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Abstract. Rectangular layouts, subdivisions of an outer rectangle into smaller
rectangles, have many applications in visualizing spatial information, for instance
in rectangular cartograms in which the rectangles represent geographic or political
regions. A spatial treemap is a rectangular layout with a hierarchical structure:
the outer rectangle is subdivided into rectangles that are in turn subdivided into
smaller rectangles. We describe algorithms for transforming a rectangular layout
that does not have this hierarchical structure, together with a clustering of the
rectangles of the layout, into a spatial treemap that respects the clustering and also
respects to the extent possible the adjacencies of the input layout.

1 Introduction

Spatial treemaps are an effective technique to visualize two-dimensional hierarchical
information. They display hierarchical data by using nested rectangles in a space-filling
layout. Each rectangle represents a geometric or geographic region, which in turn can be
subdivided recursively into smaller regions. On lower levels of the recursion, rectangles
can also be subdivided based on non-spatial attributes. Typically, at the lowest level some
attribute of interest of the region is summarized by using properties like area or color.
Treemaps were originally proposed to represent one-dimensional information in two
dimensions [|14]. However, they are well suited to represent spatial—two-dimensional—
data because the containment metaphor of the nested rectangles has a natural geographic
meaning, and two-dimensional data makes an efficient use of space [18]].

Spatial treemaps are closely related to rectangular cartograms [|13]]: distorted maps
where each region is represented by a rectangle whose area corresponds to a numerical
attribute such as population. Rectangular cartograms can be seen as spatial treemaps
with only one level; multi-level spatial treemaps in which every rectangle corresponds
to a region are also known as rectangular hierarchical cartograms [|15,(16]. Spatial
treemaps and rectangular cartograms have in common that it is essential to preserve
the recognizability of the regions shown [[17]]. Most previous work on spatial treemaps
reflects this by focusing on the preservation of distances between the rectangular regions
and their geographic counterparts (that is, they minimize the displacement of the regions).
However, often small displacement does not imply recognizability (swapping the position
of two small neighboring countries can result in small displacement, but a big loss of
recognizability). In the case of cartograms, most emphasis has been put on preserving
adjacencies between the geographic regions. It has also been shown that while preserving
the topology it is possible to keep the displacement error small [4}|17].
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In this paper we are interested in constructing high-quality spatial treemaps by prior-
itizing the preservation of topology, following a principle already used for rectangular
cartograms. Previous work on treemaps has recognized that preserving neighborhood
relationships and relative positions between the regions were important criteria [8}/12}/1§]],
but we are not aware of treemap algorithms that put the emphasis on preserving topology.
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with permission.
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Preserving topology in spatial treemaps
poses different challenges than in (non-
hierarchical) rectangular cartograms. Topology-preserving rectangular cartograms exist
under very mild conditions and can be constructed efficiently [4,/17]]. As we show in this
paper, this is not the case when a hierarchy is added to the picture.

In this paper we consider the following setting: the input is a hierarchical rectangular
subdivision with two levels. We consider only two levels due to the complexity of
the general m-level case. However, the two-level case is interesting on its own, and
applications that use only two-level data have recently appeared [15]].

Furthermore, we adopt a 2-phase approach for building spatial treemaps. In the first
phase, a base rectangular cartogram is produced from the original geographic regions.
This can be done with one of the many algorithms for rectangular cartograms [4]]. The
result will contain all the bottom-level regions as rectangles, but the top-level regions will
not be rectangular yet, thus will not represent the hierarchical structure. In the second
phase, we convert the base cartogram into a treemap by making the top-level regions
rectangles. It is at this stage that we intend to preserve the topology of the base cartogram
as much as possible, and where our algorithms come in. See Figure [2]for an example.

The advantage of this 2-phase approach is that it allows for customization and user
interaction. Interactive exploration of the data is essential when visualizing large amounts
of data. The freedom to use an arbitrary rectangular layout algorithm in the first phase
of the construction allows the user to prioritize the adjacencies that he or she considers
most essential. In the second phase, our algorithm will produce a treemap that will try to
preserve as many as the adjacencies in the base cartogram as possible.

In addition, we go one step further and consider preserving the orientations of the
adjacencies in the base cartogram (that is, whether two neighboring regions share a
vertical or horizontal edge, and which one is on which side). This additional constraint
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Fig. 2. (a) An example input: a full layout of the bottom level, but the regions at a higher
level in the hierarchy are not rectangles. (b) The desired output: another layout, in which
as many lower-level adjacencies as possible have been kept while reshaping the regions at a
higher level into rectangles.

is justified by the fact that the regions represent geographic or political regions, and
relative positions between regions are an important factor when visualizing this type of
data [4l|17]. The preservation of orientations has been studied for cartograms [5]], but to
our knowledge, this is the first time they are considered for spatial treemaps.

We can distinguish three types of adjacency-relations: (i) top-level adjacencies, (ii)
internal bottom-level adjacencies (adjacencies between two rectangles that belong to the
same top-level region), and (iii) external bottom-level adjacencies (adjacencies between
two rectangles that belong to different top-level regions). As we argue in the next section,
we can always preserve all adjacencies of types (i) and (ii) under a mild assumption,
hence the objective of our algorithms is to construct treemaps that preserve as many
adjacencies of type (iii) as possible. We consider several variants of the problem, based
on whether the orientations of the adjacencies have to be preserved, and whether the
top-level layout is given in advance. In order to give efficient algorithms, we restrict
ourselves to top-level regions that are orthogonally convex. This is a technical limitation
that seems difficult to overcome, but that we expect does not limit the applicability of
our results too much: our algorithms should still be useful for many practical instances,
for example, by subdividing non-convex regions into few convex pieces.

Results In the most constrained case in which adjacencies and their orientations need
to be preserved and the top-level layout is given, we solve the problem in O(n) time,
where 7 is the total number of rectangles. The case in which the global layout is not fixed
is much more challenging: it takes a combination of several techniques based on regular
edge labelings to obtain an algorithm that solves the problem optimally in O(k*logk 4 n)
time, for k the number of top-level regions; we expect k to be much smaller than n.
Finally, we prove that the case in which the orientations of adjacencies do not need to be
preserved is NP-hard; we give worst-case bounds and an approximation algorithm.

2 Preliminaries

Rectangles and Subdivisions All geometric objects like rectangles and polygons in
this paper are defined as rectilinear (axis-aligned) objects in the Euclidean plane R2. A set
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of rectangles R is called a rectangle complex if the interiors of none of the rectangles
overlap, and each pair of rectangles is either completely disjoint or shares part of an edge;
no two rectangles may meet in a single point. Each rectangle of a rectangle complex
is a cell of that complex. We represent rectangle complexes using a structure that has
bidirectional pointers between neighboring cells. Let R be a rectangle complex. The
boundary of R is the boundary of the the union of the rectangles in R. R is simple if its
boundary is a simple polygon, i.e., it is connected and has no holes. We say that R is
convex if its boundary is orthogonally convex, i.e., the intersection of any horizontal or
vertical line with R is either empty or a single line segment. We say that R is rectangular
if its boundary is a rectangle. Let R’ be another rectangle complex. We say that R’ is
an extension of R if there is a bijective mapping between the cells in R and R’ that
preserves the adjacencies and their orientations. Note that R’ could have adjacencies
not present in R though. We say that R’ is a simple extension of R if R is not simple
but R is; similarly we may call it a convex extension or a rectangular extension. Every
rectangle complex has a rectangular extension (proof in full version [3]]).

We define D = {left,right, top, bottom} to be the set of the four cardinal directions.
For a direction d € D we use the notation —d to refer to the direction opposite from
d. We define an object O C R? to be extreme in direction d with respect to a rectangle
complex R if there is a point in O that is at least as far in direction d as any point in
R.Let R € R beacell,and d € D a direction. We say R is d-extensible if there exists a
rectangular extension R’ of R in which R is extreme in direction d with respect to R’
(or in other words, if its d-side is part of the boundary of R’). A set of simple rectangle
complexes L is called a (rectilinear) layout if the boundary of the union of all complexes
is a rectangle, the interiors of the complexes are disjoint, and no point in £ belongs to
more than three cells. If all complexes are rectangular we say that L is a rectangular
layout. We call the rectangle bounding L the root box. Let L be a rectilinear layout.
We define the global layout L' of L as the subdivision of the oot box of £, in which
the (global) regions are defined by the boundaries of the complexes in £. We say £’ is
rectangular if all regions in £’ are rectangles.

Dual Graphs of Rectangle Complexes The dual graph of a rectangular complex is
an embedded planar graph with one vertex for every rectangle in the complex, and an
edge between two vertices if the corresponding rectangles touch (have overlapping edge
pieces). The extended dual graph of a rectangular complex with a rectangular boundary
has four additional vertices for the four sides of the rectangle, and an edge between
a normal vertex and an additional vertex if the corresponding rectangle touches the
corresponding side of the bounding box. We will be using dual graphs of the whole
rectangular layout, of individual complexes, and of the global layout (ignoring the
bottom level subdivision); Figure [3] shows some examples. Extended dual graphs of
rectangular rectangle complexes are fully triangulated (except for the outer face which
is a quadrilateral), and the graphs that can arise in this way are characterized by the
following lemma [9, 1 1L{17]]:

Lemma 1. A triangulated plane graph G with a quadrilateral outer face is the dual
graph of a rectangular rectangle complex if and only if G has no separating triangles.

Now, consider the three types of adjacencies we wish to preserve: 1) (top-level)
adjacencies between global regions, 2) internal (bottom-level) adjacencies between the
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Fig. 3. (a) A bottom level rectangle complex. (b) The dual graph of the complex. (c) A
global layout. (d) The extended dual graph of the global layout.

cells in one rectangle complex, and 3) external (bottom-level) adjacencies between cells
of adjacent rectangle complexes.

Observation 1. It is always possible to keep all internal bottom-level adjacencies.

Observation 2. It is possible to keep all top-level adjacencies if and only if the extended
dual graph of the global input layout has no separating triangles.

Observation 1 is proven in the full version [3|], and Observation 2 follows from
Lemma[I]since the extended dual graph of the global regions is fully triangulated.

From now on we assume that the dual graph of the
global regions has no separating triangles, and we will
preserve all adjacencies of types 1 and 2. Unfortunately,
it is not always possible to keep adjacencies of type 3— _—
see Figure d}—and for every adjacency of type 3 that we
fail to preserve, another adjacency that was not present
in the original layout will appear. Therefore, our aim is

to preserve as many of these adjacencies as possible. Fig. 4. Not all external adjacen-
cies can be kept.

3 Preserving orientations

We begin studying the version of the problem where all internal adjacencies have to
be preserved respecting their original orientations. Additionally, we want to maximize
the number of preserved and correctly oriented (bottom-level) external adjacencies. We
consider two scenarios: first we assume that the global layout is part of the input, and
then we study the case in which we optimize over all global layouts. The former situation
is particularly interesting for GIS applications, in which the user specifies a certain global
layout that needs to be filled with the bottom-level cells. If, however, the bottom-level
adjacencies are more important, then optimizing over global layouts allows to preserve
more external adjacencies.

3.1 Given the global layout

In this section we are given, in addition to the initial two-level subdivision L, a global
target layout £’. The goal is to find a two-level treemap that preserves all oriented



6 Buchin et al.

. I } 4 p 4y

[ 4

' T3 |
(a) (b) (© (d)

Fig.5. (a) A region in the input. (b) The same region in the given global layout. (c) Edges
of rectangles that want to become part of a boundary have been marked with arrows. Note
that one rectangle wants to become part of the top boundary but can't, because it is not
extensible in that direction. (d) All arrows that aren’t blocked can be made happy.

bottom-level internal adjacencies and that maximizes the number of preserved oriented
bottom-level external adjacencies in the output.

First observe that in the rectangular output layout any two neighboring global regions
have a single orientation for their adjacency. Hence we can only keep those bottom-level
external adjacencies that have the same orientation in the input as their corresponding
global regions have in the output layout. Secondly, consider a rectangle R in a complex
R, and a rectangle B in another complex B. Observe that if R and B are adjacent in the
input, for example with R to the left of B, then their adjacency can be preserved only if
R is right-extensible in R and B is left-extensible in 5.

The main result in this section is that the previous two conditions are enough to
describe all adjacencies that cannot be preserved, whereas all the other ones can be kept.
Furthermore, we will show how to decide extensibility for convex complexes, and how to
construct a final solution that preserves all possible adjacencies, leading to an algorithm
for the optimal solution.

Recall that we assume all regions are orthogonally convex. Consider each rectangle
complex of L separately. Since we know the required global layout and since all cells
externally adjacent to our region are consecutive along its boundary, we can immediately
determine the cells on each of the four sides of the output region (see Figure [5). The
reason is that for a rectangle R that is exterior to its region R, and that is adjacent to
another rectangle B € B, their adjacency is relevant only if R and B are adjacent with the
same orientation in the global layout. We can easily categorize the extensible rectangles
of a convex rectangle complex. For the proof of the following lemma and other proofs in
this section we refer to the full version [3]].

Lemma 2. Let R be a convex rectangle complex, let R € R be a rectangle, and d € D a
direction. R is d-extensible if and only if there is no rectangle R’ € R directly adjacent
to R on the d-side of R.

Unfortunately, though, we cannot extend all extensible rectangles at the same time.
However, we show that we can actually extend all those rectangles that we want to
extend for an optimal solution.

We call a rectangle of a certain complex belonging to a global region engaged if it
wants to be adjacent to a rectangle of another global region, and the direction of their
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desired adjacency is the same as the direction of the adjacency between these two regions
in the global layout. We say it is d-engaged if this direction is d € D.

Therefore, the rectangles that we want to extend are exactly those that are d-extensible
and d-engaged, since they are the only ones that help preserve bottom-level exterior
adjacencies. It turns out that extending all these rectangles is possible, because the
engaged rectangles of R have a special property:

Lemma 3. If we walk around the boundary of a region R, we encounter all d-engaged
rectangles consecutively.

This property of d-engaged rectangles is useful due to the following fact.

Lemma 4. Let R be a convex rectangle complex composed of r rectangles, and let S be
a subset of the extensible and engaged rectangles in R with the property that if we order
them according to a clockwise walk along the boundary of R, all d-extensible rectangles
in S are encountered consecutively for each d € D and in the correct clockwise order.
We can compute, in O(r) time, a rectangular extension R’ of R in which all d-extensible
rectangles in S are extreme in direction d, for all d € D.

Therefore, the engaged and extensible rectangles form a subset of rectangles for
which Lemma 4] holds, thus by using the lemma we can find a rectangular extension
where all extensible and engaged rectangles are extreme in the appropriate direction.

Then we can apply this idea to each region. Now we still have to match up the
adjacencies in an optimal way, that is, preserving as many adjacencies from the input as
possible. This can be done by matching horizontal and vertical adjacencies independently.
It is always possible to get all the external bottom-level adjacencies that need to be
preserved. This can be seen as follows. We process first all horizontal adjacencies.
Consider a complete stretch of horizontal boundary in the global layout. Then the
position and length of the boundary of each region adjacent to that boundary are fixed,
from the global layout. The only freedom left is in the x-coordinates of the vertical edges
of the rectangles that form part of that boundary (except for the leftmost and rightmost
borders of each region, which are also fixed). Since the adjacencies that want to be
preserved are part of the input, it is always possible to set the x-coordinates in order
to fulfill them all. The same can be done with all horizontal boundaries. The vertical
boundaries are independent, thus can be processed in exactly the same way. This yields
the main theorem in this subsection.

Theorem 1. Let T be a 2-level treemap, where n is the number of cells in the bottom
level, and where all global regions are orthogonally convex. For a given global target
layout L, we can find, in O(n) time, a rectangular layout of T that respects L, preserves
all oriented internal bottom-level adjacencies, and preserves as many oriented external
bottom-level adjacencies as possible.

3.2 Unconstrained global layout

In this section the global target layout of the rectangle complexes is not given, i.e., we are
given a rectilinear input layout and need to find a rectangular output layout preserving all
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adjacencies of the rectangle complexes and preserving a maximum number of adjacencies
of the cells of different complexes.

We can represent a particular rectangular global layout £ as a regular edge label-
ing [10] of the dual graph G(L) of the global layout. Let G(L) be the extended dual
graph of £. Then £ induces an edge labeling as follows: an edge corresponding to a
joint vertical (horizontal) boundary of two rectangular complexes is colored blue (red).
Furthermore, blue edges are directed from left to right and red edges from bottom to top.
Clearly, the edge labeling obtained from L in this way satisfies that around each inner
vertex v of G(L£) the incident edges with the same color and the same direction form
contiguous blocks around v. The edges incident to one of the external vertices {/,7,r,b}
all have the same label. Such an edge labeling is called regular [|10]. Each regular edge
labeling of the extended dual graph G(£) defines an equivalence class of global layouts.

In order to represent the family of all possible rectangular global layouts we apply a
technique described by Eppstein et al. [51[6]]. Let £ be the rectilinear global input layout
and let G(£) be its extended dual graph. The first step is to decompose G(L£) by its
separating 4-cycles into minors called separation components with the property that
they do not have non-trivial separating 4-cycles any more, i.e., 4-cycles with more than
a single vertex in the inner part of the cycle. If C is a separating 4-cycle the interior
separation component consists of C and the subgraph induced by the vertices interior to
C. The outer separation component is obtained by replacing all vertices in the interior of
C by a single vertex connected to each vertex of C. This decomposition can be obtained
in linear time [|6]. We can then treat each component in the decomposition independently
and finally construct an optimal rectangular global layout from the optimal solutions of
its descendants in the decomposition tree. So let’s consider a single component of the
decomposition, which by construction has no non-trivial separating 4-cycles.

Preprocessing of the bottom level We start with a preprocessing step to compute
the number of realizable external bottom-level adjacencies for pairs of adjacent global
regions. This allows us to ignore the bottom-level cells in later steps and to focus on the
global layout and orientations of global adjacencies.

Let £ be a global layout, let R and S be two adjacent rectangle complexes in L,
and let d € D be an orientation. Then we define ©(R,S,d) to be the total number of
adjacencies between d-engaged and d-extensible rectangles in R and —d-engaged and
—d-extensible rectangles in S. By Lemma 4] there is a rectangular layout of R and S
with exactly w(R,S,d) external bottom-level adjacencies between R and S.

We show the following (perhaps surprising) lemma:

Lemma 5. For any pair L and L' of global layouts and any pair R and S of rectangular
rectangle complexes, whose adjacency direction with respect to R is d in L and d' in L'
the number of external bottom level adjacencies between R and S in any optimal solution
Sor L' differs by ©(R,S,d") — ®(R,S,d) from L. For adjacent rectangle complexes
whose adjacency direction is the same in both global layouts the number of adjacencies
in any optimal solution remains the same.

This basically means we can consider changes of adjacency directions locally and
independent from the rest of the layout. Furthermore, since the values @(R,S,d) are
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directly obtained from counting the numbers of d-extensible and d-engaged rectangles
in R (or —d-extensible and —d-engaged rectangles in S) we get the next lemma.

Lemma 6. We can compute all values ®(R.,S,d) in O(n) total time.

Optimizing in a graph without separating 4-cycles Here we will prove the following:

Theorem 2. Let G be an embedded triangulated planar graph with k' vertices without
separating 3-cycles and without non-trivial separating 4-cycles, except for the outer face
which consists of exactly four vertices. Furthermore, let a weight ®(e,d) be assigned
to every edge e in G and every orientation d in D. Then we can find a rectangular
subdivision of which G is the extended dual that maximizes the total weight of the
directed adjacencies in O(k*logk’) time.

In order to optimize over all rectangular subdivisions with the same extended dual
graph we make use of the representation of these subdivisions as elements in a distributive
lattice or, equivalently, as closures in a partial order induced by this lattice [SL|6]. There
are two moves or flips by which we can transform one rectangular layout (or its regular
edge labeling) into another one, edge flips and vertex flips (Figure [6). They form a
graph where each equivalence class of rectangular layouts is a vertex and two vertices
are connected by an edge if they are transformable into each other by a single move,
with the edge directed toward the more counterclockwise layout with respect to this
move. This graph is acyclic and its reachability ordering is a distributive lattice [7]]. It
has a minimal (maximal) element that is obtained by repeatedly performing clockwise
(counterclockwise) moves.

By Birkhoff’s representation theorem [2] each element in this lattice is in one-to-one
correspondence to a partition of a partial order P into an upward-closed set U and a
downward-closed set L. The elements in P are pairs (x, i), where x is a flippable item, i.e.,
either the edge of an edge flip or the vertex of a vertex flip [5,/6]. The integer i is the so-
called flipping number f,(L£) of x in a particular layout L, i.e., the well-defined number
of times flip x is performed counterclockwise on any path from the minimal element £,
to £ in the distributive lattice. An element (x,{) is smaller than another element (y, j)
in this order if y cannot be flipped for the j-th time before x is flipped for the i-th time.
For each upward- and downward-closed partition U and L, the corresponding layout
can be reconstructed by performing all flips in the lower set L. P has O(k?) vertices
and edges and can be constructed in O(k’z) time [5,/6]]. The construction starts with
an arbitrary layout, performs a sequence of clockwise moves until we reach Li,, and
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(b)

Fig. 7. (a) A graph with non-trivial separating 4-cycles. Note that some 4-cycles intersect
each other. (b) A possible decomposition tree of 4-cycle-free graphs (root on the left).

from there performs a sequence of counterclockwise moves until we reach the maximal
element. During this last process we count how often each element is flipped, which
determines all pairs (x,7) of P. Since each flip (x,i) affects only those flippable items
that belong to the same triangle as x, we can initialize a queue of possible flips, and
iteratively extract the next flip and add the new flips to the queue in total time O(k?). In
order to create the edges in P we again use the fact that a flip (x,7) depends only on flips
(x',i"), where X' belongs to the same triangle as x and i’ differs by at most 1 from i. The
actual dependencies can be obtained from their states in Ly.

Next, we assign weights to the nodes in P. Let L, be the layout that is minimal
in the distributive lattice, i.e., the layout where no more clockwise flips are possi-
ble. For an edge-flip node (e,i) let R and S be the two rectangle complexes adjacent
across e. Then the weight w(e, i) is obtained as follows. Starting with the adjacency
direction between R and S in L, we cycle i times through the set D in counter-
clockwise fashion. Let d be the i-th direction and d’ the (i + 1)-th direction. Then
w(e,i)=w(e,d)=0(R,S,d')— o(R,S,d). For a vertex-flip node (v,i) let R be the
degree-4 rectangle complex surrounded by the four complexes S, ...,S4. We again
determine the adjacency directions between R and Sy, ..., Ss in Ly, and cycle i times
through D to obtain the i-th directions d,...,ds as well as the (i + 1)-th directions
dj,...,d,. Then w(v,i) = Z‘}:l (R, S;,d}) — ©(R,S;,d;). Equivalently, if the four
edges incident to v are e1, ..., e4, we have @(v,i) = Z‘}ZI w(ej,d").

Finally, we compute a maximum-weight closure of P using a max-flow algorithm []1}
Chapter 19.2], which will take O(k"*logk’) time for a graph with O(k”?) nodes.

Optimizing in General Graphs In this section, we show how to remove the restriction
that the graph should have no separating 4-cycles. We do this by decomposing the graph
G by its separating 4-cycles and solving the subproblems in a bottom-up fashion.

Lemma 7 (Eppstein et al. [6]). Given a plane graph G with k vertices, there exists
a collection C of separating 4-cycles in G that decomposes G into separation compo-
nents that do not contain separating 4-cycles any more. Such a collection C and the
decomposition can be computed in O(k) time.

These cycles naturally subdivide G into a tree of subgraphs, which we will denote
as Tg. Still following [6]], we add an extra artificial vertex inside each 4-cycle, which
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corresponds to filling the void in the subdivision after removing all rectangles inside by
a single rectangle. Figure[7]shows an example of a graph G and a corresponding tree 7.

Now, all nodes of T have an associated graph without separating 4-cycles on which
we can apply Theorem[2] The only thing left to do is assign the correct weights to the
edges of these graphs. For a given node v of T, let Gy be the subgraph of G associated
to v (with potentially extra vertices inside its 4-cycles).

For every leave v of T, we assign weights to the internal edges of Gy by simply
setting ®(e,d) = 0(R,S,d) if e separates R and S in the global layout £. For the
external edges of Gy (the edges that are incident to one of the “corner” vertices of the
outer face), we fix the orientations in the four possible ways, leading to four different
problems. We apply Theorem [2] four times, once for each orientation. We store the
resulting solution values as well as the corresponding optimal layouts at v in Tg.

Now, in bottom-up order, for each internal node v in T, we proceed in a similar
way with one important change: for each child u of v, we first look up the four optimal
layouts of i and incorporate them in the weights of the four edges incident to the single
extra vertex that replaced G, in Gy . Since these four edges must necessarily have four
different orientations, their states are linked, and it does not matter how we distribute
the weight over them; we can simply set the weight of three of these edges to 0 and the
remaining one to the solution of the appropriately oriented subproblem. The weights of
the remaining edges are derived from L as before, and again we fix the orientations of
the external edges of Gy in four different ways and apply Theorem [2]to each of them.
We again store the resulting four optimal values and the corresponding layouts at v, in
which we insert the correctly oriented subsolutions for all children u of v.

This whole process takes O(k*logk) time in the worst case. Finally, since weights
are expressed as differences with respect to the minimal layout £,;, we compute the
value of L, and add the offset computed as the optimal solution to get the actual value
of the globally optimal solution. This takes O(n) time.

Theorem 3. Let T be a 2-level treemap, such that the extended dual graph G of the
global layout has no separating 3-cycles. Let n be the number of cells in the bottom level
and k the number of regions in the top level. Then we can find a rectangular subdivision
that preserves all oriented internal bottom-level adjacencies, and preserves as many
oriented external bottom-level adjacencies as possible in O(k*logk + n) time.

4 Without preserving orientations

In this section we do not need to preserve orientations of internal adjacencies. The global
regions are convex and we assume that the global layout is given. However, maximizing
the number of preserved external adjacencies in this case is NP-hard even if we only
have two top-level regions. For two top-level regions we give a 1/3-approximation
algorithm for this problem. Furthermore, this algorithm preserves at least 1/9 of the
external adjacencies. We also show that we sometimes cannot keep more than 1/4 of
the adjacencies. The algorithm extends to more than two regions. In this case itis a 1/6-
approximation and at least 1/18 of the adjacencies are kept. Due to space restrictions,
we defer all details of these results to the full version of this paper [3|.
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