
Generating Graphs with Predefined k-Core
Structure∗

Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea
Wagner

Faculty of Informatics, Universität Karlsruhe (TH),
{baur,gaertler,goerke,krug,wagner}@informatik.uni-karlsruhe.de

Summary. The modeling of realistic networks is of great importance for modern
complex systems research. Previous procedures typically model the natural growth of
networks by means of iteratively adding nodes, geometric positioning information,
a definition of link connectivity based on the preference for nearest neighbors or
already highly connected nodes, or combine several of these approaches.

Our novel model is based on the well-know concept of k-cores, originally in-
troduced in social network analysis. Recent studies exposed the significant k-core
structure of several real world systems, e.g. the AS network of the Internet. We
present a simple and efficient method for generating networks which strictly adhere
to the characteristics of a given k-core structure, called core fingerprint. We show-
case our algorithm in a comparative evaluation with two well-known AS network
generators.

1 Introduction

The interest in modeling classes of graphs has significantly increased by re-
cent studies of complex systems such as the Internet, biological networks, river
basins, or social networks. While random graphs have been studied for a long
time, the standard models appear to be inappropriate because they do not
share certain abstract characteristics observed for those systems. One of these
characteristics is the k-core structure which can be interpreted as a nested
decomposition separating parts of the network based on their density. This
decomposition is commonly applied in order to identify central parts of the
networks since it peels the network layer by layer, filtering out less impor-
tant parts that are sparsely connected with the remaining graph. Example
applications are network fingerprinting with LaNet-vi [1], protein network
analyses [18] or the exploration of modern social networks [6].

∗ This work was partially supported by the DFG under grant WA 654/14-3 and
EU under grant DELIS (contract no. 001907).

A crucial field of application of graph generators is the simulated evolution
of a given network, granting insights in both its past development and its
anticipated future behavior. One prominent example is the Internet at the
Autonomous System level where various models have emerged over the last few
years, including BRITE [12], Inet [9], nem [10], and various models presented
by Pastor-Satorras and Vespignani [14]. While this network has been observed
to possess a very distinct k-core structure, kept track of over a long period
of time, all generating tools so far ignore this structure, and thus largely fail
to do justice to this significant property. Overall, up to our knowledge an
approach to create networks with a given k-core structure is missing so far.

To address this issue we refine the abstract measurement of core sizes to
a core fingerprint that additionally includes information on the interconnec-
tivity of each pair of shells. This allows us to design a simple and efficient
method to incrementally generate randomized networks with a predefined k-
core structure, starting with the maximum core. By utilizing two results on
edge rewiring we thus achieve a structure that precisely matches the core
fingerprint.

This paper is organized as follows: first we clarify the preliminaries and
state some basic properties for k-core structures in Section 2, then we give the
description of the network generator in Section 3. In Section 4 we evaluate our
model in comparison to two well-known generators with respect to commonly
used network properties. Finally we give some concluding remarks.

2 Preliminaries

Let G = (V,E) be a simple, undirected graph. A subset V ′ ⊆ V
of the node set induces a subgraph G[V ′] := (V ′, E′) with E′ :=
{{u, v} | u, v ∈ V ′, {u, v} ∈ E}. The degree deg(v) of the node v is the number
of incident edges. A nested decomposition of G is a finite sequence (V0, . . . , Vk)
of subsets of nodes such that V0 = V , Vi+1 ⊆ Vi for i < k, and Vk 6= ∅.

Cores are a widely used realization of nested decompositions. The concept
was originally introduced by Seidman [17] and generalized by Batagelj and
Zaversnik [3]. Constructively speaking, the i-core of an undirected graph is
defined as the unique subgraph obtained by iteratively removing all nodes of
degree less than i. This procedural definition immediately gives rise to a con-
struction algorithm that can easily be implemented. Moreover, it is equivalent
to the closed definition of the i-core as the set of all nodes with at least i adja-
cencies to other nodes in the i-core. The core number of a graph is the smallest
i such that the (i + 1)-core is empty, and the corresponding i-core is called
the core of a graph. Figure 1 depicts the core decomposition of an example
graph with a core number of 4. The core decomposition can be computed in
linear time with respect to the graph size [2].

A node has coreness i, if it belongs to the i-core but not to the (i+1)-core.
We call the collection of all nodes having coreness i the i-shell. An edge {u, v}

is an intra-shell edge if both u and v have the same coreness, otherwise it is
an inter-shell edge.

Fig. 1. A k-core decomposition with 5 core shells.

Informally speaking, the coreness of a node can be viewed as a robust
version of the degree, i. e., a node of coreness i retains its coreness even after
the removal of an arbitrary number of nodes of smaller coreness.

Next, we summarize two simple facts about the relation of intra- and inter-
shell edges.

Lemma 1 (Rewiring). Let G = (V,E) be a graph. Let u, v ∈ V be two
non-adjacent nodes with the same coreness and {u, w}, {v, w′} ∈ E two edges
such that coreness (u) ≤ min{coreness (w) , coreness (w′)}. Then G′ := (V,E′)
with E′ := E \ {{u, w}, {v, w′}} ∪ {u, v} has the same core decomposition
as G. Conversely, let u, v ∈ V be two adjacent nodes with the same core-
ness and w, w′ ∈ V such that coreness (u) ≤ min{coreness (w) , coreness (w′)}
and {u, w}, {v, w′} 6∈ E. Then G′′ := (V,E′′) with E′′ := E \ {u, v} ∪
{{u, w}, {v, w′}} has the same core decomposition as G.

Lemma 2 (Swapping). Let G = (V,E) be a graph, u, v, w, w′ ∈ V be four
nodes all having the same coreness, {u, v}, {w, w′} ∈ E be two intra-shell
edges, and {u, w}, {v, w′} 6∈ E. Then the graph G′ := (V,E′) with E′ :=
E \{{u, v}, {w, w′}}∪{{u, w}, {v, w′}} has the same core decomposition as G.

The correctness of both lemmas follows directly from the definition. Informally
speaking, Lemma 1 allows for two disconnected nodes of the same coreness to
each remove one edge to some nodes of higher coreness and instead become
connected, and vice versa, without changing the decomposition. Furthermore,
according to Lemma 2 we can swap the endnodes of intra-shell edges if this
does not interfere with existing connections. Figure 2 illustrates these two
lemmas for an example graph. Using these statements, we can now establish

(a) original graph

(b) after rewiring (c) after swapping

Fig. 2. Rewiring and swapping in an example graph.

(tight) bounds of the sizes of cores and shells.

Lemma 3. Let G = (V,E) be a graph, (V0, . . . , Vk) its core decomposition
and Gi := (Vi, Ei) := G[Vi] the i-core. Then the size of every i-core is bounded
as follows:

i + 1 ≤ |Vi| and
(i + 1)i

2
≤ |Ei| . (1)

Let ni := |Vi \ Vi+1| be the number of nodes with coreness i and mi :=
|Ei \ Ei+1| the number of all edges whose endnodes with minimum core-
ness has coreness i for 0 ≤ i ≤ k (for convenience we define Vk+1 := ∅
and Ek+1 := ∅). Then the size of the i-shell is bounded as follows:

0 ≤ ni ≤ |V | (2)⌈
i·|ni|

2

⌉
, if ni > i(

ni

2

)
+ ni · (i− ni + 1) , if ni ≤ i

}
≤ mi ≤

{
i · ni , if i < k

i · ni − i2+i
2 , if i = k

(3)

Note that the bounds for the i-core (Eq. 1) are trivially obtained from the def-
inition. The bounds for the i-shell (Eq. 2 and 3), however, use the above two
lemmas, i. e., the shell has the minimum number of edges, if it has the max-
imum possible number of intra-shell edges, since each such edge contributes
twice, and a minimum number of inter-shell edges. An analogous reasoning
yields the upper bounds.

3 Core Generator

In this section, we first introduce a set of relevant parameters for the con-
struction of core structures and discuss which combinations of these lead to
feasible instances, i. e., are capable of realizing a graph with a predefined core
structure. Then we describe our basic algorithm that generates such graphs,
and point out several variations.

As the 0-shell only contains isolated nodes and in order to reduce technical
peculiarities, we restrict ourselves to generating graphs with an empty 0-shell.

3.1 Input Parameters

There are several possibilities to specify core structures. Of the quantitative
approaches, the most obvious is to give the number of nodes per shell, the
number of intra-shell edges, and the number of inter-shell edges (for each pair
of shells). This can be coded as a vector N ∈ Nk

0 where Ni is the number of
nodes in the i-shell and a symmetric matrix M ∈ Nk×k

0 , where Mi,j contains
the number of edges connecting the i-shell with the j-shell. For example, the
graph (omitting isolated nodes) given in Figure 1 has the following represen-
tation:

N := (4, 3, 2, 5) and M :=

3 1 0 0
1 2 2 0
0 2 0 6
0 0 6 10

Clearly, the implied sizes of the shells have to respect the bounds established
in Lemma 3. On the one hand, this kind of specification of core structures
provides the maximum degree of freedom, i. e., the user can configure the size

distribution of each shell and is only limited by constraints ensuring consis-
tency. On the other hand, the user has to specify every detail which can be
fairly complex and time consuming for larger networks and non-trivial core
structures. For example, the current network of the Autonomous Systems has
a (maximum) core index of about 30. In order to generate a graph with such a
core decomposition almost 500 parameters need to be specified in this model.

We propose a slightly modified set of input parameters where the ma-
trix M is replaced by a vector D ∈ [0, 1]k specifying the density of the shells
with respect to the bounds given in Lemma 3. This greatly reduces the num-
ber of parameters and only 2 · k parameters has to be provided. Moreover, a
consistency check of the vector D is not required anymore as D is defined as
a relative density (with respect to tight bounds) and not absolute values. On
the downside, the user cannot precisely specify where edges will be realized in
order to provide the given density of the shell, i. e., most of the edges could be
inter-shell edges instead of intra-shell edges. This can partially be fixed by a
post-processing step applying the rewiring lemma. Another minor disadvan-
tage is the numerical issue that the given density may only be approximated
as the defined density value implies a fractional number of edges.

3.2 General Method

Next, we describe our technique to generate graphs with a predefined core
fingerprint. As we will shortly see, the method can handle both kinds of inputs,
i. e., the shell connectivity matrix M as well as the density vector D.

The basic idea of our generator is to grow a graph according to the core
structure from the inside to the outside. We start from the empty graph
which realizes the empty (k + 1)-core and iteratively extend this graph in
order to add the next lower shell. The correctness follows by the invariant
that newly added nodes of a lesser coreness cannot interfere with previously
built shells by definition. The pseudo code for our generator using the shell-
connectivity matrix M is given in Algorithm 1. As the absolute numbers of
edges both between and inside core shells are given, it is sufficient to choose
just a non-adjacent node pair. In order to guarantee that the coreness of nodes
in the i-shell will not exceed i, we predefine an order σ that can be used a
proof. More precisely, we define newly created edges as directed such that
inter-shell edges point for the lower shell to the upper shell and intra-shell
edges are directed in accordance to our predefined order σ. The crucial point
is that we ensure, during the generation, that each node in Vi has a maximum
out-degree of k. This allows us to use σ as an ordering to remove nodes with
degree less or equal than k, thus proving that the coreness of nodes in Vi does
not exceed i. We are therefore left to guarantee that the coreness is not strictly
less than i but exactly i. An example where this property is violated is given
in Figure 3(a). However, we can remedy such a situation by a sophisticated
movement of edges. Two cases exists, an inter-shell edge starting from a node
in Vi with degree greater than i can be moved to another node in Vi with

Algorithm 1: Core Generator
Input: Integer k, vector N ∈ Nk

0 , symmetric matrix M ∈ Nk×k
0

Output: Graph G = (V, E)
Data: Lists Vi for 1 ≤ i ≤ k

V ← ∅; E ← ∅
for i← k to 1 do

create Ni new nodes and store them in Vi

define an ordering σ on Vi

for j ← i to k do
for m← 1 to Mi,j do

if minv∈Vi outdeg(v) ≥ k then
Error, too many edges are requested!1

if i=j then
select vi ∈ Vi, vj ∈ Vi with {vi, vj} 6∈ E, σ(vi) < σ(vj),
and outdeg(vi) < k
E ← E ∪ (vi, vj)

else
select vi ∈ Vi, vj ∈ Vj with {vi, vj} 6∈ E and outdeg(vi) < k
E ← E ∪ (vi, vj)

remove direction of edges
while minv∈Vi deg(v) < i do2

vi ← argminv∈Vi
deg(v)

if ∃{vj , w} ∈ E with vj ∈ Vi \N(vi) and w ∈ V then
E ← (E \ {{vj , w}}) ∪ {{vi, vj}}3

else
randomly select vj ∈ Vi with deg(vj) > i
randomly select v′j ∈ N(vj) \N(vi)
E ← (E \ {{vj , v

′
j}}) ∪ {{vi, v

′
j}}4

V ← V ∪ Vi

return graph G = (V, E)

an erroneously low degree. If such an edge does not exist, then an intra-shell
edge starting from a node in Vi with degree greater than i can be moved in
the same way. It is easy to see that if the latter case does not hold either, then
the lower bound for the number of edges (Lemma 3) is violated and the core
fingerprint invalid.

In principle, the same generation scheme can be used if the density vector
is defined instead of the shell-connectivity matrix. The major difference now
is, that the number of edges to be inserted has to be estimated and that each
time we introduce a new edge, we have to decide whether to insert it as an
intra-shell or as an inter-shell edge. A suitable approach is to insert inter-shell
edges with probability Di and to insert intra-shell edges with probability (1−
Di), correspondingly. In some cases, however, the density score implies strict
numbers of intra-shell and inter-shell edges, thus this randomization can lead

(a) before rewiring (b) after rewiring

Fig. 3. Example which requires a rewiring. The input parameters are k =
3, N = (0, 0, 7), and Mi,j = 0 for (i, j) 6= (3, 3) and M3,3 = 11. Fig-
ure 3(a) shows the resulting graph according to the selection of the following
pairs: (1, 2), (3, 4), (5, 6), (7, 2), (3, 2), (5, 3), (7, 6), (1, 3), (4, 5), (7, 5), (6, 4). Although
eleven edges are generated, node 1 only has degree 2. After the rewiring of edge {3, 5}
where vj = 3 was selected, every nodes has coreness three.

to situations where each node already has an out-degree of i although further
edges have to be inserted. Applying our Lemma 1 can amend this dead end
and further edges can be inserted.

3.3 Refinements

As the core fingerprint is only one of the interesting characteristics, we briefly
discuss which other relevant features can be integrated in the generator.

The first characteristic is connectivity, i. e., how many connected compo-
nents exist per shell. Although the whole graph or even the i-core is connected,
the i-shell can have several disconnected components. In order to prevent this,
the user can specify the number and size of connected components. The gen-
erator will then first create a spanning forest and mark those edges as not
rewirable. This approach implies a trade-off since not every combination of
a valid shell-connectivity matrix/density vector and number and size of con-
nected components can be realized. This conflict can be resolve by increasing
or decreasing the predefined number of edges or the number and size of con-
nected components depending on the users’ interests.

A second highly popular feature is the degree distribution. In a post-
processing step, we can apply a sequence of rewirings (Lemma 1) and swap-
pings (Lemma 2) in order to approach a given degree distribution.

4 Modeling the AS Network

An important application of a core-aware network generator is the simulation
of the Internet at the AS level. In this section we compare networks gener-
ated by our method and established topology generators with an exemplary
snapshot of the real AS network at the router level provided by the Oregon
Routeviews project [15] at midnight on January 1, 2006 (oix-full-snapshot-
2006-01-01-0000). This graph consists of 21419 nodes and 45638 edges.

4.1 Topology Generators

The first methods to generate networks with Internet-like structure date back
to the 1990s and a multitude of techniques has been proposed since then.
Among the most popular and widely used tools we have chosen Inet-3.0 [9]
and BRITE [12] for our comparison since these are commonly included in
other studies which cover a broader range of existing models [11, 9]. Although
nem [10] also seems promising we do not take it into account because of its
limitation to networks not greater than 4000 nodes.

The Internet topology generator Inet [9] generates an AS-level representa-
tion of the Internet. Its developers claim that “it generates random networks
with characteristics similar to those of the Internet from November 1997 to
Feb 2002, and beyond”. Basically, Inet generates networks with a degree dis-
tribution which fits to one of the power laws originally found by Faloutsos et
al. [7], namely that the frequency of nodes with degree d is proportional to d
raised to a power of a constant α: f(d) ∝ dα. Since this law does not cover
all nodes and in order to match other relevant properties as well, optimiza-
tions for various specific conditions were added to the original procedure over
time. The complete generation method is explained in [9]. Since the proce-
dures of Inet are already customized to AS networks, only a small number of
input parameters can be specified: the total number of nodes, the fraction of
degree-one nodes, and the size of the square used for node placement.

The Boston university Representative Internet Topology gEnerator
BRITE [12] can generate networks for different levels of the Internet topol-
ogy. Beside this, it offers various other options to customize the generation
procedure.

Drawing area. The nodes of the generated topology are distributed in a
square of a certain size.

Node distribution. In the drawing area, nodes are either distributed
uniformly at random or Pareto.

Outgoing links. New nodes are connected with a specific number of
outgoing links to other, already existing nodes.

Connectivity. The neighborhood of a node is selected based on certain
guidelines such as geometric locality, preferential attachment, or a combina-
tion of both.

Procedure. Nodes can either be placed before the addition of edges or in
an incremental fashion. In the latter case each new node introduces a number
of new edges that can only connect to already existing nodes.

4.2 Characteristics

In [9], an extensive collection of characteristics is evaluated that judge the
fitness of a generated graph with respect to its real world counterpart. We
repeated this evaluation for a representative selection of these properties with
a focus on the assessment of the core generator. In the following, we summarize
the properties we employed in our analyses.

General statistics. To see how well the generated networks fit to the
most obvious characteristics we computed some basic properties: the number
of edges, the minimum and the maximum degree. Note that all models strictly
meet the given number of nodes, so the number of edges corresponds to density
and average degree.

Cores. The core decomposition is a significant structural property of an
AS network. We compare not only the core number but the extensive core
fingerprint.

Clustering coefficient. The clustering coefficient is a measure for the
local density around a node. It counts how many of a node’s pairs of neighbors
are themselves adjacent. These values are averaged to get a single measure for
the network. Closely related characteristics are the numbers of triangles and
triples and the transitivity [16].

Path length. We compare two properties based on path length: charac-
teristic path length, which is the average of the distances of all node pairs and
average eccentricity. The eccentricity of a node is its maximum distance to all
other nodes. Average eccentricity then is the average of all nodes eccentricities.

Frequency versus degree. One of the classic power laws found by
Faloutsos et al. [7] is f(d) ∝ dα , that is, the frequency of nodes with de-
gree d, is proportional to d raised to a power of a constant α. Since this power
law does not hold for nearly 2% of the highest degree nodes, we use a modified
version [4, 5]:

F (d) =
∑
i>d

f(i) ∝ dα .

Size of k-neighborhood. Another power law indentified in [7] is N (k) ∝
kβ , where N (k) is the sum over all nodes of their neighborhood sizes within
distance k, i. e., N (k) =

∑
u∈V

∑
v∈V distk(u, v), where

distk(u, v) =

{
1 , if dist(u, v) ≤ k

0 , otherwise.

Note that this characteristic can also be measured as an average over all nodes,
and it is also known as the number of pairs within k hops.

4.3 Evaluation

In the following, we detail the findings of our systematic evaluation. We gath-
ered results on the three generators as described in Sections 3 and 4.1 and on
the real AS network for all the properties listed in Section 4.2.

Based on the previous studies we set appropriate parameters for the gener-
ators Inet and BRITE. For Inet we have chosen the default input parameters
except for the number of nodes and the random seed. As the results in [13]
suggest, we have used preferential attachment and incremental growth for
BRITE. Furthermore, we add two edges for each new node to fit the average
degree of AS networks.

Real AS Core BRITE Inet

Number of Nodes 21,419 21,419 21,419 21,419

Number of Edges 45,638 45,638 42,835 58,069

Minimum Degree 1 1 2 1

Maximum Degree 2,408 470 411 3,572

Core Number 26 26 2 19

Number of Triples 12,161,105 5,197,409 637,716 30,643,657

Number of Triangles 46,256 34,465 177 75,547

Transitivity 0.011 0.020 0.001 0.007

Clustering Coeff. 0.375 0.143 0.002 0.535

Avg. Path Length 3.811 3.812 5.305 3.072

Avg. Eccentricity 8.519 7.911 8.626 6.431

Table 1. Characteristics of the AS network and the three generators.

By construction, the numbers of nodes match the reference AS network,
however, the numbers of edges already differ heavily. While the number of
edges is only slightly lower for graphs generated by BRITE, and exaclty fits
the reference for core generator (called Core in the following), the edge set
created by Inet is larger by one third.

The well-known phenomenon of higly connected hubs in the AS network
accompanied by the power-law degree distribution is regarded as one of the
most significant properties of the Internet. Inet reproduces these quite well,
but overstates the maximum degree. In contrast, the degree distribution of
Core oscillates around the reference but fails to produce high-degree nodes due
to its lack of preferential attachment and the degree distribution of BRITE
suggests that the preference of new nodes to connect to existing hubs is not
strong enough either. These facts can be observed in Figure 4.

At a first glance, BRITE clearly fails to build up any kind of deep core
structure (the core number is 2). The reason for this becomes evident from
the incremental generation process of BRITE: the iterative addition of nodes
incident to two new edges can simply be reversed, resulting in a valid removal

1 5 50 500

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

degree

fr
eq

ue
nc

y

AS
Inet
Core
BRITE

0 2 4 6 8 10

5e
+

04
5e

+
05

5e
+

06
5e

+
07

5e
+

08

distance k

nu
m

be
r

of
 p

ai
rs

 w
ith

 d
is

ta
nc

e
le

ss
 th

an
 k

AS
Inet
Core
BRITE

Fig. 4. The fraction of nodes with a degree lesser or equal to d (left). The k-
neighborhood for distances k ∈ [0, 10] (right).

sequence for the 2-core that ultimately yields an empty 3-core. Figure 5 plots
both the number of nodes and the number of edges per k-core. Inet builds up a
decent core hierarchy but fails to attain a sufficient depth, obviously resulting
in larger mid-level shells, in terms of both nodes and edges. By construction,
Core perfectly matches the reference. The plots in Figure 6 show the numbers
of nodes and edges per k-shell. They confirm the above observations and
additionally grant an insight into the absolute numbers of elements per shell.

The shallow core structure created by BRITE is accompanied by a very
low transitivity alongside a negligible number of triangles and a tiny cluster-
ing coefficient, suggesting that the BRITE graph is primarily composed of a
set of paths of length two. The high average path length further corroborates
this conjecture, since by virtue of preferential attachment hubs of high de-
gree evolve, which, however, are interconnected via paths of length two by
construction.

The absolute numbers of triples and triangles as well as the transitivity
and the clustering coefficient are acceptable for both Core and Inet. The
discrepancy of the latter generator from the reference can quite generally
be explained by the increased number of edges. The behavior of Core with
respect to these values is largely due to the absence of high-degree nodes, since,
intuitively speaking, star-shaped structures yield a high number of triples.
The relatively high number of triangles thus yields an increased transitivity.
The low clustering coefficient, however, suggests, that there is large number
of nodes with a sparse direct neighborhood. Since, at the same time, Core
exhibits a high number of triangles, the majority of these triangles is incident
to nodes with higher degree.

●

●

1 2 5 10 20

50
20

0
50

0
20

00
10

00
0

coreness k

nu
m

be
r

of
 n

od
es

 in
 th

e
k−

co
re

AS
Inet
Core
BRITE

●

●

1 2 5 10 20

10
00

50
00

20
00

0

coreness k

nu
m

be
r

of
 e

dg
es

 in
 th

e
k−

co
re

AS
Inet
Core
BRITE

Fig. 5. The numbers of nodes (left figure) and of edges (right figure) per k-core.
Note that BRITE generates only nodes in the 2-core and that the lines of the AS
and Core perfectly match by construction.

●

●

1 2 5 10 20

5
50

50
0

50
00

coreness k

nu
m

be
r

of
 n

od
es

 in
 th

e
k−

sh
el

l

AS
Inet
Core

●

●

1 2 5 10 20

10
0

50
0

20
00

10
00

0

coreness k

nu
m

be
r

of
 e

dg
es

 s
ta

rt
in

g
in

 th
e

k−
sh

el
l

AS
Inet
Core

Fig. 6. The numbers of nodes (left figure) and of edges (right figure) per k-shell
(BRITE omitted). An edge is considered to belong to the `-shell if its endnode with
smallest coreness has coreness `. Note that the lines of the AS and Core perfectly
match by construction.

Figure 4 depicts the size of the neighborhood within k hops (sum over all
nodes). Note that the high average path length of BRITE mentioned earlier
comes along with the slow growth of the neighborhood size. The low average
path length and the low average eccentricity exhibited by Inet are, again, due
to the large edge set. With respect to these values, Core excels. Both the
average path length and the k-neighborhood practically match the reference.

5 Conclusion

In the recent past, the core decomposition has been found to be a crucial char-
acteristic of real world complex systems. To our knowledge this paper is the
first to scrutinize and clarify how to specify the core fingerprint of a network
by examining the interconnectivity of each pair of shells. We employ this core
fingerprint to introduce a simple and efficent algorithm for the generation of
random graphs based on the core decomposition.

We exemplify the feasibility of our technique in a case study using the AS
network of the Internet, comparing our generator to the established topology
generators BRITE [12] and Inet [9]. Our results yield that the our generator is
highly suitable for the simulation of AS topologies, confirming the importance
of the core decomposition. Moreover we show that BRITE largely fails to cap-
ture significant characteristics of the AS network, including its core structure,
and that Inet roughly matches the reference except for its general tendency
to be too densely connected. While our core generator and BRITE create a
topology within seconds, a major drawback of Inet is its generation time of
several minutes.

The high customizability of our rather generic core generator suggests
several adaptations that can further increase the fitness to the specific pe-
culiarities of the AS network. Such adaptations to special networks can be
realized by employing a number of structural modifications such as swapping,
rewiring and the use of preferential attachment without interfering with the
core decomposition.

References

1. José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro
Vespignani. Large Scale Networks Fingerprinting and Visualization Using the
k-Core Decomposition. In Advances in Neural Information Processing Systems
18, pages 41–50. MIT Press, 2006.

2. Vladimir Batagelj and Matjaž Zaveršnik. An O(m) Algorithm for Cores De-
composition of Networks. Technical Report 798, IMFM Ljublana, Ljubljana,
2002.

3. Vladimir Batagelj and Matjaž Zaveršnik. Generalized Cores. Preprint 799,
IMFM Ljublana, Ljubljana, 2002.

4. Tian Bu and Don Towsley. On Distinguishing between Internet Power Law
Topology Generators. In INFOCOM’02 [8].

5. Qian Chen, Hyunseok Chang, Ramesh Govindan, and Sugih Jamin. The Origin
of Power Laws in Internet Topologies Revisited. In INFOCOM’02 [8], pages
608–617.

6. Nicolas Ducheneaut, Nicholas Yee, Eric Nickell, and Robert J. Moore. Alone To-
gether?: Exploring the Social Dynamics of Massively Multiplayer Online Games.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI’06), pages 407–416. ACM Press, 2006.

7. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the Internet topology. In SIGCOMM ’99: Proceedings of the
conference on Applications, technologies, architectures, and protocols for com-
puter communication, pages 251–262. ACM Press, 1999.

8. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom), volume 1. IEEE Computer Society Press,
2002.

9. Cheng Jin, Qian Chen, and Sugih Jamin. Inet Topology Generator. Technical
Report CSE-TR-433, EECS Department, University of Michigan, 2000.

10. Damien Magoni. nem: A Software for Network Topology Analysis and Model-
ing. In Proceedings of the 10th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems. IEEE Computer
Society, 2002.

11. Damien Magoni and Jean Jacques Pansiot. Analysis and Comparison of Inter-
net Topology Generators. In Proceedings of the 2nd International IFIP-TC6
Networking Conference, pages 364–375. Springer, 2002.

12. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
An Approach to Universal Topology Generation. In Proceedings of the 9th In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2001.

13. Alberto Medina, Ibrahim Matta, and John Byers. On the Origin of Power Laws
in Internet Topologies. Computer Communication Review, 30(2), April 2000.

14. Romualdo Pastor-Satorras and Alessandro Vespignani. Evolution and Structure
of the Internet: A Statistical Physics Approach. Cambridge University Press,
2004.

15. University of Oregon Routeviews Project. http://www.routeviews.org/.
16. Thomas Schank and Dorothea Wagner. Approximating Clustering Coefficient

and Transitivity. Journal of Graph Algorithms and Applications, 9(2):265–275,
2005.

17. Stephen B. Seidman. Network Structure and Minimum Degree. Social Networks,
5:269–287, 1983.

18. Stefan Wuchty and Eivind Almaas. Peeling the Yeast Protein Network. Pro-
teomics, 5(2):444–449, 2005.

