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ABSTRACT
We introduce a novel approach to demand side management: In-
stead of using flexibility that needs to be defined by a domain expert,
we identify a small subset of processes of e. g. an industrial plant
that would yield the largest benefit if they were time-shiftable.

To find these processes we propose, implement and evaluate a
framework that takes power usage time series of industrial pro-
cesses as input and recommends which processes should be made
flexible to optimize for several objectives as output. The technique
combines and modifies a motif discovery algorithm with a schedul-
ing algorithm based on mixed-integer programming.

We show that even with small amounts of newly introduced
flexibility, significant improvements can be achieved, and that the
proposed algorithms are feasible for realistically sized instances.
We thoroughly evaluate our approach based on real-world power
demand data from a small electronics factory.
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1 INTRODUCTION
It has almost become folklore within the energy research com-
munity that creating and exploiting demand-side flexibility can
and should be a response to the growing amount of intermittent,
non-dispatchable generation in future energy systems based on
renewable energy sources. A body of literature (e. g. [4, 8, 14, 24])
looks into this from different angles, exploring and demonstrating
usefulness, applicability and computational feasibility.

Many of the approaches, especially those employing centralized
coordination of demand side management (DSM), need to solve an
optimization problem that is a particular case of a project scheduling
problem and can be formulated as follows. Given a set of processes,
each associated with electrical power demand, and given specific
flexibility for each process, run each process at the right time such
that some objective regarding the total power usage is optimized.
The objective, the processes, and the form of the flexibility can take
many forms.

However, even though research in this field is plentiful, imple-
mentations of demand side management in practice, especially
centralized DSM, are scarce. There are many reasons for this, not
the least important of which is that much of the Smart Grid infras-
tructure so far only exists on paper, or that the current electricity
market has insufficient incentives to provide flexibility.

We believe there are other significant roadblocks for central-
ized DSM. First, DSM often focuses on households, neglecting that
shifting demand in an industrial context would have a stronger
impact due to the amount of energy expended. This focus is mainly
happening because contrary to households, opportunity costs for
shifting demand in industry, i. e., changing a production schedule,
can be very high, making most price-based DSM schemes (also
called Demand Response) infeasible.

Additionally, we have found that managers collecting the data of
industrial plants are not always able to specify what the flexibility
of their processes is. Designing processes such that they are flexible
has not been a focus in the past. Neither has analyzing and docu-
menting the flexibility hidden in existing industrial processes. Thus,
confronting plant operators with the option of DSM, we realized
that many feel that this is an all or nothing choice and decide that
flexibility is just not for them.

https://doi.org/10.1145/3208903.3208909
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Finally, while there are several sets of household consumption
data available (such as the REDD data set by Kolter and John-
son [13]), such data is very sparse in the industrial context, ad-
ditionally impeding research in this area.

We hope that we can overcome all these obstacles with a different
approach: Instead of solving scheduling problems where flexibility
must be specified a priori per process, we suggest taking industrial
plants as they are currently operated and analyzing which processes
would yield the most substantial benefit if they were flexible. We
hope that such an analysis can be a powerful tool for industrial
plant managers in motivating and implementing DSM.

Our Contribution. We propose, implement and evaluate a new
framework that takes power consumption time series of industrial
processes as input and indicates which processes should be made
flexible to optimize for several objectives. With this framework, we
want to answer the question: How much flexibility do we need?
Thus, given all the processes we have, how many must be made
flexible (and by how much) to get improvements regarding the
energy consumption. To the best of our knowledge, we are the first
to propose this approach to DSM. Based on a recently published
set of power consumption time series from an electronics factory,
we show that we can achieve notable improvement even with little
newly-created flexibility.

Outline. Before describing the proposed technique, we formally
define the terminology and problems used throughout this paper
in Section 1.1 and summarize related work in Section 2. Then,
we describe our approach and its individual steps in Section 3.
We evaluate our approach in Section 4 and discuss our results in
Section 5, concluding the paper in Section 6.

1.1 Problem Definition
The Flexibilization Project Scheduling Problem (FPSP) is the
main problem of this paper. Contrary to usual scheduling problems,
we do not start with a set of jobs and ask for a schedule. Instead,
we take a schedule plus some limitations on the addable flexibility
as inputs. We first formally define a schedule:

Definition 1. Schedule
A schedule is a set of n triples (ci ,pi ,ui ) ∈ N × N × R, for i ∈

{1, 2, . . .n}. Each triple describes a job in the schedule. We identify the

triple (ci ,pi ,ui ) with job i . For job i , the field ci indicates the (current)
start time of job i in the schedule, pi indicates the processing time
(or duration) of the job, and ui specifies the amount of power that job

i uses during execution.

Note that for the sake of simplicity, in this definition and through-
out this paper, all jobs have constant power demand during their
execution. While this certainly is a simplification, we argue in sec-
tions 4.1 and A.3 why it is probably an acceptable simplification for
many industrial processes, and describe in sections 3.4.3 and A.2
how our approach can easily be adapted to jobs with non-constant
power demand, at the expense of computational complexity.

Next, we define the terms in which we talk about flexibility.

Definition 2. Flexibilization Limits

Given a schedule as in Definition 1, two integers T̂ ∈ N and Ĵ ∈ N
are used to limit the amount of flexibility that may be created in the

schedule. Here, Ĵ specifies how many jobs may be moved away from

their original start times, and T̂ specifies by how much time steps jobs

may be moved in total.

With this, we can now define the problem examined throughout
this paper:

Definition 3. Flexibilization Project Scheduling Problem

Given are a schedule as in Definition 1 and flexibilization limits as

in Definition 2.

Find for each job i ∈ {1, 2, . . .n} a new start time si ∈ N such that

• the number of jobs i for which si , ci is at most Ĵ
• the total deviation from the current start times is at most T̂ ,
i.e.,

∑n
i=1 |ci − si | ≤ T̂

Any S which satisfies the conditions from Definition 3 is a feasible
solution to the FPSP problem. Slightly misusing our notation, we
also call such an S a schedule. While specifying T̂ and Ĵ of course
means that to apply our framework one still has to specify these
limits on flexibility, flexibility does not have to be specified on a per-
job basis. Therefore it becomes easy to explore what improvements
we can achieve at the “cost” of what amount of flexibility — as we
do in Section 4. Also, we outline in Section 6 how one can truly get
rid of having an amount of flexibility as input parameter if one can
estimate the costs of introducing new flexibility.

Note that so far we have only defined what a feasible solution
is, not what makes a solution optimal. In fact, we explore different
objective functions, the first of which models peak shaving. To do
so, we need the total power usage at a certain point in time. For
a feasible schedule S , let Ut be the amount of power that is used
during time step t , i. e.,

Ut =
∑
{ui | si ≤ t ∧ si + pi > t} .

Definition 4. Flexibilization Project Scheduling Problem

with Peak Shaving (FPSP-PS)

For an instance of FPSP, let Û be the maximum amount of power used

by concurrently executing jobs throughout S

Û = max
t

Ut .

The problem is then, find the feasible schedule that minimizes Û .

While peak shaving is an objective that is relevant in real-world
applications, it is often combined with available generation; the
objective is to reduce the peaks of power demand which cannot be
served by the generation. To model such objectives, we introduce
an amount of generation for each time step: Let Gt ∈ R units of
power be available in time step t . With this, we can define the next
possible objective:

Definition 5. Flexibilization Project Scheduling Problem

with Peak Shaving and Generation (FPSP-PSG)

Given an instance of FPSP and generation Gt , let Ũ be the maximum

amount of power used by concurrently executing jobs throughout S
which cannot be met by own generation (the peak residual load)

Ũ = max
t
(max(Ut −Gt , 0)) .

The problem is then, find the feasible schedule that minimizes Ũ .
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Our third and last examined objective looks at overshoot minimiza-

tion. In this setting we try to minimize the total amount of energy
that can not be served by available generation:

Definition 6. Flexibilization Project Scheduling Problem

with Overshoot Minimization (FPSP-OM)

Given an instance of FPSP and generationGt , find the feasible schedule

that minimizes

∞∑
t=0

max(Ut −Gt , 0).

Note that the mixed-integer programming approach presented in
Section 3.4 is able to optimize for all these objectives. The modelling
approach presented is based on the technique introduced in Barth
et al. [4], where the authors show how to adapt to various objective
functions.

2 RELATEDWORK
The need for more flexibility in energy usage has been well estab-
lished (e. g. in [24]), for an analysis of the benefits see e. g. Strbac [23]
or Feuerriegel and Neumann [8]. Incentives and strategies to use
more flexibility are usually summarized under the term demand
side management. For our purpose, we focus on what Palensky and
Dietrich [19] define as shifting demand. Hence, we move the jobs
in time; if we decide not to run the job now, it has to run later.

The existing literature on DSM, in general, is vast and spans a
significant area of applications and problems. For example, Gong
et al. [9] investigate how DSM can be used for households while still
preserving their privacy, a profoundly important question which
also results in the mentioned lack of support by industry to partici-
pate in such measures. Additionally, DSM has been looked at not
only for households but also for example for data centers e. g. by
Klingert et al. [12]. However, we found the resulting schemes not
to be transferable to industrial customers of the kind we consider.
In contrast to our approach, Zehir et al. [28] focus on getting small
customers to participate in demand response, where the machines
they can change are more related to that of households and not of
manufacturing customers.

Although there are studies concerned with how much flexibility
can be provided by the consumers [7], even on a device level [26],
and how much this flexibility is worth [1, 8, 21, 25], we are not
aware of anyone investigating what amount of demand side flexi-
bility is needed to improve the energy consumption significantly,
especially not for industrial customers. Furthermore, many papers
schedule flexible demands (for an extensive overview see Barth
et al. [4]) without looking into how many of those demands need
to be changed by the scheduler to improve the energy pattern.

Peak minimization is one of the primary goals for many applica-
tions, e. g. Liu et al. [16] and Zhao et al. [29] schedule loads to avoid
specific peak demands, the first for data centers, the latter for elec-
tric vehicle charging. In our formulation, we focus on scheduling
non-preemptive and deferrable loads, as do for example O’Brien
and Rajagopal [18].

To find the patterns in the industrial load time series, we use
motif discovery. There exist other algorithmic techniques to find
starting processes and monitor appliances, most prominently non-
intrusive load monitoring [11], and also e. g. Ardakanian et al. [2]

and Rollins and Banerjee [22]. However, these methods are not
applicable in our case, mainly due to the lack of labels in our data
and thus the need to work without supervision.

Our approach also touches the field of project scheduling. Re-
search in this area is vast, many variations of problem settings have
been explored. For an extensive survey, see Weglarz [27].

3 THE FRAMEWORK
In this section, we describe all steps of our proposed framework
in the order in which we apply them, as well as its evaluation. We
start by describing the input data that we use for evaluation in
Section 3.1. We then present a motif discovery algorithm which we
use to detect the individual industrial processes from the usage data
in Section 3.2. Not strictly part of our framework, but necessary
for our evaluation is the generation of synthetic test data. We do
this so that we can evaluate our approach on more than one data
set. We explain the generation of synthetic data in Section 3.3. On
the discovered processes (resp. our synthetic data), we run a model-
based scheduling algorithm, which we present in Section 3.4.

For the sake of clarity, we present some terminology first. The
initial data is a set of electrical consumption time series from ma-

chines, one time series per machine. We assume that a machine can
either be running a process or be idle. The part of a machine’s time
series where a process is running is denoted a (time series) sequence.
If several such sequences are similar, we assume they describe the
same process. In this case, we say they are occurrences of the same
motif (we explain this in more detail in Section 3.2). The mean
motifs are then used to generate synthetic test data, which are sets
of instances, each consisting of jobs.

3.1 Data
Our input data is the HIPE dataset [5], which is gathered at a
small-scale electronics factory operated by the Institute for Data
Processing and Electronics1 at KIT. It is a set of time series of the
apparent power in kVA of tenmachines, which range from soldering
furnaces to pick-and-place machines. The data was gathered over
almost a year, from December 2016 to October 2017, with sub-
minute resolution. See Section A.1 on how to get access to the raw
data as well as the instances we create from the data set, as well as
a more in-depth description of the raw data.

Some of the machines are frequently running in standby mode.
Consequently, their power is above zero even while no process is
running. To ease the analysis later and only consider the running
processes without the standby times, we distinguish between an
active state and a passive state of those machines. The active state
means the machine is running a process, while the passive state
means the machine is either off or in a standby mode. We deter-
mine the two states for each machine with the help of a k-means
clustering algorithm, with which we cluster the power demands of
each machine individually. Setting k = 2 leaves us with a cluster
for each state. As we are only interested in the active state of the
machine, we set the power demand to zero for all points in the
passive cluster.

The points in time where a series goes from zero to non-zero
power demand are the start points of a sequence. The sequence
1https://www.ipe.kit.edu/english/index.php
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ends when the power demand goes back to zero, at its end point.
To be able to compare sequences in a meaningful way later, we
normalize the lengths of all sequences on a per-machine basis. For
each machine, we determine the 80% quantile of the lengths of its
sequences. We scale all sequences of this machine to this length
for our motif discovery. We chose 80% because, on the one hand,
stretching sequences comes with less data loss than compressing.
On the other hand, taking the longest sequence would increase the
impact of outliers.

3.2 Motif Discovery
Given the data sequences describing the machines power intake,
we now use motif discovery to find recurring patterns in these
sequences [17]. In the following we only summarize the algorithm
briefly, for a proper introduction and mathematical detail, we refer
to the works of Chiu et al. [6] and Lin et al. [15].

The motif discovery algorithm we use is based on symbolic ag-

gregated approximation (SAX) of time series. SAX uses words to
represent the time series at hand. To get to a word representation,
we first discretize the power levels in the time series. Each discrete
power level of the time series is represented by a letter. For every
sequence, we then assign to every time step of the sequence the
letter for the power level that the sequence has at the respective
time step. The resulting string of letters forms the word by which
we represent the sequence.Each sequence is thus described by one
word, where the word size for each machine is the normalized
length established above. The association of the discrete levels with
letters is equiprobable, given a predefined alphabet size from which
we draw the letters. A higher alphabet size is usually helpful if the
time series at hand has larger variations.

To compare the sequences, we compare their word representa-
tions with each other. Those sequences which can be represented by
similar words are considered as belonging to the same motif. Each
sequence associated with a motif is then an occurrence of this motif,
where each motif consists of at least two occurrences. In the follow-
ing, we use the mean of these occurrences as the representation for
each motif.

Figure 1 shows a discovered motif with all its occurrences in
gray lines. The colored lines represent the mean, 20% quantile and
80% quantile of all the occurrences. These lines can give a feeling
for how a standard process might look like for this machine. We
show all discovered motifs in Section A.6.

3.3 Generation of Synthetic Instances
To evaluate the feasibility and usefulness of our proposed approach,
we need many instances of the FPSP problem which emulate real-
world processes. Therefore, we generate artificial instances for the
FPSP problem from the motifs discovered as described in Section 3.2.
In our generated instances, the start times, job durations and power
requirements are statistically derived from the discovered motifs.
These characteristics are key factors with regards to peak power
demands during a schedule. Since we preserve these characteristics
of the discovered motifs, we expect our generated instances to
adequately resemble reality.

To this end, we describe every motif by three normal distribu-
tions: One energy distribution, one start time distribution, and one

Figure 1: The discovered motif A. Each gray curve shows
one occurrence, with the length of all occurrences being nor-
malized to 1. Their shared common features, roughly repre-
sented by the mean and upper and lower quantiles, consti-
tutes the motif.

duration distribution. Each of these distributions is determined by
fitting a normal distribution to the lengths, start times and energy
consumptions of the respective motif’s occurrences. The start time
distribution is actually a mixture of normal distributions: We as-
sume that the same process might have several times within a day
at which it usually starts. To factor this in, we cluster the start
times of every motif’s occurrences (using affinity propagation) and
generate a normal distribution for every cluster. We then create a
mixture distribution for that motif’s start times, weighting each
normal distribution by the size of its cluster. However, for most
motifs, only a single cluster was found.

We generate instances (i. e., sets of jobs) with a fixed number
of jobs by repeatedly randomly selecting a motif (weighted by
the number of the motif’s occurrences) and then generating a job
for this motif. For each job, we generate a duration by randomly
drawing from the respective motif’s length distribution. We discard
any length of less than one time step. Similarly, we determine a
start time for this job by randomly drawing from the respective
motif’s start time distribution. Finally, we randomly generate an
energy consumption for the job by drawing from the motif’s energy
distribution. The job’s power demand is set as energy consumption
divided by duration.

Since drawing values from normal distributions may yield ex-
treme results in few cases, which nonetheless are sufficient to sub-
stantially skew the complexity and results of the scheduling prob-
lem, we discard any values that deviate from the mean by more
than three times the standard deviation.
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3.4 Scheduling
We now describe a mixed integer program (MIP) that models and
optimizes the FPSP problem.We base our MIP on the modeling tech-
nique from [4], which is intended for classic smart grid scheduling
problems, i. e., assumes jobs given with fixed flexibility, expressed
in terms of earliest starts, deadlines, etc. The approach is able to
model many real-world processes’ features encountered in liter-
ature, such as ramping, energy drain or interdependent jobs. We
only give a very rough overview over the most important parts of
the technique, and then describe how to extend it to cope with the
FPSP problem.

The MIP technique in [4] is based on a discrete-time formulation
for the Resource-Constrained Project Scheduling Problem.
At the core of the model, a binary variable is created for every job
and every time step at which this job could start. For every job,
exactly one of its start indicator variables must be one, fixing the
start time of the respective job. The start time variable of a job i
is σi , and its finishing time is ηi . Variables for the power usage at
every time step can be built using the start indicator variables.

The foundation for our modification of this technique arewindow
extensions. These are a way of expressing the current start times
ci and the flexibilization limits from FPSP in terms of a “classic”
project scheduling problem, which works with release times and
deadlines instead.

Instead of every job having a desired start time ci , we assume
every job i to have a release time ri (i. e., an earliest start time) and
a deadline di (i. e., a time when the job must be finished).

We transform an FPSP problem by first setting ri = ci and
di = ci + pi for all jobs i . This way, we get a problem that we can
immediately plug into the MIP technique from [4], and in which
every job i is forced to be started at its current start time ci , because
we have made its window (the time between release and deadline)
small enough. In a second step, we now extend the MIP to allow for
some jobs to be executed outside their window, i. e., to extend their
window. This window extension is tailored such that it honors T̂
and Ĵ of the FPSP instance.

In the MIP framework, the jobs’ windows are enforced with the
simple constraints2

σi ≥ ri ∀i
ηi≤ di ∀i .

We introduce two new variables per job i , namely←−xi and −→xi , the
left window extension and right window extension of job i , respec-
tively. We then change the aforementioned constraints to

σi ≥ ri −
←−xi ∀i (1)

ηi ≤ di +
−→xi ∀i . (2)

The additional constraints to uphold T̂ are simple

2Note that in [4], the deadline is denoted as Di instead of di .

←−xi ≥ 0 ∧ −→xi ≥ 0 ∀i, (3)
n∑
i=1

(
←−xi +
−→xi
)
≤ T̂ . (4)

To also uphold the job move limit Ĵ , we need to introduce a
binary variable indicating that a job was not moved. We will call
this variable c̃i . We force c̃i to become zero if job i was moved with
this constraint

c̃i ∈ {0, 1} ∀i, (5)

c̃i ≤ 1 −
←−xi +
−→xi

T̂
∀i . (6)

With this, it is easy to limit the number of moved jobs

n∑
i=1

c̃i ≥ n − Ĵ . (7)

Note that with constraint 6, we get T̂ as a coefficient in the
constraint matrix, potentially giving us constraint coefficients of
greatly varyingmagnitude. This can cause problems for the numeric
stability of the resulting MIP model, as we notice in Section 4.4.

3.4.1 Modelling further Constraints. Real-world scenarios will
most likely require more constraints to be placed on jobs than what
we model in this paper. However, since the MIP framework from [4]
is very flexible, many additional constraints are easy to include. As
an example, the MIP framework handles dependencies between
jobs (in the form of time lags), energy drain for postponed jobs, and
hard release times and deadlines.

3.4.2 Modelling individual Move Costs. In realistic scenarios,
moving some jobs in time might be way more effort than moving
other jobs. Themodel can account for this with a slight modification:
We introduce a weighting factor wi ∈ R for every job i . We then
modify Constraint 4 to:

n∑
i=1

wi

(
←−xi +
−→xi
)
≤ T̂ (8)

This way, moving some jobs counts stronger towards the T̂ limit
than others.

3.4.3 Modelling Fluctuating Power Demands. As noted in Sec-
tion 3.3, all jobs are assumed to have constant power demand. How-
ever, as the authors outline in [4], the MIP technique can approxi-
mate jobs with non-constant power demand. This approximation
is accomplished by using the feature of time lags mentioned above,
i.e., constraints on the order in which jobs are scheduled. By using
positive and negative time lags, it is possible to chain a series of
jobs together such that they must always be executed consecutively
in a fixed order and without any interruptions between them. To
approximate a job with non-constant power demand, we could use
such a chain, each job of the chain having constant power demand.
The more jobs we chain together to represent a single process, the
closer we can approximate the process’ fluctuating power demand.
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We give a detailed explanation of this technique in Section A.2
in the appendix.

4 EVALUATION
Having introduced our framework and the data with which we
work, we now evaluate our approach. We start with describing the
motifs we find, and the instance sets generated, before assessing
each of our problem sets individually.

4.1 Discovered Motifs
Given the nine machines, we find a total of 15 motifs in our time
series data. The resulting motifs for each machine can be found in
Figure 18 in the appendix. We have also included an overview over
our parameters used in Table 4. As we can see there, most of the
motifs are block-shaped. This fact gives us reason to believe that
many processes can be adequately approximated by our assump-
tion of constant power demand. For an in-depth discussion of this
assumption see Section A.3. The parameters for the motif discov-
ery algorithm in this paper are tailored to our specific problem at
hand. For example, we use a relatively small alphabet size for most
machines as their variations are small. We also choose all parame-
ters in such a way that the algorithm can classify most sequences
without assigning all of them to a single motif. All sequences which
are not classified as belonging to one of the motifs are classified
as noise and excluded from further analysis. In future work, we
might want to do an extensive evaluation of our parameter choices.
However, we expect the settings we have chosen to be sufficiently
useful for our problems at hand.

4.2 Instance Sets
We generate several sets of instances from the data as described in
Sections 3.1 through 3.3, resembling the input data from Section 3.1
to varying degrees. We publish all the instance sets together with a
description of the data format, see Section A.1.

Set PS-Nonuniform. This set is the first set of instances with
which we evaluate FPSP-PS. We proceed like described in Sec-
tion 3.3: Job lengths, job power demands and job start times are
generated from the normal distributions fitted to the discovered
motifs. Since in realistic scenarios, the optimization horizon likely
is more than one day, we generate instances that span five days.
The start times of our discovered motifs are times within a day.
Thus, for every job, we not only pick a start time from the motif’s
start time distribution but also pick uniformly at random at which
of the five days the job starts. One time step corresponds to five
minutes. We generate instances with 150 jobs each.

Regarding the possible choices for T̂ , the amount of total job
movement allowed, it seems reasonable to specify T̂ relative to
the instance size. We therefore introduce Θ and set T̂ = Θ ·

∑
i pi .

Here, Θ specifies the fraction of cumulative duration that jobs may
be moved. We test all of Θ ∈ {0.005, 0.01, 0.02, 0.03, 0.04}. Table 1
shows statistics about the values that result for T̂ for the various
values for Θ. We see that the values for T̂ range from about 3.5
hours to about 30 hours.

For Ĵ , the number of jobs allowed to be moved, we investigate
all of Ĵ ∈ {3, 6, 9}, for a total of 15 different flexibilization limits.

T̂ (hours)

Θ Mean Std. Dev.

0.005 3.6 0.20
0.01 7.2 0.39
0.02 14.3 0.77
0.03 21.5 1.16
0.04 28.7 1.54

Table 1: Statistics of T̂ values for all possible values of Θ.

We generate 30 sets of 150 jobs each, and pair them with every
flexibilization limit from above, leading to a total of 450 instances.

Set PS-Uniform. As we see in our evaluation (cf. Section 4.4), the
heterogeneity in power demand between the generated jobs (arising
from heterogeneous power demand in the discovered motifs) has
a significant influence on the computational feasibility and the
possible optimization benefits of the instances. We do not wish to
bias our conclusions on the basis of this phenomenon, which may
not occur in other workloads. Hence, we generate the PS-Uniform
instance set in which we use a single, fixed normal distribution for
all jobs’ power demands (with mean 30 and standard deviation 10).
Aside from this, we proceed as for the PS-Nonuniform set.

Set PSG. In the PSG set, we again explore peak shaving, but with
fluctuating generation. This set corresponds to a setting where e. g.
solar generation is available and one tries to minimize the peak
residual load, which corresponds to FPSP-PSG.

We use a solar generation curve for one day derived from total
solar generation data for Germany, Austria, and Luxembourg with
quarter-hourly time resolution, which was retrieved from ENTSO-
E.3 For every quarter hour, we average the production from all
summer days in the year 2016. In our instances, we set available
generation (i. e.,Gt ) on all five days based on this curve, scaling the
curve such that in total, 20% of the total energy demand in each
instance is provided via solar energy. Aside from that, we generate
instances as described for the PS-Nonuniform set.

Set OM. With theOM set, we evaluate an overshootminimization
objective, i. e., the FPSP-OM problem.

For the available generation, we assume that we can meet 65% of
the total energy requirement in each instance by own generation.
This number results from our calculations of the energy consump-
tion and production in the summer month of BASF based on [10].
As BASF’s power plants are steam-controlled, the generation in the
winter months is so high that they can sell excess energy. How-
ever, during the summer months, the opposite is true, and they
have to buy energy from the grid, which is more expensive. We
assume the generation to be a flat curve in our calculations. For
a steam-controlled power plant and a time horizon of five days,
this is a realistic assumption since steam demand usually fluctuates
relatively little. Formally, we set

3Via Open Power Systems Data:
https://data.open-power-system-data.org/time_series/

https://data.open-power-system-data.org/time_series/
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Figure 2: Relative reduction in peak demand for the PS-
Nonuniform set, one point per instance. The columns are
the different settings for Ĵ and Θ. The Y-axis indicates the
change in peak demand after optimization. Color indicates
the remaining MIP gap when the optimization was stopped.
Results are summarized in Table 8.

Gt =

∑
i (pi · ui ) · 0.65
5 · 24 · 60/5

∀t .
For this instance set, we use the objective from FPSP-OM, but
proceed as for the PS-Nonuniform set otherwise.

4.3 Evaluation Environment
For all instances, we build a MIP model according to Section 3.4. We
optimize every model using Gurobi 7.0. We also evaluated optimiz-
ing using CPLEX 12.8, but we achieve slightly better results using
Gurobi for our models. We use a system with dual AMD EPYC 7601
CPUs (having 64 physical CPU cores) with 512 GB of RAM. We
optimize every model for 45 minutes, allowing for 20 threads per
solver, running 6 solvers in parallel.

MIP Gap. In the following, we report the MIP gaps after opti-
mization together with the solution quality. The MIP gap is the
difference between the best feasible solution found and the best
lower bound that the solver was able to prove, divided by the best
feasible solution. A large MIP gap is an indicator that further opti-
mization could potentially find better solutions. Please note that
we optimize with a focus on finding high-quality solutions.4 Thus,
we could have further reduced MIP gaps at the cost of solution
quality. We performed parameter tuning via Gurobi’s auto-tuning
tool. However, the default settings produced the best results for us.

4.4 Evaluation of FPSP-PS and FPSP-PSG
We start by looking at the sets that represent peak shaving ob-
jectives. Figure 2 summarizes our results for the PS-Nonuniform

4We set the MIPFocus parameter to 1 for Gurobi.

set. Every dot represents one instance. Every column of dots rep-
resents one combination of Ĵ and Θ. The y-coordinate of the dot
indicates the respective instance’s peak demand after optimization
divided by the peak demand before optimization, which we de-
fine as relative peak demand. We use the dots’ colors to indicate
the MIP gap achieved for the respective instance, where darker
colors indicate larger MIP gaps, i. e., worse optimization, and the
lightest color indicates that the instance was solved to optimality.
Table 8 in the appendix reports numerical results. In Figure 2 we
see that in the most extreme cases, peak demand is reduced by
more than 60%. We also see that the improvement is mostly dis-
tributed evenly between 0% and about 40%, and that increasing Ĵ or
Θ does not result in significant improvements. Figures 14b and 14a
(in the appendix) give an insight how the peak demand for every
instance changed when increasing Θ or Ĵ , respectively. We find
that increasing Θ yields larger peak reductions than increasing Ĵ ,
and that improvements gradually diminish with larger values for
Θ (resp. Ĵ ). However, the optimization gets harder with increasing
Θ. Since the reported MIP gaps after optimization were large for
many instances for Θ ∈ {0.03, 0.04}, results may improve for those
parameters if one optimizes the instances further. Figure 11 (in the
appendix) shows the MIP gaps of every instance.

We perform a statistical significance test (Wilcoxon’s signed-
rank test5) on our findings. For every consecutive pair of Ĵ (resp.
Θ) values, while keeping the Θ (resp. Ĵ ) value fixed, we compute
the p-value, which indicates how likely it is that the change in im-
provements is random happenstance instead of an effect of altering
Ĵ (resp. Θ). We report all values in Table 2.

We want to assume significance with 95% confidence, i. e., say
that a change is significant if the p-value is below 0.05. However,
throughout the whole of this paper, we perform a total of 88 such
tests. With an error probability of 5%, we thus expect erroneously
reporting significance for four tests. To compensate for this, one can
apply a Bonferroni correction, which essentially means assuming
significance only when the p-value is below 0.05/88 ≈ 0.00057.

We see that changing Θ from 0.02 to 0.03 and 0.04 does probably
not result in significant improvements for the PS-Nonuniform set.
This lack of improvement might be because the optimization prob-
lem becomes too hard, but could also be because we already achieve
optimal results for many instances withΘ = 0.02 (see below). Aside
from that, the only non-significant change is changing Ĵ from 6 to 9
at Θ = 0.005 and Θ = 0.04, which is like because the little possible
movement in time can already be optimally distributed over six
jobs, resp. because the instances got too hard.

The very uniform distribution of improvements between 0% and
40% poses the question for validity, hence we looked into charac-
teristics of the instances that allow for an unusually large or small
improvement. We discovered that instances which allow for almost
no improvement always contain jobs with very high power de-
mands compared to all other jobs’ power demands, i. e., substantial
heterogeneity in power demands. This makes sense, since the job
with the largest power demand (which we call the tallest job) is
a lower bound for the overall peak power demand. The margin

5Because we have many ties in our data, the way such ties are handled is important in
our case. We use the approach suggested by Pratt [20].
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3 → 6 → 9

0.005 < 10−4 0.00089
↓ < 10−4 < 10−5 < 10−5

0.01 < 10−4 0.00051
↓ < 10−4 < 10−4 < 10−5

0.02 < 10−4 0.00039
↓ 0.0018 0.014 0.0032

0.03 0.00029 0.00014
↓ 0.012 0.047 0.035

0.04 < 10−4 0.0018
Table 2: p-Values for the change of one parameter in the PS-
Nonuniform set. Values highlighted in green indicate that
changing one of Ĵ and Θ, while keeping the other one con-
stant, results in a statistically significant change in improve-
ments. Values in blue are significant only before Bonferroni
correction.

for optimization is at most the difference between the overall peak
power demand and the demand of the tallest job.

We therefore also evaluate how well our optimization performs
within this margin, i. e., how the difference between peak demand
and demand of the tallest job changes, which we define as the
improvement against the tallest job. Figure 3a shows the results. A
value of 0 indicates that after optimization, the overall peak power
demand equals the demand of the tallest job. Figure 3a shows that
for the majority of instances, we are in fact able to achieve this
optimum. For all other instances, we improve by at least 20%within
the margin between tallest job and original peak demand.

Since the peak demand being dominated by single jobs seems
like a peculiar property of our instances, we create the PS-Uniform
set, where we compensate for this characteristic. Regarding the
results for the PS-Uniform set, shown in Figure 4 (numerical results

in Table 9 in the appendix), we see that even with power demands
being drawn from a single distribution, peak demand reductions of
5% to 30% are realistic. We also see that solving these instances is a
lot harder than the instances from the PS-Nonuniform set.We report
the MIP gaps in Figure 5. Here, an interesting trend can be seen:
While almost all instances forΘ ≤ 0.02 could be optimized to within
20% gap, often to optimality, the MIP gaps for Θ ≥ 0.03 are mostly
above 60%. Thus, it seems like the computational complexity grows
rapidly with T̂ — this is certainly because of the larger solution
space, but might also be exacerbated by the numerical stability
issues with constraint 6 mentioned in Section 3.4.

The results for the PS-Uniform set are more tightly clustered,
which makes sense since the instances are more similar to each
other. For this set, we also evaluate how well we optimize within
the margin between overall peak power demand and demand of
the tallest job, which we report in Figure 3b. Since in PS-Uniform,
the peak power demand is not dominated by single jobs anymore,
this now correlates closely with the absolute improvement. We
again perform significance analysis as for the PS-Nonuniform set,
the results of which we report in Table 5 (in the appendix). We
can see that some of the changes that were not significant for PS-
Nonuniform, especially increasing Θ, have now become significant.
This change supports the assumption that the non-significance in
these cases for the PS-Nonuniform set is because optimal values
have already been achieved for Θ = 0.02.

The final instance set about peak shaving is the PSG set, in
which we assume solar generation. We report the improvements
in Figure 6 and numerical results as well as the effect of changing
both parameters in Table 10 and Figure 16 (both in the appendix).
We see that the distribution of improvements is similar to the PS-
Nonuniform set. We can assume that tall jobs again have a large
impact in this instance set. However, the absolute values regarding
improvement are much better than for PS-Nonuniform: In most
extreme cases, we are able to reduce the residual peaks by almost
80%. Most improvements are evenly distributed between 5% and 50%.

(a) Set PS-Nonuniform (b) Set PS-Uniform

Figure 3: Change of the difference between the peak demand and the demand of the tallest job after optimization.
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Figure 4: Relative reduction in peak demand for the PS-
Uniform set, one point per instance. Columns are the differ-
ent settings for Ĵ and Θ. The Y axis indicates the change in
peak demand after optimization. Color indicates how well
the instance could be optimized. Results are summarized in
Table 9.

Figure 5: MIP gaps for the various settings of Ĵ and Θ in the
PS-Uniform instance set. Every dot corresponds to one in-
stance. Colors are used to distinguish the columns.

This seems plausible, since in the PSG set, (residual) peak reduction
can not only be achieved by avoiding concurrent execution of jobs,
but also by moving jobs towards the peaks of the solar generation
curve.

We report MIP gaps in Figure 12 in the appendix, which are
not worse than for the PS-Nonuniform set. Significance values are
reported in Table 6. We see that almost all changes in parameter
choice lead to significant improvements. Overall, our approach

Figure 6: Relative reduction in peak demand for the PSG set,
one point per instance. The columns are the different set-
tings for Ĵ and Θ. The Y axis indicates the change in peak de-
mand after optimization. Color indicates the remainingMIP
gapwhen the optimization was stopped. Results are summa-
rized in Table 10.

Figure 7: Results for set OM, one point per instance. The
columns are the different settings for Ĵ and Θ. The Y axis
indicates the change in overshoot after optimization. Color
indicates how well the instance could be optimized. Results
are summarized in Table 11. For better readability we re-
moved one outlier at Θ = 0.01, Ĵ = 3 with a value of ca. 0.5.

seems to be able to exploit the benefits of a given generation curve
without increasing the computational complexity.

4.5 Evaluation of FPSP-OM
We evaluate the overshoot minimization objective from FPSP-OM
with the OM instance set, the results of which we report in Figure 7
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and Table 11 (in the appendix). We see strong clustering of the
results, indicating that with, e. g., Θ = 0.02, one can expect the
amount of energy to overshoot generation, i. e., the amount of
energy that must be bought, to decrease between 6% and 12%. For
FPSP-OM, apparently T̂ plays a crucial role, while Ĵ yields only
minor improvements. These observations can be seen from figures
17a and 17b. Computational complexity increases slightly with
decreasing Ĵ . However, the reported MIP gaps (see Figure 13 in the
appendix) are drastically smaller than for our peak shaving sets.
We solve all instances to at most 4%MIP gap, and in fact, solve most
of them to optimality. We again do a significance analysis, reported
in Table 7. Here, we see that almost all parameter changes result in
significant improvements.

5 DISCUSSION
For all examined variations of the FPSP problems, we can show
that with a relatively small amount of flexibility, significant im-
provements in the target metric can be achieved. Since all our test
data is founded on real energy consumption data obtained from
a factory, we assume our results to apply to real-world scenarios.
However, real industrial processes come with more constraints than
we were able to respect within the scope of the present paper. Since
our optimization is based on an MIP framework (which supports
additional constraints such as process dependencies etc.), many
additional constraints should be straightforward to model.

We discovered that the possible improvements depend a lot on
the heterogeneity of the process’ power demands. However, even
for the heterogeneous instance sets derived from our real-world
data, possible improvements were promising.

For the problem variants that assume available generation (FPSP-
PSG and FPSP-OM), we need to choose the amount of generation.
While we could obtain a solar generation curve from real-world data,
we need to fix the total amount of energy available via generation
somewhat arbitrarily. However, we have no reason to believe that
our approach works significantly better or worse if we choose this
amount differently. We were able to show that our approach is
in fact suitable to reduce the peak residual demand as well as the
amount of energy that must be bought from the grid.

Another discrepancy between our test instances and real-world
processes is the fact that we assume the power demand of each pro-
cess to be constant over time. However, we have argued in sections
4.1 and A.3 why this is probably a reasonably close approximation
of the motifs we discovered, which is why we believe that we can
even use constant-demand jobs as an approximation for many real
industrial processes. Furthermore, we have shown in sections 3.4.3
and A.2 how to get around this limitation.

5.1 Optimization Aspects
Regarding the computational complexity of optimizing the MIPs
of our approach, we can see that the most important parameter
(besides the instance size) is T̂ . This importance for the complex-
ity is because, for a large T̂ , the MIP formulation needs to create
many start-indication variables (si (t) in the original framework),
quickly increasing the size of the underlying MIP problem. Also,
the numerical stability of the model probably suffers from large T̂
values, as noted in Section 3.4.

We also discover that substantial heterogeneity of power de-
mands, while decreasing possible peak improvements, is beneficial
for the complexity of the optimization problem.

Given all that, most of the time we can optimize instances of
realistic sizes, spanning a whole working week with five-minute
resolution, within 45 minutes to acceptable MIP gaps. We therefore
think that our approach can not just be beneficial in reality, but can
also be applied to realistically sized problems.

6 CONCLUSION & OUTLOOK
We have shown a technique that can be used to guide flexibilization
efforts in industrial processes. Our technique starts with consump-
tion data obtained from the current operation of an industrial plant,
and it ends with an indication which processes would be most bene-
ficial if they were more flexible. We have shown that our technique
can lead to significant improvements and should be applicable in
real-world industrial processes.

Regarding our initial question, how much demand side flexibility
do we need, our framework helps to understand which processes
would benefit most from being flexible. Additionally, our results
show that there is currently no need to flexibilize all processes.
Starting with only a few small changes in the operation of the
machines can already improve the energy consumption. This com-
paratively little necessary effort gives us hope that more flexibility
in industrial processes is achievable and not a daunting prospect
for any process manager. On the other hand, future work is needed
to verify that our motif discovery technique really detects realistic
workloads. For that, cooperation with domain experts is necessary.

In the future, we can think of several extensions of our approach.
While we currently require fixed limits to be set for the amount of
new flexibility to create (in terms of T̂ and Ĵ ), it would be straight-
forward to allow for a weighting between improvement in peak
demand (or overshoot) and the required new flexibility by making
T̂ and Ĵ variables and including them in the objective function.
However, this requires a reasonable estimate of the (financial) costs
of adding flexibility to processes compared to the costs associated
with peak demand or overshoot. Also, it would be easy to price
the flexibilization on a per-job basis in the objective, to account for
some processes to be more costly to make flexible than others.

From an algorithmic perspective, one should look into finding
efficient heuristics for optimizing problems of the FPSP family, to
enable the application of our approach to large-scale industrial
processes. Also, incorporating uncertainties into the model should
be a future step that would be beneficial for practical relevance.
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Figure 8: A fixed chain of three jobs 1, 2 and 3, which are used
to approximate a job that has the blue demand curve.

A APPENDIX
A.1 Data Publication
We publish the instance sets from Section 4.2 at

https://publikationen.bibliothek.kit.edu/1000082194

This publication [3] contains
• The PS-Nonuniform, PS-Uniform, PSG and OM instance sets,
• The computational results of our optimization,
• and information on how to repeat our experiments.

Additionally, we publish the software that we used for optimiza-
tion at

https://github.com/kit-algo/TCPSPSuite

Note that the raw data from which we detected our motifs is
also published as the HIPE dataset [5].

A.2 MIP Extension for Job Chains
In this section, we give some details on how the MIP model pre-
sented in Section 3.4 can be extended to better approximate real-
world processes (as already laid out in Section 3.4.3).

The MIP modelling technique from [4] allows to model what is
called minimum time lags between two jobs i and j. This time lag

Li, j specifies the number of time steps that must pass between the
start of i and the start of j . Together with the start time variable σi
for every job i , this results in constraints of the form

σj ≥ σi +Ti, j ∀ i, j .

An interesting aspect is that theTi, j may be negative. Using this,
we can form fixed chains of jobs. Say we have three jobs 1, 2 and 3,
which all have processing time (pi ) of 1. If we set T1,2 = 1, T2,3 = 1
and T3,1 = −2, it must hold that

σ2 ≥ σ1 + 1,
σ3 ≥ σ2 + 1,
σ1 ≥ σ3 − 2.

Which results in

σ2 = σ1 + 1,
σ3 = σ2 + 1.

Such a situation is sketched in Figure 8, where the three rectan-
gles represent the three jobs: The width of each rectangle is the
job’s duration and the height of the rectangle is the job’s power
demand. We see that the blue curve, which might represent the
power demand curve of some industrial process, can be approxi-
mated more closely by this chain of jobs than if we only used one
job.

When using this approach, one must pay attention to correctly
encode the T̂ / Ĵ limits in the instance. In Section 3.4, we fix every
job at its start time (by setting release and deadline correctly). When
using job chains, only one of the jobs of each chain must be fixed
like this. Otherwise, moving a chain of k jobs by t time steps would
count as k jobs regarding Ĵ and would contribute k · t units to T̂ .
However, fixing only one job’s window also fixes all other jobs in
the chain.

It is important to note that this approach usually leads to a sig-
nificant increase in the computational complexity of the resulting
model. Tweaking the model such that this technique becomes fea-
sible for large instances is beyond the scope of this paper.

https://publikationen.bibliothek.kit.edu/1000082194
https://github.com/kit-algo/TCPSPSuite
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A.3 Motif Analysis
We now analyze the discovered motifs further, especially with
regard to the question whether jobs with constant power demand
are a reasonable approximation of the motifs, and if not, how much
better the approximation becomes when we allow to split the jobs
into multiple blocks as outlined in sections 3.4.3 and A.2. Note that
all discovered motifs are presented in Figure 18.

The occurrences of motifs correspond to stepwise functions:
Every point in the occurrence’s power demand time series results
in one step in its power demand function. Let o be an occurrence.
We then call the (stepwise) function mapping a point in time to
the power demand of the occurrence at that time Po : [0, 1] → R
(note that occurrences are normalized, thus a point in time is in
[0, 1]). The main question is how well we can approximate these
functions with other stepwise functions of low complexity, i. e.,
with few steps. Note that a job with a constant power demand
corresponds to a stepwise function with exactly one step, a chain of
two jobs corresponds to a stepwise function with up to two steps,
and so on. Let P̃o,k : [0, 1] → R be such a function with at most k
steps, that tries to approximate Po .

We need some notion of the difference between Po and P̃o,k .
We suggest the following

∆
(
Po , P̃o,k

)
=

1
No

∫ 1

0

(
Po (t) − P̃o,k (t)

)2
dt .

Here, No is a normalization factor to make different motifs com-
parable:No =

∫ 1
0 Po (t)

2 dt . We can compute the value of the integral
without actually integrating, since both functions are discrete in t .
This metric penalizes deviations of P̃o,k from Po with a quadratic
term. We assume a deviation that is large in magnitude but short in
time to be worse than a deviation which is small in magnitude but
long in time: That is because deviations of large magnitude might
hide exactly the peaks in power demand that we are interested in
reducing.

To analyze how block-shaped our motifs really are, we fitted
multiple P̃o,k (for multiple values of k) to the Po of every occurrence
o.6 Our first attempt is k = 1, i. e., a step function with exactly one
step, representing jobs with constant power demand. We see the
value of ∆(Po , P̃o,1) in Figure 9. The x axis groups the occurrences
by their motif. We sort motifs by how well they are approximable
for k = 1.

We cannot say what values for ∆(Po , P̃o,k ) are good or bad: The
question of what is an acceptable approximation must be answered
by the person using our framework. However, we can clearly see
that nine of our fifteen discovered motifs are a lot better approxi-
mated by a job with constant power demand than the remaining
six. This seems intuitively correct when looking at the motifs in
Figure 18.

We can also see how ∆(Po , P̃o,k ) changes when we go from k = 1
to k = 2, which is shown in Figure 10a. We see that the change
is substantial for the six motifs that were not well approximated
before. Especially motifs L, N and O seem to profit from a two-step
function. When looking at these motifs in figures 18l, 18n and 18o,
that seems plausible.

We see a similar effect when going to k = 5 (see Figure 10b) and
k = 10 (see Figure 10c): The ∆(Po , P̃o,k ) values shrink gradually
for the six motifs which are not very block-shaped, although im
improvement is less than for going from k = 1 to k = 2.

We can thus conclude that the technique proposed in Section 3.4.3
has benefits: Being able to approximate the motifs with stepwise
functions of more than one step most likely brings the results of
the optimization closer to reality. Especially allowing for two jobs
instead of one might be a worthwhile option. However, we can also
conclude that a constant function is already a good approximation
for the majority of the discovered motifs, and is not completely
outlandish for the rest of the motifs either.
6Using a black-box SLSQP optimizer on ∆(Po, P̃o,k )

Figure 9: The difference between all occurrences’ Po an and their respective optimal P̃o,1
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(a) k = 2

(b) k = 5

(c) k = 10

Figure 10: The difference between all occurrences’ Po an and their respective optimal P̃o,k
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Machine Motifs Alphabet Size Wordlength

AVT 01 A, D 4 505
AVT 02 J, K 4 403
AVT 03 B, M, N 4 267
AVT 04 H 4 433
AVT 05 C 4 543
AVT 06 E 4 406
AVT 08 F, L 4 211
AVT 09 G 4 500
AVT 10 I, O 4 426

Table 3: Parameter choices for the motif discovery algorithm. The alphabet size was varied between 2 and 10 words, resulting
in largely the same results as presented above.

A.4 Numerical Evaluation

3 → 6 → 9

0.005 < 10−5 0.00089
↓ < 10−5 < 10−5 < 10−5

0.01 < 10−5 < 10−5
↓ 0.00025 < 10−5 0.00033

0.02 < 10−5 0.00036
↓ 0.0008 0.03 0.041

0.03 < 10−4 0.086
↓ 0.00011 < 10−5 0.00022

0.04 0.00033 0.0018
Table 4: p-Values for the change of one parameter in the PS-
Uniform set. Values highlighted in green indicate that chang-
ing Ĵ and Θ, while keeping the other one constant, results in
a statistically significant change in improvements. Values in
blue are significant before Bonferroni correction.

3 → 6 → 9

0.005 < 10−5 < 10−4
↓ < 10−5 < 10−5 < 10−5

0.01 < 10−5 < 10−5
↓ 0.00037 < 10−4 < 10−5

0.02 < 10−5 < 10−5
↓ 0.00021 0.0051 0.00017

0.03 < 10−5 < 10−5
↓ 0.0021 < 10−5 < 10−4

0.04 < 10−5 < 10−5

Table 5: p-Values for the change of one parameter in the PSG
set. Values highlighted in green indicate that changing Ĵ and
Θ, while keeping the other one constant, results in a statisti-
cally significant change in improvements. Values in blue are
significant before Bonferroni correction.

3 → 6 → 9

0.005 < 10−4 0.00045
↓ < 10−5 < 10−5 < 10−5

0.01 0.04 0.059
↓ < 10−4 < 10−5 < 10−5

0.02 < 10−5 0.00068
↓ < 10−5 < 10−5 < 10−5

0.03 < 10−4 0.011
↓ < 10−4 < 10−5 < 10−5

0.04 < 10−5 < 10−5

Table 6: p-Values for the change of one parameter in the OM
set. Values highlighted in green indicate that changing Ĵ and
Θ, while keeping the other one constant, results in a statisti-
cally significant change in improvements. Values in blue are
significant before Bonferroni correction.
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Θ 0.005 0.01 0.02 0.03 0.04

Ĵ 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

Min 0.57 0.54 0.57 0.56 0.5 0.49 0.52 0.44 0.41 0.52 0.44 0.38 0.52 0.44 0.38
Max 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Mean 0.84 0.83 0.83 0.81 0.78 0.78 0.8 0.77 0.76 0.8 0.77 0.75 0.8 0.77 0.75

Median 0.86 0.81 0.81 0.83 0.75 0.75 0.83 0.74 0.72 0.83 0.74 0.72 0.83 0.74 0.72
Std. Dev. 0.11 0.12 0.12 0.13 0.15 0.15 0.14 0.16 0.17 0.14 0.16 0.17 0.14 0.16 0.17

Table 7: Statistics of the change in peak demand after optimization in the PS-Nonuniform set.

Θ 0.005 0.01 0.02 0.03 0.04

Ĵ 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

Min 0.84 0.8 0.8 0.83 0.77 0.75 0.81 0.73 0.7 0.8 0.72 0.7 0.8 0.71 0.69
Max 0.98 0.93 0.93 0.98 0.92 0.91 0.98 0.92 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Mean 0.9 0.88 0.88 0.89 0.84 0.83 0.88 0.81 0.79 0.93 0.88 0.88 0.98 0.98 0.97

Median 0.91 0.87 0.87 0.88 0.84 0.83 0.88 0.81 0.78 0.92 0.84 0.93 1.0 1.0 1.0
Std. Dev. 0.032 0.036 0.036 0.035 0.042 0.043 0.04 0.05 0.071 0.066 0.099 0.12 0.056 0.068 0.085

Table 8: Statistics of the change in peak demand after optimization in the PS-Uniform set.

Θ 0.005 0.01 0.02 0.03 0.04

Ĵ 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

Min 0.51 0.48 0.48 0.47 0.4 0.37 0.47 0.34 0.27 0.47 0.29 0.25 0.47 0.28 0.24
Max 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
Mean 0.79 0.77 0.77 0.78 0.73 0.72 0.77 0.71 0.68 0.77 0.7 0.67 0.77 0.69 0.66

Median 0.85 0.81 0.8 0.83 0.79 0.75 0.82 0.76 0.72 0.82 0.76 0.72 0.82 0.76 0.72
Std. Dev. 0.14 0.15 0.15 0.14 0.17 0.18 0.14 0.19 0.21 0.14 0.19 0.22 0.14 0.2 0.22

Table 9: Statistics of the change in peak demand after optimization in the PSG set.

Θ 0.005 0.01 0.02 0.03 0.04

Ĵ 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

Min 0.97 0.97 0.97 0.52 0.94 0.94 0.89 0.89 0.88 0.84 0.85 0.85 0.82 0.81 0.81
Max 0.98 0.98 0.98 0.97 0.97 0.97 0.94 0.94 0.94 0.93 0.92 0.92 0.92 0.9 0.89
Mean 0.98 0.98 0.98 0.94 0.95 0.95 0.92 0.91 0.91 0.89 0.88 0.88 0.88 0.85 0.85

Median 0.98 0.98 0.98 0.95 0.95 0.95 0.92 0.91 0.91 0.89 0.88 0.88 0.88 0.85 0.85
Std. Dev. 0.0037 0.0037 0.0037 0.078 0.0069 0.0069 0.011 0.011 0.013 0.019 0.015 0.015 0.021 0.019 0.019

Table 10: Statistics of the change in overshoot after optimization in the OM set.
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A.5 Omitted Figures

Figure 11: MIP gaps for the various settings of Ĵ and Θ in the
PS-Nonuniform instance set. Every dot corresponds to one
instance. Colors are used to distinguish the columns.

Figure 12: MIP gaps for the various settings of Ĵ and Θ in
the PSG instance set. Every dot corresponds to one instance.
Colors are used to distinguish the columns.

Figure 13: MIP gaps for the various settings of Ĵ and Θ in
the OM instance set. Every dot corresponds to one instance.
Colors are used to distinguish the columns.
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(a) Improvement in peak demand by in-
creasing Θ while keeping Ĵ constant

(b) Improvement in peak de-
mand by increasing Ĵ while
keeping Θ constant.

Figure 14: Additional Results for set PS-Nonuniform, one
point per instance. The columns are the different settings for
Ĵ and Θ. The Y axis indicates the change in peak demand after
optimization. Color indicates how well the instance could be
optimized.

(a) Improvement in peak demand by in-
creasing Θ while keeping Ĵ constant.

(b) Improvement in peak de-
mand by increasing Ĵ while
keeping Θ constant.

Figure 15: Additional Results for set PS-Uniform, one point
per instance. The columns are the different settings for Ĵ and
Θ. The Y axis indicates the change in peak demand after opti-
mization. Color indicates how well the instance could be opti-
mized.

(a) Improvement in peak demand by in-
creasing Θ while keeping Ĵ constant

(b) Improvement in peak de-
mand by increasing Ĵ while
keeping Θ constant.

Figure 16: Additional results for set PSG, one point per in-
stance. The columns are the different settings for Ĵ andΘ. The
Y axis indicates the change in peak demand after optimization.
Color indicates how well the instance could be optimized.

(a) Relative overshoot reduction by in-
creasing Θ while keeping Ĵ constant

(b) Relative overshoot reduc-
tion by increasing Ĵ while
keeping Θ constant.

Figure 17: Additional results for set OM, one point per in-
stance. The columns are the different settings for Ĵ andΘ. The
Y axis indicates the change in overshoot after optimization.
Color indicates how well the instance could be optimized.
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A.6 Discovered Motifs

(a) Motif A (b) Motif B (c) Motif C

(d) Motif D (e) Motif E (f) Motif F

(g) Motif G (h) Motif H (i) Motif I

Figure 18: All discovered motifs. Each black line indicates one occurrence of the respective motif.
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(j) Motif J (k) Motif K (l) Motif L

(m) Motif M (n) Motif N (o) Motif O
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