can be viewed as an od
leader leading to a label at the right side of R (see Figure 7). This implies that we
can make use of the algorithm described in the proof of Lemma 2 to eliminate all
crossings of S1 7 r. Since all leaders of the sites of Si rr have the same orientation
(this holds because S1,7r C Str), their d-segments are parallel to each other,
which guarantees that all crossings will occur within R. This ensures that our
approach will find a legal labeling. Similarly, we eliminate the crossings of the set
Sa,rr. The total time needed to eliminate the crossings at each of the sets Srg,
Str, Spr and Sgr, is O(n?). Thus, labeling M’ can be obtained in O(n?). 0O

Theorem 4. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on all four sides of the enclosing rectangle R, we can
compute in O(n3) total time a legal boundary labeling of minimum total leader
length with type od and pd leaders.

5 An algorithm for obtaining legal boundary labelings

In this section, we consider the problem of determining a legal boundary labeling
with type od and pd leaders, i.e., we relax the optimality constraint on the
resulting labeling. Our aim is to obtain a more efficient algorithm in terms of
time complexity.

Theorem 5. Given a set P of n sites and a set L of n labels of uniform size
placed at fixed positions on all four sides of the enclosing rectangle R, we can
compute in O(n?) total time a legal boundary labeling with type od and pd leaders.

Sketch of proof. Our basic idea is simple: We first develop an algorithm which
determines a legal labeling in the case where the labels are attached to one side
of R. Its time complexity is O(n?). Then, using standard plane sweep algorithms
[7], we can in O(nlogn) time partition R into four disjoint regions such that the
previous algorithm can be applied to each region separately. To achieve this,
we have two requirements for a region A in the partition of R: (a) A must be
adjacent to a specific side s4 of R and (b) each site in A can be connected to
any label attached to s either through a leader of type do or of type pd. a
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Conclusions

In this paper, we studied boundary labelings with do, od and pd leaders. The
focus of our work was on the leader length minimization problem. The O(n?)
time complexity of the proposed algorithms is dominated by the computation
of a minimum-cost bipartite matching. Unfortunately, we cannot use Vaidya’s
algorithm [13] to reduce it, since the leaders are neither straight lines (Euclid-
ean metric) nor rectilinear (Manhattan metric). It is worth trying to derive a
more efficient matching algorithm for this metric. The evaluation of different
optimization criteria would also be of particular interest.
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