Algorithms for Multi-Criteria One-Sided
Boundary Labeling*

Marc Benkert!**, Herman Haverkort?, Moritz Kroll', and Martin
Noéllenburg!**

! Faculty of Informatics, Karlsruhe University, P.O. Box 6980, 76128 Karlsruhe,
Germany. http://illwww.iti.uka.de/algo/group
2 Department of Computing Science, TU Eindhoven, Postbus 513,
5600 MB Eindhoven, Netherlands

Abstract. We present new algorithms for labeling a set P of n points
in the plane with labels that are aligned to the left of the bounding box
of P. The points are connected to their labels by curves (leaders) that
consist of two segments: a horizontal segment, and a second segment
at a fixed angle with the first. Our algorithm finds a collection of non-
intersecting leaders that minimizes the total number of bends, the total
length, or any other ‘badness’ function of the leaders. An experimental
evaluation of the performance is included.

1 Introduction

Presentations of visual information often make use of textual labels for features
of interest within the visualizations. Examples are found in diverse areas such
as cartography, anatomy, engineering, sociology etc. Graphics in these areas
may have very dense regions in which objects need textual labels to be fully
understood. A lot of research on automatic label placement has concentrated on
placing labels inside the graphic itself, see the bibliography on map labeling by
Wolff and Strijk [6]. However, this is not always possible: sometimes the labels
are too large, the labeled features lie to close to each other, or the underlying
graphic should remain fully visible. In such cases it is often necessary to place
the labels next to the actual illustration and connect each label to its object by a
curve—see Figure 1. This is also denoted as a call-out, and the curves are called
leaders. Geographic maps that depict metropolitan areas and medical atlases are
examples where call-outs are used.

To produce a call-out, we have to decide where exactly to place each object’s
label and how to draw the curves such that the connections between objects and
labels are clear and the leaders do not clutter the figure. Clearly, leaders should
not intersect each other to avoid confusion, and several authors have designed

* This work was started on the 9th “Korean” Workshop on Computational Geometry
and Geometric Networks at Schloss Dagstuhl, Germany, 2006.

** Supported by grant WO 758/4-2 of the German Science Foundation (DFG) and
partially by EU under grant DELIS (contract no. 001907).

2 Benkert et al.
Nollestadt Nollestadt
Haverdorf —— l Haverdorf ——
Benkersund 411 Benkersund ——/»
Krollberg Krollberg

Fig. 1: Examples of call-outs with bends of 90° (po-leaders) or 120° (do-leaders), re-
spectively. The leaders for Haverdorf are direct leaders.

algorithms to produce non-intersecting leaders in several settings. Fekete and
Plaisant [5] label point objects with polygonal leaders with up to two bends
in an interactive setting, Ali et al. [1] describe heuristics to label points with
straight-line and rectilinear leaders. Bekos et al. use rectilinear leaders with up
to two bends. They study settings with labels arranged on one, two, or four
sides of the bounding box of the illustration [4], in multiple stacks to the left [2],
or where the objects to be labeled are polygons rather than points [3]. Maybe
surprisingly, relying exclusively on straight-line leaders is not always the best
choice. The reason is that the variety of different slopes among the leaders may
clutter the figure, especially if the number of labels is large. Leaders tend to look
less disturbing if their shape is more uniform and a small number of slopes is
used, like with rectilinear leaders. On the other hand, leaders appear easier to
follow if their bends are smooth, so 90° angles may rather be avoided.

In this work we study how to label points with labels on one side of the
illustration and leaders with at most one bend. Bekos et al. [4] only studied
how to minimize the total leader length with rectilinear leaders in this setting;
their algorithm runs in O(n?) time. In this paper we consider other optimization
criteria, we consider leaders with smoother bends (using obtuse angles), and
for the case of rectilinear leaders with minimum total length, we improve the
running time to O(nlogn). We will now state our problem more precisely.

Problem statement. We are given a set P of n points and n disjoint rectangles,
possibly of different sizes, called labels. The right edges of the labels all lie on
a common vertical line, which lies to the left of all points in P. No two labels
touch each other.

Labels can be connected to points by leaders that consist of two line segments:
a horizontal segment, called the arm, that is attached to the right edge of the
label and extends to the right, and a second segment, called the hand, that
connects the arm to the point. In all leaders the angle between the arm and the
hand must be some constant a. If & = 90° the leaders are called po-leaders; if
a > 90°, we call them do-leaders®. Both leader types are illustrated in Figure 1.
If the arm connects the label directly to the point, omitting a hand, the leader is
a direct leader. When « is fixed, a leader [is fully specified by its point p(l) and
the height (y-coordinate) of its arm. We assume that the ‘badness’ of a leader [is
given by a function bad(l). Natural choices for bad(l) would be, for example, the
length of I or the number of bends (0 or 1), or functions taking the interference

3 Following the naming scheme of Bekos et al. [4].

Algorithms for Multi-Criteria One-Sided Boundary Labeling 3

of leaders with the underlying map into account. A labeling L is a set of n leaders
that connects all points to a unique label and all labels to a unique point. If no
two leaders in L intersect each other, we say that L is crossing-free.

The problem we want to solve is the following: for a given set of points, a
given set of labels, a given angle o, and a given badness function bad(), find a
crossing-free labeling L such that), ; bad(l) is minimized.

Our results. In Section 2 we present algorithms for po-leaders (a = 90°):
an O(n?)-time algorithm that works with arbitrary badness functions, and an
O(nlogn)-time algorithm for labelings with minimum total leader length (thus
improving the O(n?)-bound of Bekos et al. [4]).

In Section 3 we present algorithms for do-leaders (o > 90°): again first a
general algorithm, which runs in O(n®) time, and then a faster algorithm for
minimum total leader length, which takes O(n?) time. In Section 4 we present
the results of some preliminary experiments with our algorithms, and in Section 5
we briefly discuss possible extensions.

2 One-sided boundary labeling using po-leaders

In this section we study how to compute an optimal crossing-free labeling with
leaders that have 90° bends. In Section 2.1 we describe a general solution that
works for any badness function bad(). In Section 2.2 we will give a faster solution
for the case where bad(l) is simply the length of I.

For simplicity we assume that no two points lie on a horizontal or a vertical
line and no point lies on a horizontal line with an edge of a label (otherwise care
should be taken to break ties in a consistent manner).

2.1 A dynamic program for general badness functions

We present a dynamic programming solution based on the following idea. Let r
be the rightmost point to be labeled. Consider any optimal crossing-free labeling
L; let £ be the label associated with r in L. Then L consists of an optimal leader
[connecting £ to , an optimal crossing-free labeling for the remaining labels and
points below the arm of [, and an optimal crossing-free labeling for the remaining
labels and points above the arm of [—see Figure 2.

Consider the subdivision of the plane into O(n) strips, induced by the hori-
zontal lines through the points and the horizontal edges of the labels. Note that
the bottommost strip is unbounded in downward direction, and the topmost
strip is unbounded in upward direction. To decide which labels and points lie
below the leader [to r, we only need to know in which strip the arm of [lies;
we do not need to know where exactly it is in the strip. When an arm lies on a
strip boundary, we can consider it to lie in the strip above the boundary or in
the strip below; the choice determines whether a point on the strip boundary is
considered to lie above or below the leader.

Hence an optimal crossing-free labeling can be found by trying all possible
choices of the strip ¢ in which to place the arm of the leader to r, and for each

4 Benkert et al.

|

Fig. 2: The recursive structure of an optimal solution. By the choice for the strip that
contains the arm of the leader to the rightmost point, the problem is separated into
two subproblems. As illustrated by strip ¢ in the lower subproblem, not all choices for
the separating strip o yield feasible subproblems: in this case there are two points and
only one label below o.

choice, compute the optimal leader to r that has its arm in ¢, and compute the
optimal crossing-free labelings below and above the arm recursively. Note that
we only need to consider feasible choices of o, that is, choices of ¢ such that the
number of labels and the number of points below ¢ and to the left of r are the
same (for other choices of o no labeling would be possible). In this case, as can
be seen in Figure 2, the points to be matched below ¢ are simply the leftmost
k points in the region defined by the strips below o, where k is the number of
labels below o; analogously, the points to be labeled above ¢ are the leftmost
points in the region defined by the strips above o.

Let us denote by S(3,7) the set of strips between strip 8 (bottom) and 7
(top), excluding 8 and 7. Let (8, 7) be the k-th leftmost point in S(3, 7), where
k is the number of labels k(3, 7) that lie completely inside S(8, 7). Our recursive
approach thus solves subproblems of the following form: for the set of strips
S(B,7), compute the optimal matching between the labels that lie completely
inside S(f, 7) and the matching number of leftmost input points inside (and on
the boundary of) S(5, 7). The minimum total badness BAD|3, 7] of the optimal
crossing-free labeling for S(3,7) is zero if k(8,7) = 0, and otherwise it can be
expressed as:

feasiblinalgS(B,T) bad(l*(r(8,7),0)) + BAD[B,0] + BAD]|o, 7]

where I*(r(08,7),0) is the optimal leader to r(8,7) with its arm in strip o.

Theorem 1. Assume we are given a set of points P, a set of labels as described
in Section 1, and a badness function bad() such that we can determine, in O(n)
time, the badness and the location of an optimal po-leader to a given point with

Algorithms for Multi-Criteria One-Sided Boundary Labeling 5

its arm in a given height interval (independent of the location of other leaders).
We can compute a crossing-free labeling with po-leaders for P with minimum
total badness in O(n?) time and O(n?) space.

Proof. We first sort all labels and points by y-coordinate, and all points by -
coordinate, which requires O(nlogn) time. We also compute and store I*(p, o)
and bad(I*(p, o)) for every point p and every strip o, in O(n?) time and O(n?)
space. Then we compute the optimal crossing-free labeling by dynamic program-
ming with memoization. Apart from the recursive calls, solving a subproblem
requires deciding for which choices of ¢ the number of labels below ¢ matches the
number of points below o, and looking up *(r(3,7),0) and bad(I*(r(3,7),0))
for those strips. Given the list of all points sorted by z-coordinate and the list of
labels and points by y-coordinate, we can construct a list of all labels and points
in the given subproblem sorted by y-coordinate in O(n) time. By scanning this
list, we can determine in O(n) time which choices of ¢ yield feasible subprob-
lems. The number of different subproblems that need to be solved is quadratic
in the number of strips, so we need to solve O(n?) subproblems which are solved
in O(n) time each, taking O(n3) time in total. O

2.2 A sweep-line algorithm for minimizing the total leader length

For the special case of minimizing the total leader length one can do better than
in O(n?) time. We will give an algorithm that runs in O(nlogn) time and show
that this bound is tight in the worst case. However, before giving our algorithm,
we first prove the following Lemma, which we need for the proof of correctness
of our fast algorithms in this section and in Section 3.2.

Lemma 1. For any labeling L* with po- or do-leaders that may contain cross-
ings and has minimum total leader length, there is a crossing-free labeling L
whose total leader length does not exceed the total leader length of L*. This la-
beling L can be constructed from L* in O(n?) time.

The idea for proving this lemma is to show that we can eliminate all crossings
in L* by iteratively swapping the labels of two points whose leaders intersect.
Any of these swaps does not increase the total leader length; the complete proof
can be found in a full version of this paper.

We now describe our O(nlogn)-time algorithm to compute a crossing-free
labeling with po-leaders of minimum total length. The algorithm first scans the
input to divide it into parts that can be handled independently; then it uses a
sweep line algorithm for each of these parts.

The initial scan works as follows. Consider the horizontal strips defined in
the previous subsection. We traverse these strips in order from bottom to top,
counting for each strip o:

— pa,: number of points above o (incl. any point on the top edge of o);
— la,: number of labels above o (incl. any label intersecting o);
— pbs: number of points below o (incl. any point on the bottom edge of o);

6 Benkert et al.

Fig. 3: Left: Classification of strips in the plane sweep algorithm: neutral strips are
shaded, downward and upward strips are marked by arrows. When the sweep line
reaches the label ¢, the two black points are in W. Right: The completed minimum-
length labeling.

— lb,: number of labels below o (incl. any label intersecting o).

Note that for every strip, pa, + pb, = n, and fa, + b, is either n or n + 1.
We classify the strips in three categories and then divide the input into maximal
sets of consecutive strips of the same category (see Figure 3):

— downward: strips s such that pa, > fa, (and therefore pb, < €b,);
— upward: strips s such that pb, > ¢b, (and therefore pa, < la);
— neutral: the remaining strips; these have pa, = fa, and/or pb, = £b,.

Neutral sets are handled as follows: any point p that lies in the interior of a
neutral set is labeled with a direct leader.

Points in an upward set S (including any points on its boundary) are labeled
as follows. We use a plane sweep algorithm, maintaining a waiting list W of
points to be labeled, sorted by increasing z-coordinate. Initially W is empty.
We sweep S with a horizontal line from bottom to top. During the sweep two
types of events are encountered: point events (the line hits a point p) and label
events (the line hits the bottom edge of a label £). When a point event happens,
we insert the point in W. When a label event happens, we remove the leftmost
point from W and connect it to ¢ with the shortest possible leader. Using the
leftmost point for labeling ¢ prevents producing crossings in the further run of
our algorithm.

Points in downward sets are labeled by a symmetric plane sweep algorithm,
going from top to bottom.

Theorem 2. Given a set of points P and a set of labels as described in Section 1,
computing a crossing-free labeling with po-leaders of minimum total length for P
takes ©(nlogn) time and O(n) space in the worst case.

Algorithms for Multi-Criteria One-Sided Boundary Labeling 7

The proof of Theorem 2 will be available in a full version of the paper and
shows that the algorithm sketched above produces a crossing free labeling of
minimum length.

3 One-sided boundary labeling using do-leaders

In this section we study how to compute an optimal labeling with leaders that
have bends with a fixed angle o > 90°. In section 3.1 we describe a general
solution that works for any badness function bad(). In section 3.2 we will give a
faster solution for the case where bad(l) is simply the length of I. For simplicity
we assume that no two points lie on a line that makes an angle of 0°, 90°, or
« with the z-axis, and no point lies on a horizontal line with an edge of a label
(otherwise care should be taken to break ties in a consistent manner).

3.1 A dynamic program for general badness functions

We use the same approach as for po-leaders, solving subproblems of the form: for
a given region R, label the k points with the £ labels in that region, where R is
bounded from above and below by two leaders, and R is bounded on the right by
the vertical line through the rightmost point connected to those leaders. In fact
a subproblem was fully defined by specifying the strips 8 and 7 that contain the
arms of the leaders: this determined which labels lie inside R, and consequently
which point defines the vertical boundary line on the right.

In addition to specify 8 and 7 we now also have to specify the points b and ¢
to which the leaders that bound a subproblem are connected. This is illustrated
by Figures 4a and 4b: the subproblem defined by 3, 7,b and ¢ contains the point
r while the subproblem defined by 3, 7,4 and t contains the point ' instead.
The total number of different subproblems may thus increase to O(n*).

Fig.4: (a) The subproblem defined by 3,7,b and ¢. (b) The subproblem defined by
B,7,b" and t. (c) Because leaders have limited slope, no leader from r can reach £.

An additional complication is that as a result of the limited slope of leaders,
not every subproblem with the right number of labels and points can be solved—
see Figure 4c. The details are easily filled in and we get:

8 Benkert et al.

Theorem 3. Assume we are given a set of points P, a set of labels as described
in Section 1, a bend angle o, and a badness function bad() such that we can
determine, in O(n) time, the badness and the location of an optimal do-leader to
a gien point with its arm in a given height interval (independent of the location
of other leaders). We can now compute a crossing-free labeling with do-leaders
with bend angle o and minimum total badness for P, if such a labeling exists, in
O(n®) time and O(n*) space.

3.2 Minimizing the total leader length

Like with po-leaders, we can use a plane sweep algorithm instead of dynamic
programming to improve the running time for the special case of minimizing the
total leader length. In the description of our algorithm we distinguish downward
diagonals (lines of negative slope that make an angle of a with the z-axis) and
upward diagonals (lines of positive slope that make an angle of a with the z-axis).
For each label £ we can define three regions in the plane:

— A(?) is the relatively open half plane above the upward diagonal through the
upper right corner of /;

— B(¥) is the relatively open half plane below the downward diagonal through
the lower right corner of ¢;

— R(?) is the complement of A(¢) U B(¥).

Note that a do-leader from a point p to ¢ is possible if and only if p € R(¥).

The core of our approach is a recursive sweep-and-divide algorithm that takes
as input a list of labels £ and points P sorted in the order in which they would
be (first) hit by a downward diagonal sweep line that sweeps the plane bottom-
up and from left to right. For any line d, let £(d) be the set of labels whose
lower right corners lie below or on d, and let P(d) be the set of points that lie
below or on d. The algorithm sweeps the plane with a downward diagonal d up
to the first point where we have |P(d)| = |£(d)|. Observe that we will have to
find a one-to-one matching between P(d) and £(d), since no leaders are possible
between points below d and labels above d. We find such a matching as follows.

If P(d) # P, we make a recursive call on P(d) and £(d), and a recursive call
on the remaining input (P \ P(d) and £\ £(d)), see Figure 5a.

If P(d) = P, we find the lowest label £ € L. If no point of P lies in R({), we
report that no labeling can be found and terminate the algorithm. Otherwise we
make a leader from ¢ to the lowest point p in P N R(¢) (see Figure 5b and 5c¢);
then, if P\ {p} is not empty, we make a recursive call on P\ {p} and £\ {¢}.

The full algorithm is now as follows. We first sort £ and P into the order as
described above. We then run the recursive sweep-and-divide algorithm described
above. If the algorithm does not fail, the computed set of leaders has minimum
total length (as we will prove below), but it may contain crossings. We eliminate
these intersections with the algorithm described in the proof of Lemma 1.

Theorem 4. Assume we are given a set of points P, a set of labels as described
in Section 1, and a bend angle a. If there is a labeling for P with do-leaders with

Algorithms for Multi-Criteria One-Sided Boundary Labeling 9

jo° o° j_.q
j ¢

]
|
j'\'\ jj_.p jop

(a) (b) ()

Fig. 5: Nllustration of the length-minimization algorithm for do-leaders. (a) When the
sweep line hits p, we make recursive calls on the input under the sweep line and the
input above the sweep line. (b) The result of the recursive call under the sweep line.
(c) The result of the recursive call above the sweep line. Although ¢ is the lowest point,
¢ is attached to r, since ¢ cannot reach /.

bend angle o, we can compute a crossing-free labeling of minimum total leader
length in O(n?) time and O(n) space in the worst case. If such a labeling does
not exist, we can report infeasibility within the same time and space bounds.

The proof of the correctness of our algorithm is based on the idea to show that
any (not necessarily crossing-free) labeling can be transformed into the labeling
constructed by our recursive algorithm without increasing the total leader length.
Then Lemma 1 can be applied to eliminate the crossings of our solution. The
proof will be available in a full version of the paper.

4 Experimental evaluation

We implemented three variants of our algorithms: length minimization, bend
minimization and a hybrid method combining both objectives. The correspond-
ing badness functions badien, badbend, and badpyr, are defined as follows.

badien (1) = |1, (1)

0 if ! is direct
badpeng(l) =
advena(l) {1 otherwise
|hand(1)|

badny(1) = larm(7)]

+)\bcnd badbcnd (Z)a (3)

where | - | denotes the Euclidean length. Note that in badpy, we do not simply
reuse bade, but rather include the length ratio of the hand and the arm of a
leader which is motivated by the observation that a long hand on a short arm
looks worse than on a long arm. The parameter Apenq is used to adjust the weight
of badbend.

Furthermore, we implemented another badness term bad.s that measures
how close points in P lie to a leader [within a neighborhood strip N, () of

10 Benkert et al.

width v around [. This term can be added to the previous badness functions to
avoid that leaders pass by points with too little clearance. It is defined as

bades(l) = Aas Y <1—M> , (4)

pEN, () i

where Aqs is a weight parameter and d(p,!) is the distance between p and .
Adding bad.)s helps to reduce confusion when understanding the assignment of
points and labels, see Figure 6a generated using badie, and Figure 6b generated
using badien + bads.

We implemented our algorithms as a Java applet* and tested them on a map
showing the 21 mainland regions of France, see Figure 6. The labelings were
computed on an AMD Sempron 2200+ with 1GB main memory, which took
between 1 and 5ms for the po-leaders and 12ms for the do-leaders with bend
angle o = 135°. Running the dynamic programs in a top-down fashion, for po-
leaders 39% of O(n?) table entries were computed, while for the do-leaders only
0.21% of O(n*) entries were computed. We also ran the algorithms on artificially
generated instances of 100 points uniformly distributed in a unit square. Here
the computation of the po-leaders took 234 ms averaged over 30 instances and
on average 22% of the table entries were computed. The average running time
for the do-leaders on the same instances was 3328 ms and on average 0.01% of
the table entries were computed.

po-leaders vs. do-leaders. Both po-leaders and do-leaders in Figure 6 have advan-
tages and disadvantages. Obviously, it is not possible to judge whether po-leaders
or do-leaders are generally superior based on our single example map. The answer
depends both on the labeled image and on personal taste. Still, an advantage of
the do-leaders is that due to the smoother angle their shape is easier to follow
visually, which simplifies finding the correct label for a point and vice versa.

Optimizing for length vs. bends. Minimizing the total leader length seems to
give more comprehensible and visually more pleasing results than minimizing
the total number of bends. One reason for this is that minimizing the length
favors having each label close to the point being labeled. This results in a label
assignment where the vertical order of the labels tends to reflect the vertical
order of the points in the figure fairly well. In contrast, when minimizing the
number of bends this correspondence is more easily lost, which can be confusing,
compare Figures 6b and 6¢. In addition, the longer the hand segments are, the
harder they are to follow and this is not considered in badpeng. Nevertheless,
although direct leaders are easy to read, their number should not be maximized
without considering the shape and length of the non-direct leaders. Therefore
the hybrid badness function applied in Figures 6d and 6f is designed to find a
good compromise between both optimization goals.

4 The applet is available at http://illwww.iti.uni-karlsruhe.de/labeling.

Algorithms for Multi-Criteria One-Sided Boundary Labeling 11

Nord—pas de Calais

Lorraine

Nord-pas de Calals

Lorraine

Picardie

Haute-Normany

Midi-Pyrenees

Langusdoc—Roussilion

Picardie

Champagne-Ardenne

Bourgogne

Languedoc-Roussilion

PACA

Alsace

(a) po-leaders and badness badien-

Lorralne

Alsace

(b) po-leaders and badness badien + badcis.

Lorralne

Nord—pas de Calals

Champagne-Ardenne

Plcardle

Haute-Normandie

Pays-de-la-Lolre

Centre

Languedoc-Roussilion

Nord—pas de Calals

Champagne-Ardenne

Plcardle

Pays-de-la-Lolre

Centre

Auvergne

Languedoc-Roussilion

PACA

PACA

Alsace

(c) po-leaders and badness badvend+ bad.is.

Nord—pas de Calais

Lorraine

Picardie

Haute-Norman;

Limousin

Franche-Comte

Aquitaine

 Midi-Pyrenees

Rhone-Alpes

LanguedocRoussilion

(e) do-leaders and badness badien + badcis.

Alsace

(d) po-leaders and badness badnyb, + badcis.

Alsace

Limousin

Aquitaine

Franche-Comte

Rhone-Alpes

LanguedocRoussilion

(f) do-leaders and badness badnyy + badcis.

Fig. 6: One-sided labelings for the mainland regions of France.

12 Benkert et al.

Conclusion. We find that minimizing the length is more important for the aes-
thetic quality of a labeling than minimizing the bends. Combining both aspects
in a hybrid badness function leads to a good compromise between the two objec-
tives. Furthermore the closeness term bad)s turned out to be of great importance
for good labelings.

5 Concluding remarks

An interesting future task is to reflect the interference of a leader and the back-
ground image in the badness function.

We also looked at the case where the labels are placed on two opposite sides
of the point-containing rectangle. Using dynamic programming and similar ideas
as for the one-sided case (a split line that splits a subproblem into two two-sided
subproblems), we could establish an O(n®)- and O(n'*)-time algorithm for the
po- and do-leaders, respectively. Unfortunately, not only the asymptotical run-
ning times of these algorithms were bad, it also turned out that these algorithms
are useless in practice since they do not compute a result in acceptable time.

Hence, for producing two-sided labelings in practice we suggest to use the
O(n?)-time po-leader length-minimization algorithm of Bekos et al. [4] or to split
the instance in the middle and solve the resulting one-sided problems. We leave
it as an open problem to find efficient algorithms for dividing points between
the left and the right side in an appropriate fashion to find good two-sided
po- and do-labelings. Note that splitting in the middle does in general not yield
aesthetically good results. For the do-leaders a feasible instance can even become
infeasible by splitting in the middle.

References

1. K. Ali, K. Hartmann, and T. Strothotte. Label layout for interactive 3D illustrations.
J. of WSCG, 13:1-8, 2005.

2. M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Multi-stack boundary
labeling problems. In S. Arun-Kumar and N. Garg, editors, Proc. Foundations
of Software Technology and Theoretical Computer Science (FSTTCS2006), volume
4337 of Lecture Notes in Computer Science, pages 81-92, 2006.

3. M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Polygon labelling of
minimum leader length. In K. Misue, K. Sugiyama, and J. Tanaka, editors, Proc.
Asia Pacific Symp. on Inform. Visualisation (APVIS2006), volume 60 of CRPIT,
pages 1521, 2006.

4. M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary labeling: Models
and efficient algorithms for rectangular maps. Computational Geometry: Theory &
Applications, 36:215-236, 2007.

5. J.-D. Fekete and C. Plaisant. Excentric labeling: Dynamic neighborhood labeling
for data visualization. In Proc. of the SIGCHI conference on Human factors in
computing systems (CHI99), pages 512-519, 1999.

6. A. Wolff and T. Strijk. The map-labeling bibliography. http://illwww.iti.uni-
karlsruhe.de/~awolff/map-labeling/bibliography /, 2006.

