Experimental Study of Speed Up Techniques for
Timetable Information Systems

Reinhard Bauer, Daniel Delling, and Dorothea Wagner

Karlsruhe Institute of Technology, Department of Computer Science, 76128 Karlsruhe, Germany

In recent years, many speed up techniques for
DiukSTRA Algorithm have been developed. Unfortunately,
research mainly focused on road networks although fast
algorithms are also needed for other applications like
timetable information systems. Even worse, the adap-
tion of recently developed techniques to graphs deriving
from timetable information problems is often more com-
plicated than expected. In this work, we check whether
results from road networks are transferable to timetable
information systems. To this end, we present an exten-
sive experimental study of the most prominent speed
up techniques on inputs deriving from different applica-
tions. It turns out that recently developed techniques are
much slower on graphs derived from timetable informa-
tion problems than on road networks. In addition, we gain
interesting insights into the behavior of speed up tech-
niques in general. © 2010 Wiley Periodicals, Inc. NETWORKS,
Vol. 57(1), 38-52 2011

Keywords: graph algorithms; shortest paths; algorithm engi-
neering; timetable information; experimental study

1. INTRODUCTION

Computing shortest paths in networks is used in many real-
world applications like routing in road networks, timetable
information, or airplane scheduling. In general, DUKSTRA’S
algorithm [20] can be used to solve this problem. Unfortu-
nately, the algorithm is too slow to be used on huge datasets,
e.g., the US road network has more than 20 million nodes.
In order to reduce query times for typical instances like road
or railway networks, several speed up techniques have been
developed during the last years (see [17] for an overview).
Most recent research [3, 15] has made the calculation of
distances within a road network a matter of microseconds.

Received January 2008; accepted October 2009

Correspondence to: D. Delling; e-mail: delling@ira.uka.de

Contract grant sponsor: Future and Emerging Technologies Unit of EC (IST
Priority—6th FP); Contract grant number: FP6-021235-2 (Project ARRIVAL)
Contract grant sponsor: DFG; Contract grant number: WA 654/16-1

DOI 10.1002/net.20382

Published online 24 March 2010 in
(wileyonlinelibrary.com).

© 2010 Wiley Periodicals, Inc.

Wiley Online Library

NETWORKS—2011—DOI 10.1002/net

Unfortunately, due to the availability of huge road net-
works, much of the recent research has focused only on such
networks [3, 17,45]. However, fast algorithms are needed for
other applications as well. One might expect that all speed
up techniques can simply be used in any other application,
yet several problems arise. On the one hand, several assump-
tions which hold for road networks may not hold for other
networks: e.g., in timetable information systems bidirectional
search is prohibited as the arrival time is unknown in advance.
Performance is the other big issue. The fastest methods [5]
heavily exploit properties of road networks in order to gain
their huge speed ups. Furthermore, most of the developed
techniques only work in static scenarios, i.e., edge weights
do not change between two requests. However, in railway
networks, delays occur frequently. Thus, a solution for the
dynamic timetable information problem is required.

In this work, we evaluate the most prominent speed up
techniques on different types of input classes. One focus
hereby lies in graphs deriving from timetable information
systems. In such systems, we want to solve the earliest arrival
problem (EAP) in a transportation network: Given two sta-
tions S and 7', what is the earliest arrival at 7' if departing from
S at time 7. In general, two approaches exist for solving the
EAP: the time-dependent and time-expanded approaches. In
the former model, each station is modeled by one node and an
edge is inserted iff a direct connection between two stations
exist. Several weights are assigned to each edge. Each weight
represents the travel time of a train running from one station
to another. In the time-expanded model, time-dependency is
rolled out such that each edge represents a specific train run-
ning from one station to the other. While the time-dependent
approach yields smaller inputs (and hence, smaller query
times), the time-expanded approach allows a more flexible
modeling of additional constraints.

At a glance, using speed up techniques developed for
static (non time-dependent) road networks on time-expanded
[39] graphs for timetable information systems seems promis-
ing. Since road networks seem to have similar properties
as railway networks—both incorporate some kind of nat-
ural hierarchy and both are sparse—one might expect that
speed up techniques yield the same performance as on
road networks. However, our study reveals that speed up
techniques perform significantly worse on time-expanded

graphs than on road networks. Even worse, obtained speed
ups are below the expansion factor of ~250 that exists
between the time-dependent and time-expanded models [39].
As a consequence, running a simple time-dependent DUK-
STRA on the time-dependent graph is faster than any speed
up techniques on the corresponding time-expanded graph.
With the obtained results, we conclude that for pure perfor-
mance issues the time-dependent model is somewhat superior
to the time-expanded model. In addition, delays seem to be
incorporated more easily in the time-dependent approach.

In addition, our extensive experimental study leads to
intriguing insights into the behavior of speed up techniques.
For small-world inputs, the biggest speed up is achieved by
simply switching from uni- to bidirectional search and almost
all speed up techniques do not yield an additional speed up.
Moreover, we reveal the influence of density and diameter on
the performance of the techniques. As most algorithms have
only been tested on road networks, these new results are of
independent interest.

1.1. Related Work

To the best of our knowledge, systematic experiments
with different inputs and various speed up techniques for
DDUKSTRA’s algorithm can only be found in [29, 30]. How-
ever, in their work, the authors only use condensed railway
networks and after its publication, several additional speed
up techniques have been developed which we incorporate in
this work. Moreover, most of the inputs used here are also
evaluated in [4]. In [22, 23] additional tests—besides road
networks—on grid graphs are performed. Moreover, work
on parallel shortest path algorithms is evaluated on many
other problem instances than road networks [2, 10, 34, 35].
The authors observe that the behavior of their algorithms also
highly depends on the input.

There has been some research on adapting speed up
techniques to timetable information applications. In [44]
basic speed up techniques are used in time-dependent and
time-expanded timetable information graphs. In [48], the
multilevel speed up technique is applied to railway graphs.
Geometric containers were evaluated in [49] on such graphs
as well. However, to the best of our knowledge, no extensive
tests incorporating all recently developed speed up techniques
have been published yet.

A preliminary version of this work has been published [6].
However, here we incorporate a very recent speed up tech-
nique, namely SHARC [4]. It should be noted that based on
the insights presented in this article we were able to develop
further improvements, see e.g., [5,7, 13, 16]. Moreover, this
experimental study was the first one that systematically eval-
uated recent high-performance speed up techniques on inputs
other than road networks.

1.2. Overview

This article is organized as follows. The most prominent
speed up techniques are introduced in Section 2. In Section 3,

we briefly discuss existing approaches for modeling timetable
information problems as graphs. For all three approaches we
discuss advantages and disadvantages with a focus on the
effort of adapting speed up techniques to each model. Our
extensive experimental study is located in Section 4, where
we evaluate the speed up techniques from Section 2 on several
real-world and synthetic datasets. Our work concludes with
a summary in Section 5.

2. SPEED UP TECHNIQUES

Here, we briefly present DUKSTRA’s algorithm and the
speed up techniques which are evaluated in Section 4 (for a
more detailed overview see [17]). Because of the fact that
many speed up techniques exist, we restrict ourselves to the
most prominent ones and to those which do not need a lay-
out of the input graph. For all techniques, we use the most
sophisticated variant.

2.1. DUKSTRA’s Algorithm [20]

The classical algorithm for computing the shortest path
from a given source s to all other nodes in a directed graph
with non-negative edge weights is due to Dijkstra. The algo-
rithm maintains a priority queue Q and a label for each node
u depicting the tentative distance from the source s to node
u. At each step, the algorithm removes (or scans) the node u
from Q with minimum distance to s. Then, all outgoing edges
(u, v) of u are relaxed, i.e., the algorithm checks whether the
path via u to v is shorter than the path to v found so far. If
the path via u is shorter, v is either inserted into the priority
queue or its priority is decreased. The algorithm terminates
when all nodes have been scanned. If we are only interested
in computing a shortest path from s to a given target ¢, we may
stop the search as soon as ¢ has been scanned by DIUKSTRA’s
algorithm.

2.2. Bidirectional DUKSTRA [11,21]

The most straightforward speed up technique is bidirec-
tional search. An additional search is started from the target
node and the query stops as soon as both searches meet.
The tuning parameter of this approach is the way forward
and backward search are alternated. We here use a strategy
that strictly alternates between both searches, balancing the
work between them. Note that most sophisticated methods
are bidirectional approaches.

2.3. ALT [21,24]

Goal directed search, also called A* [27], pushes the
search toward a target by adding a potential to the prior-
ity of each node. Given a 2-dimensional layout, the usage
of Euclidean potentials requires no preprocessing. The ALT
algorithm, introduced in [21], obtains the potential from the
distances to certain landmarks in the graph. Although this
approach requires a preprocessing step, it is superior (com-
pared to Euclidean potentials) with respect to search space

NETWORKS—2011—DOI 10.1002/net 39

and query times. In this work, we use the latest variant of
ALT, introduced in [24], with 16 maxCover landmarks as the
representative of goal-directed search. The main advantage
of ALT is its simple implementation and it can be used—
without modification for most updates—in a dynamic and
time-dependent scenario [19, 40], i.e., edge weights may
change between two queries. The main downside of ALT
are very fluctuating query times.

2.4. Arc-Flags [32,33,36]

This approach uses a pruning strategy, i.e., by attaching
additional data to edges, a modified DUKSTRA checks whether
an edge can or cannot be on the shortest path to the target.
More precisely, the Arc-Flag approach partitions the graph
into cells and attaches a label to each edge. A label contains
a flag for each cell indicating whether a shortest path to the
corresponding cell exists that starts with this edge. As aresult,
a bidirectional Arc-Flags-DUKSTRA often only visits those
edges which lie on the shortest path of a long-range query.
However, no speed up can be achieved for queries within a
cell and the preprocessing effort is very high. In this work,
we use the variant as described in [36].

Let (u,v) be an edge with both endpoints in the same cell
C. Note that the arc-flag of (u, v) for the cell C is most often
set. Because of these so called own-cell flags an Arc-Flags-
DUKSTRA yields no speed up for queries within the same cell.
Even worse, using a unidirectional query, more and more
edges become important when approaching the target cell
(the coning effect) and finally, all edges are considered as
soon as the search enters the target cell. While this coning
effect can be weakened by a bidirectional query, the former
also holds for such queries. Thus, a two-level approach is
introduced in [37] which weakens these drawbacks as cells
become quite small on the lower level. It is obvious that this
approach can be extended to a multilevel approach.

2.5. SHARC [4]

It is an extension of the Arc-Flags approach. By using
contraction—a routine that iteratively removes unimportant
nodes and adds edges to preserve correct distances between
remaining nodes—during preprocessing most of the disad-
vantages of Arc-Flags can be remedied. The result is a fast
unidirectional query algorithm, which is especially advanta-
geous in scenarios where bidirectional search is prohibitive,
e.g., timetable information systems. In general, SHARC can
be interpreted as a goal-directed technique that incorpo-
rates hierarchical aspects implicitly. In this work, we use the
implementation of SHARC due to [4].

2.6. Highway Hierarchies [45]

This approach is a hierarchical method, i.e., an approach
trying to exploit the hierarchy of a graph. Therefore, the net-
work is contracted and then “important” edges—the highway
edges—are identified. By rerunning those two steps, a natural
hierarchy of the network is obtained. The contraction phase

40 NETWORKS—2011—DOI 10.1002/net

builds the core of a level and adds shortcuts to the graph. The
identification of highway edges is done by local DUKSTRA
executions. In this work, we use the variant of Highway Hier-
archies (HH) as described in [45]. This variant stops building
the hierarchy at a certain point and computes a distance table
containing all distances between the core-nodes of the highest
level. The advantages of HH are very low preprocessing and
query times (15 min of preprocessing on the Western Euro-
pean road network result in query times of 0.5 ms). However,
this approach loses performance when using other metrics
than travel times [18].

2.7. RE/REAL [22,23]

Reach [25] is a centrality measure based on the intuition
that a node is important if it is situated in the middle of
long shortest paths. In [25], reach is used as a node-label in
order to prune the search. Some crucial disadvantages, e.g.,
preprocessing time, are remedied by enriching the graph by
shortcuts in [22]. In addition, this approach naturally com-
bines with ALT yielding high speed ups in road networks.
The RE algorithm is a bidirectional reach-pruning DIUKSTRA
on a shortcut-enriched graph, while REAL is the combina-
tion of RE and ALT. Note that RE can be interpreted as a
hierarchical method. RE has similar advantages and disad-
vantages like HH, but preprocessing takes longer than for
HH. The advantage of RE over HH is its sound combination
with ALT, which cannot be combined with HH easily [18].

2.8. Highway-Node Routing [46]

This approach computes for a given sequence of node sets
V =:Vy 2 Vi D --- D Vp ahierarchy of overlay graphs
[28,47,48]: the level-£ overlay graph consists of the node
set V, and an edge set E, that ensures the property that all
distances between nodes in V, are equal to the correspond-
ing distances in the underlying graph Gy_;. A bidirectional
query algorithm takes advantage of the multilevel overlay
graph by never moving downwards in the hierarchy—by that
means, the search space size is greatly reduced. A node clas-
sification provided by the Highway Hierarchies approach was
used to define the highway-node sets leading to a multilevel
overlay graph with about ten levels. Hence, the performance
of Highway-Node Routing is very similar to pure Highway
Hierarchies but the advantage of the former is its capability
to efficiently update the preprocessing and low memory con-
sumption. However, as performance is similar to Highway
Hierarchies and we use static graphs in this work, we do not
consider Highway-Node Routing.

2.9. Transit-Node Routing [3]

When you start from a source node and drive to some-
where “far away,” you will leave your current location via

!Preliminary experiments confirm that Highway-Node Routing performs
very similar to Highway Hierarchies on most inputs.

one of only a few ‘important’ traffic junctions, called access
nodes. Transit-Node Routing computes the distances between
all such access nodes and between every node with its near-
est access nodes in advance. Long-range queries can then
be answered by a few table lookups. However, low-range
queries still have to use another speed up technique to be
handled efficiently. Transit Node Routing is tailored to road
networks and it turns out that applying this technique in other
scenarios is quite complicated: The number of transit nodes
“explodes” on denser graphs and the underlying low-range
speed up technique has to be adapted as well. As one of the
most efficient variants of Transit Node Routing is based on
Highway Hierarchies, the performance of Highway Hierar-
chies most likely reflects the performance of Transit Node
Routing.2 Hence, we do not use this technique in this work.

2.10. Example

Figure 1 shows the search space of some of the above-
mentioned speed up techniques running the same query on a
road network. A black edge depicts that it has been relaxed
by the query algorithm. The shortest path is drawn thicker.
Note that for SHARC and HNR shortcuts are inserted into the
graph which we unpack for visualization. As a consequence,
the search space may look bigger than for other techniques,
but the number of relaxed edges may actually be smaller.

We observe that ALT gives the search an excellent sense
of goal-direction but almost all nodes are visited near the
source and the target of the query. Highway-Node Routing
improves on the latter but is not goal-directed. SHARC yields
the smallest search space by incorporating both hierarchical
and goal-directed properties.

3. MODELING TIMETABLE INFORMATION
SYSTEMS

In this section, we briefly present existing approaches to
model (dynamic) timetable information systems as graphs
(cf. [39] for details). In addition, we discuss problems of
adapting speed up techniques to these models and how well
delays can be covered.

3.1. Condensed Model

The easiest model is the condensed model. Here, a node is
introduced for each station and an edge is inserted if a direct
connection between two stations exists. The edge weight is set
to be the minimum travel time over all possible connections
between these two stations. See Figure 2 for an example. The
advantage of this model is that the resulting graphs are quite
small and we are able to use speed up techniques without
modifications. Unfortunately, several drawbacks exist. First
of all, this model does not incorporate the actual departure
time from a given station. Even worse, travel times highly

2However, with proper modifications, it seems possible to adapt Transit Node
Routing to some of the inputs used.

depend on the time of the day and the time needed for chang-
ing trains is also not covered by this approach. As a result,
the calculated travel time between two arbitrary stations in
such a graph is only a lower bound on the real travel time.

3.2. Time-Dependent Model

This model tries to remedy the disadvantages of the con-
densed model. The main idea is to use time-dependent edges.
Hence, each station is also modeled by a single node and an
edge is again inserted iff a direct connection between two
stations exist. But unlike for the condensed model, several
weights are assigned to each edge. Each weight represents
the travel time of a train running from one station to another.
The edge used during a query is then picked according to
the departure time from the station. See Figure 3 for a small
example. The advantage of this model is its small size and the
obtained travel time is feasible. Furthermore, delays can eas-
ily be incorporated: the corresponding weight—representing
the delayed connection—of an edge can simply be increased.
However, adapting speed up techniques to time-dependent
graphs is more complicated than expected. While for time-
independent graphs speed ups of over three million can be
achieved [5], the best results for time-dependent graphs only
yield speed up factors of ~215 [13]. In addition, this model
does not cover transfer times, yet this can be remedied as
shown in [43].

Note that the time-dependent model can be interpreted
as an extension of the condensed model. In this work we
evaluate speed up techniques on the condensed model in order
to select techniques that are worth adapting to the dynamic
time-dependent model.

3.3. Time-Expanded Model

This is another model that does not rely on time-dependent
edge weights and thus it is easier to use known speed up
techniques in this model. Here, a node is used for each arrival
and departure event. An edge is inserted for each connection
between two events. Figure 4 gives a small example. The
main downside of this approach is that the resulting graphs
are much bigger than for the time-dependent approach. For
our datasets, the number of nodes is roughly 250 times higher.
Note that such graphs are strongly connected as timetables
are periodic.

In general, most unidirectional speed up techniques can be
used out-of-the-box on such a time-expanded graph. How-
ever, sophisticated methods gain their speed ups from a
bidirectional search that needs to know the exact target node.
Even worse, RE and HH only work correctly if used in
a bidirectional manner. Unfortunately, in this model each
node represents a specific event within the network and
thus it is complicated to pick the target node from which
to start the backward search. In addition, some unidirec-
tional approaches, e.g., unidirectional ALT, also need the
exact target node in order to work properly. Another pit-
fall originates from the model. The ordering of nodes within

NETWORKS—2011—DOI 10.1002/net 41

(a) Bidirectional Dijkstra

(b} Bidirectional ALT

() Highway-Node Routing

(d) SHARC

FIG. 1. Search space of some of the examined speed up techniques.

a station is very important for the correctness of timetable
information queries. Whenever a delay occurs, trains may
arrive in a different order than expected, leading to a com-
plete change of the inner-edge structure of a station. As a
consequence, delays yield changes in the topology within
the network which results in a larger effort of updating the

42 NETWORKS—2011—DOI 10.1002/net

preprocessed data of the speed up techniques. Thus, adapting
techniques to a dynamic time-expanded model appears to be
very complicated [38].

Note that transfer times are not covered correctly. For this
reason, this model is called the simple time-expanded model.
However, this can be remedied by an extended model, but

FIG. 2. Condensed network of our European timetable information data, provided by HaCon [26] for scientific

use.

the graph size additionally increases by a factor of ~2. In this
work, we evaluate the speed up techniques on the static simple
time-expanded model in order to pick the most promising
technique that is worth adapting to the dynamic extended
time-expanded model.

4. EXPERIMENTS

In this section, we present an extensive experimental eval-
uation of the speed up techniques on different types of graphs.
Our implementation is written in C++ (using the STL at some
points). As priority queue we use a binary heap. Our tests
were executed on one core of an AMD Opteron 2218 run-
ning SUSE Linux 10.1. The machine is clocked at 2.6 GHz,
has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.1, using optimization level 3.

FIG. 3.

Time-dependent model. We have four stations and two train routes.

The first runs from A to B to C and back to A, while the route of the second
one is A>B—D—C—A.

Default Settings: Unless otherwise stated, we use the
following settings. For ALT, we use 16 maxCover [24]
landmarks. In our Arc-Flags setup, we use 128 cells
obtained from METIS [31]. For SHARC, we apply a
2-level partitioning—obtained from SCOTCH [41]—with
112 cells on the upper level and 16 cells per supercell on
the lower level (cf. [4] for details). In addition, we evaluate
the hierarchical RE algorithm [22] and Highway Hier-
archies (HH) [45]. The performance of both approaches
highly depends on the chosen preprocessing parameters
which we here tune manually. For HH, we use a dis-
tance table as soon as the contracted graph has fewer
than 10,000 nodes. Moreover, we evaluate the combina-
tion of RE and ALT, named REAL, without reach-aware
landmarks [23].

v

NETWORKS—2011—DOI 10.1002/net

FIG. 4. Time-expanded model. The figure shows parts of a station with
two trains arriving and departing.

43

TABLE 1. Performance of the speed up techniques on the condensed railway network of Europe.
Travel time Distance Unit Random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0.0 0 14761 348 0.0 0 14603 2.82 0.0 0 14691 335 0.0 0 14549 5.26
BiDijkstra 0.0 0 7520 1.83 0.0 0 8615 1.69 0.0 0 1158 027 0.0 0 1515 0.53
uni ALT 0.1 128 1191 047 0.1 128 1007 0.37 0.1 128 1840 090 0.1 128 1835 1.00
ALT 0.1 128 348 021 0.1 128 374 021 0.1 128 109 0.10 0.1 128 108 0.10
uni Arc-Flags 0.6 47 236 0.13 05 47 327 0.14 0.6 47 160 0.08 0.7 47 178 0.13
Arc-Flags 1.1 94 50 003 1.0 94 75 003 1.1 94 19 0.01 15 94 26 0.02
RE 0.1 27 272 0.13 0.1 20 258 0.12 0.1 16 377 0.15 038 22 739 0.35
uni REAL 0.2 155 116 0.12 0.2 148 87 0.09 0.2 144 687 0.64 09 150 751 0.76
REAL 0.2 155 72 0.08 0.2 148 70 007 02 144 66 0.09 09 150 81 0.14
HH 0.1 46 88 0.04 0.1 78 226 0.11 0.1 24 338 0.12 0.1 38 125 0.06
SHARC 0.1 14 168 0.03 0.1 16 175 0.03 0.1 12 161 0.03 03 2 159 0.03

Because of the graph size, we use the distance table for HH as soon as the core has less than 1,000 nodes. Column [B/n] denotes the preprocessing space in

bytes per node.

Methodology: In the following we report preprocessing
effort and query performance of all speed up techniques.
For the former, we report the preprocessing time and the
resulting additional space (in bytes per node), while for the
latter we report the average number of scanned nodes, i.e.,
the number of nodes taken from the priority queues, and the
resulting query times. The values for query-performance
are obtained from running 10,000 random queries, i.e., the
source s and the target ¢ are picked uniformly at random.
Note that all figures in this article refer to the scenario that
only the lengths of the shortest paths have to be determined,
without outputting a complete description of the paths.

4.1. Timetable Information

4.1.1. Condensed Model. We start our experimental study
with the condensed network of Europe (cf. Fig. 2), based on
timetable information data provided by HaCon [26] for sci-
entific use. The graph has 29,578 nodes and 86,566 edges.
To check whether the speed ups derive from the topology
of the network or if they are due to the metric used we
consider—besides travel time—three additional metrics: dis-
tance depicts the real distance between two stations, unit
assigns a weight of 1 to each edge, and random reassigns
to each edge a weight between 1 and 1000 picked uniformly
at random. Computational results are shown in Table 1.

We observe that plain DUKSTRA scans the same number
of nodes independent of the applied metric. However, query
times vary: DUKSTRA is two times faster on the distance met-
ric than on the random one. The number of DECREASEKEY
operations causes these different running times. Surprisingly,
switching to bidirectional DUKSTRA has a completely differ-
ent impact for different metrics. While for travel times and
distances, a speed up of factor 2 is observed, queries using
the unit metric run 12 times faster. As shown in Figure 2,
several direct connections within the network exist: setting
the weight of these edges to 1 drastically reduces the search
space of bidirectional DUKSTRA as the forward and backward

44 NETWORKS—2011—DOI 10.1002/net

search meet earlier. This observation also holds somewhat
more weakly for the random metric; here the speed up factor
is 10.

Analyzing our speed up techniques, all approaches are
able to preprocess the graph in less than 1 min. The fastest
technique is bidirectional Arc-Flags having query times of
below 30 us for all metrics. As for bidirectional DIJKSTRA,
the lowest query times are achieved for the unit metric which
is again due to direct connections. SHARC requires the lowest
amount of additional memory and thus has the best combi-
nation of query times and preprocessing. Nevertheless, as we
use the condensed model, the obtained travel times cannot be
used in a real-world environment (cf. Section 3).

4.1.2. Time-Expanded Model. Our second set of exper-
iments is executed on three simple time-expanded graphs
(cf. Section 3). The first shows the local traffic of
Berlin/Brandenburg, with 2,599,953 nodes and 3,899,807
edges, the second one represents local traffic of the Ruhrge-
biet (2,277,812 nodes, 3,416,597 edges), and the last graph
depicts long distance connections of Europe (1,192,736
nodes, 1,789,088 edges). Table 2 gives an overview of the
performance of our speed up techniques on these instances.
Note that RE, ALT, and HH cannot be used out-of-the-box
for time-expanded networks (cf. Section 3). To gain insights
into the performance of these techniques, we also use bidi-
rectional speed up techniques by picking a random event at
the target station. Thus, these bidirectional experiments are
intended to give hints whether it is worth focusing on adapt-
ing bidirectional search to such graphs. Only SHARC and
unidirectional Arc-Flags—with a partitioning by station—
are applicable. Unidirectional Arc-Flags performs roughly 6
times faster than unidirectional DIJKSTRA. This is much less
than the bidirectional variant of Arc-Flags (speed up factor
of 45-65). Thus, it may be worth focusing on the question of
how to use bidirectional search in this scenario. However, we
observe very long preprocessing times for Arc-Flags on these

TABLE 2. Performance of the speed up techniques on time-expanded railway networks.

Berlin/Brandenburg Ruhrgebiet Long distance
PREPRO QUERY PREPRO QUERY PREPRO QUERY

(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 1299 830 406.2 0 0 1134420 389.2 0 0 609 352 221.2
BiDijkstra 0 0 496281 151.3 0 0 389577 122.8 0 0 143613 43.8
uni ALT 10 128 383921 133.6 10 128 171760 64.7 5 128 71194 26.0
ALT 10 128 47764 229 10 128 59516 30.5 5 128 31367 15.0
uni Arc-Flags 2240 24 172362 72.2 2323 24 158174 66.4 1008 24 74737 324
Arc-Flags 4479 48 24004 9.2 4646 48 28448 10.7 2016 48 10560 35
RE 182 39 27095 25.5 290 45 38397 39.8 63 43 8978 8.3
uni REAL 192 167 20062 222 300 173 16 649 21.1 68 171 6335 8.8
REAL 192 167 4159 6.6 300 173 7867 133 68 171 2479 45
HH 38 263 5285 56.1 65 202 9528 196.2 12 386 1930 73
SHARC 602 9 11006 3.8 615 8 12412 4.2 209 15 7519 22

networks. The situation changes for SHARC; here the pre-
processing times are reasonable and the query performance
is the best of all applied speed up techniques. Although other
approaches have a smaller search space, e.g., REAL, the
smaller computational overhead of SHARC yields smaller
query times. However, only ALT and HH can preprocess all
graphs in less than 1 hour. RE seems to have problems on
the local traffic networks as preprocessing takes longer than
3 hours and the achieved speed ups are only modest, while
this does not hold for long distance connections. Regarding
query times, HH has also problems with both local traffic net-
works: on Berlin/Brandenburg, HH is only 3 times faster than
bidirectional DUKSTRA, and on the Ruhrgebiet, HH is even
slower. The problems of RE/HH derive from a weaker hierar-
chy within the local networks compared to the long distance
graph. Local traffic networks do not incorporate high-speed
trains while the latter do.

Summarizing, the fastest technique, SHARC, yields quite
good speed up factors of around 100. However, the expan-
sion of time-expanded graphs by a factor of 250 over the
condensed—and hence also time-dependent—graphs can-
not be compensated. Plain DUKSTRA on a corresponding

condensed network would be faster—with respect to query
times—than any other speed up technique on the time-
expanded model. Note that our input from Table 1 covers even
more stations than any input from Table 2. Also note that plain
DUKSTRA can be used in a dynamic time-dependent scenario
[9], and time-dependent ALT achieves an additional speed up
factor of 5 over plain DUKSTRA[19]. Moreover, SHARC can
be used in time-dependent scenarios as well.

4.2. Road Networks

Like railway networks, road graphs incorporate some kind
of hierarchy. Hence, one might expect that the speed up tech-
niques have a similar performance on those two types of
networks. We evaluate the German road network, provided
by PTV AG [42] for scientific use. It has 4,377,307 nodes
and 10,667,837 edges. We use four different metrics: travel
time, distance, unit (each edge has length 1), and random.
The latter reassigns edge weights uniformly at random from
1 to 1,000. We want to test whether the speed up techniques
rely on the topology of the network or the speed up derives
from the applied metric. Results can be found in Table 3.

TABLE 3. Performance of the speed up techniques on the German road graph using different metrics.
Travel time Distance Unit Random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY
(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 2214820 1078.2 0 0 2159310 6258 0 0 2197080 9225 0 0 2256530 13354
BiDijkstra 0 0 1210570 545.0 0 0 1428140 4057 0 0 952405 3784 0 0 1006260 530.0
uni ALT 23 128 139121 51.2 18 128 95385 338 19 128 135728 48.5 23 128 143551 59.4
ALT 23 128 22150 12.4 18 128 45496 23.1 19 128 16329 8.0 23 128 21433 12.2
uni Arc-E. 976 39 24290 10.6 720 39 59 094 242 820 39 23119 9.7 1139 39 24509 14.0
Arc-Flags 1952 78 1092 0.5 1440 78 13038 54 1640 78 816 0.3 2278 78 897 0.4
RE 18 22 5080 3.1 20 27 10 666 9.4 16 19 4210 2.6 20 30 4879 35
uni REAL 41 150 1804 1.8 38 155 1642 2.1 37 147 2210 2.2 43 158 2369 2.7
REAL 41 150 1035 1.2 38 155 1556 2.3 37 147 978 1.1 43 158 1130 1.4
HH 4 99 682 0.5 9 122 3602 3.8 5 83 965 0.8 5 83 1039 0.9
SHARC 16 13 1896 0.5 12 17 3824 1.3 15 15 1897 0.5 16 13 1972 0.5

NETWORKS—2011—DOI 10.1002/net

45

Speedup over Dijkstra's Algorithm

F------ -l e

1
F----- [axo
F - - 1} &

Ir

pemmmmme-------- - ®
- T
- ©
Fo--=-=------ - e
- -
F-------------- jllijll- exxo

= B German Roads (travel times)
S E German Roads (travel distances)
£ O railways
W o 0
o
58 - o | |
= i UIHE
E o [I i
= O - i
[I
[a% 1 [] 1 I] l
= 1 [
g ﬁ THLELR
2 2 i e H AL B
m i 1 (] 1 i i 1 1 I
" 1 4 : [L ' I [i
Mg | [f e
S LRl i o LR
e
4

uni-ALT ALT uni—Arcs

| | | | |
Arc—F. RE uni-REAL REAL SHARC

Speedup Technigue

FIG. 5.

As expected, plain DUKSTRA scans the same number
of nodes for each metric. Stunningly, query times vary
significantly when switching metrics: DUKSTRA’s algorithm
is two times faster on the distance metric than on the random.
This derives from the number of DECREASEKEY operations
of the used priority queue. However, when switching from
uni- to bidirectional DUKSTRA, the situation changes. Similar
to the other inputs evaluated so far (cf. Tables 1 and 2), the
number of scanned nodes is not the same for each metric.
In this scenario, the reason for this are the motorways which
are favored differently by each metric resulting in a different
termination of the bidirectional query algorithm.

Analyzing the speed up techniques, we observe very high
preprocessing times for Arc-Flags which is due to the large
number of DIUKSTRA executions during preprocessing, while
HH can preprocess the complete German network much
faster than any other technique. This result is not very sur-
prising since HH was tuned for road networks and exploits
properties of the (European) datasets. For example, curves on
motorways are often modeled by a path with many degree-2
nodes which are shortcut during the preprocessing of HH. The
same holds for RE. However, by adding contraction to Arc-
Flags, i.e., SHARC, we observe that SHARC outperforms
any hierarchical technique. Although bidirectional Arc-Flags
yields better query times on the unit and distance metrics,
preprocessing times of SHARC are much better. Moreover,
recall that SHARC is a unidirectional technique. For ALT,
we observe that the number of scanned nodes is almost the
same for the travel time, unit, and random metrics. This holds
for both the uni- and bidirectional variants. However, for the
distance metric, the situation is different: the unidirectional
variant is faster on this metric than on the others. On the
contrary, the bidirectional variant loses performance when

46 NETWORKS—2011—DOI 10.1002/net

Speed ups of various speed up techniques over DIJKSTRA’s algorithm.

switching to the distance metric. This might be a reason for
the surprising performance of REAL (the combination of RE
and ALT) on the distance metric: the undirectional variant is
faster than the bidirectional one (2.1 ms vs. 2.3 ms).

Summarizing, SHARC seems to be the best choice for road
networks. Although HH yields faster preprocessing times,
query performance of SHARC is better. Only when applying
the unit or random metric, bidirectional Arc-Flags outper-
forms SHARC but at a price of much higher preprocessing
times.

4.2.1. Similarity to Railway Networks. Comparing
Tables 2 and 3 (for details, see Fig. 5) we observe that the
speed up techniques perform much worse on time-expanded
graphs than on road networks. So, at least for the time-
expanded model the assumption of similar properties does
not seem to hold. However, comparing Tables 1 and 3, and
taking the difference in size into account, it seems as if road
networks can be used as an alternative for condensed railway
networks. But as the graph sizes are very different from each
other, we perform another test on a road network of similar
size to the European railway network. We choose the road
network of Luxemburg which has 30,746 nodes and 71,655
edges. Again, we use the four metrics of travel time, distance,
unit, and random. Results can be found in Table 4.

We observe that for the most important—at least in our
application—metric, i.e., travel time, the performance of all
speed up techniques is very similar to their performance
on the condensed railway network. Differences in the unit
and random metrics derive from direct connections within
the railway network that do not exist in road networks. We
conclude that road networks can be used as alternative data
sources for the condensed model if timetable data is lacking.

TABLE 4. Performance of the speed up techniques on the Luxemburg road network.

Travel time Distance Unit Random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0.0 0 15293 3.12 0.0 0 15230 2.87 0.0 0 15441 2.69 0.0 0 15156 3.60
BiDijkstra 0.0 0 7691 1.63 0.0 0 9526 1.77 0.0 0 7304 1.28 0.0 0 7056 1.63
uni ALT 0.1 128 1375 0.53 0.1 128 1052 0.37 0.1 128 1099 041 0.1 128 1122 0.47
ALT 0.1 128 448 021 0.1 128 451 021 0.1 128 458 021 0.1 128 456 0.23
uni Arc-Flags 0.3 37 470 0.17 03 37 614 023 03 37 421 0.15 04 37 435 0.22
Arc-Flags 0.7 74 178 0.06 0.6 74 250 0.09 0.6 74 133 0.05 038 74 144 0.07
RE 0.1 28 532 021 0.1 29 348 0.16 0.1 22 358 0.12 0.1 34 385 0.16
uni REAL 0.2 156 229 020 0.2 157 105 0.10 02 150 171 0.14 02 162 174 0.16
REAL 0.2 156 119 0.11 0.2 157 86 0.09 0.2 150 97 0.08 02 162 101 0.10
HH 0.1 219 91 005 0.1 140 241 0.12 0.1 69 299 0.14 0.1 204 111 0.06
SHARC 0.1 12 184 0.03 0.1 15 213 0.04 0.1 15 185 0.03 0.1 12 185 0.03

Because of the graph size, we use the distance table for HH as soon as the core has less than 1,000 nodes.

4.2.2. Important Subgraphs. The European road net-
work includes roads which are closed to public traffic, e.g.,
pedestrian zones, etc. By removing these roads from the Ger-
man network, the number of nodes decreases to 3,523,370
and the number of edges to 8,133,531, respectively. As these
roads seem unimportant to shortest path computations, one
might expect that the performance of the evaluated speed up
techniques hardly changes if they are included or not. In addi-
tion, degree-1 and degree-2 nodes seem to be unimportant for
shortest paths as well: nodes with degree 1 can only be starting
or ending points of a route and degree-2 nodes can often be
shortcut. Table 5 shows the results of all speed up techniques
for excluded non-public roads, using the 2-core as input
(3,183,701 nodes, 8,280,625 edges), the graph with short-
cut degree-2 nodes (3,723,319 nodes, 9,363,584 edges), and
the 2-core with shortcut degree-2 nodes (1,828,995 nodes,
5,469,750 edges). We use travel time as the metric.
Comparing the results from Tables 3 (travel time) and 5,
we observe that the search space of uni- and bidirectional

DUKSTRA decreases with the size of the subgraphs. Aston-
ishingly, this does not hold for query times: shortcutting
degree-2 nodes yields higher query times than using the 2-
core as input. The reason for this is that the numbers of edges
differ: the 2-core has fewer edges than the other subgraph.
However, this fact has no influence on bidirectional ALT.
The algorithm has the same performance on the first three
subgraphs and surprisingly, the performance is almost the
same as on the full graph. Only when using the shortcut 2-
core do query times decrease, which is mostly due to the
graph’s size.

The most interesting behavior is that of HH. On
each subgraph the performance is almost the same as
on the full graph. Recalling the way the hierarchy is
built, the reason becomes obvious. Preprocessing of HH
starts with a contraction step which consists of build-
ing the 2-core and shortcutting degree-2 nodes. Thus,
HH has no advantage when applying these steps before
preprocessing.

TABLE 5. Performance of the speed up techniques on the German road graph using different subgraphs.
Only public No deg. 2 2-Core 2-Core + no deg. 2
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY
(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 1729390 658.8 0 0 1809350 855.9 0 0 1580610 687.9 0 0 913476 367.7
BiDijkstra 0 0 974453 343.8 0 0 978311 426.7 0 0 855943 3475 0 0 497760 190.4
uni ALT 14 128 112814 38.6 17 128 119778 46.0 14 128 106668 40.9 8 128 59907 24.1
ALT 14 128 21914 11.3 17 128 19589 11.1 14 128 19757 11.1 8 128 10668 59
uni Arc-E. 610 37 20583 83 794 40 19 683 8.4 638 42 19 655 8.4 335 48 11755 52
Arc-Flags 1220 74 1067 0.4 1588 80 710 0.3 1276 83 1038 04 670 96 618 0.3
RE 6 18 2328 1.3 17 22 5139 3.1 14 27 4764 29 12 31 4958 3.1
uni REAL 20 146 855 0.9 34 150 1838 1.9 28 155 1652 1.7 20 159 1500 1.6
REAL 20 146 506 0.6 34 150 1105 1.3 28 155 950 1.1 20 159 856 1.0
HH 2 45 660 0.5 4 115 679 0.5 4 128 677 0.5 4 207 661 0.5
SHARC 5 12 1553 0.4 14 13 1659 0.5 13 15 1530 0.4 10 17 1031 0.3

NETWORKS—2011—DOI 10.1002/net 47

TABLE 6. Performance of the speed up techniques on different small-world graphs.

Router Citations Coauthorship
PREPRO QUERY PREPRO QUERY PREPRO QUERY
(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 94717 89.0 0 0 134136 190.8 0 0 153 885 125.5
BiDijkstra 0 0 216 0.3 0 0 742 1.5 0 0 320 0.4
uni ALT 2 128 23430 36.8 2 128 28 853 68.6 2 128 38173 515
ALT 2 128 320 1.7 2 128 850 4.7 2 128 667 22
uni Arc-Flags 351 102 5453 129 1488 138 46318 113.7 507 105 28225 62.8
Arc-Flags 702 204 42 0.1 2977 276 231 0.7 1014 209 117 0.3
RE 174 11 820 1.7 1922 18 3465 8.4 417 10 445 0.9
uni REAL 176 139 22493 442 1924 146 27898 90.3 419 138 34163 67.5
REAL 176 139 337 23 1924 146 762 6.0 419 138 522 29
HH 38 1815 20488 1307.7 862 532 89696 928.9 246 2982 61703 1713.7
SHARC 70 55 21701 272 1058 71 80510 123.6 362 26 45099 69.2

4.3. Other Inputs

To gain further insights into the behavior of speed up tech-
niques, our last testsets use data that is completely different
from transportation networks. On the one hand, we test the
performance of speed up techniques on small-world graphs
and on the other hand, we want to evaluate the influence
of density and diameter of the input on the performance of
speed up techniques. For our density testset we use so called
unit-disc graphs with different average degrees. Our diame-
ter testset uses multi-dimensional grid graphs with different
numbers of dimensions as inputs.

4.3.1. Small World. Up to this point, we concentrated on
graphs with some kind of hierarchy. In this test, we use
small-world graphs as input without such a property. The
first dataset represents the internet on the router level, i.e.,
nodes are routers and edges represent connections between
routers. The network is taken from the CAIDA webpage [8]
and has 190,914 nodes and 1,215,220 edges. The second
graph is a citation network, i.e., nodes are papers and edges
depict whether one paper cites another one. It is obtained
from crawling the literature database DBLP [12] and has
268,495 nodes and 2,313,294 edges. The final dataset is a
co-authorship [1] network (299,067 nodes and 1,955,352
edges) which is also obtained from the DBLP: nodes rep-
resent authors and two authors are connected by an edge if
they coauthored a paper. Note that all edges of these inputs are
weighted by 1. The results for these data are shown in Table 6.

The most interesting observation is that the biggest speed
up is achieved by simply switching from uni- to bidirectional
DUKSTRA. This derives from the very small diameters of
the graphs (less than 8 for all instances). Stunningly, only
Arc-Flags yields an additional, while mild speed up. Tak-
ing the huge preprocessing time of more than 10 hours into
account, the usage of Arc-Flags cannot be justified. Any other
approach is even slower than bidirectional DUKSTRA which
is mainly due to computational overhead. Analyzing HH,
this approach seems to have serious problems with small-
world graphs. The reason is the stopping criterion (cf. [45]).

48 NETWORKS—2011—DOI 10.1002/net

Normally, bidirectional search can be stopped as soon as
both search spaces meet. But for HH, this does not hold: the
search has to be continued until both searches have reached
the highest core or when the forward search scans a node
which has a distance label greater than the shortest path seen
so far.

We conclude that—as long as a bidirectional approach is
allowed— applying a speed up technique with preprocess-
ing is not worth the effort since plain bidirectional DIUKSTRA
performs well enough. However, the situation changes if a
scenario arises where bidirectional approaches are prohib-
ited. In such a situation, unidirectional ALT yields a moderate
speed up combined with a reasonable preprocessing effort.

4.3.2. Sensor Networks. Recently, the field of sensor net-
works has drawn wide attention. At a glance, routing in such
networks has properties similar to routing in road networks.
Thus, we evaluate so called unit-disc graphs which are widely
used for experimental evaluations in that field. Such graphs
are obtained by arranging nodes in the plane and connecting
nodes with a distance below a given threshold. It is obvious
that the density can be varied by applying different threshold
values. In our study, we use graphs with ~1,000,000 nodes
and an average degree of 5, 7, and 10, respectively. As metric,
we use the Euclidean distance between nodes according to
their embedding. The results can be found in Table 7.

Uni- and bidirectional DUKSTRA scan roughly the same
number of nodes independent of the average degree but query
times again increase with higher density due to more relaxed
edges. Analyzing ALT, the bidirectional variant is twice as
fast as the unidirectional algorithm on the instance with
degree 5 while with degree 10, both approaches are equal
to each other with respect to query times. The decreasing
search space of unidirectional ALT is due to the increasing
number of edges. With more edges, the shortest path is very
close to the flight distance between source and target. In such
instances, the potentials deriving from landmarks are very
good. Arc-Flags yields very good query times but again at
the price of high preprocessing times. Hierarchical methods

TABLE 7. Performance of speed up techniques on unit-disc graphs with different average degrees.

Average deg. 5

Average deg. 7

Average deg. 10

PREPRO QUERY PREPRO QUERY PREPRO QUERY

(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 487818 257.3 0 0 521874 330.1 0 0 502 683 399.0
BiDijkstra 0 0 299077 164.4 0 0 340801 225.1 0 0 325803 269.4
uni ALT 8 128 22476 17.1 8 128 16634 15.1 10 128 14561 16.0
ALT 8 128 9222 8.5 8 128 10565 11.8 10 128 11749 15.6
uni Arc-Flags 53 80 8556 79 299 112 16445 16.8 801 160 21413 24.2
Arc-Flags 105 160 2091 1.8 598 224 4761 46 1602 320 7019 7.5
RE 4 20 848 0.5 46 42 13783 143 1153 54 83826 104.5
uni REAL 12 148 307 0.4 54 170 2072 32 1163 182 8780 13.6
REAL 12 148 291 0.4 54 170 2394 4.1 1163 182 11449 21.7
HH 2 251 203 0.2 12 549 5068 8.5 71 690 23756 49.1
SHARC 1 16 568 0.3 10 42 1835 1.0 70 96 4972 3.6

work very well for average degrees of 5 and 7. For a degree
of 10, preprocessing and query times increase drastically.
For RE, a reason is that node-labels are used for pruning
the search. With increasing density, many edges are never
used by any shortest path. Hence, query times increase as
these edges cannot be pruned by using node-labels. SHARC
outperforms any technique with less space and very small
preprocessing times. However, the gap in query performance
between ALT and SHARC gets smaller the denser the graph
gets. Summarizing, SHARC performs best on these inputs.
Only for high densities, ALT yields lower preprocessing times
but still, SHARC yields a better query performance.

4.3.3. Grid Graphs. Our lasttestset explores the influence
of graph diameter on the performance. Here, we vary the
diameter of a graph by using multi-dimensional grid graphs
with 2, 3, and 4 dimensions. The number of nodes is set to
250,000, and thus, the number of edges are 1, 1.5, and 2
million, respectively. Edge weights are picked uniformly at
random from 1 to 1,000. These results can be found in Table 8.

TABLE 8.

As for sensor networks, unidirectional DIJKSTRA scans
the same number of nodes on all graphs. However, due
to more relaxed edges the query times increase with an
increasing number of dimensions. As the diameter shrinks
with increasing number of dimensions, bidirectional DIK-
STRA scans fewer nodes on 4-dimensional grids than on
2-dimensional grids. We already observed this effect more
drastically for small-world graphs (cf. Table 6). Uni- and
bidirectional ALT yield good speed ups combined with
a low preprocessing effort. Our hierarchical representa-
tives RE/HH perform very well on 2-dimensional grids but
significantly lose performance at higher dimensions. The
main reason is that the contraction phase of the algorithms
fails.

Summarizing, ALT has the best trade-off with respect to
preprocessing and query times on 3- and 4-dimensional grids.
Only Arc-Flags and SHARC are faster but at the price of a
much higher effort in preprocessing. Hierarchical methods
like RE/HH can only compete with ALT on 2-dimensional
grids.

Performance of speed up techniques on grid graphs with different numbers of dimensions.

2-Dimensional

3-Dimensional 4-Dimensional

PREPRO QUERY PREPRO QUERY PREPRO QUERY

(min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms) (min) [B/n] #scanned (ms)
Dijkstra 0 0 125675 36.7 0 0 125398 78.6 0 0 122796 137.5
BiDijkstra 0 0 79962 242 0 0 45269 28.2 0 0 21763 20.3
uni ALT 1 128 5452 2.5 2 128 4223 3.8 3 128 5031 7.5
ALT 1 128 2381 1.5 2 128 1807 22 3 128 1329 2.5
uni Arc-Flags 45 64 4476 1.9 415 94 8996 57 1559 122 25125 26.8
Arc-Flags 89 128 1340 0.6 830 189 1685 1.0 3117 244 2800 2.3
RE 13 31 3797 2.1 220 102 18177 27.1 2243 89 20587 40.2
uni REAL 14 159 799 0.8 222 230 5081 10.6 2246 217 10740 30.3
REAL 14 159 829 0.9 222 230 3325 8.5 2246 217 3250 11.6
HH 2 1682 583 0.6 32 1954 17243 95.8 680 662 61715 343.0
SHARC 32 60 1089 0.4 62 97 5839 1.9 292 13 20115 11.5

NETWORKS—2011—DOI 10.1002/net 49

5. CONCLUSION AND OUTLOOK

We learned a lot about the performance of the most promi-
nent speed up techniques on graph classes other than road
networks. For graphs deriving from timetable information
systems, the achieved speed up on time-expanded graphs is
much smaller than the speed up achieved on road networks,
even without the necessary modifications that will most prob-
ably decrease performance even further. In addition, the speed
up obtained by all techniques is below the expansion factor of
approximately 250 between time-dependent and correspond-
ing time-expanded graphs. We observed that plain DUKSTRA
yields lower query times on a condensed network than any
other speed up techniques on the time-expanded graphs.
Recall that the time-dependent model can be interpreted as an
extension of the condensed one. In [9], it is shown that plain
DUKSTRA can be used in a dynamic time-dependent scenario
easily, and time-dependent ALT achieves an additional speed
up factor of 5 compared to plain DUKSTRA [19]. In addition,
incorporating delays seems to be easier in the time-dependent
model than in the time-expanded one [14,38]. We conclude
that it is promising to work on the dynamic time-dependent
model for solving the timetable information problem.

Regarding time-expanded data, we observe that the often
stated assumption that time-expanded graphs are very sim-
ilar to road networks does not hold: all examined speed
up techniques perform completely differently on our road
networks than on our real-world time-expanded datasets.
However, road networks seem to be a good alternative for con-
densed graphs and thus also for the time-dependent model.
We expect that an approach working well in a (dynamic) time-
dependent road network will also perform well on (dynamic)
time-dependent railway networks.

Concerning speed up techniques in general, we gained
further and interesting insights by our extensive experimen-
tal study. Hierarchical approaches seem to have problems
with high-density networks, the chosen metric has a high
impact on the achieved speed ups, edge-labels are some-
what superior to node-labels, and small diameters yield big
speed ups for bidirectional search. As a consequence, the
choice of which technique to use highly depends on the sce-
nario. However, of all examined speed up techniques, ALT
provides a reasonable trade-off between preprocessing time
and space on the one hand and achieved speed up on the
other hand. Although this approach is slower on hierarchical
inputs it is more robust with respect to the input. In addi-
tion, ALT works in dynamic and time-dependent scenarios.
Astonishingly, SHARC performs very well on most inputs,
although it is a unidirectional technique. However, SHARC
can easily be made bidirectional and hence, we assume that
bidirectional SHARC would yield even faster queries on most
inputs, including small-world graphs on which unidirectional
SHARC fails.

Acknowledgments

The authors thank Dominik Schultes for providing the
Highway Hierarchies code and his help on parameter settings.

50 NETWORKS—2011—DOI 10.1002/net

They also thank Robert Gorke and Bastian Katz for providing
data and Daniel Karch for implementing Arc-Flags. Finally,
they thank Douglas Shier for many valuable suggestions of
improvement.

REFERENCES

[1] Y. An,J.Janssen, and E.E. Milios, Characterizing and mining
the citation graph of the computer science literature, Knowl
Inform Syst 6 (2004), 664-678.

[2] D.A. Bader and K. Madduri, “Snap, small-world network
analysis and partitioning: An open-source parallel graph
framework for the exploration of large-scale networks,” Proc.
22nd Int Parallel Distrib Process Symp (IPDPS’08), IEEE
Computer Society, Miami, Florida, 2008, pp. 1-12.

[3] H.Bast, S. Funke, P. Sanders, and D. Schultes, Fast routing in
road networks with transit nodes, Sci 316 (2007), 566-566.

[4] R.Bauer and D. Delling, SHARC: Fast and robust unidirec-
tional routing, Proc 10th Workshop Algorithm Eng Exper-
iments (ALENEX’08), SIAM, San Francisco, California,
April 2008, pp. 13-26.

[5]1 R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D.
Schultes, and D. Wagner, Combining hierarchical and goal-
directed speed up techniques for Dijkstra’s algorithm, Proc
7th Workshop Experimental Algorithms (WEA’08), Vol.
5038 of Lecture Notes in Computer Science, Springer,
Provincetown, Massachusetts, June 2008, pp. 303-318.

[6] R. Bauer, D. Delling, and D. Wagner, Experimental study
on speed up techniques for timetable information systems,
Proc 7th Workshop Algorithmic Approaches Transporta-
tion Modeling, Optim, Syst (ATMOS’07), Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007, pp. 209-225.

[71 A. Berger, D. Delling, A. Gebhardt, and M. Miiller—
Hannemann, Accelerating time-dependent multi-criteria
timetable information is harder than expected, Proc 9th
Workshop Algorithmic Approaches Transportation Model-
ing, Optim, Syst (ATMOS’09), 2009, Dagstuhl Seminar
Proceedings, Kopenhagen, Denmark.

[8] CAIDA: The Cooperative Association for Internet Data
Analysis, Available at:. http://www.caida.org/, 2007.

[9] K.Cooke and E. Halsey, The shortest route through a network
with time-dependent intermodal transit times, J Math Anal
Appl 14 (1966), 493-498.

[10] J.R. Crobak, J.W. Berry, K. Madduri, and D.A. Bader,
“Advanced shortest paths algorithms on a massively-
multithreaded architecture,” Workshop Multithreaded Archi-
tectures Appl (MTAAP 2007), Long Beach, California, 2007,
pp- 1-8.

[11] G.B.Dantzig, Linear programming and extensions, Princeton
University Press, Princeton, New Jersey, 1962.

[12] DBLP - database systems and logic programming. Available
at: http://dblp.uni-trier.de/, 2007.

[13] D. Delling, “Time-dependent SHARC-routing,” Proc 16th
Ann Eur Symp Algorithms (ESA’08), Vol. 5193 of Lecture

Notes in Computer Science, Springer, Karlsruhe, Germany,
September 2008, pp. 332-343.

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

D. Delling, K. Giannakopoulou, D. Wagner, and C. Zaro-
liagis, Timetable information updating in case of delays:
Modeling issues, Technical Report 133, Arrival Technical
Report, Patras, Greece, 2008.

D. Delling, M. Holzer, K. Miiller, F. Schulz, and D. Wag-
ner, “High-performance multilevel routing, The shortest path
problem: Ninth DIMACS implementation challenge,” C.
Demetrescu, A.V. Goldberg, and D.S. Johnson (Editors),
American Mathematical Society, Rutgers, New Jersey, 2009,
Vol. 74 of DIMACS Book, pp. 73-92.

D. Delling and G. Nannicini, “Bidirectional core-based rout-
ing in dynamic time-dependent road networks,” Proc 19th
Int Symp Algorithms Computation ISAAC’08), Vol. 5369
of Lecture Notes in Computer Science, Springer, Gold Coast,
Australia, December 2008, pp. 813-824.

D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engi-
neering route planning algorithms, Algorithmics of large
and complex networks,” J. Lerner, D. Wagner, and K.A.
Zweig (Editors), Springer, Heidelberg, Germany, 2009,
pp. 117-139.

D. Delling, P. Sanders, D. Schultes, and D. Wagner, “High-
way hierarchies star, The shortest path problem: Ninth
DIMACS implementation challenge,” C. Demetrescu, A.V.
Goldberg, and D.S. Johnson (Editors), American Mathemat-
ical Society, Rutgers, New Jersey, 2009, pp. 141-174.

D. Delling and D. Wagner, “Landmark-based routing in
dynamic graphs,” Proc 6th Workshop Experimental Algo-
rithms (WEA’07), Vol. 4525 of Lecture Notes in Computer
Science, Springer, Rome, Italy, June 2007, pp. 52-65.

E.W. Dijkstra, A note on two problems in connexion with
graphs, Numer Mathematik 1 (1959), 269-271.

A.V. Goldberg and C. Harrelson, “Computing the short-
est path: A* search meets graph theory,” Proc 16th Ann
ACM-SIAM Symp Discr Algorithms (SODA’05), Vancou-
ver, Canada, 2005, pp. 156-165.

A.V. Goldberg, H. Kaplan, and R.F. Werneck, “Reach for
A*: Efficient point-to-point shortest path algorithms,” Proc
8th Workshop Algorithm Eng Exp (ALENEX’06), SIAM,
Miami, Florida, 2006, pp. 129-143.

A.V. Goldberg, H. Kaplan, and R.F. Werneck, “Better land-
marks within reach,” Proc 6th Workshop Exp Algorithms
(WEA’07), Vol. 4525 of Lecture Notes in Computer Science,
Springer, Rome, Italy, June 2007, pp. 38-51.

A.V. Goldberg and R.F. Werneck, “Computing point-to-point
shortest paths from external memory,” Proc 7th Work-
shop Algorithm Eng Experiments (ALENEX’05), SIAM,
Vancouver, Canada, 2005, pp. 26—40.

R.J. Gutman, “Reach-based routing: A new approach to
shortest path algorithms optimized for road networks,” Proc
6th Workshop Algorithm Eng Experiments (ALENEX’04),
SIAM, New Orleans, Louisana, 2004, pp. 100-111.

HaCon - Ingenieurgesellschaft mbH, Available at:.
http://www.hacon.de, 2001.

P.E. Hart, N. Nilsson, and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Trans
Syst Sci Cybernetics 4 (1968), 100-107.

M. Holzer, F. Schulz, and D. Wagner, “Engineering multilevel
overlay graphs for shortest-path queries,” Proc 8th Workshop
Algorithm Eng Experiments (ALENEX’06), SIAM, Miami,
Florida, 2006, pp. 156-170.

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

M. Holzer, F. Schulz, D. Wagner, and T. Willhalm, Com-
bining speed up techniques for shortest-path computations,
ACM J Exp Algorithmics 10 (2006, Article 2.5).

M. Holzer, F. Schulz, and T. Willhalm, “Combining speed up
techniques for shortest-path computations,” Proc 3rd Work-
shop Exp Algorithms (WEA’04), Vol. 3059 of Lecture Notes
in Computer Science, Springer, Rio de Janeiro, Brazil, 2004,
pp- 269-284.

G. Karypis, Metis — family of multilevel partitioning
algorithms. Available at: http://glaros.dtc.umn.edu/gkhome/
views/metis.

E. Kohler, R.H. Mohring, and H. Schilling, “Acceleration
of shortest path and constrained shortest path computation,”
Proc 4th Workshop Experimental Algorithms (WEA’05),
Vol. 3503 of Lecture Notes in Computer Science, Springer,
Santorini Island, Greece, 2005, pp. 126-138.

U. Lauther, “An extremely fast, exact algorithm for finding
shortest paths in static networks with geographical back-
ground,” Geoinformation und mobilitéit - von der forschung
zur praktischen anwendung, IfGI prints, 2004, Vol. 22,
pp- 219-230.

K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “An
experimental study of a parallel shortest path algorithm for
solving large-scale graph instances,” Proc 9th Workshop
Algorithm Eng Experiments (ALENEX’07), SIAM, New
Orleans, Louisana, 2007, pp. 23-35.

K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “Paral-
lel shortest path algorithms for solving large-scale instances,”
The shortest path problem: Ninth DIMACS implementation
challenge, C. Demetrescu, A.V. Goldberg, and D.S. John-
son (Editors), American Mathematical Society, Rutgers, New
Jersey, 2009, Vol. 74 of DIMACS Book, pp. 249-290.

R.H. Mohring, H. Schilling, B. Schiitz, D. Wagner, and
T. Willhalm, “Partitioning graphs to speed up Dijkstra’s
algorithm,” Proc 4th Workshop Exp Algorithms (WEA’05),
Vol. 3503 of Lecture Notes in Computer Science, Springer,
Santorini Island, Greece, 2005, pp. 189-202.

R.H. Mohring, H. Schilling, B. Schiitz, D. Wagner, and T.
Willhalm, Partitioning graphs to speedup Dijkstra’s algo-
rithm, ACM J Exp Algorithmics 11 (2006), Article 2.8.

M. Miiller-Hannemann, M. Schnee, and L. Frede, Effi-
cient on-trip timetable information in the presence of delays,
Proc 8th Workshop Algorithmic Approaches Transporta-
tion Modeling, Optim, Syst (ATMOS’08), Internationales
Begegnungs-und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany, September 2008, Dagstuhl Sem-
inar Proceedings.

M. Miiller-Hannemann, F. Schulz, D. Wagner, and C. Zaro-
liagis, “Timetable information: Models and algorithms,”
Algorithmic methods for railway optimization, Springer,
Heidelberg, Germany, 2007, Vol. 4359 of Lecture Notes in
Computer Science, pp. 67-90.

G. Nannicini, D. Delling, L. Liberti, and D. Schultes, “Bidi-
rectional A* search for time-dependent fast paths,” Proc 7th
Workshop Exp Algorithms (WEA’08), Vol. 5038 of Lec-
ture Notes in Computer Science, Springer, Provincetown,
Massachusetts, June 2008, pp. 334-346.

F. Pellegrini, Scotch: Static mapping, graph, mesh and
hypergraph partitioning, and parallel and sequential sparse
matrix ordering package. Available at: http://www.labri.
fr/perso/pelegrin/scotch/, 2007.

NETWORKS—2011—DOI 10.1002/net 51

(42]

[43]

[44]

[45]

PTV AG - Planung Transport Verkehr. Available at: http://
www.ptv.de, 2005.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, ‘“Towards
realistic modeling of time-table information through the
time-dependent approach,” Proc 3rd Workshop Algorithmic
MeThods Models Optim RailwayS (ATMOS’03), Budapest,
Hungary, 2004, pp. 85-103.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, Efficient
models for timetable information in public transportation
systems, ACM J Exp Algorithmics 12 (2007), Article 2.4.
P. Sanders and D. Schultes, “Engineering highway hier-
archies,” Proc 14th Ann Eur Symp Algorithms (ESA’06),
Vol. 4168 of Lecture Notes in Computer Science, Springer,
Zurich, Switzerland, 2006, pp. 804-816.

52 NETWORKS—2011—DOI 10.1002/net

[46]

(47]

(48]

[49]

D. Schultes and P. Sanders, “Dynamic highway-node
routing,” Proc 6th Workshop Experimental Algorithms
(WEA’07), Vol. 4525 of Lecture Notes in Computer Science,
Springer, Rome, Italy, June 2007, pp. 66-79.

F. Schulz, D. Wagner, and K. Weihe, Dijkstra’s algorithm on-
line: An empirical case study from public railroad transport,
ACM J Exp Algorithmics 5 (2000), Article 12.

F. Schulz, D. Wagner, and C. Zaroliagis, “Using multi-
level graphs for timetable information in railway systems,”
Proc 4th Workshop Algorithm Eng Exp (ALENEX’02),
Vol. 2409 of Lecture Notes in Computer Science, Springer,
San Francisco, California, 2002, pp. 43-59.

D. Wagner, T. Willhalm, and C. Zaroliagis, Geometric con-

tainers for efficient shortest-path computation, ACM J Exp
Algorithmics 10 (2005), Article 1.3.

