
Time-Dependent Contraction Hierarchies∗

G. Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

{batz,delling,sanders,vetter}@ira.uka.de

December 16, 2008

Abstract
Contraction hierarchies are a simple hierarchical rout-
ing technique that has proved extremely efficient for
static road networks. We explain how to generalize
them to networks with time-dependent edge weights.
This is the first hierarchical speedup technique for time-
dependent routing that allows bidirectional query algo-
rithms. For large realistic networks with considerable
time-dependence (Germany, weekdays) our method out-
performs previous techniques with respect to query time
using comparable or lower preprocessing time.

1 Introduction

In recent years, there has been considerable work on
routing in static road networks (see [8] for an overview).
It is now possible to compute shortest path distances
in road networks several orders of magnitude faster
than with Dijkstra’s algorithm. However, this does not
mean that routing is a solved problem since constant
edge weights are only a rough approximation of reality.
In this paper, we look at the more advanced model
where edge weights depend on time. This model is
important since it models congestion effects in road
networks and time tables in public transportation. More
precisely, we look at the earliest arrival problem in
networks with piece-wise linear weight functions and
the FIFO property (no overtaking). These restrictions
seem natural since for this model we can use a simple
generalization of Dijkstra’s algorithm [4].

The most successful speedup techniques for static
networks exploit the hierarchical nature of transporta-
tion networks – only few edges are used for long-
distance travel. Hierarchical query algorithms are typi-
cally bidirectional. They search forward from the source
node and backward from the target node. For time-
dependent networks, this approach looks problematic
since we do not know the arrival time which would be

∗Partially supported by DFG grants SA 933/5-1, WA 654/16-
1, a Google Research Award, and by EU project ARRIVAL
(contract no. FP6-021235-2)

necessary to run Dijkstra’s algorithm backward. We
show that bidirectional search is possible and successful
anyway. We explain how contraction hierarchies (CHs)
[10, 9] can be generalized to allow time-dependent edge
weights (TCHs).

1.1 Related Work. Due to the difficulty of bidirec-
tional routing, the first promising approaches to fast
time-dependent routing used goal directed rather than
hierarchical routing and accepted suboptimal routes
[15].

Schultes [16] gives a way to make hierarchical
queries in static networks unidirectional but this ap-
proach does not directly yield a time-dependent ap-
proach. The basic ideas behind time-dependent CHs
were released in a short technical report [2].

SHARC routing [3] was specifically developed to en-
code hierarchical information into a goal-directed frame-
work based on arc-flags [14, 13] allowing unidirectional
search and recently was generalized to exact time-
dependent routing [6]. Similar to CHs, SHARC also uses
node contraction but invests less work in keeping the
graph sparse. The consequence is that contraction has
to stop at a core to keep the graph sufficiently sparse.

Very recently, the simple contraction rout-
ing from SHARC was combined with the goal-
directed technique landmark A∗ (ALT) [11] to obtain
T(ime)D(ependent)C(ore)ALT [7].

1.2 Overview and Results. After introducing
known basic concepts in Section 2, Section 3 explains
how a TCH is constructed. While the basic defini-
tion is straightforward, some sophistication is needed
to achieve acceptable preprocessing times. To this end,
we use static searches to prune the search space of the
required local time-dependent searches. Section 4 ex-
plains the query algorithm. Here, the main challenge
is to implement the backward search without knowing
the arrival time. What saves us is that contraction hi-
erarchies define acyclic search graphs that imply lim-
ited search spaces even when all reachable nodes are

97 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

considered. Again, this search space can be pruned us-
ing static searches. Several important refinements are
explained in Section 5: Node ordering can take time-
dependence into account by making the node ordering
algorithm itself time-dependent. Again, this is straight-
forward in principle but a naive implementation would
be prohibitively slow. We also explain how to output
paths. The experiments in Section 6 use commercial
data with realistic traffic patterns for Germany. It turns
out that our approach is largely the best currently avail-
able technique with respect to query time and prepro-
cessing time. Space consumption is high but affordable
for current server technology. Section 7 summarizes the
results and discusses future improvements.

2 Preliminaries
Contraction Hierarchies. We are dealing with a

graph G = (V, E) with n nodes and m edges. CHs first
order the nodes by increasing importance. From now
on, we assume that V = 1..n where node 1 is the least
important node.

A CH is constructed by contracting the nodes
in the above order. Contracting a node v means
removing v from the graph without changing shortest
path distances between the remaining (more important)
nodes. A trivial way to achieve this is to introduce a
shortcut edge (u, w) for every path of the form 〈u, v, w〉.
In order to keep the graph sparse, we can try to avoid
a shortcut (u, w) by finding a witness – a path different
from P = 〈u, v, w〉 that is no longer than P . This
can be achieved by performing a local search from each
in-node u (i.e, u has an edge into v) to find shortest
paths to the out-nodes w (that are reached by edges
leaving v). Note that we are free to break the local
searches early without compromising correctness – we
will just get some superfluous shortcuts. One useful
stopping rule bounds the number of edges (hops) on a
path explored by a local search. To compensate, on-the-
fly edge reduction is used: After a local search from u,
we check all its outgoing edges (u, w); if the search found
a path 〈u, . . . , w〉 shorter than the edge (u, w) then this
edge can be removed.

The node ordering is computed by simulating the
contraction process. To this end, the nodes which have
not yet been contracted are kept in a priority queue.
In each step, the “least cost” node is removed from
the queue and contracted. The cost function takes
various issues into account. Perhaps the most important
measure for static routing is the edge difference between
the number of shortcuts introduced by a contraction and
the number of adjacent edges that would be removed.
Other important terms ensure that the network is
contracted everywhere in a reasonably uniform way, and

estimate the cost for contraction and queries.
The CH query algorithm finds a shortest path in

the CH from source s to the target t by performing
a bidirectional Dijkstra search in the graph with the
following modifications: (1) Only edges leading to more
important nodes are relaxed. (2) The search can only
be stopped in a direction D when the best s–t-path seen
so far is shorter than the smallest priority queue entry
for direction D. (3) Search need not be continued from
nodes w for which the query does not find an optimal
distance in the forward or backward search tree. This
can happen if the shortest path to w goes via a more
important node v > w. The stall-on-demand technique
identifies such nodes w by checking whether (downward)
edges coming into w from more important nodes give
shorter paths than the (upward) Dijkstra search.

The path computed by a CH-query contains short-
cuts that have to be unpacked to actually output a path
in the original graph. This can be done efficiently by a
recursive routine if we store the middle node v with each
shortcut 〈u, v, w〉.

Modelling. We consider time-dependent networks
where the objective function is travel time and edges
have a weight function f(t) that specifies the travel time
at the endpoint of the edge when the edge is entered at
time t. We assume that all edge cost functions have the
FIFO-property: ∀τ < τ ′ : τ + f(τ) ≤ τ ′ + f(τ ′). We
focus on this case and further assume that the travel
time functions are representable by a piece-wise linear
function. However, all our algorithms view travel-time
functions (TTFs) as an abstract data type with a small
number of operations: Evaluation returns f(t). Using a
sorted array of interpolation points, evaluation can be
implemented to run in time O(log |f |) where |f | specifies
the number of line segments defining f . Actually, we use
a bucket representation with Θ(|f |) buckets. Thus, we
can find the appropriate bucket in constant time and
then just scan one bucket. Since the average bucket
size is constant, we get average case constant time for
evaluating the function. Chaining computes a piece-
wise linear representation of the travel time function
fuw(t) = fvw(t + fuv(t)) for a path 〈u, v, w〉. This
takes time O(|fuv| + |fvw|) and produces a function
with |fuw| ≤ |fuv|+ |fvw|−1. For road networks it looks
like the actual complexity is often close to this upper
bound. Similarly, we sometimes need the minimum
of two piece-wise linear functions. This operation has
similar worst-case complexity as chaining.

It seems that any exact time-dependent preprocess-
ing technique needs a basic ingredient that computes
travel times not only for a point in time but for an en-
tire time-interval. An easy way to implement this pro-
file query is a generalization of Dijkstra’s algorithm to

98 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

profiles [12]. Tentative distances then become TTFs.
Adding edge weights is replaced by chaining TTFs and
taking the minimum takes the minimum of TTFs. Un-
fortunately, the algorithm loses its label-setting prop-
erty. However, the performance as a label-correcting al-
gorithm seems to be good in important practical cases.

3 Construction
The most expensive preprocessing phase of static CHs
orders the nodes by importance. For a first version
we adopt the static algorithm for time-dependent CHs
(TCHs).1 This decision is based on the assumption that
averaged over the planning period, the importance of a
node is not heavily affected by its exact traffic pattern.

The second stage of CH-preprocessing – contraction
– is in principle easy to adapt to time-dependence:
When contracting node v, we are given a current
(time-dependent) graph with node set v..n. For every
combination of an incoming edge (u, v) and an outgoing
edge (v, w) we have to decide whether the path 〈u, v, w〉
may be a unique shortest path at any point in time. If
so, we have to insert the shortcut (u, w). The weight
function of this shortcut can be computed by chaining
the weight functions of its constituents.

The starting point for our implementation of con-
traction is to perform a separate profile-Dijkstra for ev-
ery combination of in-node u and out-node w of v. This
search can be stopped when the minimum of the current
distance label exceeds the minimum of shortcut func-
tion. We also have a hop-limit similar to the static case.
If the resulting travel-time function is dominated by the
travel-time function of the shortcut, we have found a
witness and need not insert the shortcut.2 Introducing
shortcuts may lead to parallel edges which are replaced
by a single edge whose edge weight function is the min-
imum of the original edges.3 Similar to the static case,
we use information gained during profile searches for on-
the-fly edge reduction. Additionally, we use aggressive
edge reduction: From time to time we go through all
remaining nodes, performing hop-limited local searches
to identify superfluous edges.

The apparently wasteful pairwise approach to wit-
ness search is made efficient using preparatory static

1Robert Geisberger has provided us with a slightly modified
version that takes a new estimate of query complexities into
account. We use the minima of the weight-functions as static
edge weights.

2Our initial implementation used unidirectional profile
searches from the in-nodes, analogous to the static code. But
somewhat astonishingly, even a sophisticated variant of this was
much slower than our new solution.

3So far we do not exploit that a shortcut may only be needed
during certain time intervals.

searches that only take the minimum and the maximum
travel time over the considered edges into account. This
search yields three kinds of information:

1. If the static search finds a witness whose maximal
travel time is smaller than the minimal travel time
of the shortcut, we do not need the shortcut for
sure – no profile search is needed.

2. If the static search does not find a path whose lower
bound on travel time is smaller than the minimal
travel time of the shortcut, the shortcut is certainly
needed. Again no profile search is needed.

3. Otherwise, we can derive a corridor of nodes that
appear useful for a witness path from u to w by-
passing v. Only the corridor is searched with a
profile search. It turned out that a very restrictive
heuristics for defining the corridor gives good re-
sults: We only consider nodes on paths from u to
w that solely consist of edges which define the min-
imum or maximum distance label of a node in the
search space of the static search. Note that with
this heuristics we may miss some witnesses. But
this does not affect the correctness of the computed
TCH. Furthermore, superfluous edges will often be
eliminated later using edge reduction techniques.

4 Query

The basic static query algorithm for CHs consists of a
forward search in an upward graph G↑ = (V, E↑) and
a backward search in a downward graph G↓. Wherever
these searches meet, we have a candidate for a shortest
path. The shortest such candidate is a shortest path.

Since the departure time is known, the forward
search is easy to generalize. In particular, the only
overhead compared to the static case is that we have to
evaluate each relaxed edge for one point in time. In our
experience with a plain time-dependent Dijkstra, this
means only a small constant factor overhead in practice.

The most easy way to adapt the backward search is
to explore all nodes that can reach t in G↓. During this
exploration we mark all edges connecting nodes that can
reach t. Let Emarked denote the set of marked edges.

Now, we can perform an s–t-query by a forward
search from s in (V, E↑ ∪ Emarked). This procedure
is guaranteed to find the shortest path for reasons
analogous to the correctness of static CHs [9]. Roughly,
the properties of TCHs imply that there must be a
shortest path P in the TCH that consists of two
segments: One using only edges in G↑ leading to a peak
node vp and one connecting vp to t in G↓. Since all edges
of P are in the search space of our forward search, this
path or some other shortest path will be found.

99 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Our current query algorithm is somewhat more so-
phisticated. We perform the backward exploration us-
ing a static Dijkstra algorithm with edge weights equal
to a lower bound on the travel time. Thus, we obtain
lower bounds for the travel time to t. Furthermore, in
the same run of Dijkstra, we compute upper bounds
on travel time. Using these bounds we can prune the
search at some nodes using a method similar to stall-on-
demand in the static case. Our forward search initially
only explores G↑ and it is interspersed with the back-
ward search in a similar way as in static bidirectional
search algorithms. When a node v is settled from both
sides, we get two kinds of information: First, we obtain
an upper bound for the travel time from s to t – we
remember the previously best such bound U . Second,
we get a lower bound L for the travel time from s to t
via v. If L ≥ U , we prune (i.e., discontinue) the forward
search from v. Once this bidirectional search is finished,
we continue the forward search on the edges in Emarked,
still using the above pruning rule. The most important
effect of pruning is that the downward part of the search
is funnelled into the direction of t.

5 Refinements
5.1 Node Ordering. Since node ordering is essen-
tially a simulated contraction process, it is in principle
easy to adapt to the time-dependent setting. However,
new terms in the cost function used in the priority queue
for contraction make sense. Our current, preliminary
cost function for the priority is quite simple and contains
only three terms. The edge difference already described
in Section 2, a similarly defined segment difference that
measures the change in the number of line segments
needed to define the time-dependent edge weight func-
tions of the edges involved, and a term q that affects
query time and uniformity of contraction. Initially, each
node has q = 0. When a node v is contracted, a neighbor
u of v computes q(u):= max(q(u), q(v)+segments(u, v))
where segments(u, v) denotes the number of segments
in the time dependent edge weight of edge (u, v). Since
node ordering may simulate the contraction of a node
several times, we use a cache remembering the results
(witness found? yes/no) of all witness searches that
have already been performed.

5.2 Outputting Paths. Similar to static CHs, we
can recursively unpack shortcuts. Since parallel short-
cuts are reduced to single shortcuts during contraction,
there is no longer a unique middle point for a short-
cut. Rather, the middle point also depends on time.
Hence, rather than storing a single middle point as in
static CHs, we now store a middle-point profile specify-
ing time intervals during which a middle-point is valid.

6 Experiments
The experimental evaluation was done on two machines
with two Xeon 5345 processors clocked at 2.33 GHz
with 16 GByte of RAM and 2x2x4MB of Cache running
SUSE Linux 10.3. We always used one core at a time.

The program was compiled with GCC 4.3.2, using
optimization level 3. All figures refer to the scenario
that only the lengths of the shortest paths have to be
determined, without outputting a complete description
of the paths.

Inputs. We use real-world time-dependent road
networks of Germany as our main input. They reflect
five different traffic scenarios, collected from historical
data: Monday, midweek (Tuesday till Thursday), Fri-
day, Saturday, and Sunday. As expected, road conges-
tion is higher during the week than on the weekend:
≈ 8% of the edges are time-dependent for Monday, mid-
week, and Friday. The corresponding figures for Satur-
day and Sunday are ≈ 5% and ≈ 3%, respectively. All
these inputs have approximately 4.7 million nodes and
10.8 million edges and has been provided by PTV AG
for scientific use.

We have made selected additional experiments with
a Western European network, provided by PTV AG
for scientific use. The network has been augmented
with synthetic time-dependent travel times using the
methodology from [15, 7, 6]. We use a medium amount
of time-dependence where motorways and national high-
ways have time-dependent edge weights. Roughly, this
amount of time-dependence is comparable to the Sun-
day traffic in the German network. The graph has ap-
proximately 18 million nodes and 42.6 million edges.

When not otherwise mentioned, we measure average
query performance for 1 000randomly selected source-
destination pairs.

6.1 Contraction. Figures 1, 2, and 3 show the
progress of the contraction process (see also [10, 9]) for
the German network (midweek and Sunday scenario,
each for the time-dependent and the static node order-
ing). Figure 1 shows how the running time of a node
contraction increases over time (espacialy for the nodes
contracted later). Note that the time needed for the
aggressive edge reduction is not included.

Figures 2 and 3 show the average node degree and
the average complexity of the weight-functions of the
part of the graph that is not contracted yet. The
average degree of the nodes remains remarkably small,
indeed comparable to the value observed for static CHs.
This comes as a positive surprise since time-dependence
leads to a larger spectrum of relevant routes. However,
the average complexity of the weight-functions increases
dramatically towards the end of the contraction process.

100 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

 0

 5

 10

 15

 20

 100 1000 10000 100000 1e+06

ru
nn

in
g

tim
e

[m
in

]

size of overlay graph

Germany Midweek, min ord.
Germany Midweek, timed ord.
Germany Sunday, timed ord.

Germany Sunday, min ord.

Figure 1: How the running time evolves over the contraction process for timed and static node ordering (the
latter uses the minima of the weight-functions as static weights). The size of the overlay indicates the number of
nodes not yet contracted.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10000 100000 1e+06

av
er

ag
e

de
gr

ee

size of overlay graph

Germany Midweek, min ord.
Germany Midweek, timed ord.
Germany Sunday, timed ord.

Germany Sunday, min ord.

Figure 2: Like Figure 1 but showing the average degree of the nodes not yet contracted.

101 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

av
er

ag
e

co
m

pl
ex

ity

size of overlay graph

Germany Midweak, min ord.
Germany Midweak, timed ord.
Germany Sunday, timed ord.

Germany Sunday, min ord.

Figure 3: Like Figures 1 and 2 but showing the average complexity of the weight-functions of the part of the
graph that is not contracted yet.

Regarding space consumption this is more expensive
than we might hope but affordable on modern servers.
Also the query time hardly depends on the complexity of
the functions. Unfortunately, the effect on the running
time of the contraction process is dramatic – contracting
the last 180̇00 nodes (0.4% of the input) takes half of
the time.

6.2 Average Performance. Table 1 summarizes
the performance of several variants of TCHs on five dif-
ferent traffic patterns for Germany. We obtain query
times around 1ms. Less for the low traffic on a Sunday
and more for the high traffic on weekday. Our time-
dependent node ordering heuristics is currently only op-
timized for the high traffic scenario. Here it yields small
improvements for the query time and about 25 % reduc-
tion in the preprocessing time (not counting node order-
ing itself) and space. Of course, time-dependent node
ordering is most attractive when we do not have to redo
it every time the preprocessing is executed. To validate
this assumption, we show in the lines with ordering type
“Monday” what happens if a time-dependent node or-
dering for the Monday traffic pattern is applied to a dif-
ferent input. We see that this indeed has little effect on
the performance. The rightmost columns show perfor-
mance for simplified query algorithm where backward
search only uses BFS exploration of the search space.
No distance information is computed during backward

search and no pruning of the search space is done where
forward and backward search meet. The query time in-
creases by more than a factor of four for weekdays but
is still reasonably good.

6.3 Comparison. Finally, we compare TCHs with
the best other existing approaches. More precisely,
we report the performance of various SHARC [6, 5]
variants, TDCALT [7], and TCHs (see also Section 1.1).

For the more difficult (and perhaps more interest-
ing) midweek scenario, we see that SHARC is domi-
nated by TDCALT in every respect. This is astonish-
ing, since TDCALT is much simpler than SHARC. TD-
CALT is about twice as fast as TCHs with respect to
preprocessing time but more than four time slower with
respect query time. TDCALT needs much less space
than TCHs.

For the Sunday scenario, we can afford to run
SHARC with exact arc-flag computation. This yields
the best overall query time however at the cost of more
than a day of preprocessing. TCHs have only slightly
worse query times but two order of magnitude smaller
preprocessing times.

For the European network, SHARC has somewhat
better preprocessing time yet is seven time slower than
TCHs. Unfortunately, we have data for TDCALT but
it is to be expected that it has very good preprocessing
time yet query times even higher than SHARC – the

102 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 1: Overview of performance of TCHs for different traffic patterns, node orderings, and query strategies.
Contr. Queries bfs-Queries

type of ordering const. space #delete time speed time speed
input ordering [h:m] [h:m] [B/n] mins [ms] up [ms] up
Monday static min 0:05 0:20 1 035 518 1.19 1 240 5.04 294

static max 0:05 0:19 1 133 529 1.22 1 215 4.70 315
timed 1:47 0:14 750 546 1.19 1 244 4.40 337

midweek static min 0:05 0:20 1 029 528 1.22 1 212 5.17 287
static max 0:05 0:19 1 122 547 1.26 1 180 4.76 312
timed 1:48 0:14 743 551 1.19 1 242 4.46 333
Monday – 0:15 771 561 1.24 1 198 4.81 308

Friday static min 0:05 0:16 856 497 1.11 1 381 4.57 336
static max 0:05 0:15 929 511 1.14 1 346 4.27 359
timed 1:30 0:12 620 526 1.13 1 362 4.24 362
Monday – 0:12 640 532 1.14 1 350 4.26 360

Saturday static min 0:05 0:08 391 428 0.81 1 763 2.97 484
static max 0:05 0:08 428 441 0.85 1 680 3.15 456
timed 0:52 0:08 282 529 1.09 1 313 4.44 324
Monday – 0:08 308 479 0.89 1 606 3.27 440

Sunday static min 0:05 0:06 248 407 0.71 1 980 2.43 580
static max 0:05 0:06 272 420 0.75 1 877 2.71 519
timed 0:38 0:07 177 541 1.07 1 321 4.45 317
Monday – 0:06 203 463 0.80 1 756 2.87 491

larger the network, the more important is a speedup
technique that can exploit hierarchy also globally.

In [9], the product of preprocessing time and query
time was used as a way to compare speedup techniques.
In this respect TCHs considerably outperform the pre-
vious techniques albeit at the cost of much higher space
consumption.

7 Conclusions and Future Work
We have demonstrated that the earliest arrival problem
in large time-dependent road networks can be solved
exactly and very efficiently with contraction hierarchies
(TCHs) – a purely hierarchical speedup technique. In
particular, it turns out that the backward search part is
no significant problem because the hierarchical aspects
of the networks even work when we perform a plain
reachability search in the backward search graph. From
a ‘historical’ point of view, it is interesting to note that
the query times we achieve are faster than the best
static routing techniques three years ago. This would
not have been possible, if research on static techniques
would have stopped in 2006 on the grounds that the
methods existing at that point were already “more than
fast enough”.

Although we believe that TCHs are ready for time-
dependent routing in server based systems, it is interest-
ing to discuss how the three main performance aspects

of a speedup technique could be further improved:
Space Consumption. Perhaps the main weak-

ness of TCHs are their large space consumption (up to a
kilobyte per node). We believe that this problem can be
mitigated by working with approximate upper and lower
bounds for the travel time functions. In [2] we explain
how this information can be used to obain exact query
results nevertheless. For a mobile implementation even
more radical space reductions are needed. Such savings
might be possible if we drop the requirement of exact
queries which is an illusion anyway.

Preprocessing Time. There is an entire cata-
log of further optimizations for improved preprocessing
times including limiting shortcuts to time ranges where
they form shortest paths, more sophisticated node or-
dering heuristics, faster witness search, use of approx-
imations within witness searches, and parallelization,
e.g., by identifying sets of nodes that can be contracted
independently.

Query Time. Better node ordering heuristics can
have some impact on query time but otherwise, the main
source of improvements may be the combination with
other speedup techniques. We already have evidence
that a combination with arc-flags [14, 13] can yield
several times better query performance at a moderate
increase of preprocessing time in particular in low traffic
scenarios. We might also use TCHs to implement the

103 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Table 2: Performance of Core-ALT and SHARC compared to approaches based on Contraction Hierarchies.
Prepro Queries

time space #delete speed time speed
input algorithm [h:m] [B/n] mins up [ms] up

TDCALT 0:09 50 3 190 723 5.36 280
Germany eco SHARC 1:16 155 19 425 119 25.06 60
midweek eco L-SHARC 1:18 219 2 776 831 6.31 238

TCH timed ord. 1:48 + 0:14 743 551 4 356 1.19 1 242
TCH min ord. 0:05 + 0:20 1 029 528 4 546 1.22 1 212
TDCALT 0:05 19 1 773 1 325 2.13 688
eco SHARC 0:30 65 2 142 1 097 1.86 787

Germany eco L-SHARC 0:32 129 576 4 076 0.73 2 011
Sunday agg SHARC 27:20 61 670 3 504 0.50 2 904

agg L-SHARC 27:22 125 283 8 300 0.29 5 045
TCH timed ord. 0:38 + 0:07 177 541 4 436 1.07 1 321
TCH min ord. 0:05 + 0:06 248 407 5 896 0.71 1 980

Europe eco SHARC 4:37 43 42 776 210 42.75 132
medium TCH min ord. 0:21 + 3:11 309 3.45 1 592

preprocessing for a time-dependent variant of transit-
node routing [1].

Further Issues. We want to apply TCHs to public
transportation networks and we want to use them
for profile-queries. Beyond that, we eventually want
a further generalization of the model including more
flexible objective functions and a fast and realistic
integration of dynamic changes of edge weights, e.g.,
due to traffic jams. For realistic results, we would like
to be able to estimate the reaction of other drivers on
the traffic delays, e.g., using a game-theoretic approach.

Simplicity. Opposite to further sophistication, it
is interesting for commercial applications of TCHs how
we can simplify our results. Note that the basic idea be-
hind TCHs is quite easy. Already a very basic version
can yield significant speedup with small preprocessing
times if the contraction process is aborted before things
get really difficult. This way TCHs become closer to
TDCALT albeit still using a more sophisticated con-
traction routing which makes the ALT component op-
tional. Considering the results for TDCALT, this ver-
sion might result in method with the fast preprocessing
of TDCALT but with better query performance. Fur-
ther simplifications are possible if we are content with
approximate results.

Acknowledgements. We would like to thank Robert
Geisberger for his help with some of his CH code we
adapted and with his help in adapting the static node
ordering routine to yield good orderings for TCHs. We
also thank Giacomo Nannicini for providing us with his

time-dependent edge-cost generator.

References

[1] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks with transit nodes. Science,
316(5824):566, 2007.

[2] G. V. Batz, R. Geisberger, and P. Sanders. Time
dependent contraction hierarchies – basic algorithmic
ideas. Technical report, Universität Karlsruhe, 2008.
arXiv:0804.3947v1[cs.DS].

[3] R. Bauer and D. Delling. SHARC: Fast and Robust
Unidirectional Routing. In Proceedings of the 10th
Workshop on Algorithm Engineering and Experiments
(ALENEX’08), pages 13–26. SIAM, 2008.

[4] K. Cooke and E. Halsey. The shortest route through a
network with time-dependent intermodal transit times.
Journal of Mathematical Analysis and Applications,
14:493–498, 1966.

[5] D. Delling. Engineering and Augmenting Route Plan-
ning Algorithms. PhD thesis, 2008. submitted.

[6] D. Delling. Time-Dependent SHARC-Routing. In
Proceedings of the 16th Annual European Symposium
on Algorithms (ESA’08), volume 5193 of Lecture Notes
in Computer Science, pages 332–343. Springer, Sept.
2008.

[7] D. Delling and G. Nannicini. Bidirectional Core-Based
Routing in Dynamic Time-Dependent Road Networks.
In Proceedings of the 19th International Symposium
on Algorithms and Computation (ISAAC’08), volume
5369 of Lecture Notes in Computer Science, pages 813–
824. Springer, Dec. 2008.

[8] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering Route Planning Algorithms. In J. Lerner,

104 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D. Wagner, and K. A. Zweig, editors, Algorithmics
of Large and Complex Networks, Lecture Notes in
Computer Science. Springer, 2009. to appear. Online
available at http://i11www.iti.uni-karlsruhe.de/

members/delling/files/dssw-erpa-09.pdf.
[9] R. Geisberger. Contraction hierarchies: Faster and

simpler hierarchical routing in road networks, 2008.
Diploma Thesis, Universität Karlsruhe.

[10] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction Hierarchies: Faster and Simpler Hierarchi-
cal Routing in Road Networks. In Proceedings of the
7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science,
pages 319–333. Springer, June 2008.

[11] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A∗ meets graph theory. In 16th ACM-
SIAM Symposium on Discrete Algorithms, pages 156–
165, 2005.

[12] D. E. Kaufman and R. L. Smith. Fastest paths in time-
dependent networks for intelligent vehicle-highway sys-
tems application. Journal of Intelligent Transportation
Systems, 1(1):1–11, 1993.

[13] E. Köhler, R. H. Möhring, and H. Schilling. Acceler-
ation of Shortest Path and Constrained Shortest Path
Computation. In Proceedings of the 4th Workshop on
Experimental Algorithms (WEA’05), Lecture Notes in
Computer Science, pages 126–138. Springer, 2005.

[14] U. Lauther. An extremely fast, exact algorithm for
finding shortest paths in static networks with geo-
graphical background. In Geoinformation und Mo-
bilität – von der Forschung zur praktischen Anwen-
dung, volume 22, pages 219–230. IfGI prints, Institut
für Geoinformatik, Münster, 2004.

[15] G. Nannicini, D. Delling, L. Liberti, and D. Schultes.
Bidirectional A* Search for Time-Dependent Fast
Paths. In Proceedings of the 7th Workshop on Experi-
mental Algorithms (WEA’08), volume 5038 of Lecture
Notes in Computer Science, pages 334–346. Springer,
June 2008.

[16] D. Schultes. Route Planning in Road Networks. PhD
thesis, 2008.

105 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

