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Abstract. In recent years, highly effective hierarchical and goal-directed speedup techniques for
routing in large road networks have been developed. This paper makes a systematic study of
combinations of such techniques. These combinations turn out to give the best results in many
scenarios, including graphs for unit disk graphs, grid networks, and time-expanded timetables.
Besides these quantitative results, we obtain general insights for successful combinations.

1 Introduction

Computing shortest paths in a graph G = (V, E) is used in many real-world applications
like route planning in road networks, timetable information for railways, or scheduling
for airplanes. In general, Dijkstra’s algorithm [16] finds an exact shortest path of length
d(s, t) between a given source s and target t. Unfortunately, the algorithm is far too
slow to be used on huge datasets. Thus, several speed-up techniques have been devel-
oped (see [14] for an overview) yielding faster query times for typical instances, e.g., road
or railway networks. In [26, 25], basic speed-up techniques have been combined system-
atically. One key observation of their work was that it is most promising to combine
hierarchical and goal-directed techniques. However, since the publication of [25], many
powerful hierarchical speed-up techniques have been developed, goal-directed techniques
have been improved, and huge data sets have been made available to the community. In
this work, we revisit the systematic combination of speed-up techniques.

1.1 Related Work

Since there is an abundance of related work, we decided to concentrate on previous
combinations of speed-up techniques and on the approaches that our work is directly
based on.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forwards from the
source s and backwards from the target t. Once some node has been visited from both di-
rections, the shortest path can be derived from the information already gathered [8]. Many
more advanced speed-up techniques use bidirectional search as an optional or sometimes
even mandatory ingredient.

Hierarchical Approaches try to exploit the hierarchical structure of the given network.
In a preprocessing step, a hierarchy is extracted, which can be used to accelerate all
subsequent queries.
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Reach. Let R(v) := max Rst(v) denote the reach of node v, where Rst(v) := min{d(s, v),
d(v, t)} for all s-t shortest paths including v with min{} := ∞. Gutman [22] observed
that a shortest-path search can be pruned at nodes with a reach too small to get to
either source or target from there. The basic approach was considerably strengthened
by Goldberg et al. [19, 20], in particular by a clever integration of shortcuts [31, 32], i.e.,
single edges that represent whole paths in the original graph.

Highway Hierarchies (HH). In [31, 32], the idea to automatically compute a hierarchy of
highway networks is introduced. The basic approach is to define a neighborhood for each
node to consist of its H closest neighbors. Now an edge (u, v) is a highway edge if there
is some shortest path 〈s, . . . , u, v, . . . t〉 such that neither u is in the neighborhood of t
nor v is in the neighborhood of s. After contracting the resulting network to remove low
degree nodes, the same procedure is applied recursively. We obtain a hierarchy. The query
algorithm is bidirectional Dijkstra with restrictions on relaxing certain edges. Roughly,
far away from source or target, only high-level edges need to be considered.

Highway-Node Routing (HNR) [35, 34] computes for a given sequence of node sets V =:
V0 ⊇ V1 ⊇ . . . ⊇ VL a hierarchy of overlay graphs [36, 37, 24]: the level-` overlay graph
consists of the node set V` and an edge set E` that ensures the property that all distances
between nodes in V` are equal to the corresponding distances in the underlying graph
G`−1. A bidirectional query algorithm takes advantage of the multi-level overlay graph
by never moving downwards in the hierarchy—by that means, the search space size is
greatly reduced.

The most recent variant of HNR [17], Contraction Hierarchies (CH), obtains a node
classification by iteratively contracting the ‘least important’ node, yielding a hierarchy
with up to |V | levels. Moreover, the input graph G is transferred to a search graph G′

by storing only edges directing from unimportant to important nodes. As a remarkable
result, G′ is smaller than G yielding a negative overhead per node. Finally, by this
transformation the query is simply a plain bidirectional Dijkstra search operating on G′.

Transit-Node Routing (TNR) [2, 1] is based on a simple observation intuitively used by
humans: When you start from a source node s and drive to somewhere ‘far away’, you
will leave your current location via one of only a few ‘important’ traffic junctions, called
(forward) access nodes

−→
a (s). An analogous argument applies to the target t, i.e., the

target is reached from one of only a few backward access nodes
←−
a (t). Moreover, the

union of all forward and backward access nodes of all nodes, called transit-node set T , is
rather small. This implies that for each node the distances to/from its forward/backward
access nodes and for each transit-node pair (u, v) the distance between u and v can be
stored. For given source and target nodes s and t, the length of the shortest path that
passes at least one transit node is given by dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) |
u ∈ −→a (s), v ∈ ←−a (t)}. Note that all involved distances d(s, u), d(u, v), and d(v, t) can be
directly looked up in the precomputed data structures. As a final ingredient, a locality
filter L : V ×V → {true, false} is needed that decides whether given nodes s and t are too
close to travel via a transit node. L has to fulfill the property that L(s, t) = false implies
d(s, t) = dT (s, t). Then, the following algorithm can be used to compute the shortest-path
length d(s, t):

if L(s, t) = false then compute and return dT (s, t); else use any other routing algorithm.

2



For a given source-target pair (s, t), let a := max(|−→a (s)|, |←−a (t)|). Note that for a
global query (i.e., L(s, t) = false), we need O(a) time to lookup all access nodes, O(a2)
to perform the table lookups, and O(1) to check the locality filter.

Goal-Directed Approaches direct the search towards the target t by preferring edges
that shorten the distance to t and by excluding edges that cannot possibly belong to a
shortest path to t—such decisions are usually made by relying on preprocessed data.

ALT. In [18, 21], the ALT algorithm is presented that is based on A∗ search, Landmarks,
and the Triangle inequality. After selecting a small number of nodes, called landmarks, the
distances d(v, λ) and d(λ, v) to and from each landmark λ are precomputed for all nodes
v. For nodes v and t, the triangle inequality yields for each landmark λ two lower bounds
d(λ, t) − d(λ, v) ≤ d(v, t) and d(v, λ) − d(t, λ) ≤ d(v, t). The maximum of these lower
bounds is used during an A∗ search. The original ALT approach has fast preprocessing
times and provides reasonable speed-ups, but consumes too much space for very large
networks. In the subsequent paragraph on “Previous Combinations”, we will see that
there is a way to reduce the memory consumption by storing landmark distances only for
a subset of the nodes.

Arc-Flags (AF). The arc-flag approach, introduced in [28, 27, 29], first computes a par-
tition C of the graph. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V
such that each node v ∈ V is contained in exactly one set Ci. An element of a partition
is called a cell. Next, a label is attached to each edge e. A label contains, for each cell
Ci ∈ C, a flag AFCi

(e) which is true iff a shortest path to a node in Ci starts with e. A
modified Dijkstra then only considers those edges for which the flag of the target node’s
cell is true. The big advantage of this approach is its easy and fast query algorithm.
However, preprocessing is very expensive, either regarding preprocessing time or memory
consumption [23]: in the latter case, a centralized tree is built from each cell keeping the
distances to all boundary nodes of this cell in memory.

Previous Combinations. Many speed-up techniques can be combined. In [36], a com-
bination of a special kind of geometric container [39], the separator-based multi-level
method [37], and A∗ search yields a speed-up of 62 for a railway transportation problem.
In [26], combinations of A∗ search, bidirectional search, the separator-based multi-level
method, and geometric containers are studied: depending on the graph type, different
combinations turn out to be best. For real-world graphs, a combination of bidirectional
search and geometric containers leads to the best running times. For public transportation
however, a combination of Arc-Flags and ALT harmonizes well [11].

REAL. Goldberg et al. [19, 20] have successfully combined their advanced version of
REach with landmark-based A∗ search (the ALt algorithm), obtaining the REAL algo-
rithm. In the most recent version [20], they introduce a variant where landmark distances
are stored only with the more important nodes, i.e., nodes with high reach values. By
this means, the memory consumption can be reduced significantly.
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HH∗ [12, 13] combines highway hierarchies [32] (HH) with landmark-based A∗ search.
Similar to [20], the landmarks are not chosen from the original graph, but for some
level k of the highway hierarchy, which reduces the preprocessing time and memory
consumption. As a result, the query works in two phases: in an initial phase, a non-
goal-directed highway query is performed until all entrance points to level k have been
discovered; for the remaining search, the landmark distances are available so that the
combined algorithm can be used.

SHARC [4] extends and combines ideas from highway hierarchies (namely, the contraction
phase, which produces SHortcuts) with the ARC flag approach. The result is a fast
unidirectional query algorithm, which is advantageous in scenarios where bidirectional
search is prohibitive. In particular, using an approximative variant allows dealing with
time-dependent networks efficiently. Even faster query times can be obtained when a
bidirectional variant is applied.

1.2 Our Contributions

In this work, we study a systematic combination of speed-up techniques for Dijkstra’s
algorithm. However, we observed in [33] that—at least in road networks—some combi-
nations are more promising than others. Hence, we focus on the most promising ones:
adding goal-direction to hierarchical speed-up techniques. By evaluating different inputs
and scenarios, we gain interesting insights into the behavior of speed-up techniques when
combining them. As a result, we are able to present the fastest known techniques for
several scenarios. For sparse graphs, a combination of Contraction Hierarchies and Arc-
Flags yields excellent speed-ups with low preprocessing effort. The combination is only
overtaken by Transit-Node Routing in road networks with travel times, but the gap is
almost closed. However, even Transit-Node Routing can be further accelerated by adding
goal-direction. Moreover, we introduce a hierarchical ALT algorithm, called CALT, that
yields a good performance on more dense graphs. Finally, we make interesting observa-
tions when combining Arc-Flags with Reach.

We start our work on combinations in Section 2 by presenting a generic approach how
to improve the performance of basic speed-up techniques in general. The key observation
is that we extract an important subgraph, called the core, of the input graph and use
only the core as input for the preprocessing-routine of the applied speed-up technique.
As a result, we derive a two-phase query algorithm, similar to partial landmark REAL
or HH∗. During phase 1 we use plain Dijkstra to reach the core, while during phase 2, we
use a speed-up technique in order to accelerate the search within the core. The full power
of this core-based routing approach can be unleashed by using a goal-directed technique
during phase 2. Our experimental study in Section 5 shows that when using ALT during
phase 2, we end in a very robust technique that is superior to plain ALT.

In Section 3, we show how to remedy the crucial drawback of Arc-Flags: its preprocess-
ing effort. Instead of computing arc-flags on the full graph, we use a purely hierarchical
method until a specific point during the query. Note that this approach is similar to Sec-
tion 2. As soon as we have reached an ‘important’ subgraph (or core), i.e., a high level
within the hierarchy, we turn on arc-flags. As a result, we significantely accelerate hierar-
chical methods like Highway-Node Routing. Our aggressive variant moderately increases
preprocessing effort but query performance is almost as good as Transit-Node Routing in
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road networks: on average, we settle only 45 nodes for computing the distance between
two random nodes in a continental road network. The advantage of this combination over
Transit-Node Routing is its very low space consumption.

ALT

Arc-Flags

Reach

Contraction Based Routing

Transit Node Routing

REAL

SHARC

HH ∗

TNR+AF

CHASE

ReachFlags
CALT

Fig. 1. Overview of combinations of speed-up techniques. Speed-up techniques are drawn as nodes (goal-directed
techniques on the left, hierarchical on the right). A dashed edge indicates an existing combination, whereas thick
edges indicate combinations presented in this work. Contraction based routing includes Highway and Contraction
Hierarchies.

However, we are also able to improve the performance of Transit-Node Routing. In
Section 4, we present how to add goal-direction to this approach. As a result, the number
of required table lookups can be reduced by a factor of 13, resulting in average query
times of less than 2µs—more than three million times faster than Dijkstra’s algorithm.

As already mentioned, a few combinations like HH∗, REAL, and SHARC have already
been published. Hence, Figure 1 provides an overview over existing combinations already
published and those which are presented in this work. Note that all techniques in this
work use bidirectional search.

An extended abstract of this work has been published in [5]. Here, we additionally
give proofs of correctness and introduce new combinations tailored to denser graphs.
Moreover, we present a largely extended experimental study.

2 Core-Based Routing

In this section, we introduce a very easy and powerful approach to generally reduce the
preprocessing of the speed-up techniques introduced in Section 1. The central idea is to
use contraction [17] to extract an important subgraph and preprocess only this subgraph
instead of the full graph.

Preprocessing. At first, the input graph G = (V, E) is contracted to a graph GC =
(VC , EC), called the core. Note that we could use any contraction routine, that removes
nodes from the graph and inserts edges to preserve distances between core nodes. Ex-
amples are those from [32, 20, 4] or the most advanced one from [17]. The key idea of
core-based routing is not to use G as input for preprocessing but to use GC instead. As a
result, preprocessing of most techniques can be accelerated as the input can be shrunk.
However, sophisticated methods like Highway Hierarchies, REAL, or SHARC already use
contraction during preprocessing. Hence, this advantage especially holds for goal-directed
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techniques like ALT or Arc-Flags. After preprocessing the core, we store the preprocessed
data and merge the core and the normal graph to a full graph GF = (V, EF = E ∪ EC).
Moreover, we mark the core-nodes with a flag.

Contraction. Our contraction routine is inspired by [32, 20] and has been developed for
SHARC [4]. We perform two steps during contraction, node- and edge-reduction.

The number of nodes is reduced by iteratively bypassing nodes until no node is by-
passable any more. To bypass a node x we first remove x, its incoming edges I and its
outgoing edges O from the graph. Then, for each tail u of I and head v of O we in-
troduce a new edge of the length len(u, x) + len(x, v), where len gives the length of an
edge. If there already is an edge connecting u and v in the graph, we only keep the one
with smaller length. When a shortcut S represents a path P in the input graph, the hop
number of S is the number of edges in P . To check whether a node is bypassable we first
determine the number #shortcut of new edges that would be inserted into the graph if
x was bypassed. Then we say a node is bypassable if our bypass criterions are fulfilled
First, #shortcut ≤ c · (|I|+ |O|) must hold, where c is a tunable contraction parameter.
Second, bypassing x must not yield a shortcut with a hop number greater than h.

A node being bypassed influences the degree of their neighbors and thus, their bypass-
ability. Therefore, the order in which nodes are bypassed changes the resulting contracted
graph. We use a heap to determine the next bypassable node. The key of a node x within
the heap is H · #shortcut/(|I| + |O|) where H is the hop number of the hop-maximal
shortcut that would be added if x was bypassed, smaller keys have higher priority. We say
that the nodes that have been bypassed belong to the component, while the remaining
nodes are called core-nodes.

Next, we perform an edge-reduction step, similar to [35]. We grow a shortest-path
tree from each node u of the core. We stop the growth as soon as all neighbors t of u have
been settled. Then we check for all neighbors t whether u is the predecessor of t in the
grown partial shortest path tree. If u is not the predecessor, we can remove (u, t) from
the graph because the shortest path from u to t does not include (u, t).

Theorem 1. Contraction preserves distances between core nodes.

Proof. Correctness follows directly from our rules of adding shortcuts during node-reduction
and removal of unneeded edges during edge-reduction. ut

Query. The s-t query is a modified bidirectional Dijkstra, consisting of two phases and
performed on full graph GF . During phase 1, we run a bidirectional Dijkstra rooted at
s and t not relaxing edges belonging to the core. We add each core node settled by
the forward search to a set S (respectively T for the backward search). The first phase
terminates if one of the following two conditions holds: either (1) both priority queues
are empty or (2) the distance to the closest entry points of s and t is larger than the
length of a tentative shortest path possibly found during phase 1. If case (2) holds, the
whole query terminates. The second phase is initialized by refilling the queues with the
nodes belonging to S and T . As keys we use the distances computed during phase 1.
Afterwards, we execute the query-algorithm of the applied speed-up technique which
terminates according to its stopping condition. Note that when not using any speed-up
technique for the second phase, we obtain a special variant of Highway-Node Routing.
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Theorem 2. Core-Based Routing is correct.

Proof. Let P = (s, u1, . . . , uk, t) be an arbitrary shortest path in G. If no node on P is
part of the core in GF , core-based routing is correct since we find the path during phase 1.
If only one node on P is part of the core, we also find the path during phase 1. Now, let
more than one node on P be part of the core. Let ui be the first and uj be the last core
node on P . During phase one, we obtain paths from s to ui and from uj to t not longer
than the corresponding subpaths in G. Due to the fact that distances within the core are
preserved by our contraction routine (Theorem 1), we know that a path between ui and
uj in GC exists with the same length as the corresponding subpath of P . Hence, there
exists a path in GF with equal length that is found by core-based routing. ut

CALT. Although we could use any of the speed-up techniques to instantiate our core-
based approach we focus on a variant based on ALT due to the following reasons. First
of all, ALT works well in dynamic scenarios [15]. Hence, we expected that CALT (Core-
ALT) also works well in dynamic and time-dependent scenarios, which recently has been
shown in [10]. Second, we showed in [6] that pure ALT is a very robust technique with
respect to the input. Finally, ALT suffers from the critical drawback of high memory
consumption—we have to store two distances per node and landmark—which can be
drastically reduced by switching to CALT. On top of the preprocessing of the generic
approach, we compute landmarks on the core and store the distances to and from the
landmarks for all core nodes. The second phase of core-based routing is replaced by ALT.

Proxy Nodes. Note that the ALT query requires lower bounds to s and t from every
node within the core but both s and t need not be part of the core. In order to perform
correct queries anyway, we adapt the ideas from [20, 13] to overcome this problem. Let
t′—called the proxy node of t—be the core node with minimum d(t, t′) and let l1 and l2
be two arbitrary landmarks L ⊂ VC . Then the following equations hold for all u ∈ VC .
See Figure 2 for illustration.

d(u, t′)≤ d(u, t) + d(t, t′)

d(u, l2)≤ d(u, t′) + d(t′, l2)

d(l1, t
′)≤ d(l1, u) + d(u, t′)

Hence,

d(u, t) := max
l∈L

max{d(u, l)− d(t′, l)− d(t, t′), d(l, t′)− d(l, u)− d(t, t′)} (1)

provides a feasible lower bound for the distance d(u, t). Analogously, we obtain d(s, u) :=
maxl∈L max{d(s′, l)− d(u, l)− d(s′, s), d(l, u)− d(l, s′)− d(s′, s)} as feasible lower bound
for the distance d(s, u) with s′ ∈ VC being the node with minimum d(s′, s).

l1 l2

u t′ t

Fig. 2. Proxy nodes for CALT. When computing lower bounds for d(u, t) with u ∈ VC , t /∈ VC using landmark
distances in the core, t′ ∈ VC acts as proxy node for t.
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We compute these proxy nodes of s and t for a given s–t query during the initialization
phase of the query by running Dijkstra-queries. Note for CALT, the quality of the lower
bounds not only depends on the quality of the selected landmarks but also on d(t, t′) and
d(s′, s).

Improved Locality. In order to improve query performance, we increase—similar to [20]—
cache efficiency of GF by reordering nodes. As most of the query is performed on the core,
we store the core nodes followed by the non-core nodes. As a consequence, the number
of cache misses is reduced yielding lower query times. Furthermore, this eases accessing
landmark distances since we can simply use an array with |L| · |VC | 64-bit entries for
storing these distances (see [15] for details).

Theorem 3. CALT is correct.

Proof. According to Theorem 2, plain core-based routing is correct. Moreover, potentials
as obtained from Equation (1) are feasible. Hence, applying ALT during phase 2 does
not violate Theorem 2. ut

3 Hierarchy-Aware Arc-Flags

Two important goal-directed techniques have been established during the last years:
ALT and Arc-Flags. The advantages of ALT are fast preprocessing and easy adaption
to dynamic scenarios, while the latter is superior with respect to query-performance and
space consumption. However, preprocessing of Arc-Flags is expensive. The central idea
of Hierarchy-Aware Arc-Flags is to combine—similar to REAL or HH∗—a hierarchical
method with Arc-Flags. By computing arc-flags only for a subgraph containing all nodes
in high levels of the hierarchy, we are able to reduce preprocessing times. In general, we
could use any hierarchical approach but as Contraction Hierarchies (CH) is the hierar-
chical method with lowest space consumption and best query performance, we focus on
the combination of Contraction Hierarchies and Arc-Flags. However, we also present a
combination of Reach and Arc-Flags.

3.1 Contraction Hierarchies + Arc-Flags (CHASE)

As already mentioned in Section 1.1, Contraction Hierarchies basically uses a plain bidi-
rected Dijkstra on a search graph constructed during preprocessing. We are able to
combine Arc-Flags and Contraction Hierarchies in a very natural way and name it the
CHASE-algorithm (Contraction-Hierarchy + Arc-flagS + highway-nodE routing).

Preprocessing. First, we run a complete Contraction Hierarchies preprocessing which
assembles the search graph G′. Next, we extract the subgraph H of G′ containing the |VH |
nodes of highest levels. The size of VH is a tuning parameter. Recall that Contraction
Hierarchies uses |V | levels with the most important node in level |V |−1. We partition H
into k cells and compute arc-flags according to [23] for all edges in H. Summarizing, the
preprocessing consists of constructing the search graph and computing arc-flags for H.
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Query. Basically, the query is a two-phase algorithm. The first phase is a bidirected
Dijkstra on G′ with the following modification: When settling a node v belonging to H,
we do not relax any outgoing edge from v. Instead, if v is settled by the forward search, we
add v to a node set S, otherwise to T . Phase 1 ends if the search in both directions stops.
The search stops in one direction, if either the respective priority queue is empty or if the
minimum of the key values in that queue and the distance to the closest entrance point in
that direction is equal or larger than the length of the tentative shortest path. The whole
search can be stopped after the first phase, if either no entrance points have been found
in one direction or if the tentative shortest-path distance is smaller than minimum over
all distances to the entrance points and all key values remaining in the queues. Otherwise
we switch to phase 2 of the query which we initialize by refilling the queues with the
nodes from S and T . As keys we use the distances computed during phase 1. In phase
2, we use a bidirectional Arc-Flags Dijkstra. We identify the set CS (CT ) of all cells that
contain at least one node u ∈ S (u ∈ T ). The forward search only relaxes edges having a
true arc-flag for any of the cells CT . The backward search proceeds analogously.

Note that we have a trade-off between performance and preprocessing. If we use bigger
subgraphs as input for preprocessing arc-flags, query-performance is better as arc-flags
can be used earlier. However, preprocessing time increases as more arc-flags have to be
computed.

Stall-On-Demand. Pure Contraction Hierarchies benefit from an optimization technique
called stall-on-demand. During the query, a very local breadth-first search stalls nodes
that cannot be part of the shortest path (cf. [34] for details). However, during our ex-
perimental study, it turned out that this optimization technique does not pay off for
CHASE. The search space decreases only slightly which cannot compensate the com-
putational overhead of stall-on-demand. So, the resulting query of CHASE is a plain
bidirectional Dijkstra operating on G′ with arc-flags activated on high levels of the hier-
archy.

Theorem 4. CHASE is correct.

Proof. The correctness of CH is known. If the query terminates during phase 1, then the
correctness of the combinations directly follows from the correctness of CH. Otherwise,
we know that a shortest s-t path must contain at least two entrance points ŝ ∈ S and
t̂ ∈ T . As the query relaxes all edges with true arc-flags for at least one cell in CT and
CS, it is certain that the shortest path is found. ut

Partial CHASE (pCHASE). Contraction Hierarchies yield excellent preprocessing
and query times in road networks. The main reason is that the average degree of nodes
with respect to the search graph G′ stays low. However, for other inputs, the average de-
gree may grow rapidly yielding bad preprocessing and query times. Our Partial CHASE
algorithm is motivated from such inputs. Instead of computing a complete contraction
hierarchy, we stop the contraction at a certain point. This yields a CH-core H with size
|VH |. We use the subgraph induced by VH as input for arc-flags preprocessing. The idea
is that the lacking hierarchy in the core is compensated by goal-direction.
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3.2 Reach + Arc-Flags (ReachFlags)

Similar to CHASE, we can also combine Reach and Arc-Flags, called ReachFlags. We
first run a complete Reach-preprocessing as described in [20] and assemble the output
graph. Next, we extract a subgraph H from the output graph containing all nodes with
a reach value ≥ `. Again, we compute arc-flags in H according to Section 1. Note we do
not favor one path over another if both paths have the same length. The ReachFlags-
query can easily by adapted from the CHASE-query in a straightforward manner. Note
that the input parameter ` adjusts the size of VH . Thus, a similar trade-off in perfor-
mance/preprocessing effort like for CHASE is given.

Theorem 5. ReachFlags is correct.

Proof. We know that pure reach-based routing is correct. With the same observations
from the proof of Theorem 4, the correctness of ReachFlags follows. ut

Partial ReachFlags (pReachFlags). Analogously to Partial CHASE, we can also
define a partial variant of ReachFlags. Therefore, we slightly alter the reach preprocessing:
Reach-computation according to [20] is a process that iteratively contracts and prunes the
input. After each iteration step, all nodes with final reach value assigned are removed from
the graph. Starting from this observation, we are able to preprocess Partial ReachFlags.
We first run ` iteration steps of Reach-preprocessing as described in [20]. All nodes that
do not have their final reach value set, get a reach value of∞ assigned. Next, we assemble
the output graph and extract a subgraph H from it containing all nodes with reach ∞.
Again, we compute arc-flags in H according to [23]. Note that for Partial ReachFlags the
input parameter ` adjusts the size of VH .

4 Transit-Node Routing + Arc-Flags (TNR+AF)

Recall that the most time-consuming part of a TNR-query are the table lookups. Hence,
when we want to further improve the average query times, the first attempt should be
to reduce the number of those lookups. This can be done by excluding certain access
nodes at the outset, using an idea very similar to the arc-flag approach. We consider the
minimal overlay graph GT = (T , ET ) of G, i.e., the graph with node set T and an edge
set ET such that |ET | is minimal and for each node pair (s, t) ∈ T ×T , the distance from
s to t in G corresponds to the distance from s to t in GT . We partition this graph GT into
k regions and store for each node u ∈ T its region r(u) ∈ {1, . . . , k}. For each node s and
each access node u ∈ −→a (s), we manage a flag vector f→s,u : {1, . . . , k} → {true, false} such
that f→s,u(x) is true iff there is a node v ∈ T with r(v) = x such that d(s, u) + d(u, v) is

equal to min{d(s, u′)+d(u′, v) | u′ ∈ −→a (s)}. In other words, a flag of an access node u for
a particular region x is set to true iff u is useful to get to some transit node in the region
x when starting from the node s. Analogous flag vectors f←t,u are kept for the backward
direction.

Preprocessing. The flag vectors can be precomputed in the following way, again using
ideas similar to those used in the preprocessing of the arc-flag approach: Let B ⊆ T denote
the set of border nodes, i.e., nodes that are adjacent to some node in GT that belongs

10



to a different region. For each node s ∈ V and each border node b ∈ B, we determine
the access nodes u ∈ −→a (s) that minimize d(s, u) + d(u, b); we set f→s,u(r(b)) to true. In

addition, f→s,u(r(u)) is set to true for each s ∈ V and each access node u ∈ −→a (s) since
each access node obviously minimizes the distance to itself. An analogous preprocessing
step has to be done for the backward direction.

Theorem 6. The preprocessing algorithm is correct.

Proof. We consider an arbitrary node s, an access node u ∈ −→a (s), and a region x. If
x = r(u), then d(s, u) = min{d(s, u′)+d(u′, u) | u′ ∈ −→a (s)} implies that f→s,u(r(u)) has to
be true, which is explicitly ensured by the preprocessing algorithm. Otherwise (x 6= r(u)),
we distinguish between two cases:
Case 1 : there is a node v ∈ T with r(v) = x such that d(s, u) + d(u, v) = min{d(s, u′) +
d(u′, v) | u′ ∈ −→a (s)}, which implies that f→s,u(x) has to be true. Consider a shortest path
P from u to v in GT and the node b on P with r(b) = x that is closest to u. From
this definition and the fact that r(u) 6= x, it follows that the predecessor of b on P
belongs to a different region, i.e., b is a border node. Furthermore, we can conclude that
d(s, u) + d(u, b) = min{d(s, u′) + d(u′, b) | u′ ∈ −→a (s)}. Hence, f→s,u(x) is set to true.
Case 2 : there is no node v ∈ T with r(v) = x such that d(s, u)+ d(u, v) = min{d(s, u′)+
d(u′, v) | u′ ∈ −→a (s)}, which implies that f→s,u(x) has to be false. Assume that f→s,u(x) was
true. Since x 6= r(u), this would imply that there is a border node b ∈ B with r(b) = x
such that u minimises d(s, u) + d(u, b). Because of B ⊆ T , this is a contradiction. ut

s

t
3

1 2

-

0001

0011

1011
1010

1100

0101
4 ft = 1010

fs = 0001

4321region x
f→s,u(x)

u

1111

Fig. 3. An example of a goal-directed transit-node query. Nodes
selected for

−→
a ′(s) and

←−
a ′(t) are shaded. The number of required

table lookups is reduced from 12 to 2.

Query. In a query from s to t, we
can take advantage of the precom-
puted flag vectors. First, we con-
sider all backward access nodes
of t and build the flag vector ft

such that ft(r(u)) = true for each
u ∈ ←−a (t). Second, we consider
only forward access nodes u of s
with the property that the bitwise
AND of f→s,u and ft is not zero; we

denote this set by
−→
a ′(s); during

this step, we also build the vec-
tor fs such that fs(r(u)) = true
for each u ∈ −→a ′(s). Third, we
use fs to determine the subset
←−
a ′(t) ⊆ ←−a (t) analogously to the
second step. Now, it is sufficient
to perform only |−→a ′(s)| × |←−a ′(t)|
table lookups. An example is given in Fig. 3. Note that determining

−→
a ′(s) and

←−
a ′(t)

is in O(a), in particular operations on the flag vectors can be considered as quite cheap
because we can use bit parallelism.

Theorem 7. The query algorithm is correct.

11



Proof. We have to show that min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→a (s), v ∈ ←−a (t)} =
min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→a ′(s), v ∈ ←−a ′(t)}. Consider the nodes u ∈ −→a (s)
and v ∈ ←−a (t) that minimise the distance d(s, u)+ d(u, v)+ d(v, t). In particular, we have
d(s, u)+d(u, v) = min{d(s, u′)+d(u′, v) | u′ ∈ −→a (s)}, which implies that f→s,u(r(v)) = true.

Furthermore, we have ft(r(v)) = true since v ∈ ←−a (t). Hence, the bitwise AND of f→s,u and

ft is not zero and, consequently, u ∈ −→a ′(s). Analogously, we can show that v ∈ ←−a ′(t). ut

Optimizations. Presumably, it is a good idea to just store the bitwise OR of the forward
and backward flag vectors in order to keep the memory consumption within reasonable
bounds. The preprocessing of the flag vectors can be accelerated by rearranging the
columns of the distance table so that all border nodes are stored consecutively, which
reduces the number of cache misses.

5 Experiments

In this section, we present an extensive experimental evaluation of our combined speed-up
techniques in various scenarios and inputs. Our implementation is written in C++ (using
the STL at some points). As priority queue we use a binary heap. The evaluation was
done on two similar machines: An AMD Opteron 22181 and an Opteron 2702. The second
machine is used for the combination of Transit-Node Routing and Arc-Flags, the first one
for all other experiments. Note that the second machine is roughly 10% faster than the
first one due to faster memory. In the following, we report preprocessing effort and query
performance of all speed-up techniques. We measure the preprocessing effort in time to
compute the additional data and the additional space per node this data occupies. For
query performance, we report the average number of settled nodes, i.e. the number of
nodes taken from the priority queues, and resulting query times. All figures in this paper
are based on 10 000 random s-t queries and refer to the scenario that only the lengths of
the shortest paths have to be determined, without outputting a complete description of
the paths. Efficient techniques for the latter have been published in [13, 1, 17].

5.1 Road Networks

As inputs for our test on road networks we use the largest strongly connected component3

of the road networks of Western Europe, provided by PTV AG for scientific use, and of
the US which is taken from the DIMACS Challenge homepage. The former graph has
approximately 18 million nodes and 42.6 million edges. The corresponding figures for the
USA are 23.9 million and 58.3 million, respectively. In both cases, edge lengths correspond
to travel times. For results on the distance metric, see Tab. 9.

CALT. For CALT, we first evaluate the impact of contraction on preprocessing effort
and query performance. Table 1 reports the performance of CALT with 64 avoid land-

1 The machine runs SUSE Linux 10.3, is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache.
The DIMACS benchmark on the full US road network with travel time metric takes 6 013.6 s.

2 SUSE Linux 10.0, 2.0 GHz, 8 GB of RAM, and 2 x 1 MB of L2 cache. The DIMACS benchmark: 5 355.6 s.
3 For historical reasons, some quoted results are based on the respective original network that contains a few

additional nodes that are not connected to the largest strongly connected component.
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Table 1. Performance of CALT for varying contraction parameters c (contraction quotient) and h (hop-limit).
Core nodes depicts the percentage of core nodes in GF , #add edges reports the number of additional edges in GF ,
and the resulting overhead (including landmark distances) is given in Bytes per node. The preprocessing time is
given in minutes. For queries, we report the size of the search space in number of settled nodes, the number of
entry nodes and the resulting average query times in milliseconds.

Europe USA
Prepro. Query Prepro. Query

core |E| time space #settled #entry time core |E| time space #settled #entry time
c h nodes incr. [min] [B/n] nodes nodes [ms] nodes incr. [min] [B/n] nodes nodes [ms]

0.0 0 100.00% 0.00% 68 512.0 25 324 1.0 19.61 100.00% 0.00% 93 512.0 68 861 1.0 48.87
0.5 10 35.48% 10.23% 21 187.7 10 925 3.2 8.02 28.90% 11.40% 20 154.2 21 544 3.4 16.61
1.0 20 6.32% 14.24% 7 38.4 2 233 8.2 2.16 8.29% 12.68% 11 48.9 7 662 7.1 6.96
2.0 30 3.04% 11.41% 9 21.8 1 382 13.3 1.55 3.21% 10.53% 12 22.5 3 338 12.6 4.11
2.5 50 1.88% 9.16% 11 15.4 1 394 18.6 1.34 2.06% 8.00% 13 16.1 2 697 17.1 3.01
3.0 75 1.29% 7.80% 12 12.2 1 963 24.2 1.43 1.45% 6.39% 14 12.6 2 863 22.0 2.85
5.0 100 0.86% 6.94% 18 9.8 3 126 34.0 1.67 0.86% 4.50% 21 9.3 3 416 30.2 2.35

marks 4 with varying contraction rate. Note that for c = 0.0 and h = 0, we end up in a
plain ALT-setup.

We observe that contraction has a very positive effect on ALT: Preprocessing space
and time decreases combined with better query performance. The latter are accelerated
by more than one order of magnitude while the high memory consumption of ALT can be
reduced to a reasonable amount. Moreover, turning on contraction decreases the variance
of the query times. Interestingly, the number of additional edges in the full graph GF first
increases with increasing contractionrates but then decreases again. The reason for this is
that the core shrinks rapidly. The few core nodes finally yield a high average degree but
with respect to the total number of nodes, the impact of core edges fades. For Europe, we
observe that at a certain point, higher contraction values yield worse query performance.
It seems as if a good compromise is c = 2.5 and h = 50. Hence, we use these contraction
values as default from now on.

Number of Landmarks. Next, we focus on the impact of number of landmarks. More
precisely, we evaluate 8, 16, 32, and 64 landmarks generated on cores obtained from
different contraction rates. Note that we use maxCover 5 for 8 and 16 landmarks, while
avoid was used to select 32 and 64 landmarks. Also note that a contraction of c = 0.0
and h = 0 again yields a pure ALT setup.

4 Avoid selects landmarks from the graph by iteratively identifying parts of the graph not well covered by
landmarks. For details, see [21].

5 MaxCover yields slightly better landmarks than avoid. This is achieved by generating more landmarks (with
avoid) than necessary and then selecting the best ones among of them by local search. For detail, see [21].

Table 2. Performance of CALT for different number of landmarks applying a low and high contraction.

no cont. (c=0.0, h=0) low cont. (c=1.0, h=20) med. cont. (c=2.5, h=50) high cont. (c=5.0, h=100)
Prepro. Query Prepro. Query Prepro. Query Prepro. Query
time space #sett. time time space #sett. time time space #sett. time time space #sett. time

|L| [min] [B/n] nodes [ms] [min] [B/n] nodes [ms] [min] [B/n] nodes [ms] [min] [B/n] nodes [ms]

8 26.1 64.0 163 776 127.8 7.1 10.9 12 529 10.25 10.1 7.0 4 431 3.98 17.8 5.9 4 106 2.51
16 85.2 128.0 74 669 53.6 9.4 14.9 5 672 5.77 11.0 8.2 2 456 2.33 18.3 6.5 3 500 2.23
32 27.1 256.0 40 945 29.4 6.8 23.0 3 268 2.97 10.0 10.6 1 704 1.66 17.7 7.6 3 264 2.01
64 68.2 512.0 25 324 19.6 8.5 36.2 2 233 2.16 10.5 15.4 1 394 1.34 18.0 9.8 3 126 1.67
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We observe that with decreasing size of the core, the impact of number of landmarks
fades: In a pure ALT setting, doubling the number of landmarks roughly yields an increase
of a factor of 2 in query performance. On the contrary, in a high contraction scenario (c =
5.0, h = 100), the number of landmarks has nearly no influence on query performance.
Using 64 instead of 8 landmarks decreases query times by only ≈ 33%. However, as
memory consumption is still very low for 64 landmarks, we use this number as default
for CALT.

Local Queries In order to gain deeper insights into the impact of contraction on query
performance, Fig. 4 reports the query times of CALT for different contraction rates and
different measures of the locality of the queries. For ALT, we use 16 maxCover landmarks,
for CALT 64 landmarks are selected by avoid.

We observe that pure ALT is faster than CALT for ranks up to 28 if low contraction
is applied. If the core gets smaller, pure ALT is faster than CALT for ranks up to 210.
This is due to the fact that CALT has a two-phase query yielding a higher overhead.
Interestingly, increasing the contraction rate has a negative effect for low-range queries
while long-range queries seem to benefit from higher contraction rates. Still, low-range
queries are executed in less than 1 ms for both contraction setups. Moreover, space
consumption decreases with increasing contraction rates (cf. Tab 1). Hence, our choice of
c = 2.5, h = 50 as default setting seems reasonable.
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Fig. 4. Comparison of ALT, CALT with low contraction (c = 1.0, h = 20), and medium contraction (c = 2.5,
h = 50). For each power of two, 1 000 queries with Dijkstra rank 2i are measured (For an s-t query, the Dijkstra
rank of node v is the number of nodes removed from the priority queue by Dijkstra’s algorithm before v is
removed, see also [31]). The results are represented as box-and-whisker plot [38]: each box spreads from the lower
to the upper quartile and contains the median, the whiskers extend to the minimum and maximum value omitting
outliers, which are plotted individually.
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CHASE. The combination of Contraction Hierarchies and Arc-Flags allows a very flex-
ible trade-off between preprocessing and query performance. The bigger the subgraph H
used as input for Arc-Flags, the longer preprocessing takes but query performance im-
proves. Table 3 reports the performance of CHASE for different sizes of H in percentage
of the original graph. We partition H with SCOTCH [30] into 128 cells.

Table 3. Performance of CHASE for Europe with stall-on-demand (s-o-d) turned on and off running 10 000
random queries. The search space is given as #settled nodes during phase 1 and in total. The number of entry
points is given as well.

size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 20.0%

Prepro. time [min] 25 31 41 62 99 244 536
space [Byte/n] -2.7 0.0 1.9 4.9 12.1 22.2 39.5

Query #settled total 355 86 67 54 43 37 34
(with s-o-d) #settled phase 1 – 60 41 29 18 13 8

#entry points – 21 14 10 7 5 4
time [µs] 180.0 48.5 36.3 29.2 22.8 19.7 17.2

Query #settled total 931 111 78 59 45 39 35
(without s-o-d) #settled phase 1 – 76 47 31 19 13 8

#entry points – 30 18 12 8 6 4
time [µs] 286.3 43.8 30.8 23.1 17.3 14.9 13.0

Two observations are remarkable: the effect of stall-on-demand (→ Section 3.1) and
the size of the subgraphs. While stall-on-demand pays off for pure CH, CHASE does not
win from turning on this optimization. The additional reduction in the number of settled
nodes is not large enough to pay for the additional computational overhead incurred
by stall-on-demand. Apparently, arc flags already prune most of the nodes from the
search space that would otherwise be pruned by stall-on-demand. Another very interesting
observation is the influence of the input size for arc-flags. Applying goal-direction on a
very high level of the hierarchy speeds up the query significantly. A core size of 0.5%
already yields an additional speed-up of a factor of 4 for an additional preprocessing effort
of 6 minutes. Hence, we call this setup our economical variant of CHASE. Interestingly,
further significant improvements—with respect to query times—are only observable for
a core size of up to 5% of the input graph. Here, we achieve query times ≈ 10 times
faster than plain CH. Still, 99 minutes of preprocessing is reasonable. Hence, we call this
setup our generous variant of CHASE. Increasing the size of H to 10% or even 20%
yields a much higher preprocessing effort (both space and time) but query time decreases
only slightly, compared to 5%. However, our fastest variant settles only 35 nodes on the
average having query times of 13.0µs. Note that for this input, the average shortest path
in its contracted form consists of 22 nodes, so only 13 unnecessary nodes are settled on
average.

Local Queries. Like for CALT, Fig. 5 reports the query times of economical and generous
CHASE and plain CH with respect to different localities of the queries. We observe that
up to a rank of 214, all three algorithms yield similar query times. This is expected since up
to this rank, most of the queries do not touch the upper part of the contraction hierarchy
and hence, arc-flags do not contribute to the query. Above this rank, query performance
gets better again. This effect has been observed for pure Arc-Flags as well [23]: Long-
range queries often relax only the shortest path while for low-range queries, the advantage
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Fig. 5. Comparison of pure CH, economical and generous CHASE using the same setup as in Fig. 4.

of arc-flags fades. Comparing economical and generous CHASE, we observe that above
a rank of 217, the latter is about 2.5 times faster than the former. For very high ranks,
generous CHASE is more than an order of magnitude faster than pure CH.

Partial CHASE. Up to now, we evaluated a setup where a complete CH is constructed.
However, as discussed in Section 3.1, we may stop the construction at some point and
compute arc-flags on a flat core. Table 4 reports the performance of partial CHASE
if 0.5% and 5% of the graph is not contracted. For comparison, we report the figures
of a partial variant of CH, called pCH. Similar to pCHASE, we stop contraction at
some point and perform CH-queries in such a partial hierarchy. Moreover, we report the
performance of plain CH and economical CHASE.

We observe that for road networks, partial variants of CHASE yield worse results
than pure CH: With an uncontracted core of 0.5%, preprocessing is a little bit faster but
for the price of a slow-down of a factor of 4.6 in query performance. Higher uncontracted
cores seem even more impractical. The reason for this rather bad performance stems from
contraction hierarchies. The partial variant of CH yields a very bad query performance
which cannot be compensated by arc-flags.

Table 4. Performance of pCHASE and partial CH. The input is Europe. Note that only 1 000 queries were
computed for pCH.

non-contracted 0.0% 0.5% 5.0%
algorithm CH eco CHASE pCH pCHASE pCH pCHASE

Prepro. time [min] 25 31 19 21 15 31
space [Byte/n] -2.7 0 -2.8 -1.6 -2.9 3.6

Query #settled total 355 86 97 913 2 544 965 018 12 782
time [µs] 180 44 4 281 831 53 627 4,143
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ReachFlags. Table 5 gives an overview for ReachFlags, similar to Tab. 3 for CHASE,
showing the effects of different sizes of the subgraph H. As expected, query times decrease
with an increased subgraph. However, adding goal direction via Arc-Flags yields worse
additional speed-ups than for CH. Computing flags on the topmost 0.5% of the graph
accelerates queries only by a factor of 2. For CH, the corresponding figure is 4. Moreover,
since CH is more than one order of magnitude faster than Reach, CHASE is superior to
ReachFlags with respect to all relevant figures. Note however that our implementation of
Reach that we also use as base for ReachFlags is roughly a factor of 2 slower than the
implementation due to [20]. Thus, a further speed-up of a factor of 2 might be possible.

Table 5. Performance of ReachFlags for Europe and the US. The results of our implementation of Reach
correspond to a size of H of 0.0%.

input size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0%

Europe

Prepro. time [min] 70 82 105 150 348 710
space [Byte/n] 21.0 22.9 25.1 28.2 37.0 49.3

Query #settled total 7 387 5 454 3 754 2 763 1 101 638
time [ms] 6.24 4.79 3.12 2.22 0.84 0.48

USA

Prepro. time [min] 62 89 136 272 671 1 279
space [Byte/n] 21 20 22 26 35 45

Query #settled total 4261 2563 1719 1339 693 450
time [ms] 3.90 2.09 1.33 1.01 0.50 0.33

Partial ReachFlags. Table 6 reports the performance of partial ReachFlags. We stop reach
computation after i iterations, set the reach of remaining nodes to infinity and compute
arc-flags for the subgraph induced by these nodes.

Table 6. Performance of pReachFlags. The input is Europe. Core nodes indicates how many nodes have a reach
value of infinity.

number of iterations 1 2 3 4 all

Prepro. core-nodes 14.87% 5.32% 1.45% 0.20% 0.00%
time [min] 400 229 107 69 70

space [Byte/n] 36 30 25 22 21

Query #settled total 1 149 1 168 2 797 5 718 7 387
time [ms] 0.62 0.76 2.24 5.34 6.24

Interestingly, partial ReachFlags provides better results than pure reach: The less
reach values we bound, the better the performance of the algorithm gets. This is due
to the fact that we compute arc-flags for a bigger part of the graph. Interestingly, for
core sizes of ≈ 5%, pReachFlags outperforms pCHASE, while for core sizes of ≈ 0.5%,
pCHASE outperforms pReachFlags. It seems as if the loss in performance for cutting a
hierarchy based on reach is less than cutting a contraction hierarchy.

TNR+AF. The fastest variant of Transit-node Routing without using flag vectors is
presented in [17]; the corresponding figures are quoted in Tab. 7. For this variant, we
computed flag vectors according to Section 4 using k = 48 regions. This takes, in the
case of Europe, about two additional hours and requires 117 additional bytes per node.
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Then, the average query time is reduced to as little as 1.9µs, which is an improvement
of almost factor 1.8 (factor 2.9 compared to our first publication in [1]) and a speed-up
compared to Dijkstra’s algorithm of more than factor 3 million. The results for the US
are even better.

Table 7. Overview of the performance of Transit-Node Routing with and without additional arc-flags. For pure
TNR, we report two figures. The first is due to [1] and based on Highway Hierarchies, while numbers for a
TNR-implementation based on Contraction Hierarchies are given in [17].

Europe USA
prepro. query prepro. query

time overhead time time overhead time
method [min] [B/node] [µs] [min] [B/node] [µs]

HH-TNR 164 251 5.6 205 244 4.9
CH-TNR 112 204 3.4 90 220 3.0
CH-TNR+AF 229 321 1.9 157 263 1.7

The improved running times result from the reduced number of table accesses: in the
case of Europe, on average only 3.1 entries have to be looked up instead of 40.9 when
no flag vectors are used. Note that the runtime improvement is considerably less than a
factor of 40.9 / 3.1 = 13.2 though. This is due to the fact that the average runtime also
includes looking up the access nodes and dealing with local queries.

Comparison. Table 8 reports the performance of our new combinations in comparison
to existing speed-up techniques.

CALT. In [15], we were able to improve query performance of ALT over [21] by improving
the organization of landmark data. However, we do not compress landmark information
and use a slightly better heuristic for landmark selection. Hence, we report both results.
By adding contraction to ALT, we are able to reduce query times to 1.3ms for Eu-
rope and to 3.0ms for the US. This better performance is due to two facts. On the one
hand, we may use more landmarks (we use 64) and on the other hand, the contraction
reduces the number of hops of shortest paths. Moreover, the most crucial drawback of
ALT—memory consumption—can be reduced to a reasonable amount, even when using
64 landmarks. Still, CALT cannot compete with REAL or pure hierarchical methods, but
the main motivation for CALT is its easy adaptability to dynamic and time-dependent
scenarios [10].

CHASE. We report the figures for economical and generous CHASE. For Europe, the
economical variant only needs 7 additional minutes of preprocessing over pure CH and
the preprocessed data is still smaller than the input. Recall that a negative overhead
derives from the fact that the search graph is smaller than the input, see Section 1.1.
This economical variant is already roughly 4 times faster than pure CH. However, by
increasing the size of the subgraph H used as input for arc-flags, we are able to almost
close the gap to pure Transit-Node Routing. CHASE is only 5 times slower than TNR
(and is even faster than the grid-based approach of TNR [1]). However, the preprocessed
data is much smaller for CHASE, which makes it more practical in environments with
limited memory. Moreover, it seems as if CHASE can be adapted to time-dependent
scenarios easier than TNR [3].
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Table 8. Overview of the performance of various speed-up techniques, grouped by (1.) hierarchical methods
[Highway Hierarchies (HH), highway-node routing (HNR), Contraction Hierarchies (CH), Transit-Node Routing
(TNR)], (2.) goal-directed methods [landmark-based A∗ search (ALT), Arc-Flags (AF)], (3.) previous combina-
tions, and (4.) the new combinations introduced in this paper. The additional overhead is given in bytes per
node in comparison to bidirectional Dijkstra. Preprocessing times are given in minutes. Query performance is
evaluated by the average number of settled nodes and the average running time of 10 000 (1 000 for pCH) random
queries. Each column highlights the best result in bold. In addition, Pareto-optimal speed-up techniques are also
printed in bold. Note that the Pareto-optima are the same for both road networks.

Europe USA
prepro. query prepro. query

time overhead #settled time time overhead #settled time
method source [min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [20] 83 17.0 4 643 3.4700 44 20.0 2 317 1.8100
Reach 3.2 70 21.0 7 387 6.2400 62 21.0 4 261 3.9000
HH [34] 13 48.0 709 0.6100 15 34.0 925 0.6700
HNR [34] 15 2.4 981 0.8500 16 1.6 784 0.4500
CH [17] 25 -2.7 355 0.1800 27 -2.3 278 0.1300
grid TNR [1] - -.0 - -.0000 1 200 21.0 N/A 0.0630
TNR [1] 164 251.0 N/A 0.0056 205 244.0 N/A 0.0049
TNR [17] 112 204.0 N/A 0.0034 90 220.0 N/A 0.0030

ALT-a16 [20] 13 70.0 82 348 160.3000 19 89.0 187 968 400.5000
ALT-m16 [15] 85 128.0 74 669 53.6000 103 128.0 180 804 129.3000
ALT-a64 [15] 68 512.0 25 234 19.6000 93 512.0 68 861 48.9000
AF [23] 2 156 25.0 1 593 1.1000 1 419 21.0 5 522 3.3000

REAL [20] 141 36.0 679 1.1100 121 45.0 540 1.0500
HH∗ [34] 14 72.0 511 0.4900 18 56.0 627 0.5500
SHARC [4] 81 14.5 654 0.2900 58 18.1.0 865 0.3800
SHARC bidir. [4] 158 21.0 125 0.0650 158 21.0 350 0.1800

CALT 2 11 15.4 1 394 1.3400 13 16.1 2 697 3.0100
pCH-0.5% 3.1 19 -2.8 97 913 4.2800 21 -2.3 121 636 50.5700
pCH-5.0% 3.1 15 -2.9 965 018 53.6300 15 -2.3 1 209 290 667.8000
eco CHASE 3.1 32 0.0 111 0.0440 36 -0.8 127 0.0490
gen CHASE 3.1 99 12.0 45 0.0170 228 11.0 49 0.0190
pCHASE-0.5% 3.1 21 -1.6 2 544 0.8300 25 -1.5 4 693 1.4000
pCHASE-5.0% 3.1 31 3.6 12 782 4.1400 96 4.3 22 436 7.2100
ReachFlags 3.2 348 37.0 1 101 0.8400 671 35.0 693 0.5000
pReachFlags 3.2 229 30.0 1 168 0.7600 318 25.0 1 636 1.0200
TNR+AF 4 229 321.0 N/A 0.0019 157 263.0 N/A 0.0017

Comparing SHARC and CHASE, one may notice that both combinations are based
on contraction and arc-flags. Since CHASE uses a better contraction routine than bidi-
rectional SHARC, the former outperforms the latter. However, the main motivation for
SHARC was a unidirectional query algorithm allowing easy adaptions to augmented sce-
narios [9].

ReachFlags. As already mentioned, our reach implementation yields worse results than
the numbers reported in [20]. Hence, we report both results. By adding arc-flags to reach
we obtain query times comparable to REAL. However, preprocessing takes a little bit
longer. Still, it seems as if ReachFlags is inferior to CHASE which is mainly due to the
good performance of Contraction Hierarchies.

Summary. We observe that the best results for each measured performance criterion is
obtained by one of our newly introduced speed-up techniques. In addition, we see that
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Table 9. Overview on the performance of prominent speed-up techniques and combinations analogous to Tab. 8
but with travel distances as metric.

Europe USA
prepro. query prepro. query

time overhead #settled time time overhead #settled time
method [min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [20] 49 15.0 7 045 5.5300 70 22.0 7 104 5.9700
HH [34] 32 36.0 3 261 3.5300 38 66.0 3 512 3.7300
CH 3.1 89 -0.1 1 650 4.1900 57 -1.2 953 1.5000
TNR [34] 162 301.0 N/A 0.0380 217 281.0 N/A 0.0860

ALT-a16 [20] 10 70.0 240 750 430.0000 15 89.0 276 195 530.4000
ALT-m16 2 70 128.0 218 420 127.7000 102 128.0 278 055 166.9000
AF [23] 1 874 33.0 7 139 5.0000 1 311 37.0 12 209 8.8000

REAL [20] 90 37.0 583 1.1600 138 44.0 628 1.4800
HH∗ [34] 33 92.0 1 449 1.5100 40 89.0 1 372 1.3700
SHARC [4] 64 19.0 3 014 1.3400 75 20.0 3 871 1.78000

CALT 2 14 19.0 2 958 4.2000 15 19.0 4 015 5.6000
eco CHASE 3.1 224 7.0 175 0.1560 185 2.5 148 0.1030
gen CHASE 3.1 1 022 27.0 67 0.0640 1 132 18.0 63 0.0430
pCHASE-0.5% 3.1 40 1.9 5 957 2.6100 43 0.3 8 276 3.1700
pReachFlags 3.2 516 31.0 5 224 4.0500 1 897 27.0 6 849 4.6900

almost all of our techniques are Pareto-optimal6. Thus, each technique is the optimal
choice for a specific task with regards to the analyzed algorithms. Only our variants of
ReachFlags and pCHASE with a larger core size fall short in this aspect.

Travel Distances. Up to now, we concentrated on travel times as metric. Table 9
reports the performance of our new combinations compared to existing techniques if
travel distances are used as metric.

We observe that both pure hierarchical and goal-directed approaches work worse on
travel distances than on travel times. Interestingly, this does not hold for combinations.
Most of the combinations yield similar performance on both metrics. For example, both
pure Arc-Flags and CH are 5 and 20 times slower on travel distance whereas the com-
bination of both approaches, CHASE, yields similar query times. The reason for this
is the following. For pure CH, edge reduction works worse on travel distances yielding
higher degrees for high-level nodes. By applying Arc-Flags on this rather dense core, a lot
of edge relaxations can be avoided. This also explains the highly increased preprocessing
times of CHASE: The core is denser making arc-flags computation more time-consuming.
Hence, partial CHASE is more promising on this input than on travel times as metric.
We observe that preprocessing times are faster than for pure CH combined—at least for
Europe—with better query times.

Concerning preprocessing times, CALT outperforms any other technique combined
with reasonable query times. We conclude that CALT indeed is almost as robust as pure
ALT with respect to metric changes.

5.2 Robustness of Combinations

General Results. In the last section we focused on the performance of our combinations on
road networks. However, existing combinations of goal-directed and hierarchical methods

6 A speed-up technique is called Pareto-optimal if there is no other technique that is better with respect to the
four variables preprocessing time and space, search space, and query time.
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Table 10. Performance of bidirectional Dijkstra, ALT, CALT, ArcFlags, CH, economical CHASE and partial
variants of CH and CHASE on grid graphs with different number of dimensions and time-expanded timetables of
different railway networks. Note that the we use the aggressive variant of contraction hierarchies, better results
may be achieved by better input parameters. For each column and each family of graphs the best measurement
value is highlighted in bold. Note that bidirectional Dijkstra was not considered for this comparison. In addition
checkmarks indicate Pareto-optimal algorithms.

prepro. query prepro. query prepro. query
[s] [B/n] #settled [ms] [s] [B/n] #settled [ms] [s] [B/n] #settled [ms]

grid 2-dimensional 3-dimensional 4-dimensional

bidir. Dijkstra 0 0 79 962 24.2 - 0 0 45 269 28.2 - 0 0 21 763 20.3 -
ALT-m16 65 128 2 362 1.5 - 100 128 1 759 2.1 X 133 128 1 335 2.6 X
CALT 60 211 458 1.1 X 101 386 557 1.9 X 129 487 774 2.2 X
AF 5 340 130 1 340 0.4 - 49 800 191 1 685 0.6 X 187 020 191 2 799 1.4 X
CH 70 0 418 0.3 X 13 567 14 2 177 6.6 X 133 734 29 14 501 60.0 X
pCH-10% 37 -1 25 486 9.6 X 1 038 9 27 001 28.7 X - - - - -
pCH-20% 30 -2 50 720 19.0 X 606 4 52 671 52.2 X 11 798 34 53 354 160.8 X
pCH-50% 19 -3 126 304 47.8 X 273 -3 129 060 118.9 X 2 035 6 129 475 249.4 X
CHASE 73 2 274 0.2 X 13 585 22 2 836 10.1 - 133 741 32 30 848 131.0 -
pCHASE-10% 64 15 1 967 0.5 X 1 512 57 10 788 7.5 X - - - - -
pCHASE-20% 91 26 3 063 0.8 - 1 850 69 10 052 5.2 X 28 898 208 31 384 52.1 -
pCHASE-50% 212 55 5 964 1.5 - 2 984 95 13 402 5.7 - 26 470 279 36 473 33.0 -

railways Berlin/Brandenburg Ruhrgebiet long distance

bidir.Dijkstra 0 0 1 299 830 406.2 - 0 0 1 134 420 389.2 - 0 0 609 352 221.2 -
ALT-m16 604 128 56 404 27.3 - 556 128 60 004 30.9 - 291 128 30 021 14.4 -
CALT 123 45 2 830 6.3 X 191 68 4 247 11.3 X 87 63 2 088 5.3 X
AF 268 740 98 24 004 5.9 - 278 760 98 28448 7.0 - 120 960 98 10 560 2.4 -
CH 1 636 0 416 0.4 X 2584 4 546 0.6 X 486 3 376 0.3 X
pCH-0.5% 1 115 0 15 433 9.4 X 1 723 4 14 149 9.6 X 320 3 6 767 3.3 X
pCH-5.0% 647 -1 132 992 90.0 X 923 3 123 277 85.1 X 157 2 66 457 42.2 X
pCH-10.0% 489 -1 257 778 170.6 X 662 3 236 050 168.4 X 113 2 129 144 90.4 X
CHASE 2 008 2 125 0.1 X 2863 7 244 0.2 X 536 5 229 0.2 X
pCHASE-0.5% 1 313 2 4 492 2.1 X 1 800 6 8 209 4.5 X 343 4 14 482 1.6 X
pCHASE-5.0% 15 572 7 18 698 7.2 - 10 159 13 20 224 8.0 - 1 087 11 8 985 3.2 -
pCHASE-10.0% 45 992 12 36 828 13.7 - 37 429 19 34 056 13.0 - 2 506 17 3 695 5.1 -

like REAL or SHARC are very robust to the input. Here, we evaluate our most promis-
ing combinations—CALT, CHASE, and partial CHASE—on various other inputs. We
use time-expanded timetable networks7 and synthetic grid graphs (2–4 dimensions with
250 000 nodes, edge weights picked uniformly at random between 1 and 1000.). The results
can be found in Table 10.

For almost all inputs it pays off to combine goal-directed and hierarchical techniques.
Moreover, CHASE works very well as long as the graph stays somehow sparse, only on
denser graphs like 3- and 4-dimensional grids, preprocessing times increase significantly,
which is mainly due to the contraction routine. Especially the last 20% of the graph take
a long time to contract.

As expected, cutting the hierarchy pays off only for denser inputs, i.e. 3- and 4-
dimensional grids. Preprocessing of pCHASE is much lower than for pure CH or CHASE
combined with better query times. This advantage comes at the price of a much larger
space overhead.

7 3 networks: local traffic of Berlin/Brandenburg (2 599 953 nodes and 3 899 807 edges), local traffic of the
Ruhrgebiet (2 277 812 nodes, 3 416 552 edges), long distance connections of Europe (1 192 736 nodes,1 789 088
edges)
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Concerning CALT, we observe that turning on contraction pays off—in most cases—
very well: Preprocessing effort gets less with respect to time and space while query per-
formance improves. However, as soon as the graph gets too dense, e.g. 4-dimensional
grids, the gain in performance is achieved by a higher amount of preprocessed data. The
reason for this is that contraction works worse on dense graphs, thus the core is bigger.
Comparing CALT and CHASE, we observe that CHASE works better for very sparse
graphs while CALT yields better performance on our denser inputs. Interestingly, even
pCHASE cannot compete with CALT on these inputs. We assume that this derives
from the general mediocre performance of CH on denser graphs combined with too many
entry points into the core. Hence, many regions are activated during the arc-flag query
yielding a small speed-up within the core. We conclude that for such inputs it is better
to combine ALT with a hierarchical method.

Overall, we observe again, that almost all of our new combinations of speed-up tech-
niques are Pareto-optimal with regards to the examined algorithms and the regarded
types of graphs. Thus, we can conclude that there is a task where each of our combina-
tions excels.

Sensor Networks. In addition to synthetic grid graphs and time-expanded timetable net-
works we also focused our analyses on unit disk graphs8 (1 000 000 nodes with an average
degree of 7, 10, and 20). These graphs provide a simple model to describe the connec-
tivity in radio networks such as large-scale sensor networks. A common cost measure is
some power of the Euclidean distance. We use 1, 2, and 4. Power 1 for example models
signal latency. Power 2 models energy requirement for free space communications and the
area in which a communication would cause significant interference. Powers from (2, 5]
are commonly used for modeling energy requirement in presence of signal absorption etc.
The results of our algorithms are shown in Table 11.

Several interesting things can be seen. At first, we concentrate on the case of a pure Eu-
clidean distance measure (power 1) for unit disk graphs of a varying density. We observe
that most speed-up techniques have problems when the average node degree becomes
too large. Pure hierarchical techniques seem to suffer more than pure goal-directed ones
because they have problems to identify a clear hierarchy between the nodes. As already
mentioned in the last paragraph, cutting the hierarchy seems to be the appropriate strat-
egy for the denser graphs, i.e. average node degree 10 and 20. In case of pCHASE both
the preprocessing time and the query time can be cut by a considerable amount but at
the cost of a much higher space overhead.

Now, we compare the same graphs but apply different power laws to compute the
edge weights. We observe that only changing the weight functions but not the topological
structure of the graphs has little influence on goal-directed techniques. On the other hand,
the impact on hierarchical techniques is huge. Using higher powers, the weight differences
between short and long edges become more distinct and thus it becomes easier to identify
hierarchical structures in the graphs. Speed-ups of up to a factor of 6 can be observed.
We also see a large decrease in required space overhead for those techniques based on
Contraction Hierarchies. This effect results from CH removing all superfluous edges—up
to two thirds in case of unit disk graphs with an average node degree of 20 using a power

8 We obtain such graphs by arranging nodes uniformly at random on the plane and connecting nodes with a
distance below a given threshold. As metric we use the Euclidean distance to the power 1, 2 and 4.
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Table 11. Overview on the performance of prominent speed-up techniques and combinations analogous to Tab. 10
but for unit disk graphs with different average node degrees and varying power laws. Note that the preprocessing
of CH, CHASE, all variants of pCHASE have each been canceled after 20 hours for unit disk graphs with an
average node degree of 20 and an Euclidean distance metric (lower left cell). Therefore, marking Pareto-optimal
algorithms is of limited informative value.

prepro. query prepro. query prepro. query
[s] [B/n] #settled [ms] [s] [B/n] #settled [ms] [s] [B/n] #settled [ms]

avg. deg. 7 power 1 power 2 power 4

bidir. Dijkstra 0 0 340 801 225.1 - 0 0 318 070 210.9 - 0 0 320 187 213.2 -
ALT-m16 514 128 10 327 11.8 - 557 128 10 014 11.1 - 529 128 9 132 10.2 -
CALT 135 29 670 1.0 X 125 38 624 1.0 X 127 39 611 1.0 X
CH 1249 -11 1 089 1.8 X 420 -23 749 0.9 X 334 -29 404 0.3 X
pCH-10% 238 -13 105 047 77.0 X 204 -24 100 306 70.7 X 289 -30 99 501 60.9 X
pCH-20% 196 -13 209 492 151.5 X 187 -25 200 081 136.3 X 282 -30 198 772 122.1 X
pCH-50% 137 -13 522 768 405.8 X 162 -25 499 422 339.8 X 267 -29 496 411 312.9 X
CHASE 1 368 -7 424 0.6 X 475 -18 332 0.2 X 355 -26 150 0.1 X
pCHASE-10% 731 10 5 677 2.7 X 472 -8 5 569 2.3 - 418 -18 4 788 1.8 -
pCHASE-20% 1 268 25 9 990 4.8 - 727 2 9 762 4.2 - 557 -10 8 508 3.3 -
pCHASE-50% 3 511 68 21 064 10.9 - 1 671 31 21 016 9.5 - 1 072 16 17 795 7.4 -

avg. deg. 10 power 1 power 2 power 4

bidir. Dijkstra 0 0 325 803 269.4 - 0 0 320 971 270.0 - 0 0 322 764 278.0 -
ALT-m16 566 128 11 704 15.5 X 704 128 10 724 14.1 X 772 128 9 889 13.2 X
CALT 511 137 992 2.6 X 355 173 1131 2.9 X 363 173 1 248 3.3 X
CH 34 274 -4 2 475 11.5 X 1 001 -38 970 1.3 X 850 -49 423 0.3 X
pCH-10% 1 191 -9 100 977 121.1 X 503 -40 101 529 86.0 X 798 -50 101 122 64.3 X
pCH-20% 815 -12 201 304 225.2 X 458 -41 202 632 161.3 X 787 -50 201 825 130.2 X
pCH-50% 453 -15 502 273 557.3 X 400 -43 506 066 391.5 X 765 -50 503 848 332.2 X
CHASE 34 847 6 1 457 4.7 X 1 084 -31 536 0.4 X 872 -46 171 0.1 X
pCHASE-10% 4 149 35 7 529 2.7 X 1 090 -18 5 910 2.7 - 962 -37 4 855 1.9 -
pCHASE-20% 6 737 54 11 622 4.8 - 1 674 -7 10 391 4.8 - 1 159 -28 8 319 3.3 -
pCHASE-50% 9 769 113 25 194 10.9 - 3 695 23 23 912 11.4 - 1 812 -4 1 8083 7.6 -

avg. deg. 20 power 1 power 2 power 4

bidir. Dijkstra 0 0 320 468 427.2 - 0 0 321 619 455.7 - 0 0 321 941 472.6 -
ALT-m16 964 128 13 645 25.7 X 1 248 128 9 784 19.1 X 1 160 128 9 526 19.2 X
CALT 1 331 512 2 944 9.2 X 1 316 515 2 503 8.0 X 1336 516 2 858 9.7 X
CH >72 000 - - - - 2 442 -110 1 023 1.5 X 4181 -124 426 0.3 X
pCH-10% 25 051 -8 101 514 371.6 X 1 865 -112 100 723 89.6 X 4124 -124 100 640 64.8 X
pCH-20% 13 249 -17 201 571 582.1 X 1 848 -113 201 019 170.0 X 4102 -124 201 125 131.5 X
pCH-50% 5 984 -29 501 735 1207.2 X 1 715 -116 501 790 407.2 X 4081 -124 502 422 334.6 X
CHASE >72 000 - - - - 2 533 -104 595 0.5 X 4202 -121 172 0.1 X
pCHASE-10% >72 000 - - - - 2 593 -89 6 064 2.8 - 4287 -112 4 762 1.8 -
pCHASE-20% >72 000 - - - - 3 453 -77 10 573 5.0 - 4481 -103 8 170 3.2 -
pCHASE-50% >72 000 - - - - 6 387 -46 23 886 11.7 - 5167 -78 18 253 7.6 -
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law of 4. A possible explanation for this large amount of unnecessary edges can be found
in [7]. Here, Chan et al. state that for full graphs using a power law greater than 2, the
graph can be reduced to its Delaunay triangulation for finding shortest paths. Note that
a Delaunay triangulation is a sparse graph with an average node degree of 6.

Finally, we observe again, that most of the analyzed speed-up techniques are Pareto-
optimal. Thus, there exists no best solution but a variety of techniques each with its own
advantages and disadvantages.

6 Conclusion

In this work, we systematically combine hierarchical and goal-directed speed-up tech-
niques. As a result, we are able to present the fastest algorithms for several scenarios
and inputs. For sparse graphs, CHASE yields excellent speed-ups with low preprocess-
ing effort. The algorithm is only overtaken by Transit-Node Routing in road networks
with travel times, but the gap is almost closed. However, even Transit-Node Routing can
be further accelerated by adding goal-direction. Finally, we introduce CALT yielding a
good performance on denser graphs.

However, our study not only leads to faster algorithms but to interesting insights
into the behavior of speed-up techniques in general. By combining goal-directed and
hierarchical methods, we obtain techniques which are very robust to the input. It seems
as if hierarchical approaches work best on sparse graphs but the denser a graph gets,
the better goal-directed techniques work. By combining both approaches, the influence—
with respect to performance—of the type of input fades. Hence, we were able to refine
the statement given in [25]: Instead of blindly combining goal-directed and hierarchical
techniques, our work suggest that for large networks, it pays off to drop goal-direction
on lower levels of the hierarchy. Instead, it is better with respect to preprocessing (and
query performance) to use goal-direction only on higher levels of the hierarchy. We also
introduced a variant of CHASE working for graphs where hierarchical preprocessing
fails. This variant runs only a hierarchical query during the first phase and the second
phase is only a goal-directed search, similar to CALT.

Acknowledgments. We would like to thank Riko Jacob for interesting discussions on
the combination of Transit-Node Routing and Arc-Flags. Moreover, we thank Robert
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