
NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org
c©American Institute of Mathematical Sciences
Volume X, Number 0X, XX 200X pp. X–XX

AUGMENTING k-CORE GENERATION WITH PREFERENTIAL
ATTACHMENT

Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, Dorothea Wagner

Faculty of Informatics, Universität Karlsruhe (TH)

78131 Karlsruhe, Germany

Abstract. The modeling of realistic networks is of prime importance for modern complex

systems research. Previous procedures typically model the natural growth of networks by means
of iteratively adding nodes, geometric positioning information, a definition of link connectivity

based on the preference for nearest neighbors or already highly connected nodes, or combine

several of these approaches.
Our novel model brings together the well-know concepts of k-cores, originally introduced in

social network analysis, and of preferential attachment. Recent studies exposed the significant

k-core structure of several real world systems, e.g., the AS network of the Internet. We present a
simple and efficient method for generating networks which at the same time strictly adhere to the

characteristics of a given k-core structure, called core fingerprint, and feature a power-law degree

distribution. We showcase our algorithm in a comparative evaluation with two well-known AS
network generators.

1. Introduction. The interest in modeling classes of graphs has significantly increased by re-
cent studies of complex systems such as the Internet, biological networks, river basins, or social
networks. While random graphs have been studied for a long time, the standard models appear
to be inappropriate because they do not share certain abstract characteristics observed for those
systems. One of these characteristics is the k-core structure which can be interpreted as a nested
decomposition separating parts of the network based on their density. This decomposition is com-
monly applied in order to identify central parts of the networks since it peels the network layer
by layer, filtering out less important parts that are sparsely connected with the remaining graph.
Example applications are network fingerprinting with LaNet-vi [3], protein network analysis [27],
or the exploration of modern social networks [12].

A crucial field of application of graph generators is the simulated evolution of a given network,
granting insights in both its past development and its anticipated future behavior. One prominent
example is the Internet at the Autonomous System (AS) level where various models have emerged
over the last few years, including BRITE [20], Inet [17], nem [18], and various models presented
by Pastor-Satorras and Vespignani [22]. While this network has been observed to possess a very
distinct k-core structure [2, 9], kept track of over a long period of time, all generating tools so far
ignore this structure, and thus largely fail to do justice to this significant and stable property [11].
Overall, up to our knowledge an approach to create networks with a given k-core structure is
missing so far.

To address this issue we refine the abstract measurement of core sizes to a core fingerprint that
additionally includes information on the inter-connectivity of each pair of shells. This allows us
to design a simple and efficient method to incrementally generate randomized networks with a
predefined k-core structure, starting with the maximum core. By utilizing two results on edge
rewiring we thus achieve a structure that precisely matches the core fingerprint.

2000 Mathematics Subject Classification. Primary: 05C85, 05C80; Secondary: 05C75.

Key words and phrases. graph generation, k-core structure, preferential attachment.
This is the author’s version. This work was partially supported by the DFG under grant WA 654/14-3 and EU

under grant DELIS (contract no. 001907). A previous version appeared as Generating Graphs with Predefined
k-Core Structure, at the European Conference on Complex Systems (ECCS 2007) [7].

1

2 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

Predefining the core fingerprint of a network still leaves many degrees of freedom open. Since we
focus on the network of Autonomous Systems as a case study we exploit this fact and optionally
bias the randomness in the adjacency of nodes towards preferential attachment, as described
by Barabási and Albert [1]. This paradigm of setting up links in a network has been proven to
introduce a power-law degree distribution, which has first been observed by Faloutsos et al. [14] for
the Internet. Our approach imposes almost no modifications on a vanilla realization of preferential
attachment, a fact that is reflected by our experimental results. We thus manage to coalesce two
of the most fundamental concepts in the theory of complex networks of the recent past.

This paper is organized as follows: first we clarify the preliminaries and state some basic
properties for k-core structures and on preferential attachment in Section 2, then we give the
description of the network generator in Section 3. In Section 4 we evaluate our model in comparison
to two well-known generators with respect to commonly used network properties. Finally we give
some concluding remarks.

2. Preliminaries. Let G = (V,E) be a simple, undirected graph. A subset V ′ ⊆ V of the node
set induces a subgraph G[V ′] := (V ′, E′) where the edge set E′ is defined by E′ := {{u, v} |u, v ∈
V ′, {u, v} ∈ E}. The degree deg(v) of the node v is the number of its incident edges. A nested
decomposition of G is a finite sequence (V0, . . . , Vk) of subsets of nodes such that V0 = V , Vi+1 ⊆ Vi

for i < k, and Vk 6= ∅.

2.1. Core Decomposition. Cores are a widely used realization of nested decompositions. The
concept was originally introduced by Seidman [25] and generalized by Batagelj and Zaversnik [6].
Constructively speaking, the i-core of an undirected graph is defined as the unique subgraph
obtained by iteratively removing all nodes of degree less than i. This procedural definition im-
mediately gives rise to a construction algorithm that can easily be implemented. Moreover, it is
equivalent to the closed definition of the i-core as the set of all nodes with at least i adjacencies to
other nodes in the i-core. The core number of a graph is the smallest i such that the (i + 1)-core
is empty, and the corresponding i-core is called the core of a graph. Figure 1 depicts the core
decomposition of an example graph with a core number of 4. The core decomposition can be
computed in linear time with respect to the graph size [5].

A node has coreness i, if it belongs to the i-core but not to the (i + 1)-core. We call the
collection of all nodes having coreness i the i-shell. An edge {u, v} is an intra-shell edge if both u
and v have the same coreness, otherwise it is an inter-shell edge.

Informally speaking, the coreness of a node can be viewed as a robust version of the degree,
i. e., a node of coreness i retains its coreness even after the removal of an arbitrary number of
nodes of smaller coreness. In the following section we state some observations on core structures,
that are crucial to our approach.

2.2. Edges in a Core Hierarchy. The following two lemmas summarize two facts about the
relation of intra- and inter-shell edges. Note that Lemma 2.1 corrects a flaw present in a previous
version of this paper [7]. We later exploit this interaction and interchangeability of edges in our
network generation algorithm.

Lemma 2.1 (Rewiring). Let G = (V,E) be a graph. Let u, v ∈ V be two non-adjacent nodes with
the same coreness and {u, w}, {v, w′} ∈ E two edges such that coreness (u) < min{coreness (w) , coreness (w′)}.
Then G′ := (V,E′) with E′ := E \ {{u, w}, {v, w′}} ∪ {u, v} has the same core decomposition
as G. Conversely, let u, v ∈ V be two adjacent nodes with the same coreness k and with at
most k − 1 neighbors in higher cores, and let w, w′ ∈ V be two nodes such that coreness (u) <
min{coreness (w) , coreness (w′)} and {u, w}, {v, w′} 6∈ E. Then G′′ := (V,E′′) with E′′ :=
E \ {u, v} ∪ {{u, w}, {v, w′}} has the same core decomposition as G.

Lemma 2.2 (Swapping). Let G = (V,E) be a graph, u, v, w, w′ ∈ V be four nodes all having
the same coreness, {u, v}, {w, w′} ∈ E be two intra-shell edges, and {u, w}, {v, w′} 6∈ E. Then
the graph G′ := (V,E′) with E′ := E \ {{u, v}, {w, w′}} ∪ {{u, w}, {v, w′}} has the same core
decomposition as G.

k-CORE GENERATION USING PA 3

Figure 1. A k-core decomposition with 5 core shells.

(a) original graph (b) after rewiring (c) after swapping

Figure 2. Rewiring and swapping edges in the left graph. The labels show the
coreness of the nodes.

It is not hard to see that the correctness of both lemmas follows from the definition of cores. The
cumbersome prerequisites can be understood more easily by the concept of a removal order that
will be introduced later in Section 3.2. Informally speaking, Lemma 2.1 allows for most pairs of
disconnected nodes of the same coreness to each remove one edge to some nodes of higher coreness
and instead become connected, and vice versa, without changing the decomposition. Furthermore,
according to Lemma 2.2 we can swap the end-nodes of intra-shell edges if this does not interfere
with existing connections. Figure 2 illustrates these two lemmas for an example graph. Using
these statements, we can now establish (tight) bounds of the sizes of cores and shells.

Lemma 2.3 (Size of i-Cores). Let G = (V,E) be a graph, (V0, . . . , Vk) its core decomposition
and Gi := (Vi, Ei) := G[Vi] the i-core. Then the size of every i-core is bounded as follows:

i + 1 ≤ |Vi| and
(i + 1)i

2
≤ |Ei| . (1)

Let ni := |Vi \ Vi+1| be the number of nodes with coreness i and mi := |Ei \ Ei+1| the number of
all edges whose end-nodes with minimum coreness has coreness i for 0 ≤ i ≤ k (for convenience

4 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

we define Vk+1 := ∅ and Ek+1 := ∅). Then the size of the i-shell is bounded as follows:

0 ≤ ni ≤ |V | (2)⌈
i·|ni|

2

⌉
, if ni > i(

ni

2

)
+ ni · (i− ni + 1) , if ni ≤ i

}
≤ mi ≤

{
i · ni , if i < k

i · ni − i2+i
2 , if i = k

(3)

Note that the bounds for the i-core (Eq. 1) are trivially obtained from the definition. The
bounds for the i-shell (Eq. 2 and 3), however, use the above two lemmas, i. e., the shell has the
minimum number of edges, if it has the maximum possible number of intra-shell edges, since each
such edge contributes twice, and a minimum number of inter-shell edges. An analogous reasoning
yields the upper bounds. We omit proofs for the bounds of this lemma except of the following.

Proof (of Upper Bound 3). By definition, there exists an removal order σ that iteratively removes
a node v from Vk with deg(v) ≤ k, such that eventually all nodes in Vk are removed. We now
count the maximum number of edges that still allow such an order of removal σ(v), v ∈ Vk by
adding up the number of edges the removed nodes in such an removal order can maximally be
incident to. For the first nk − (k + 1) nodes (which can be zero), the removal order σ implies that
the current node v can have a maximum degree of k. For the last k + 1 nodes (minimum number
of nodes for a k-shell) however, the number of incident edges during the removal order is even less,
resulting in a (k + 1)-clique supported by (k2 + k)/2 edges. Thus we arrive at

(nk − (k + 1)) · k︸ ︷︷ ︸
by nodes beyond k + 1

+
(k + 1) · k

2︸ ︷︷ ︸
by clique of last k + 1 nodes

= k · nk −
k2 + k

2
(4)

edges in total, which proves the bound. It is easy to see that this bound is sharp, since our
arguments induce an immediate construction.

Note, that this bound also applies to lower shells when excluding edges to higher shells.

2.3. Random Models and Preferential Attachment. A plethora of models for random
graphs have been proposed in the past. The most prominent and fundamental include the Erdős-
Rényi model [13], also known as G(n, m), Gilbert’s model G(n, p) [15] and the Watts and Strogatz
model [26], which is also known as the small-world -model. However, in a number of real-world
graphs some properties have been identified that are unlikely to emerge in these models, most
notably a distribution of node degrees that roughly obeys a power-law, a fact that has been iden-
tified by Faloutsos et al. [14]. More precisely, the number of nodes with degree d is proportional
to d−γ for some constant γ. Graphs with this property are commonly referred to as scale-free.
Barabási and Albert describe a growth process coined preferential attachment [1] that generates
graphs with such a degree distribution. Starting out with an empty graph, this process iteratively
adds a new node that is adjacent to a fixed number of already existing nodes. The choice of a
specific neighbor is made with probability proportional to the current degree of the nodes. We
closely adhere to the particularly efficient implementation of preferential attachment proposed by
Batagelj and Brandes [4].

3. Core Generator. In this section, we first introduce a set of relevant parameters for the
construction of core structures and discuss which combinations of these lead to feasible instances,
i. e., are capable of realizing a graph with a predefined core structure. Then we describe our basic
algorithm that generates such graphs, and point out several variations.

As the 0-shell only contains isolated nodes and in order to reduce technical peculiarities, we
restrict ourselves to generating graphs with an empty 0-shell.

3.1. Input Parameters. There are several possibilities to specify core structures. Of the quanti-
tative approaches, the most obvious is to give the number of nodes per shell, the number of intra-
shell edges, and the number of inter-shell edges (for each pair of shells). This can be coded as a
vector N ∈ Nk

0 where ni is the number of nodes in the i-shell and a symmetric matrix M ∈ Nk×k
0 ,

where mi,j contains the number of edges connecting the i-shell with the j-shell. We call this

k-CORE GENERATION USING PA 5

(a) before rewiring (b) after rewiring

Figure 3. Example of rewiring. The fingerprint N = (0, 0, 7) and m3,3 = 11
resulted in the left hand graph. Clearly, node 1 has insufficient degree. In the
rewiring phase we can choose either node 3 or 5 as the rich node. For the right
hand graph we selected node 3 and node 5 as the rich node and the pivot node,
respectively. Thus we arrive at E = E \ {{3, 5}} ∪ {{1, 5}}.

the core fingerprint. For example, the graph (omitting isolated nodes) given in Figure 1 has the
following fingerprint:

N := (4, 3, 2, 5) and M :=

3 1 0 0
1 2 2 0
0 2 0 6
0 0 6 10

Clearly, the implied sizes of the shells have to respect the bounds established in Lemma 2.3. This
kind of specification of core structures provides the maximum degree of freedom, i. e., the user can
configure the size distribution of each shell and is only limited by constraints ensuring consistency.

One can easily relax the requirement of absolute values in the input by replacing them by
parameters that correspond to the ratio of edges with respect to the tight bounds established in
Equation 3. To further simplify the structure of the input, these ratios could be replaced by a
density function. Such a function could, e.g., follow a simple power-law.

3.2. Algorithmic Approach. Our generator builds a graph by iteratively adding new shells
beginning at the maximum core. When adding a new shell, we create nodes and edges according
to the given core fingerprint and take care to not change the coreness of nodes in previously built
higher shells. The detailed pseudo code is given in Algorithm 1. We omit in-depth explanations of
supplementary operations such as appendAll or removeAllOccurences, since these methods
have one-to-one equivalences in most high-level programming languages. Non-computer scientists
can assume that these methods match their intuitive nomenclature.

In order to guarantee that the coreness of nodes in the i-shell will not exceed i, we define an
order σi which will be maintained as a valid removal order for this shell (line 4). It is of vital
importance to ensure that for every node in Vi the sum of the number of neighbors in the shell i
with a higher value of σi and the number of neighbors in higher shells does not exceed i. To model
this, newly created edges are directed such that inter-shell edges point from the lower shell to the
higher shell and intra-shell edges are directed in accordance to our predefined order σi and each
node in Vi is restricted to a maximum out-degree of i (line 18). We are left to guarantee that the
coreness is exactly i and not less. An example where this not yet satisfied is given in Figure 3(a).

While lines 3 to 25, called the element generation phase, avoid erroneously high values of
coreness, as further detailed below, the rewiring phase in lines 27 to 38 solves the problem of
erroneously low values of coreness by a sophisticated movement of edges. We choose a node v with

6 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

Algorithm 1: Core Generator

Input: integer k, vector N ∈ Nk
0 , valid symmetric matrix M ∈ Nk×k

0

Output: graph G = (V,E)

V ← ∅; E ← ∅; targetNodes ← ∅;1

for i← k to 1 do // introduce next shell2

list Vi ← {ni new nodes} ;3

σi : Vi → {1, . . . , ni} defined by σ−1
i (`) = Vi[`] ; // removal order4

u← Vi[ni] ; // last node in removal order5

list sourceNodes ← Vi \ {u} ; // u cannot source intra-edges6

list targetNodes[i] ← {u} ; // u into PA-list7

list unconnectable ← {u} ; // see line 218

for j ← i to k do // select target shell9

for m← 1 to mi,j do // introduce mij edges10

s← sourceNodes[random] ; // source of new edge11

C ← targetNodes[j] ; // target candidates list12

C.removeAllOccurences(neighbors(s) ∪ {s});13

if j = i then // check removal order σ14

C.removeAllOccurences({` ∈ Vi | σ(`) < σ(s)});15

t← C[random] ; // target of new edge16

E ← E ∪ (s, t) ;17

if outdeg(s) = i then // source saturated18

sourceNodes.remove(s);19

else if j = i and outdeg(s) ≥ ni − σi(s) then20

sourceNodes.remove(s) ; // no more intra-targets21

unconnectable.append(s) ; // store for inter-targets22

targetNodes[i].append(s, t);23

if j = i then24

sourceNodes.appendAll(unconnectable) ; // restore25

remove direction of edges;26

list poorNodes ← {v ∈ Vi | deg(v) < i} ;27

list richNodes ← {v ∈ Vi | deg(v) > i} ;28

while poorNodes 6= ∅ do // rewire unsaturated nodes29

v ← poorNodes[random];30

w ← richNodes[random];31

C ← neighbors(w) \ neighbors(v) ; // pivot candidates32

c← C[random];33

E ← E \ {{w, c}} ∪ {{v, c}};34

if deg(v) = i then // v saturated35

poorNodes.remove(v);36

if deg(w) = i then // w no longer rich37

richNodes.remove(w);38

V ← V ∪ Vi ; // shell i completed39

return graph G = (V,E);40

k-CORE GENERATION USING PA 7

insufficient degree (line 30) and a node w with degree greater than i (line 31). Then we select
a neighbor c ∈ neighbors(w) which is not yet adjacent to v (lines 32 and 33) and replace this
adjacency {w, c} by a new edge {v, c} (line 34).

Before we revisit the element generation phase in detail, we recapitulate the mechanism of
preferential attachment. The network is grown from an arbitrary, small seed such as a single node
or a triangle. Iteratively nodes are added and connected to a fixed number of neighbors. These
neighbors are randomly selected from existing nodes with probability proportional to their degree.
This behavior can be modeled by maintaining a list of nodes to which both end-nodes of each
newly inserted edge are appended. Thus, this list contains each node with multiplicity equal to its
current degree. Drawing uniformly at random from this list is a legitimate and efficient realization
of preferential attachment, as described in detail by Batagelj and Brandes [4].

Shells are created iteratively, starting with the maximum core. First the predefined number
ni of nodes are created (line 3), together with an arbitrary removal order σi on them (line 4).
In the element generation phase, some subtlety has been put into the choice of incident nodes of
new edges. Since we only predefine the connectivity between shells, there is no fixed number of
neighbors newly inserted nodes can be connected to. Instead, we maintain a list of sourceNodes
which initially contains each node of shell i (line 6) exactly once, and an initially empty list
targetNodes into which we insert the end-nodes of each new edge following the approach of
Batagelj and Brandes [4].

We now iterate over each shell j that has already been created, starting with the very shell
that has just been created (j = i), and create mij edges from shell i to shell j (loop starting at
line 10). Each time an edge is created, we draw its source uniformly at random from sourceNodes
(line 11) and check (line 18) whether it now has the maximum outdegree for belonging to shell
i, in which case we remove it from sourceNodes. Further, in the case j = i, if there are no
more feasible targets for this source, i.e., it is already connected to all nodes with a higher value
of σi, we remove it from sourceNodes (line 21). However, such a node is not yet saturated and
therefore stored in the list unconnectable (line 22) for later use in the case j 6= i (line 25).
Note that as a consequence, the highest ranking node u = argmaxv∈Vi

σi(v) in the current shell
i is removed before the loop from sourceNodes (lines 5 and 6) and instantly added to the list
unconnectable.

Since edges can be directed towards any higher shell, we maintain the list of targetNodes[i]
for each shell i throughout the algorithm. As mentioned above, these lists are the key for realizing
preferential attachment. We initialize targetNodes[i] with u (line 7), since u is the only feasible
target for all v ∈ Vi. For each choice of s in line 11, a list of feasible target nodes C is created
(line 12). To this end, we prune list C of illegal choices, which are the source itself and its neighbors
(line 13), and, in the case of j = i, nodes v ∈ Vi with a lower value of σ(v) (line 15). Concluding
the creation of a new edge, we append its source and target to the list of targetNodes (line 23).

3.3. Analysis of the Algorithm. Based on the observations in the previous section, we prove
the correctness of Algorithm 1 and analyze its running time in the following.

Observation 1. Algorithm 1 generates valid core structures for the maximum number of intra-
shell edges, i. e., mii = i · ni − (i2 + i)/2 for 1 ≤ i ≤ k.

Proof. Let m = i · ni − (i2 + i)/2. A node is removed from sourceNodes if either its out-degree
is equal to i or it is connected to all nodes with a higher value of σi. If sourceNodes is empty
we have inserted (ni − (i + 1)) · i + (i + 1) · i/2 = m edges (see Equation 4).

Based on this observation, Lemmas 3.1 and 3.2 prove the correctness of Algorithm 1 inductively.

Lemma 3.1. Given a matrix M belonging to a valid core fingerprint and a valid subgraph G[Vk ∪
· · · ∪ Vi+1], the element generation phase constructs the subgraph G[Vk ∪ · · · ∪ Vi] such that M is
obeyed and all nodes u ∈ V` have coreness (u) ≤ `, for all i ≤ ` ≤ k.

Proof. Let j = i. Lines 15 and 18 guarantee that σi is a valid removal order. Thus all nodes v ∈ Vi

have coreness (v) ≤ i and the coreness of all other nodes remains unchanged. Due to Observation 1
the upper bounds in Lemma 2.3 can be attained, thus any valid mii can be realized.

8 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

Now let j > i. Analogously, requiring outdeg(v) ≤ i preserves the removal order and thus a
coreness of i or less for nodes in Vi. Again, the coreness of all other nodes remains unchanged,
and the upper bound in Lemma 2.3 can be attained.

The above lemma shows that the element generation phase fits in all nodes and edges required
by the fingerprint and grants to each node a coreness equal to or less than the required value. We
are left to prove that the rewiring phase refines the edge set such that equality holds.

Lemma 3.2. Given a matrix M belonging to a valid core fingerprint and a valid subgraph G[Vk ∪
· · · ∪ Vi+1]. If coreness (v) ≤ i holds for all v ∈ Vi, then the rewiring phase moves edges such that
the subgraph G[Vk∪· · ·∪Vi] is valid, i. e., M is obeyed, and all nodes u ∈ V` have coreness (u) = `,
for all i ≤ ` ≤ k.

Proof. We have to proof that the list poorNodes defined in line 27 is empty when the algorithm
terminates. Suppose there exists at least one node v ∈ poorNodes. Since deg v < i, clearly
coreness(v) < i. Then, the list richNodes is not empty since otherwise all nodes u ∈ Vi have
deg u ≤ i contradicting Lemma 2.3. Let w ∈ richNodes, i. e., w ∈ Vi and deg(w) > i. Since
deg(w) > deg(v), the set of pivot candidates C = neighbors(w) \ neighbors(v) is not empty.
Choosing c ∈ C, the new set of edges E′ = E \ {{w, c}} ∪ {{v, c}} still obeys M , decrements
deg(w) and increments deg(v), increasing coreness(v) by at most one.

Thus, the rewiring phase maintains the invariant. Furthermore, due to the strict increase and
decrease of deg(v) and deg(w), respectively, |poorNodes| strictly decreases to 0, which terminates
the algorithm.

By induction, Lemmas 3.1 and 3.2 yield that Algorithm 1 constructs a graph in accordance
with M and Vi, 0 ≤ i ≤ k, since the base case, i. e., the empty graph, is trivial.

In terms of running time the crucial parts of the algorithm are the updates and random accesses
of the lists sourceNodes, targetNodes, poorNodes, and richNodes, and the creation of
the target candidate and pivot candidate lists (lines 12–15 and 32). We use array-backed lists
to guarantee constant-time access to random elements. When we remove an element e we fill its
position with the last element of the list, avoiding moving all successive elements of e. Since we
only have random access to the lists, preserving their orders is not required.

Lemma 3.3. The asymptotic running time of Algorithm 1 is bounded by O((m2 + n2k) log(n)).

Proof. The runtime of the element generation phase is dominated by the assembling of target
candidates in lines 12–15. Building a decision tree for the nodes to be remove in O(n log n) time,
based on the ordering σ, we can prune list C in time O(m log n+n log n) per edge, which dominates
lines 3 to 25.

The running time of the rewiring phase is dominated by determining the list of pivot candidates
in line 32 using O(n log n) time per rewiring. The total number of rewirings is bounded by n·k. This
dominates lines 27 to 38 as well as the element generation phase and all peripheral steps. Assuming
the graph is connected, in total, both phases sum up to a running time of O((m2+n2k) log(n)).

Since real-world networks seldom exhibit pathologic characteristics, we replaced the eager com-
putation of the candidate list in lines 12–15 by a lazy selection from targetNodes[i] that is
repeated until a valid t has been drawn. Clearly this does not improve worst-case running time
but works faster for virtually all applications.

We performed our experiments on a recent standard PC, running SUSE Linux 10.2 with an
implementation in Java. Absolute running times ranged between 100 and 500 milliseconds for the
AS network which is comparable to BRITE. The running time of Inet is in the order of minutes.
See Section 4.1 for the description of these generators.

3.4. Refinements. Although the core fingerprint is the prime characteristic we focus on in this
work, together with the inclusion of a preferential attachment mechanism, a number of potentially
describing features of a network exist. In this section, we briefly discuss other relevant features,
that can easily be integrated in our generator.

k-CORE GENERATION USING PA 9

1 5 10 50 500
1

10
10

0
10

00
10

00
0

degree

nu
m

be
r

of
 n

od
es

AS 2006
Core+Deg
Core
PA

Figure 4. The number of nodes with degree at least d for the AS network, the
original, and the refined Core generator for January 2006. A graph generated by
preferential attachment of approximately the same size is shown for comparison.

AS 2002-01 AS 2006-01 AS 2007-07
Number of Nodes 12,485 21,419 25,787
Number of Edges 25,980 45,638 53,014

Table 1. Sizes of the AS network snapshots.

Connectivity is a very basic characteristic of a network, boiling down to the number of connected
components. Building upon the core decomposition, this can be refined to the number of connected
components per shell. While the whole graph or even the i-core can be connected, the i-shell
can still have several disconnected components. If this is not desired, the user can specify the
number and the sizes of connected components. The generator will then first create a spanning
forest, where each tree is the seed of a component, and mark these edges as not rewirable. Note
that requiring a specific set of connected components restricts the set of valid shell-connectivity
matrices. However, this can be resolved by allowing the number of edges or the number and sizes
of connected components to slightly deviate from the predefined values, depending on the user’s
interests.

Returning our focus to the degree distribution, the approach described in Section 3.2, depend-
ing on not a single parameter, can clearly be further elaborated. We tested two variants of our
implementation of preferential attachment. In the first variant, we require the degree distributions
of each shell as an input. Based on these we then prefill the array targetNodes[i] in line 7 with
the nodes in Vi, using the exact multiplicities as given by the degree distribution and an ordering
analogous to σ. This approach clearly biases the preferential attachment process towards the
desired degree distribution (see Figure 4). Alternatively, we can solely rely on a post-processing
step. In this case we can completely abandon preferential attachment and simply apply a sequence
of rewirings (Lemma 2.1) and swappings (Lemma 2.2) in order to approach a given degree distri-
bution. Although both these techniques yielded very good results, we exclude them from further
evaluation, due to their requiring rather specific parameters in addition to the core fingerprint.

4. Modeling the AS Network. An important application of a core-aware network generator
is the simulation of the Internet at the AS level. In this section we compare networks generated
by our method and established topology generators with three exemplary snapshot of the real AS
network at the router level taken by the Oregon Routeviews project [23] at midnight on January 1,
2002 (oix-full-snapshot-2002-01-01-0000), on January 1, 2006 (oix-full-snapshot-2006-01-01-0000),
and on July 1, 2007 (oix-full-snapshot-2007-07-01-0000). Table 1 shows the sizes of these graphs.

10 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

4.1. Topology Generators. The first methods to generate networks with Internet-like structure
date back to the 1990s and a multitude of techniques has been proposed since then. Among
the most popular and widely used tools we have chosen Inet-3.0 [17] and BRITE [20] for our
comparison since these are commonly included in other studies which cover a broader range of
existing models [19, 17]. Although nem [18] also seems promising we do not take it into account
because of its limitation to networks not greater than 4000 nodes.

The Internet topology generator Inet [17] generates an AS-level representation of the Internet.
Its developers claim that “it generates random networks with characteristics similar to those of the
Internet from November 1997 to February 2002, and beyond”. Basically, Inet generates networks
with a degree distribution which fits to one of the power laws originally found by Faloutsos et
al. [14], namely that the frequency of nodes with degree d is proportional to d raised to a power
of a constant α: f(d) ∝ dα. Since this law does not cover all nodes and in order to match other
relevant properties as well, optimizations for various specific conditions were added to the original
procedure over time. The complete generation method is explained in [17]. Since the procedures
of Inet are already customized to AS networks, only a small number of input parameters can be
specified: the total number of nodes, the fraction of degree-one nodes, and the size of the square
used for node placement.

The Boston university Representative Internet Topology gEnerator BRITE [20] can generate
networks for different levels of the Internet topology. Beside this, it offers various other options
to customize the generation procedure.

Drawing area. The nodes of the generated topology are distributed in a square of a certain
size.

Node distribution. In the drawing area, nodes are either distributed uniformly at random
or Pareto.

Outgoing links. New nodes are connected with a specific number of outgoing links to other,
already existing nodes.

Connectivity. The neighborhood of a node is selected based on certain guidelines such as
geometric locality, preferential attachment, or a combination of both.

Procedure. Nodes can either be placed before the addition of edges or in an incremental
fashion. In the latter case each new node introduces a number of new edges that can only connect
to already existing nodes.

4.2. Characteristics. In [17], an extensive collection of characteristics is evaluated that judge
the fitness of a generated graph with respect to its real world counterpart. We repeated this
evaluation for a representative selection of these properties with a focus on the assessment of the
core generator. In the following, we summarize the properties we employed in our analysis.

General statistics. To see how well the generated networks fit to the most obvious character-
istics we computed some basic properties: the number of edges, the minimum and the maximum
degree. Note that all models strictly meet the given number of nodes, so the number of edges
corresponds to density and average degree.

Cores. The core decomposition is a significant structural property of an AS network. We
compare not only the core number but the extensive core fingerprint.

Clustering coefficient. The clustering coefficient is a measure for the local density around a
node. It counts how many of a node’s pairs of neighbors are themselves adjacent. These values are
averaged to get a single measure for the network. Closely related characteristics are the numbers
of triangles and triples and the transitivity [24].

Path length. We compare two properties based on path length: characteristic path length,
which is the average of the distances of all node pairs and average eccentricity. The eccentricity
of a node is its maximum distance to all other nodes. Average eccentricity then is the average of
all nodes eccentricities.

Frequency versus degree. One of the classic power laws found by Faloutsos et al. [14] is
f(d) ∝ dα , that is, the frequency of nodes with degree d, is proportional to d raised to a power
of a constant α. Since this power law does not hold for nearly 2% of the highest degree nodes, we

k-CORE GENERATION USING PA 11

AS 2002-01 Core BRITE Inet
Number of Nodes 12,485 12,485 12,485 12,485
Number of Edges 25,980 25,980 24,967 27,494
Minimum Degree 1 1 2 1
Maximum Degree 2,538 644 302 2,154
Core Number 20 20 2 9
Number of Triples 7,258,817 3,140,777 347,443 6,821,628
Number of Triangles 22,832 17,272 157 11,144
Transitivity 0.009 0.016 0.001 0.005
Clustering Coeff. 0.45 0.24 0.00 0.29
Avg. Path Length 3.63 3.69 5.09 3.29
Avg. Eccentricity 8.74 9.71 8.35 6.85

Table 2. Characteristics of the AS network of January 2002 and the three generators.

AS 2006-01 Core BRITE Inet
Number of Nodes 21,419 21,419 21,419 21,419
Number of Edges 45,638 45,638 42,835 58,069
Minimum Degree 1 1 2 1
Maximum Degree 2,408 662 411 3,572
Core Number 26 26 2 19
Number of Triples 12,161,105 5,631,122 637,716 30,643,658
Number of Triangles 46,256 36,052 177 75,770
Transitivity 0.011 0.019 0.001 0.007
Clustering Coeff. 0.38 0.17 0.00 0.53
Avg. Path Length 3.81 3.84 5.31 3.07
Avg. Eccentricity 8.52 10.36 8.63 6.45

Table 3. Characteristics of the AS network of January 2006 and the three generators.

use a modified version [8, 10]:
F (d) =

∑
i>d

f(i) ∝ dα .

Size of k-neighborhood. Another power law identified in [14] isN (k) ∝ kβ , whereN (k) is the
sum over all nodes of their neighborhood sizes within distance k, i. e.,N (k) =

∑
u∈V

∑
v∈V distk(u, v),

where

distk(u, v) =

{
1 , if dist(u, v) ≤ k

0 , otherwise.

Note that this characteristic can also be measured as an average over all nodes, and it is also
known as the number of pairs within k hops.

4.3. Evaluation. In the following, we detail the findings of our systematic evaluation. We gath-
ered results on the three generators as described in Sections 3 and 4.1 and on the real AS network
for all the properties listed in Section 4.2.

Based on the previous studies we set appropriate parameters for the generators Inet and BRITE.
For Inet we have chosen the default input parameters except for the number of nodes and the
random seed. As the results in [21] suggest, we have used preferential attachment and incremental
growth for BRITE. Furthermore, we add two edges for each new node to fit the average degree of
AS networks.

By construction, the numbers of nodes match the reference AS network, however, the numbers of
edges already differ heavily. While the number of edges is only slightly lower for graphs generated

12 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

AS 2007-07 Core BRITE Inet
Number of Nodes 25,787 25,787 25,787 25,787
Number of Edges 53,014 53,014 51,571 76,467
Minimum Degree 1 1 2 1
Maximum Degree 2,391 838 393 5,168
Core Number 22 22 2 26
Number of Triples 13,889,150 6,759,443 757,653 56,514,215
Number of Triangles 39,646 29,612 174 162,889
Transitivity 0.009 0.013 0.001 0.009
Clustering Coeff. 0.33 0.15 0.00 0.65
Avg. Path Length 3.89 3.92 5.39 2.99
Avg. Eccentricity 10.24 10.64 8.72 6.52

Table 4. Characteristics of the AS network of July 2007 and the three generators.

by BRITE, and exactly fits the reference for core generator (called Core in the following), the
edge set created by Inet is larger by one third.

The well-known phenomenon of highly connected hubs in the AS network accompanied by the
power-law degree distribution is regarded as one of the most significant properties of the Internet.
Inet reproduces these quite well, but overstates the maximum degree. In contrast, the degree
distribution of Core oscillates around the reference but fails to produce high-degree nodes due
to its lack of preferential attachment and the degree distribution of BRITE suggests that the
preference of new nodes to connect to existing hubs is not strong enough either. These facts can
be observed in Figure 5.

At a first glance, BRITE clearly fails to build up any kind of deep core structure (the core
number is 2). The reason for this becomes evident from the incremental generation process of
BRITE: the iterative addition of nodes incident to two new edges can simply be reversed, resulting
in a valid removal sequence for the 2-core that ultimately yields an empty 3-core. Figure 6 plots
both the number of nodes and the number of edges per k-core exemplary for January 2006.
Inet builds up a decent core hierarchy but fails to attain a sufficient depth for earlier snapshots,
obviously resulting in larger mid-level shells, in terms of both nodes and edges. However, as Inet
seems to systematically overestimate the number of edges, for later snapshots, the core hierarchy
becomes too deep. By construction, Core perfectly matches the reference. The plots in Figure 7
show the numbers of nodes and edges per k-shell, again exemplary for January 2006. They confirm
the above observations and additionally grant an insight into the absolute numbers of elements
per shell.

The shallow core structure created by BRITE is accompanied by a very low transitivity alongside
a negligible number of triangles and a tiny clustering coefficient, suggesting that the BRITE graph
is primarily composed of a set of paths of length two. The high average path length further
corroborates this conjecture, since by virtue of preferential attachment hubs of high degree evolve,
which, however, are interconnected via paths of length two by construction.

The absolute numbers of triples and triangles as well as the transitivity and the clustering
coefficient are acceptable for both Core and Inet. The discrepancy of the latter generator from the
reference can quite generally be explained by the increased number of edges. The behavior of Core
with respect to these values is largely due to the absence of high-degree nodes, since, intuitively
speaking, star-shaped structures yield a high number of triples. The relatively high number of
triangles thus yields an increased transitivity. The low clustering coefficient, however, suggests,
that there is large number of nodes with a sparse direct neighborhood. Since, at the same time,
Core exhibits a high number of triangles, the majority of these triangles is incident to nodes with
higher degree.

Figure 5 depicts the size of the neighborhood within k hops (sum over all nodes). Note that
the high average path length of BRITE mentioned earlier comes along with the slow growth of
the neighborhood size. The low average path length and the low average eccentricity exhibited

k-CORE GENERATION USING PA 13

1 5 10 50 500

1
10

10
0

10
00

10
00

0

degree

nu
m

be
r

of
 n

od
es

AS 2002
Inet
Core
BRITE

0 2 4 6 8 101e
+

04
1e

+
05

1e
+

06
1e

+
07

1e
+

08

distance k

nu
m

be
r

of
 p

ai
rs

 w
ith

 d
is

ta
nc

e
le

ss
 th

an
 k

AS 2002
Inet
Core
BRITE

(a) January 1st, 2002

1 5 50 500

1
10

10
0

10
00

10
00

0

degree

nu
m

be
r

of
 n

od
es

AS 2006
Inet
Core
BRITE

0 2 4 6 8 10

5e
+

04
5e

+
05

5e
+

06
5e

+
07

5e
+

08

distance k

nu
m

be
r

of
 p

ai
rs

 w
ith

 d
is

ta
nc

e
le

ss
 th

an
 k

AS 2006
Inet
Core
BRITE

(b) January 1st, 2006

1 5 50 500 5000

1
10

10
0

10
00

10
00

0

degree

nu
m

be
r

of
 n

od
es

AS 2007
Inet
Core
BRITE

0 2 4 6 8 10 12 14

5e
+

04
5e

+
05

5e
+

06
5e

+
07

5e
+

08

distance k

nu
m

be
r

of
 p

ai
rs

 w
ith

 d
is

ta
nc

e
le

ss
 th

an
 k

AS 2007
Inet
Core
BRITE

(c) July 1st, 2007

Figure 5. The number of nodes with a degree at least d (left) and the k-
neighborhood for distances k ∈ [0, 10] (right) for the AS network and the gener-
ated graphs for 2002, 2006, and July 2007.

14 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

●

●

1 2 5 10 20

50
20

0
50

0
20

00
10

00
0

coreness k

nu
m

be
r

of
 n

od
es

 in
 th

e
k−

co
re

AS
Inet
Core
BRITE

●

●

1 2 5 10 20

10
00

50
00

20
00

0

coreness k
nu

m
be

r
of

 e
dg

es
 in

 th
e

k−
co

re

AS
Inet
Core
BRITE

Figure 6. The numbers of nodes (left figure) and of edges (right figure) per k-
core. Note that BRITE generates only nodes in the 2-core and that the lines of
the AS 2006 and Core perfectly match by construction.

●

●

1 2 5 10 20

5
50

50
0

50
00

coreness k

nu
m

be
r

of
 n

od
es

 in
 th

e
k−

sh
el

l

AS
Inet
Core

●

●

1 2 5 10 20

10
0

50
0

20
00

10
00

0

coreness k

nu
m

be
r

of
 e

dg
es

 s
ta

rt
in

g
in

 th
e

k−
sh

el
l

AS
Inet
Core

Figure 7. The numbers of nodes (left figure) and of edges (right figure) per
k-shell (BRITE omitted). An edge is considered to belong to the k-shell if its
endnode with smallest coreness has coreness k. Note that the lines of the AS
2006 and Core perfectly match by construction.

by Inet are, again, due to the large edge set. With respect to these values, Core excels. Both the
average path length and the k-neighborhood practically match the reference.

5. Conclusion. In the recent past, the core decomposition has been found to be a crucial char-
acteristic of real world complex systems. In this paper we presented a novel algorithm for the
generation of graphs that brings together the well-know concepts of k-cores and preferential at-
tachment.

k-CORE GENERATION USING PA 15

After scrutinize and clarifying how to specify the core fingerprint of a network by examining
the inter-connectivity of each pair of shells. We employ this core fingerprint to introduce a simple
and efficient algorithm for the generation of random graphs based on the core decomposition.

We exemplify the feasibility of our technique in a case study using the AS network of the In-
ternet, comparing our generator to the established topology generators BRITE [20] and Inet [17].
Our results yield that our generator is highly suitable for the simulation of AS topologies, con-
firming the importance of the core decomposition. Moreover we show that BRITE largely fails to
capture significant characteristics of the AS network, including its core structure, and that Inet
roughly matches the reference except for its general tendency to be too densely connected. While
our core generator and BRITE create a topology within seconds, a major drawback of Inet is its
generation time of several minutes.

The high customizability of our rather generic core generator suggests several adaptations that
can further increase the fitness to the specific peculiarities of the AS network. Such adaptations
to special networks can be realized by employing a number of structural modifications such as
swapping and rewiring without interfering with the core decomposition.

Acknowledgements. We would like to thank Jorge Busch for pointing out a problem in the pre-
vious version of Lemma 2.1, and for valuable comments and discussion on its resolution. Moreover,
we would like to thank the referees very much for their valuable comments and suggestions.

REFERENCES

[1] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex Networks. Reviews of Modern

Physics, 74(1):47–97, 2002.
[2] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. k-Core Decomposi-

tion: A Tool for the Analysis of Large Scale Internet Graphs. Electronically published at http://arxiv.org/

abs/cs.NI/0511007, November 2005.

[3] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. Large Scale Net-

works Fingerprinting and Visualization Using the k-Core Decomposition. In Advances in Neural Information
Processing Systems 18, pages 41–50. MIT Press, 2006.

[4] Vladimir Batagelj and Ulrik Brandes. Efficient Generation of Large Random Networks. Physical Review E,

(036113), 2005.
[5] Vladimir Batagelj and Matjaž Zaveršnik. An O(m) Algorithm for Cores Decomposition of Networks. Technical

Report 798, IMFM Ljublana, Ljubljana, 2002.

[6] Vladimir Batagelj and Matjaž Zaveršnik. Generalized Cores. Preprint 799, IMFM Ljublana, Ljubljana, 2002.
[7] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea Wagner. Generating Graphs with

Predefined k-Core Structure. In Proceedings of the European Conference of Complex Systems (ECCS’07),

October 2007. To appear.
[8] Tian Bu and Don Towsley. On Distinguishing between Internet Power Law Topology Generators. In INFO-

COM’02 [16].
[9] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. A Model of Internet Topology

Using k-Shell Decomposition. Proceedings of the National Academy of Science of the United States of America,

104:11150–11154, 2007.
[10] Qian Chen, Hyunseok Chang, Ramesh Govindan, and Sugih Jamin. The Origin of Power Laws in Internet

Topologies Revisited. In INFOCOM’02 [16], pages 608–617.

[11] Sergey N. Dorogovtsev, Andrew V. Goldberg, and Jose Ferreira F. Mendes. k-Core Organization of Complex
Networks. Physical Review Letters, 96(040601):1–4, February 2006.

[12] Nicolas Ducheneaut, Nicholas Yee, Eric Nickell, and Robert J. Moore. Alone Together?: Exploring the Social
Dynamics of Massively Multiplayer Online Games. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’06), pages 407–416. ACM Press, 2006.

[13] Paul Erdős and Alfred Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

[14] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the Internet topol-
ogy. In SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures, and proto-

cols for computer communication, pages 251–262. ACM Press, 1999.
[15] Horst Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.
[16] Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (In-

focom), volume 1. IEEE Computer Society Press, 2002.
[17] Cheng Jin, Qian Chen, and Sugih Jamin. Inet Topology Generator. Technical Report CSE-TR-433, EECS

Department, University of Michigan, 2000.

http://arxiv.org/abs/cs.NI/0511007
http://arxiv.org/abs/cs.NI/0511007

16 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

[18] Damien Magoni. nem: A Software for Network Topology Analysis and Modeling. In Proceedings of the 10th In-

ternational Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.
IEEE Computer Society, 2002.

[19] Damien Magoni and Jean Jacques Pansiot. Analysis and Comparison of Internet Topology Generators. In
Proceedings of the 2nd International IFIP-TC6 Networking Conference, pages 364–375. Springer, 2002.

[20] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach to Universal Topol-

ogy Generation. In Proceedings of the 9th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2001.

[21] Alberto Medina, Ibrahim Matta, and John Byers. On the Origin of Power Laws in Internet Topologies. Com-

puter Communication Review, 30(2), April 2000.
[22] Romualdo Pastor-Satorras and Alessandro Vespignani. Evolution and Structure of the Internet: A Statistical

Physics Approach. Cambridge University Press, 2004.

[23] University of Oregon Routeviews Project. http://www.routeviews.org/.
[24] Thomas Schank and Dorothea Wagner. Approximating Clustering Coefficient and Transitivity. Journal of

Graph Algorithms and Applications, 9(2):265–275, 2005.

[25] Stephen B. Seidman. Network Structure and Minimum Degree. Social Networks, 5:269–287, 1983.
[26] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of “Small-World” Networks. Nature, 393:440–

442, 1998.

[27] Stefan Wuchty and Eivind Almaas. Peeling the Yeast Protein Network. Proteomics, 5(2):444–449, 2005.

E-mail address: baur@informatik.uni-karlsruhe.de

E-mail address: gaertler@informatik.uni-karlsruhe.de

E-mail address: rgoerke@informatik.uni-karlsruhe.de

E-mail address: krug@informatik.uni-karlsruhe.de

E-mail address: wagner@informatik.uni-karlsruhe.de

http://www.routeviews.org/

	1. Introduction
	2. Preliminaries
	2.1. Core Decomposition
	2.2. Edges in a Core Hierarchy
	2.3. Random Models and Preferential Attachment

	3. Core Generator
	3.1. Input Parameters
	3.2. Algorithmic Approach
	3.3. Analysis of the Algorithm
	3.4. Refinements

	4. Modeling the AS Network
	4.1. Topology Generators
	4.2. Characteristics
	4.3. Evaluation

	5. Conclusion
	Acknowledgements
	REFERENCES

