
Algorithmica (2020) 82:1490–1546
https://doi.org/10.1007/s00453-019-00655-9

Energy-Optimal Routes for Battery Electric Vehicles

Moritz Baum1 · Julian Dibbelt2 · Thomas Pajor2 · Jonas Sauer1 ·
Dorothea Wagner1 · Tobias Zündorf1

Received: 17 May 2018 / Accepted: 14 November 2019 / Published online: 3 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We study the problem of computing paths that minimize energy consumption of a
battery electric vehicle. For that, we must cope with specific properties, such as regen-
erative braking and constraints imposed by the battery capacity. These restrictions
can be captured by profiles, which are a functional representation of optimal energy
consumption between two locations, subject to initial state of charge. Efficient com-
putation of profiles is a relevant problem on its own, but also a fundamental ingredient
to many route planning approaches for battery electric vehicles. In this work, we
prove that profiles have linear complexity. We examine different variants of Dijk-
stra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a
polynomial-time algorithm for the problem of finding an energy-optimal path between
two locations that allows stops at charging stations. We also discuss a heuristic variant
that is easy to implement, and carefully integrate it with the well-known Contraction
Hierarchies algorithm and A* search. Finally, we propose a practical approach that
enables computation of energy-optimal routes within milliseconds after fast (metric-
dependent) preprocessing of the whole network. This enables flexible updates due
to, e. g., weather forecasts or refinements of the consumption model. Practicality of
our approaches is demonstrated in a comprehensive experimental study on realistic,
large-scale road networks.

Keywords Algorithm engineering · Shortest paths · Speedup techniques · Electric
vehicles · Profile search

Preliminary versions of this manuscript have appeared in the proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems [10] and the 16th International
Symposium on Experimental Algorithms [13]. It is based on the thesis of one of the authors [7].
Tobias Zündorf acknowledges support by DFG Research Grant WA 654/23-1.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00655-9&domain=pdf
http://orcid.org/0000-0003-0898-7244

Algorithmica (2020) 82:1490–1546 1491

1 Introduction

Route planning services explicitly designed for electric vehicles (EVs) have to address
specific aspects, sinceEVs usually employ a rather limited cruising range.We study the
problem of computing routes that minimize energy consumption, in order tomaximize
cruising range and for drivers to overcome range anxiety, the fear of getting stranded
due to insufficient range. This imposes nontrivial challenges. First of all, EVs can recu-
perate energy (e. g., when going downhill), but the battery capacity limits the amount
of recoverable energy [29,51]. As a result, energy consumption can become negative
on some road segments (to model recuperation). Moreover, the energy-optimal route
depends on the initial state of charge (SoC). This dependency is captured by the notion
of (consumption) profiles, which map SoC at the source to (minimum) energy con-
sumption that is necessary to reach the target [29,55]. Profiles are relevant in many
applications where the SoC at the start of a journey is either unknown or can be decided
by the driver, e. g., when charging overnight. Moreover, they are an important ingre-
dient of speedup techniques, where preprocessing is applied to the input network for
faster query times [29]. In this work, we examine the complexity of profiles in road
networks.

In addition to the above issues, recharging en route may become inevitable on long-
distance trips. Given that charging stations are scarce, such stops need to be planned
in advance [61]. Therefore, we also discuss approaches that explicitly consider stops
at charging stations. Even when optimizing for energy-consumption only, integrating
charging stops into route planning is nontrivial: Recharging to a full battery at a station
can be wasteful if it prevents the battery from recuperating energy on a downhill ride
later on.

Altogether, we cover different algorithmic problems in the context of energy-
optimal route planning for EVs. It turns out that these problem settings allow efficient
solutions, not only in theory, but also in practice: Even for the most complex problems
considered, our algorithms compute (empirically) optimal results for long-distance
route queries in well below a second. Furthermore, many insights from this work are
relevant for closely related multicriteria scenarios, where the additional consideration
of overall trip time in route optimization yields complex problem settings [8,59,62].

RelatedWork Classic route planning approaches apply Dijkstra’s algorithm [26] to
a graph representation of the network, with fixed scalar edge costs representing, e. g.,
travel time. For faster running times in practice, speedup techniques [3] accelerate
online shortest-path queries with data preprocessed in an offline phase. Examples of
such techniques are Contraction Hierarchies (CH) [33], where vertices are contracted
iteratively and replaced by shortcuts in the graph, and variants of A* search [34,37].
Combining both techniques, Core-ALT [6] contracts most vertices and runs A* on
the remaining core graph. Some techniques were also extended to more complex sce-
narios, such as time-dependent cost functions that model, e. g., traffic during peak
hours [5,11,19,23]. In this context, a profile query asks for a functional represen-
tation of travel time between locations for any departure time. Such functions may
have superpolynomial complexity [32], but can be computed by an output-sensitive
search algorithm [18,24]. To enable relatively fast integration traffic updates or user

123

1492 Algorithmica (2020) 82:1490–1546

preferences, more recent techniques allow an additional customization phase after pre-
processing, which enables fast updates of the whole network to quickly incorporate
global traffic updates or user preferences [20,25,28]. See Bast et al. [3] for a more
complete survey.

Regarding route planning for EVs, energy consumption may induce negative
cost for some edges, though physical constraints prohibit negative cycles. A label-
correcting variant of Dijkstra’s algorithm can be applied to compute the shortest path
in such a scenario, however, it can have exponential running time [41]. Thewell-known
algorithm of Bellman–Ford [14,31] handles negative edge costs and has quadratic time
complexity on sparse networks. To get rid of negative edge costs, one can use a tech-
nique called potential shifting [42]. This reenables Dijkstra’s (label-setting) algorithm.

Artmeier et al. [1] handle negative costs with the Bellman–Ford algorithm and
label-correcting variants of Dijkstra’s algorithm. While the former turns out to be too
slow in practice, the latter achieves running times in the order of seconds on a graph of
moderate scale (representing Bavaria, Germany) in their implementation. Constraints
imposed by the battery capacity are checked explicitly in the algorithm during edge
relaxation,without affecting its asymptotic complexity.Using a simple physical energy
consumption model, Sachenbacher et al. [51] combine potential shifting (obtained
directly from the consumption model) with A* search to get a factor of 3 speedup over
their previous label-correcting approach.

Eisner et al. [29,60] observe that battery constraints can be managed implicitly,
by assigning a consumption profile to each road segment, which maps current SoC
to actual consumption. Thereby, battery constraints are modeled as piecewise linear
functions, similar to approaches in time-dependent route planning [4,24,27], but map-
ping SoC to energy consumption. They show that the complexity of the consumption
profile of a path is constant. Further, they adapt CH to compute optimal routes in less
than 100ms on large graphs, making their technique the fastest one available for the
problem of computing energy-optimal routes.

Integrating battery constraints into route planning via piecewise linear functions,
Schönfelder et al. [55] consider profile search to compute optimal consumption for
every initial SoC between a given pair of vertices, along the lines of time-dependent
profiles [18,24]. Variants of A* search and CH are proposed, the latter of which
has average running times of a few milliseconds on a relatively small road network
(representing parts of Bavaria, Germany). The connection of energy-optimal routing
and profile search to the more general concepts of functional and algebraic routing is
investigated in a follow-up work [54].

Kluge et al. [44] consider energy-optimal routes in a time-dependent scenario, using
a detailed physical model and a mesoscopic traffic load model. They propose a search
based on Dijkstra’s algorithm. Dealing with a rather complex setting, its running time
is in the order of minutes, even on small inputs. Heuristic extensions enable faster
query times of less than a second.

Stops at charging stations are often considered under the simplifying assumptions
that the charging always results in a fully recharged battery [35,46,58,59,61,63].Routes
with a minimum number of intermediate charging stops can then be computed in less
than a second on road networks of moderate size [59,61]. More complex models also
consider constraints on time spent driving [9,12,44] and recharging [8,40,45,47,64,67],

123

Algorithmica (2020) 82:1490–1546 1493

but this results in muchmore difficult (typicallyNP-hard) problems and the proposed
techniques are either inexact or impractical.

Contribution and Outline In Sect. 2, we formally introduce our model of battery
constraints and state two problem variants. The first asks for an energy-optimal route
for a given initial SoC, whereas the second requires a profile, i. e., an energy-optimal
route for every initial SoC. We examine the complexity of profiles and, as our main
result, prove that they have linear complexity—much in contrast to profiles in time-
dependent routing, which can have superpolynomial size [32]. We also derive basic
operations to concatenate and merge profiles.

We investigate approaches basedonDijkstra’s algorithm to compute energy-optimal
routes and profiles in Sect. 3. Aiming at practical solutions, we explore different
strategies to handle recuperation (i. e., negative costs). By presenting a polynomial-
time algorithm to compute profiles, we efficiently solve a problem that is not only
relevant on its own, but is a crucial ingredient of speedup techniques in our scenario.

In Sect. 4, we consider energy-optimal routes that allow stops at charging stations
to recharge the battery. Unlike previous studies [35,58,59], we do not assume that
using a charging station always results in a fully recharged battery. Instead, we allow
the charging process to be interrupted beforehand to save energy. Building upon our
theoretical findings, we derive a polynomial-time algorithm to solve the problem. To
make the approach practical, we propose a (heuristic) variant and integrate it with
CH [29,33] and A* search [37].

In Sect. 5, we introduce an approach to optimize energy consumption of EVs that
is designed to be fast both in (metric-dependent) preprocessing of the whole network
as well as in answering queries. For that, we use ingredients from previous sections
and extend the Customizable Route Planning (CRP) method of Delling et al. [20]
to handle battery constraints and achieve fast (metric-dependent) preprocessing. We
propose several query algorithms to compute energy-optimal routes.

Section 6 presents our experimental results on large, realistic road networks. It
demonstrates the excellent performance of our algorithms in practice: Even for long-
range queries across Europe we achieve query times of well below a second in the
most difficult setting considered. Altogether, our algorithms exhibit faster query times
than previous approaches, while improving preprocessing time by up to three orders
of magnitude. We conclude with final remarks in Sect. 7.

2 Integrating Battery Constraints

In what follows, we describe howwemodel energy consumption in our input. Further,
we formally define two relevant problem settings in the context of energy-optimal
routes for EVs (Sect. 2.1). Given a source and a target, the first asks for an energy-
optimal path subject to a given initial SoC at the source. The second asks for a profile,
i. e., an energy-optimal path for every possible SoC at the source. Afterwards, we
examine the complexity of such profiles (Sect. 2.2).

123

1494 Algorithmica (2020) 82:1490–1546

2.1 Model and Problem Statement

Wemodel the road network as a directed graph G = (V , E). Vertices have associated
elevation values (relevant for energy consumption) given by a function h : V → R≥0.
We assume that the slope along an edge is constant—varying slopes can bemodeled by
adding intermediate vertices, so this is not a restriction in practice. The actual energy
consumption of an EV when driving along an edge is given by the function c : E →
R. Consumption can be negative to account for recuperation. However, cycles with
negative consumption are physically ruled out. In other words, driving in a cycle never
increases the SoC of an EV.

We assume that the EV is equipped with a battery of limited capacity M ∈ R≥0.
Given the current SoC bu ∈ [0, M] of a vehicle positioned at some vertex u ∈ V in the
network, traversing an edge (u, v) ∈ E typically results in the SoC bv = bu − c(u, v).
However, we must also take battery constraints into account: The SoC bv must neither
exceed the limit M nor drop below a predefined (e. g., user-specific) minimum [1,29].
For the sake of simplicity and without loss of generality, we assume in this work that
the minimum SoC is 0 and that c(e) ∈ [−M, M] for all edges e ∈ E of the input
graph. Then, if the consumption c(u, v) of an edge (u, v) ∈ E exceeds the SoC bu
at u, the edge cannot be traversed, as the battery would run empty along the way. We
indicate this case by setting bv := −∞. Conversely, if the battery is (almost) fully
charged, passing an edge with negative consumption cannot increase the SoC beyond
the maximum value M , so we obtain bv = M . Given some initial SoC bs at a source
s ∈ V together with a target t ∈ V , we say that an s–t path P is feasible if and
only if the battery never runs empty, i. e., the SoC bv obtained at every vertex v of P
after iteratively applying the above constraints is in the interval [0, M]. Let bt denote
the SoC at the last vertex t of the path P . Then the energy consumption on P is the
difference bs − bt between the initial and the final SoC. Recall that this value can
become negative due to recuperation or ∞ if P is infeasible. Moreover, note that a
path may be infeasible even if its cost (i. e., the sum of its consumption values) does
not exceed bs : Due to negative edge costs, there might be a prefix of greater total cost
that renders the path infeasible.

We study two query types on the input graph, namely SoC queries and profile
queries. In an SoC query, one is given a source s ∈ V , a target t ∈ V , and an
initial SoC bs ∈ [0, M]. It asks for a (single) energy-optimal s–t path when departing
at s with SoC bs , i. e., a path that maximizes the SoC bt at t . (In Sect. 4, we slightly
alter the notion of energy-optimal paths to take charging stops into account.) A profile
query does not take bs as input, but asks for an s–t profile, i. e., the optimal value bt
for every initial SoC bs ∈ [0, M]. We will see that not only the maximum SoC at the
target, but also the optimal path itself may vary for different values bs of initial SoC.
Hence, a profile corresponds to a (finite) set of optimal s–t paths.

Profiles are helpful for deciding how much to charge the battery before departing.
Moreover, they are a preprocessing ingredient to our speedup techniques in subsequent
sections. Thus, we examine the complexity of profiles, before we turn to efficient
algorithms for solving both problem variants. In all algorithmic descriptions given
in this section, we focus on computing the optimal SoC at the target, rather than

123

Algorithmica (2020) 82:1490–1546 1495

explicitly constructing the corresponding s–t path. To obtain the actual path, one can
apply backtracking or add predecessor pointers, as in Dijkstra’s algorithm [16].

2.2 On the Complexity of Profiles

Apparently, the energy consumption along a certain s–t path may vary for different
values of initial SoC at the source s ∈ V , due to battery constraints. We discuss how
to efficiently compute and represent this correlation between initial SoC and energy
consumption. It turns out that not only the SoC at the target t ∈ V , but also the optimal
path itself depends on the initial SoC at the source s.

Given two vertices s ∈ V and t ∈ V of the input graph, we define the SoC function
f : [0, M] ∪ {−∞} → [0, M] ∪ {−∞}, also called SoC profile, to represent the s–t
profile. The function f maps SoC at the source s to the optimal resulting SoC at the
target t . Recall that −∞ is a special value to represent insufficient charge, hence we
define f (−∞) := −∞. For some s–t path P , we denote by fP the profile of P , i. e.,
the SoC function that maps initial SoC at s to the resulting SoC at t after traversing P .
Given theSoC functions fP and fQ of twopaths P and Q, we say that fP dominates fQ
(similarly, P dominates Q) on a certain interval I ⊆ [0, M] if fP (b) ≥ fQ(b) holds
for all b ∈ I . If the interval is not stated explicitly, we assume I = [0, M].

Below, we examine the SoC function of a given edge and along a fixed path.
Afterwards, we consider the general scenario, where multiple paths may contribute
to the same profile. It turns out that the function is piecewise linear in each case and
can be represented as follows. We use a sequence F = [(x1, y1), . . . , (xk, yk)] of
breakpoints to define a piecewise linear SoC function f , such that xi ≤ x j for i < j ,
f (b) = −∞ for b < x1, fP (b) = yk for b ≥ xk , and the function is evaluated by
linear interpolation between two consecutive breakpoints for b ∈ [x1, xk). Note that
we allow the case xi = xi+1 for two consecutive breakpoints to model discontinuities.
An empty sequence F = ∅ represents the function f ≡ −∞.

Profiles Representing Edges We begin by describing the SoC function f(u,v) that
reflects battery constraints for a given edge (u, v) ∈ E . We distinguish two cases.
First, let the cost c(u, v) = a+ ≥ 0 of the edge be a nonnegative constant. In this
case, the edge can only be traversed if the SoC at u is at least a+. We obtain the SoC
function

f(u,v)(b) :=
{
b − a+ if b ≥ a+,
−∞ otherwise.

(1)

The function f(u,v) is represented by the sequence F(u,v) = [(a+, 0), (M, M − a+)]
consisting of two breakpoints; see Fig. 1a for an example. Second, if (u, v) has negative
cost, i. e., c(u, v) = a− < 0, we have to ensure that the SoC at v does not exceed the
battery capacity M . We obtain the profile

f(u,v)(b) :=
{
b − a− if b − a− ≤ M ,

M otherwise.
(2)

123

1496 Algorithmica (2020) 82:1490–1546

(a) (b)

Fig. 1 SoC functions for different edge costs, assuming a battery capacity of M = 4. a The SoC function
of an edge with cost 1. b The SoC function of an edge with cost −1

Again, the SoC function is represented by a sequence consisting of two breakpoints,
namely F(u,v) = [(0,−a−), (M + a−, M)]. Figure 1b shows an SoC function that
represents a single edge with negative cost.

Profiles Representing Paths Eisner et al. [29] show that the number of breakpoints
of the SoC function fP of a given s–t path P is bounded by a constant. For the
sake of self-containedness, we give an alternative proof of this fundamental insight in
Lemma 1. Additionally, Lemma 1 provides a general specification of SoC functions
for single paths.

Before proving Lemma 1, we begin by defining important subpaths of an s–t path P
that affect the SoC function fP . First, let P+

s denote themaximum prefix of P , i. e., the
prefix of P that has maximum cost c(P+

s) among all its prefixes. (We define the cost
of a path as the sum of its edge costs, hence, battery constraints do not apply.) If no
prefix of P (including P itself) has positive cost, we obtain P+

s = [s] and c(P+
s) = 0.

Similarly, the minimum prefix P−
s minimizes the cost c(P−

s) among all prefixes of P .
We obtain P−

s = [s] and c(P−
s) = 0 in case that no prefix of P is negative. The

maximum suffix P+
t and minimum suffix P−

t are defined symmetrically. For the sake
of simplicity, we assume in the remainder of this section that P contains no subpath
with cost 0 consisting of more than one vertex (this can be enforced by perturbation
of edge costs). Thus, the above subpaths are uniquely defined. Moreover, observe that
P = P+

s ◦ P−
t = P−

s ◦ P+
t ; see Fig. 2. The following Lemma 1 shows that the SoC

function fP (defined by its breakpoints) of a path P is completely determined by the
costs of its important subpaths.

Lemma 1 Given an s–t path P, its SoC function fP is a piecewise linear function. It
is defined by a sequence FP of breakpoints in the following way.

1. If there is a subpath of P with cost greater than M, FP = ∅ and fP ≡ −∞.
2. Otherwise, if some subpath has cost below −M, FP = [(c(P+

s), M − c(P+
t))].

3. If neither subpath exists, FP = [(c(P+
s),−c(P−

t)), (M + c(P−
s), M − c(P+

t))].

Proof To prove the claim,we consider the three cases separately. For each, we examine
certain subpaths of P . A subpath denoted Pu,v starts at the vertex u ∈ V and ends at
the vertex v ∈ V .

123

Algorithmica (2020) 82:1490–1546 1497

(a) (b)

Fig. 2 An s–t path together with its SoC function, assuming that the battery capacity is M = 5. a The
s–t path with depicted edge costs. The cost of the path is 1 and its important subpaths are indicated. Relative
vertical positions of vertices correspond to costs of subpaths starting or ending at the respective vertex. b
The SoC function of the s–t path. The coordinates of its breakpoints correspond to the costs of certain
important subpaths

Case 1 There exists a subpath Pu,v of P such that c(Pu,v) > M . Regardless of the
SoC at u, the u–v subpath cannot be traversed. Hence, the path P is infeasible for
arbitrary initial SoC and we obtain the SoC function fP ≡ −∞.

Case 2 No subpath of P has cost greater than M , but there exists a subpath Pu,v

such that c(Pu,v) < −M . Without loss of generality, let Pu,v be the minimum-cost
subpath of P , i. e., any subpath of P has cost at least c(Pu,v). We can separate P into
three subpaths, namely, a prefix Ps,u , the negative subpath Pu,v , and a suffix Pv,t .

We claim that Ps,u is in fact the maximum prefix of P .
Assume for contradiction that themaximumprefix Ps,w ends at some vertexw �= u.

We distinguish three cases. First, assume that w lies on the subpath Ps,u . Then the
subpath Pw,u from w to u has negative cost, because the prefix Ps,w ◦ Pw,u must have
lower cost than the maximum prefix Ps,w. However, this contradicts the fact that Pu,v

is the minimum-cost subpath of P , as Pw,u ◦ Pu,v yields a subpath of lower cost.
Second, assume that w lies on the subpath Pu,v . This implies that the u–w subpath

Pu,w has positive cost, since the prefix Ps,u has lower cost than the maximum pre-
fix Ps,w. Again, this contradicts the fact that Pu,v is the minimum-cost subpath of P ,
since removing its prefix Pu,w yields a shorter subpath Pw,v from w to v.

Third, assume w lies on the subpath Pv,t . As before, the u–w subpath Pu,w must
have positive cost in this case, since we would obtain c(Ps,w) < c(Ps,u) otherwise.
Since the cost of Pu,v is less than −M , this means that the cost of the subpath Pv,w is
greater than M , which contradicts our assumption.

By a symmetric argument, Pv,t is the maximum suffix of P . Consequently, if the
initial SoC bs ∈ [0, M] at the source s is below the cost c(P+

s) of P+
s = Ps,u , the

path is infeasible. Otherwise, the SoC is nonnegative at u. The SoC can only increase
when traversing the subpath Pu,v , since this subpath has no positive prefix (by the
assumption that it is the minimum-cost subpath of P). Moreover, the SoC has reached
the maximum bv = M at v, independent of bs . We also know that the SoC is always

123

1498 Algorithmica (2020) 82:1490–1546

below bv while traversing the v–t subpath Pv,t = P+
t , since this subpath has no

negative prefix (otherwise, we could use this negative prefix of P+
t to find a shorter

subpath than Pu,v , contradicting our assumption that Pu,v is theminimum-cost subpath
of P). Thus, no constraints apply on this subpath and the SoC at t is M − c(P+

t),
subtracting exactly the (positive) cost of the remaining subpath from v to t .

Case 3 The cost of every subpath of P is in the interval [−M, M]. This implies that
at any vertex on P , a fully charged battery is sufficient to reach the target, because
the SoC cannot drop below 0 after it reached the maximum M . Therefore, depending
on the initial SoC bs ∈ [0, M], the path may either be infeasible or recuperation is
disabled at some point because the maximum SoC is reached, but not both. Based on
this observation, we discuss possible SoC values at the target.

First, the path P is infeasible (for some initial SoC bs ∈ [0, M]) if and only if
the SoC value drops below 0 at some vertex v on P . This implies that recuperation
is always possible. Thus, no battery constraints apply at any vertex u on the subpath
from s to v, so the SoC at each such vertex u is bs − c(Ps,u). Consequently, v is the
first vertex on P such that this difference becomes negative, i. e., bs − c(Ps,v) < 0.
Independent of the initial SoC, this difference is minimized at the last vertex of the
maximum prefix. It follows that fP (bs) = −∞ if and only if bs < c(P+

s).
Second, if full recuperation is not possible along some edge (u, v) of P , the path is

feasible and the difference between the initial SoC bs and the cost of the s–v subpath
Ps,v exceeds the battery capacity, i. e., bs − c(Ps,v) > M . For any value bs ∈ [0, M],
this difference is maximized at the last vertex of the minimum prefix, so the constraint
on recuperation applies if and only if bs − c(P−

s) > M . If this is the case, the SoC
reaches the maximum value M at the last vertex of the minimum prefix (after applying
battery constraints). Since the remaining maximum suffix P+

t has nonnegative cost of
at most M and no negative prefix (otherwise, we could use this prefix to extend the
minimum prefix of P), it follows that no battery constraints apply on this subpath and
the SoC at the target is M − c(P+

t) if bs > M + c(P−
s).

Third, we have argued that if c(P+
s) ≤ bs ≤ M + c(P−

s), no constraints apply.
Therefore, the path is feasible and recuperation is always possible. This implies that
the SoC at the target is exactly bs − c(P). It remains to show that this is the result
of evaluating the piecewise linear function defined above. Recall that we have the
equality c(P) = c(P+

s) + c(P−
t) = c(P−

s) + c(P+
t). We obtain that the slope of the

function fP on the interval [c(P+
s), M + c(P−

s)] is

σ1 := y2 − y1
x2 − x1

= M − c(P+
t) + c(P−

t)

M + c(P−
s) − c(P+

s)
= 1,

where (x1, y1) and (x2, y2) denote the two breakpoints of the piecewise linear func-
tion fP according to the lemma. Consequently, the function fP evaluates to

fP (bs) = y1 + σ1(bs − x1) = −c(P−
t) + (bs − c(P+

s)) = bs − c(P)

for arbitrary bs ∈ [c(P+
s), M + c(P−

s)], which completes our proof. �

123

Algorithmica (2020) 82:1490–1546 1499

(a) (b)

Fig. 3 The SoC profile of two vertices in a graph. The battery capacity is M = 8. a The graph with indicated
source s and target t . There are two different s–t paths with respective costs 1 and−1. b The corresponding
SoC function. The dashed segments indicate dominated parts of SoC functions of either of the two s–t paths.
Characteristic segments of contributing paths follow the gray arrow in increasing order of their total path
length (unless they contain a subpath of cost below −M ; c. f. Lemma 1)

According to Lemma 1, the SoC function of a path has a characteristic form: It
consists of a first part with infinite consumption (the path is infeasible for low SoC),
followed by a segment with slope 1 (the consumption is constant, thus SoC at t
increases with SoC at s), and a last segment of constant SoC (for high values of
initial SoC, the battery is fully charged at some point due to recuperation). Each of
these three parts may collapse to a single point. The segment with slope 1 is also
called the characteristic segment of the SoC function. An example of a path and its
SoC function is depicted in Fig. 2.

In summary, at most two breakpoints are necessary to represent the SoC function
of a path. This stands much in contrast to profiles in time-dependent route planning,
where profiles map departure time to arrival time in a network with time-dependent
edge costs. Such time-dependent profiles can become significantly more complex,
even for single paths [4,11,24].

Unrestricted Profiles For a fixed pair of vertices s ∈ V and t ∈ V , different paths
may be the optimal choice for different values of initial SoC; see Fig. 3 for an example.
Consequently, a profile may be composed of multiple paths. A general SoC function
is the upper envelope of a set of SoC functions, each corresponding to a single path.
Note that this upper envelopemay containmultiple discontinuities; see Fig. 3. Next, we
investigate the complexity of such general SoC functions. For the sake of simplicity,
we assume in the remainder of this section that shortest paths (with respect to the cost
function c) between arbitrary pairs of vertices are unique.

We say that an s–t path and its SoC function contribute to the s–t profile if they
are optimal for some initial SoC. First, we bound the number of breakpoints in the
SoC function subject to the number of contributing paths. The following Lemma 2
is a direct implication of the observations by Atallah [2, Lemma 2.2] and Davenport

123

1500 Algorithmica (2020) 82:1490–1546

Fig. 4 Dominated area of an SoC function, for M = 4 and a path P with c(P) = −1. Its important
subpaths have cost c(P+

s) = 1 and c(P+
t) = 1. The costs induce three lines, each of which subdivides the

Euclidean plane into two half planes. The SoC function of a path Q with c(Q) ≥ c(P), c(Q+
s) ≥ c(P+

s),
and c(Q+

t) ≥ c(P+
t) lies in the shaded intersection of three of these half planes

and Schinzel [17, Theorem 1]; see also the introduction in Wiernik and Sharir [68].
(Note that the number of breakpoints in the upper envelope of linear functions can be
superlinear in general [68].)

Lemma 2 Given the set P of all contributing paths of an s–t profile, the number of
breakpoints in the corresponding SoC function is linear in |P|.

Since the number of s–t paths can be exponential in the graph size, Lemma 2 does
not yield an immediate polynomial bound on the complexity of the s–t profile. We
now show that the number of breakpoints in any SoC function is in fact linear in the
number of vertices of the input graph in the worst case.

Before we prove the bound, we derive basic properties of contributing SoC func-
tions. As argued above, certain subpaths of an s–t path P are relevant to determine its
profile. We add the following definitions that are helpful in our further examination.
The bottom vertex v− is the last vertex of the minimum prefix (and the first vertex of
the maximum suffix) of P . Similarly, the top vertex v+ denotes the last vertex of the
maximum prefix (and the first vertex of the minimum suffix) of P . We call v− and v+
the important vertices of P . We presume that v− �= v+, which always holds except
in the trivial case s = t . The important vertices separate P into three subpaths. (In
case that s or t are important vertices, one or two of these subpaths may consist of
a single vertex.) Moreover, we distinguish two types of s–t paths, depending on the
order of appearance of their important vertices. A path P is called bottom-top path if
v− appears before v+ on P , otherwise it is a top-bottom path.

We continue with some basic properties of paths and their SoC functions. First,
Lemma 3 claims that a path P dominates another path Q if it is shorter (with respect
to the cost function c) and both its maximum prefix and its maximum suffix are shorter
than the respective subpaths of Q. This follows immediately from the structure of SoC
functions according to Lemma 1 and is illustrated in Fig. 4.

Lemma 3 Given two vertices s ∈ V and t ∈ V , let P and Q be two s–t paths such
that c(P) ≤ c(Q), c(P+

s) ≤ c(Q+
s), and c(P+

t) ≤ c(Q+
t). Then the SoC function fP

of P dominates the SoC function fQ of Q.

123

Algorithmica (2020) 82:1490–1546 1501

The next Lemma 4 states that prefixes and suffixes of all contributing paths are
uniquely defined by their corresponding important vertices.

Lemma 4 Given two vertices s ∈ V and t ∈ V , let v ∈ V be an arbitrary fixed vertex.
All paths of the same type contributing to the s–t profile with v as their first important
vertex share the same s–v subpath. Similarly, all contributing paths of the same type
with v as their second important vertex share the same v–t subpath.

Proof Assume for contradiction that there are two contributing paths P and Q of the
same type, such that the first important vertex of each path is v, but their respective
s–v subpaths differ. Without loss of generality, let the s–v subpath of P be shorter.
We replace the s–v subpath of Q by the s–v subpath of P , which yields a modified
path Q′. Clearly, the length of Q′ is below the length of Q, i. e., c(Q′) < c(Q). At
the same time, neither the maximum prefix nor the maximum suffix of Q′ exceeds the
cost of the respective subpath of Q. By Lemma 3, the modified path Q′ dominates Q,
contradicting the assumption that Q is a contributing path.

Similarly, we can replace the v–t subpath in one of two paths of the same type that
share the second important vertex v by a shorter v–t subpath. Again, we obtain a new
path that is shorter, while the lengths of its maximum prefix and suffix do not increase.
Hence, at least one of the two paths does not contribute to the profile. �

Using similar arguments, it is straightforward to extend Lemma 4 and show that
together with their order in the path, pairs of important vertices uniquely define con-
tributing paths of the same type. Note that this already implies that there are at most
O(|V |2) paths contributing to an s–t profile. We formally prove the claim in Lemma 5
below. Afterwards, we use a somewhat more sophisticated argument to show that the
number of breakpoints is at most linear in the number of vertices.

Lemma 5 Let s ∈ V , t ∈ V , v− ∈ V , and v+ ∈ V be four vertices of the input graph.
There is at most one bottom-top path contributing to the s–t profile that has v− as its
bottom vertex and v+ as its top vertex. Similarly, at most one contributing top-bottom
path has v+ as its top vertex and v− as its bottom vertex.

Proof Assume for contradiction that there exist two distinct contributing s–t paths P
and Q, such that both are bottom-top paths, their bottom vertex is v−, and their top
vertex is v+. By Lemma 4, we know that P and Q share the same s–v− subpath and the
same v+–t path. Hence, their v−–v+ subpaths must differ. Without loss of generality,
let the v−–v+ subpath of P be shorter. Apparently, the total cost of the path P is lower
than the cost of Q, i. e., c(P) < c(Q). Similarly, the cost of the maximum prefix P+

s
(suffix P+

t) of P is less than the cost of the maximum prefix Q+
s (suffix Q+

t) of Q. By
Lemma 3, this implies that P dominates Q, contradicting the fact that Q contributes
to the optimal solution. The other case is symmetric, so the claim follows. �

We are now ready to present the main result of this section. Theorem 1 proves that
the number of breakpoints of an arbitrary SoC function is at most linear in the number
of vertices in the input graph. Further, it is easy to construct an example where the
SoC function indeed has a linear number of breakpoints; see Fig. 5. Hence, the bound
of Theorem 1 is tight up to a constant factor and the number of breakpoints of an SoC
function is in �(|V |) in the worst case.

123

1502 Algorithmica (2020) 82:1490–1546

(a) (b)

Fig. 5 An SoC function with�(|V |) breakpoints. a The input graph with designated vertices s and t . There
are k ∈ N distinct s–t paths and |V | = 2(k + 1). Edges are labeled with their costs. b A sketch of the s–t
profile for an arbitrary battery capacity M ≥ 3k. Every s–t path in the graph contributes to the profile and
adds three breakpoints as well as a discontinuity (represented by a fourth breakpoint), which results in an
SoC function with 2(|V | − 3) breakpoints in total

Theorem 1 Given a source s ∈ V and a target t ∈ V in the input graph, the number
of contributing paths (and breakpoints) in the s–t profile is in O(|V |).

Proof We construct an undirected graph G ′ consisting of vertices representing impor-
tant vertices in the input graphG = (V , E). Every edge ofG ′ represents a contributing
path using the corresponding pair of important vertices. We examine the structure of
SoC functions of contributing paths to show that the number of edges in the constructed
graph is in O(|V |). Together with Lemma 2, this proves our claim.

The undirected graph G ′ that consists of the union of four sets of vertices V−
1 =

{v−
1 | v ∈ V }, V+

1 = {v+
1 | v ∈ V }, V−

2 = {v−
2 | v ∈ V }, and V+

2 = {v+
2 | v ∈

V }. Clearly, the number of vertices in G ′ is linear in the number of vertices in the
original graph G. We add one undirected edge for every s–t path in the original graph
that contributes to the SoC function: For every contributing bottom-top path with
first important vertex u ∈ V and second important vertex w ∈ V , we add the edge
{u−

1 , w+
2 }. For every contributing top-bottom path with first important vertex u ∈ V

and second important vertexw ∈ V , we add the edge {u+
1 , w−

2 }. Lemma 5 implies that
there are no multi-edges in the resulting graph. By construction, G ′ consists of at least
two components and each component induces a bipartite subgraph. We claim that G ′
contains no cycles. This implies that G ′ has at most O(|V |) edges, which proves the
theorem.

Assume for contradiction that there is a cycle C = [v1, . . . , vk, v1] in the graph
constructed above. There are two possible cases: Either all edges in the cycle cor-
respond to top-bottom paths and it contains only vertices in V+

1 ∪ V−
2 , or all edges

correspond to bottom-top paths and all its vertices are in the set V−
1 ∪ V+

2 .

123

Algorithmica (2020) 82:1490–1546 1503

(a) (b)

Fig. 6 Illustration of the proof of Theorem 1. a A constructed bipartite graph G′ with copies of top and
bottom vertices of the input graph. Edges represent paths connecting certain important vertices. Vertices
have assigned real-valued constants x1, x2, x3, y4, y5, y6. Edge labels indicate the interval in b where
the corresponding characteristic segment is contained in the upper envelope of all functions. b The SoC
functions of edges in the constructed graph. Characteristic segments connect vertical lines induced by
constants x1, . . . , x6. Parts of characteristic segments that lie on the upper envelope are highlighted (dark
blue). Adding the missing characteristic segment that connects the lines induced by x1 and x6 (to form a
cycle in the graph) results in at least one dominated SoC function function (Color figure online)

Case 1 All edges represent top-bottom paths, and therefore {v1, . . . , vk} ⊆ V+
1 ∪

V−
2 . Figure 6a shows an example. Consider the profile induced by all paths corre-

sponding to the edges of this cycle. Edges incident to some vertex vi ∈ V+
1 , with

i ∈ {1, . . . , k}, correspond to paths with the same top vertex in G. Lemma 4 implies
that these paths also share the same maximum prefix with some length x ∈ [0, M].
Therefore, by Lemma 1, every edge incident to vi corresponds to some SoC function
whose first breakpoint has the x-coordinate x . Thus, the leftmost point of the charac-
teristic segment of each of these SoC functions lies on a vertical line defined by x ;
see Fig. 6b. Similarly, edges incident to a bottom vertex vi ∈ V−

1 represent paths
with the same maximum suffix of length y ∈ [0, M]. The last breakpoint of each SoC
function associated with one of these paths lies on a horizontal line defined by the
y-coordinate y. Hence, each of the k vertices defines either a vertical or a horizontal
line. Every edge in the cycle C corresponds to a characteristic segment that starts at
one of the vertical lines and ends at one of the horizontal lines, as shown in Fig. 6b.

For a constant y ∈ [0, M] inducing a horizontal line, we consider the leftmost
x-coordinate of any breakpoint of an SoC function (corresponding to an edge in the
cycle C) with the y-coordinate y; see Fig. 6b. In total, we defined one x-coordinate
for each vertex in C , which we denote by xi ∈ [0, M] for i ∈ {1, . . . , k}. Without loss
of generality, assume that x1 < x2 < · · · < xk holds. Then, we obtain k − 1 intervals
[xi , xi+1] for i ∈ {1, . . . , k − 1}. By assumption, every edge of C corresponds to a
contributing path. The characteristic segment of the SoC function of each contributing
path is (partially) contained in the upper envelope of the SoC functions of all k paths
(or else it would not contribute to the s–t profile). Given that all characteristic segments

123

1504 Algorithmica (2020) 82:1490–1546

are parallel (with slope 1), this implies that there is a unique segment that is part of
the upper envelope on the interval [x, xi+1], with i ∈ {1, . . . , k − 1}. However, there
are only k − 1 such intervals for k contributing paths; a contradiction.

Case 2 All edges represent bottom-top paths, and therefore {v1, . . . , vk} ⊆ V−
1 ∪

V+
2 . In this case, edges incident to a bottom vertex vi ∈ V−

1 for some i ∈ {1, . . . , k}
correspond to paths with the same bottom vertex in G. By Lemma 4, these paths
share the same minimum prefix with length y ∈ [0, M]. Moreover, observe that a
contributing bottom-top path contains no subpath with cost below −M , since the cost
of its maximum prefix must not contain a subpath of length greater than M . It follows
that SoC functions of contributing bottom-top paths are of the form as in Case 3 of
Lemma 1. Thus, the leftmost point of the characteristic segment of each SoC function
represented by an edge incident to the bottom vertex vi lies on the horizontal line
defined by y. Similarly, edges incident to top vertices vi ∈ V+

1 for some i ∈ {1, . . . , k}
correspond to characteristic segments whose rightmost point lies on the same vertical
line defined by a constant x ∈ [0, M]. Along the lines of the first case, this yields a
contradiction. �

3 Basic Algorithms

In this section, we discuss basic algorithms to answer SoC queries (Sect. 3.1) and
profile queries (Sect. 3.2) on a given input graph G = (V , E) with a consumption
function c : E → R. First, note that an SoC function f fulfills the first-in-first-out
(FIFO) property, that is, for arbitrary SoC values b1 ∈ [0, M] and b2 ∈ [0, M]
with b1 ≤ b2, it holds that f (b1) ≤ f (b2), because SoC functions are increasing.
As a result, starting with lower SoC never yields higher SoC at the target [29]. This
important property enables label-setting algorithms (i. e., algorithms that visit each
vertex at most once).

3.1 SoC Queries

Given a source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0, M] at s, an SoC
query asks for an energy-optimal path, i. e., a path with minimum energy consump-
tion. Our baseline algorithm for such queries is a known (label-correcting) variant of
Dijkstra’s algorithm [1,41], which we refer to as EV Dijkstra (EVD). See Algorithm 1
for pseudocode. Along the lines of Dijkstra’s algorithm [26], EVD maintains an SoC
label b(v) for each vertex v ∈ V , initially set to −∞, except for b(s), which is set
to bs . A priority queue is initialized with the source vertex s and the key b(s). In each
step, the main loop scans a vertex u ∈ V with maximum key, extracting it from the
queue. Then, for each outgoing edge e = (u, v) ∈ E , the algorithm evaluates the
SoC function fe at SoC b(u). Since SoC functions of edges have simple form, we
immediately obtain from Eqs. 1 and 2 in Sect. 2.2 that

123

Algorithmica (2020) 82:1490–1546 1505

Algorithm 1: EV Dijkstra.
Input: A graph G = (V , E), a cost function c : E → R, a source vertex s ∈ V , a battery

capacity M ∈ R≥0, and an initial SoC bs ∈ [0, M].
Output: For every vertex v ∈ V , the algorithm computes the optimal SoC upon arrival at v.

// initialize labels
1 foreach v ∈ V do
2 b(v) ←− −∞;

3 b(s) ←− bs ;
4 Q.insert(s, bs)

// run main loop
5 while Q.isNotEmpty() do
6 u ←− Q.deleteMax();
7 foreach (u, v) ∈ E do
8 b ←− f(u,v)(b(u));
9 if b > b(v) then

10 b(v) ←− b;
// insert, reinsert, or update the vertex

11 Q.update(v, b);

fe(b(u)) =

⎧⎪⎨
⎪⎩

−∞ if b(u) − c(u, v) < 0,

M if b(u) − c(u, v) > M,

b(u) − c(u, v) otherwise.

Therefore, scanning an edge requires only a subtraction and two comparisons. If
fe(b(u)) > b(v) holds, the label b(v) is updated accordingly and v is inserted (or
updated) in the priority queue. The algorithm stops as soon as the queue runs empty.
Then, for each vertex v ∈ V , the label b(v) provably holds the maximum possible SoC
bv when reaching v from s with initial SoC bs . The minimum energy consumption to
reach v equals bs − bv . (Observe that instead of labels with maximum SoC, a more
direct adaptation of Dijkstra’s algorithmmight as well propagate labels withminimum
energy consumption.) Correctness follows from the FIFO property [27] and the fact
that the above variant of Dijkstra’s algorithm correctly handles negative costs [41].

If edges with negative cost exist, the algorithm is label correcting: It may scan
and reinsert vertices into the queue more than once if their labels are improved via
subpaths of negative length. It is well-known that this might trigger (exponentially
many) rescans over large parts of the graph [41]. However, this is only the case if
negative shortest paths have a long positive prefix (in relation to the graph diameter),
which is unlikely in our scenario. Also, recall that our inputs contain no negative cycles
due to physical constraints.

We now discuss how the performance of EVD can be improved by aborting the
search early if a shortest path was already found (at the cost of some preprocessing
effort). Including techniques from the literature [1,29,51], we provide an overview of
ways to achieve this. See Sect. 6.2 for an experimental comparison of preprocessing
time, space consumption, and query performance of the different approaches presented
below.

123

1506 Algorithmica (2020) 82:1490–1546

Enabling a Stopping Criterion The performance of Dijkstra’s algorithm can be
improved by making use of the stopping criterion: The algorithm can terminate as
soon as the target vertex is extracted from the queue. For EVD, since it is label cor-
recting, this cannot be applied: After the target t was scanned, there may be vertices
(with lower SoC) left in the priority queue. Due to negative costs, it is possible that
some of them can be expanded to s–t paths with higher SoC at t . We discuss ways to
establish a stopping criterion for EVD.

Given the target t , let P∗
t denote the shortest v–t path in G from any vertex v ∈ V ,

with cost c∗
t := c(P∗

t). We obtain c∗
t ≤ 0, because the t–t path [t] has cost 0, which

yields an upper bound on c∗
t . Assume that, at some point during the execution of EVD,

a vertex v ∈ V is scanned such that b(v) − c∗
t ≤ b(t). We claim that at this point,

an energy-optimal path was already found, so we can safely abort the search. This
is easy to see, as b(v) is the maximum SoC among any labels left in the priority
queue. Moreover, −c∗

t is an upper bound on the amount of energy that may possibly
be recuperated before reaching t . Hence, the current label b(t) cannot be improved in
the further course of the algorithm.

We precompute the value c∗
t for every possible target t ∈ V to restore the stopping

criterion. During an s–t query, this requires an additional check of the condition
b(v) − c∗

t ≤ b(t) each time a vertex v ∈ V is scanned. To save space, one can also
compute c∗ := mint∈V c∗

t and use only this less accurate bound c∗. Then, instead of
|V | values c∗

t for all t ∈ V , only a single value c∗ has to be stored, but the number of
vertex scans during queries may increase due to the worse quality of the bound c∗.

It remains to discuss how the bounds c∗
t for all t ∈ V and c∗ are efficiently com-

puted during preprocessing. Assume we (temporarily) add a super source s′ and edges
(s′, v)with cost 0 for all v ∈ V to the input graph G. For each v ∈ V , the length of the
shortest s′–v path equals the value c∗

v . To compute these paths, we can use Dijkstra’s
algorithm [26], which loses its label-setting property in the presence of edgeswith neg-
ative costs [41]. Although it has exponential worst-case running time, it outperforms
the polynomial-time algorithm of Bellman–Ford [14,31] on realistic instances [1]. If
c∗ is the desired output, its value can be computed on-the-fly during the search.

The search described above inserts all vertices of G into the priority queue in the
first iteration of its main loop, since s′ is connected to every vertex in the graph. As a
result, subsequent queue operations become significantly more expensive.We propose
an alternative method that simulates the behavior of the above procedure, but keeps
the number of vertices in the queue much smaller. In practice, it is faster by a factor
of 2–3. It starts by setting all vertex labels to 0. This prevents nonnegative labels from
being propagated by the search. Then, we process all vertices of the graph sequentially,
running Dijkstra’s algorithm from each vertex v ∈ V if its distance label still equals 0
(otherwise, we skip the vertex, because it was already visited by a previous run). We
do not reinitialize vertex labels between subsequent runs. Observe that this method
behaves exactly like the original algorithm. Hence, it computes the same bounds, but
has reduced overhead during queue operations.

Potential Shifting To get rid of negative costs entirely, we also consider three poten-
tial shifting methods [42]. They allow us to apply the regular stopping criterion, i. e.,
the search is aborted once the target is scanned. Recall that vertex labels in EVD rep-

123

Algorithmica (2020) 82:1490–1546 1507

resent the SoC at a vertex. As the algorithm extracts a label with maximum key from
the priority queue in each step, keys of labels must be nonincreasing for the algo-
rithm to become label setting (because this implies that a label can never be improved
after it was extracted from the queue). Hence, we subtract potentials from keys when
updating labels and a consistent potential function π : V → R must fulfill the con-
dition b − π(u) ≥ f(u,v)(b) − π(v) for all (u, v) ∈ E and b ∈ [0, M]. For the SoC
function f(u,v) representing an edge (u, v) ∈ E , we know that f(u,v)(b) ≤ b− c(u, v)

holds for all b ∈ [0, M] by definition. Therefore, the potential π should fulfill the
condition c(u, v) − π(u) + π(v) ≥ 0. If this is the case, π is also called consistent.
Note that any consistent potential induces a nonnegative reduced edge cost function
c′ by shifting the cost of every edge (u, v) ∈ E by its potential difference, setting
c′(u, v) := c(u, v) − π(u) + π(v). We discuss different ways to obtain consistent
potential functions, which make EVD label setting [29].

The first variant, also proposed by Eisner et al. [29], makes use of a vertex-induced
potential function πv : V → R. It takes an arbitrary fixed vertex v ∈ V and sets
πv(u) := distc(u, v) for all vertices u ∈ V , i. e., the distance from u to v with respect
to the cost function c (ignoring battery constraints). Computing these values requires a
single run of Dijkstra’s (label-correcting) algorithm on the backward graph Ḡ (defined
as the graph G with all edge directions inverted) with cost function c (which carries
over to the backward graph canonically). Consistency of πv follows immediately from
the triangle inequality.

The second variant uses of a bound-induced potential function πb : V → R, where
we simply set πb(v) := −c∗

v for all v ∈ V . The bounds c∗
v are computed by the

method described above. Again, consistency follows from the triangle inequality.
Cherkassky et al. obtain the same potential function from a multi-source search [15],
which preliminary experiments indicated to be slower in our setting.

Finally, we propose a height-induced potential πh : V → R. Setting πh(v) :=
α ·h(v) for each vertex v ∈ V , the potential of a vertex depends solely on its elevation
h(v) and a constantα ∈ R. Toobtain a consistent potential function,wemust determine
a value α such that c(u, v) + α(h(v) − h(u)) ≥ 0 holds for all edges (u, v) ∈ E . If an
underlying physical consumptionmodel is known, the value α can often be determined
directly from this model [29,51]. We propose a more general method to compute α,
which also works if the underlying model is unknown because edge costs stem from,
e. g., simulations or real-world measurements. Given an edge e = (u, v) ∈ E , we
denote by Δ(e) := h(v) − h(u) its ascent. Moreover, we define αe := −c(e)/Δ(e).
It follows that α ≥ αe must hold for all uphill edges, i. e., edges with h(u) < h(v).
The uphill edge e ∈ E maximizing αe yields a lower bound α ∈ R on the value of α.
For downhill edges with h(u) > h(v), i. e., edges with negative ascent, we get the
condition α ≤ αe. This induces an upper bound ᾱ ∈ R on α. If c(u, v) ≥ 0 holds
for all edges (u, v) ∈ E with h(u) = h(v) and we also obtain α ≤ ᾱ, an arbitrary
value α ∈ [α, ᾱ] yields a consistent potential πh . Note that the value α is negative for
realistic consumption models. Computing α and ᾱ requires only a single linear scan
over all edges of the graph, which is also straightforward to parallelize. Moreover,
to enable fast integration of new consumption functions in practice, one can improve
cache friendliness by precomputing an array that explicitly stores for every edge e ∈ E
the difference Δ(e).

123

1508 Algorithmica (2020) 82:1490–1546

It is easy to construct examples where α > ᾱ holds, even in the absence of neg-
ative cycles. Then, there exists no value α ∈ R that allows for a consistent potential
function πh . However, we argue that a consistent potential is found for realistic con-
sumption models. Assuming that the velocity is constant along an edge e ∈ E , its
energy consumption c(e) has the form c(e) = �(λ1 + sλ2) in common physical mod-
els [30,51], where λ1 ∈ R≥0 and λ2 ∈ R≥0 are nonnegative coefficients, and � ∈ R≥0
and s ∈ R denote the length and the slope of the road segment represented by e, respec-
tively. Note that s = Δ(e)/�. Then, inexistence of a consistent potential πh implies
that there is an uphill edge e+ with coefficients λ+

1 , λ
+
2 , length �+, and positive slope

s+ as well as a downhill edge e− with coefficients λ−
1 , λ−

2 , length �−, and negative
slope s−, such that

α ≥ αe+ = − c(e+)

Δ(e+)
> − c(e−)

Δ(e−)
= αe− ≥ ᾱ

⇔ �+λ+
1

Δ(e+)
+ s+�+λ+

2

Δ(e+)
<

�−λ−
1

Δ(e−)
+ s−�−λ−

2

Δ(e−)

⇔ λ+
2 <

λ+
1

s+ + λ+
2 <

λ−
1

s− + λ−
2 < λ−

2 .

In other words, the coefficient λ−
2 that determines energy gained on a downhill ride

is greater than the coefficient λ+
2 that determines loss on an uphill ride. Certainly,

such model parameters are not meaningful, since recuperation efficiency is bounded
in reality. In particular, physical constraints prevent the amount of recoverable energy
on a downhill ride from outweighing the cost when going uphill on the same slope.
Consequently, we were always able to compute the potential function πh from realistic
consumption data in our experiments.

3.2 Profile Queries

Under some circumstances, e. g., when charging overnight, it is important to know how
much charging is at least required to reach the target. As we have seen in Sect. 2.2,
chargingmore than that might even enable paths with lower energy consumption (such
as paths of lower overall cost that first go uphill). Since charging requires substantial
time, such decisions should bemade by the driver. Therefore, we discuss profile search
to compute optimal paths for every possible initial SoC. Profile search is also an
important ingredient of the speedup techniques that we introduce in the next sections.

Generally, a profile search replaces scalar edge costs by functions of some variable,
which represents a certain state at the tail vertex of the edge [24,54]. Time-dependent
route planning is probably the most well-known example, where edge costs represent
travel times depending on the current point in time to account for, e. g., peak and
off-peak hours [4,24,32]. Although computationally more expensive, profile search is
conceptually easy: One can extend Dijkstra’s algorithm [24,50], which we now adapt
to our setting.

First, we require binary link (composition) and merge operations, defined on the
function space F of SoC functions. Given the SoC functions of two paths P and Q

123

Algorithmica (2020) 82:1490–1546 1509

Algorithm 2: Label-correcting profile search.
Input: A graph G = (V , E), a cost function c : E → R, a source vertex s ∈ V , and a battery

capacity M ∈ R≥0.
Output: An s–v profile for every vertex v ∈ V .

// initialize labels
1 foreach v ∈ V do
2 fv ←− f−∞;

3 fs ←− id;
4 Q.insert(s, 0);

// run main loop
5 while Q.isNotEmpty() do
6 u ←− Q.deleteMin();
7 foreach (u, v) ∈ E do
8 f ←− link(fu , f(u,v));
9 if ∃b ∈ [0, M] : f (b) > fv(b) then

10 fv ←− merge(fv, f);
11 Q.update(v, key(fv));

in the input graph, the link operation computes the SoC function of their concate-
nation P ◦ Q, i. e., it maps initial SoC to the resulting SoC after traversing P and
Q in this order. Formally, the operation link : F × F → F takes as input two SoC
functions f1, f2 and is defined as link(f1, f2) := f2 ◦ f1. Hence, linking f1 and f2
yields a new SoC function f , such that f (b) = f2(f1(b)) for every b ∈ [0, M]. The
operation merge : F × F → F computes the pointwise maximum of two functions,
i. e., merging two SoC functions f1 and f2 yields merge(f1, f2) := max(f1, f2).
The result is a new SoC function f with f (b) = max{ f1(b), f2(b)} for every
b ∈ [0, M]. The function space F of SoC functions is closed under the operations link
and merge, i. e., the result of each operation is another SoC function. Furthermore,
our algorithm requires dominance tests to identify dominated SoC functions during
a search. Observe that such a test can be implemented by making use of the merge
operation, since an SoC function f1 dominates another SoC function f2 if and only
if merge(f1, f2) = f1.

Our profile search is outlined in Algorithm 2. Starting from the source vertex s ∈ V ,
it maintains for each vertex v ∈ V a label fv that represents an s–v profile taking the
general form of an SoC function; recall Fig. 3 from Sect. 2.2. The algorithm initializes
fv ≡ −∞ (denoted f{−∞} in Algorithm 2) for all v ∈ V except s, for which the SoC
function fs = id is the identity function (which corresponds to a consumption of 0 for
arbitrary SoC). The source s is inserted into the priority queue with its key, defined for
an SoC function f as the value minb∈[0,M] b − f (b), i. e., its minimum consumption
(thereby, following the order depicted in Fig. 3b). In each step of the main loop, the
algorithm scans a vertex u ∈ V with minimum key and follows Dijkstra’s algorithm.
When scanning an edge (u, v) ∈ E , the profiles fu and f(u,v) are linked. If the resulting
function yields an improvement to the function at v, both functions are merged and
the result is written into the label at v. The key of v in the priority queue is updated
accordingly.

123

1510 Algorithmica (2020) 82:1490–1546

Target Pruning As in EVD, negative costs prevent us from using a stopping criterion
in the profile search, since labels may be improved via subpaths of negative length.We
can use exactly the same techniques as described in the previous Sect. 3.1 to remedy
this issue. Then, we can apply the following target pruning rule, which is applied in
combination with vertex potentials or bounds induced by values c∗

v for all v ∈ V , as
introduced in Sect. 3.1. Given an SoC function fv in the label of some vertex v ∈ V ,
let bmin

v ∈ [0, M] ∪ {∞} denote the smallest SoC value for which fv(bmin
v) is finite,

i. e., fv(b) = −∞ for some b ∈ [0, M] if and only if b < bmin
v . If no such real value

exists (i. e., fv ≡ −∞), we define bmin
v := ∞. Moreover, let cmax≤M

v ∈ [0, M] ∪ {∞}
denote the maximum finite consumption of fv , i. e., the real value that maximizes the
energy consumption cv(b) := b − fv(b) for b ∈ [0, M] (we define cmax≤M

v := ∞
if fv ≡ −∞). Then, whenever the algorithm scans a vertex v ∈ V , it checks whether
both bmin

v ≥ bmin
t and cmin

v ≥ cmax≤M
t hold, where cmin

v is the minimum energy
consumption of the current profile at v. If that is the case, the algorithm prunes the
search at the vertex v, i. e., it does not scan any outgoing edges of v.

Implementation of Linking and Merging SoC functions are piecewise linear, but
not necessarily continuous, with varying degree of complexity. We propose different
representations of SoC functions, depending on their complexity.

For a single edge e ∈ E , the SoC function fe has a simple form: As described
in Sect. 2.2, the SoC function fe is defined only by the constant value c(e). More
generally, SoC functions have simple form (i. e., they are defined by a finite constant
value as described in Sect. 2.2) if and only if they correspond to an s–t path P with
important vertices s and t . In this case, the cost of each important subpath is either 0
or equal to the cost a := c(P) of the whole path. Hence, a single constant a ∈ R

is sufficient to represent the SoC function. However, linking two functions of simple
form does not yield another function of simple form in general: As shown in Sect. 2.2,
battery constraints may impose more complex functions when concatenating edges.
In fact, linking two functions represented by constants a1 ∈ R and a2 ∈ R yields a
function of simple form if and only if both have the same sign, i. e., either a1 ≥ 0 and
a2 ≥ 0 hold or a1 ≤ 0 and a2 ≤ 0 hold. Then, the resulting SoC function is represented
by the constant a1+a2, so the link operation boils down to a single addition and a check
testing whether the path is always infeasible (if and only if a1 +a2 > M). Conversely,
merging two functions of simple form represented by the respective constants a1 ∈ R

and a2 ∈ R always results in a function that has simple form as well, represented by
the constant min{a1, a2}.

We showed in Sect. 2.2 that merging SoC functions of different paths may result
in functions with more than two breakpoints. Thus, we need efficient link and merge
operations for SoC functions of this general form. Both operations can be imple-
mented as coordinated linear scans, following approaches for time-dependent route
planning [24].Given twoSoC functions f1 and f2, the linkoperation constructs the new
function f := f2 ◦ f1 as follows. For each breakpoint (x, y) ∈ R

2 of f1, a breakpoint
(x, f2(y)) is added to f . For every breakpoint (x, y) ∈ R

2 of f2, we test whether x is in
the image of f1. If this is the case, we compute x ′ := min{b ∈ [0, M] | f1(b) = x} and
add the breakpoint (x ′, y) to f . Unnecessary breakpoints that do not affect the result
of evaluating f (in cases where several collinear breakpoints exist) are removed on-

123

Algorithmica (2020) 82:1490–1546 1511

the-fly during the linear scan. Similarly, the merge operation takes two SoC functions
f1 and f2 and identifies all breakpoints on their upper envelope, i. e., any breakpoint
(x, y) ∈ R

2 of f1 with y ≥ f2(x) and vice versa. Additional breakpoints are necessary
at intersections of both functions, while unnecessary collinear points can be removed.

As an optimization, our implementation uses a compressed function representation.
It stores a single 32-bit integer for functions that have simple form (explicitly checking
for battery constraints in the algorithm). To improve spatial locality of the profile
search, we store vertex labels as a dynamic adjacency array. For each label representing
a vertex v ∈ V , it uses a flag to indicate if fv is a compressed function, storing
the (compressed) value directly at the label. Otherwise, it stores (bit-compressed)
indices to a breakpoint array. Note that the number of breakpoints of fv may vary
during the algorithm. We mark empty slots in the array in order to make efficient (re-
)use of space.We also provide specialized implementations for the caseswhere exactly
one of the two functions has simple form. For example, linking essentially reduces to
shifting an SoC function by a constant in this case. Using compressed functions saves
a significant amount of space and about a factor of 2 in running time.

Complexity Even ifwe use potential shifting, profile search remains label correcting.
However, nonnegative reduced costs together with a slightly modified key function
(for the priority queue) enable us to establish a polynomial bound on its running time.
Recall that in the basic profile search described above, the key of a vertex is defined
as the minimum consumption of its current SoC profile. Instead, we now construct a
key function with the important property that the minimum key in the priority queue
cannot decrease during the search. To this end, we assume that a consistent potential
function π : V → R is given. We set the key of a vertex v ∈ V to its potential π(v)

plus the minimum consumption x − y among all breakpoints (x, y) ∈ R
2 that were

newly added to the function fv during some merge operation since v was scanned for
the last time (or all breakpoints of fv if v has not been scanned so far). This implies
that the minimum key in the priority queue cannot decrease during the search, because
scanning an edge (u, v) ∈ E can only lead to new breakpoints at v whose (reduced)
consumption value is at least as large as the (reduced) consumption of a corresponding
breakpoint at u that was not propagated to v yet. As a result, each time v is extracted
from the queue, its SoC function contains some new breakpoint that has the smallest
key among any breakpoints that are yet to be propagated by the search. Hence, this
breakpoint must be part of the s–v profile, as it cannot be dominated by any label in
the queue. Therefore, the number of times a vertex v ∈ V can be scanned is bounded
by the number of contributing paths in the s–v profile. This means that the number of
steps in the main loop is bounded byO(|V |2). Moreover, the modified key of a vertex
is easily determined during the merge operation, by keeping track of the minimum
consumption of all breakpoints that are newly added to a label. Thus, we immediately
get Theorem 2.

Theorem 2 Given a source s ∈ V and a target t ∈ V in the input graph, profile search
computes the s–t profile in polynomial time.

123

1512 Algorithmica (2020) 82:1490–1546

4 Energy-Optimal Routes with Charging Stops

In the previous section, we have discussed algorithms for finding energy-optimal
routes that take battery constraints into account. However, as battery capacities of
EVs are typically rather small, recharging can be inevitable on long-distance routes.
With the advent of more powerful charging stations, charging stops are also becoming
increasingly appealing to customers. Therefore, we now consider the possibility of
recharging the battery at designated charging stations.

We formally describe how we extend our model and define the problem (Sect. 4.1),
before we introduce a basic label-setting algorithm to solve it (Sect. 4.2). We discuss a
conceptually simple polynomial-time approach (Sect. 4.3) and propose a framework
to implement it efficiently (Sect. 4.4).

4.1 Model and Problem Statement

In addition to our previous setting (see Sect. 2.1), we consider stops at charging stations
to recharge the battery. In our model, a subset S ⊆ V of the vertices represents
charging stations, where the battery can be charged. To model realistic restrictions,
every charging station v ∈ S has a predefined SoC range Rv = [bmin

v , bmax
v] ⊆ [0, M]

of possible final SoC. In other words, when charging at v with arrival SoC b ∈ [0, M],
we have to pick a desired departure SoC b′ ∈ [bmin

v , bmax
v]∪{b}. It is always allowed to

pick the arrival SoC b as departure SoC, to account for the possibility of not charging
at v. Otherwise, we only allow the SoC to increasewhen charging, i. e., we assume b <

b′. Note that this is not a restriction, because due to the FIFO property, voluntarily
decreasing the SoC during a ride never pays off [29]. By making use of SoC ranges
at charging stations, we are able to model restrictions caused by technical features of
charging stations or user preferences. For example, at regular charging stations, users
might wish to recharge only up to a certain percentage of the battery capacity to save
time (typically, charging becomes more time consuming when the SoC is near the
maximum). At battery swapping stations (stations at which the battery is immediately
replaced with a fully charged one), we obtain Rv = [M, M].

Assumewe are given a source s ∈ V , a target t ∈ V , and the initial SoC bs ∈ [0, M].
Observe that simply maximizing the SoC at the target is not meaningful in our new
setting: To obtain an optimal solution, we would essentially need to search for a
charging station that is as close to the target as possible. Instead, we consider the
problem of finding a feasible route (respecting battery constraints) that minimizes
overall energy consumption, defined as the difference bs −bt between SoC at s and t ,
plus the total amount rt ∈ R≥0 of energy recharged at charging stations v ∈ S in order
to reach t . Hence, our objective is to maximize bt − rt among all feasible solutions.

There is no straightforwardway to generalize the algorithm described in Sect. 3.1 to
this setting, for several reasons. First, it may be wasteful to fully recharge the battery
at a charging station, since this may prevent recuperation of energy on subsequent
road segments. As a result, overall consumption may increase for a full battery; see
Fig. 7a for an example. Therefore, we do not know the optimal amount of energy to be
charged when a station is scanned. This makes our problem setting significantly more

123

Algorithmica (2020) 82:1490–1546 1513

(a) (b)

Fig. 7 Energy-optimal paths with charging stops. The battery capacity is M = bs = 5. Charging stations
are highlighted (red) and their SoC range is [0, 5]. a The energy-optimal s–t path [s, u, v, w, u, t] contains a
cycle, because a detour to the charging station v is necessary. Recharging any amount rt ∈ [2, 3] at v yields
an SoC bt ∈ [0, 1] at t , which corresponds to an optimal consumption of 7 and the objective bt−rt = 2. In all
other cases, either energy is wasted or t is not reachable. bThe optimal s–t path is [s, u, v, t] and t is reached
with a full battery and energy consumption 0 without recharging, i. e., bt = 5 and rt = 0. The consumption
along the subpath [s, u, v] is 3 and we get bv −rv = 2. The optimal s–v path [s, u, w, v] requires recharging
of at least one unit at u in order to reach v with optimal consumption 2 and objective bv − rv = 3, where
bv ∈ [4, 5] and rv ∈ [1, 2] (Color figure online)

difficult compared to simpler models, which assume that charging always results in a
full battery [61]. Second, in general, an optimal s–t path does not have the important
property that every subpath is an optimal path as well. For example, detours may be
necessary to visit a charging station; see Fig. 7a. One can even construct cases where
an optimal path that requires no charging contains a subpath that can be improved
via charging; see Fig. 7b. Below, we propose algorithmic solutions to deal with these
challenges. In particular, we show that despite the issues outlined above, the problem
is solvable in polynomial time.

4.2 Baseline Approach

Apparently, making “greedy” choices locally during the search for an optimal path
can lead to suboptimal results. A natural way to deal with this issue is the use of label
sets that model different situations at vertices, similar to multicriteria scenarios [49].
We now describe how multicriteria search can be adapted to our problem setting.

For a query from a source s ∈ V to a target t ∈ V with initial SoC bs ∈ [0, M], a
feasible solution is characterized by the corresponding SoC bt ∈ [0, M] at t and the
total amount rt ∈ R≥0 of energy recharged along theway. Recall that the objective is to
maximize bt − rt among all feasible solutions. To reflect this, vertices maintain labels
that store both the current SoC and the amount of recharged energy. However, since
charging stationsmayoffer continuousSoC ranges, pairs of SoCand the corresponding
amount of recharged energy are not sufficient to represent all possible solutions in
general. Therefore, a label � stores an SoC range [bmin

� , bmax
�] and a charging range

[rmin
� , rmax

�] to reflect different possible choices of recharging at (previous) charging
stations and the resulting SoC at the current vertex. As in a multicriteria scenario, we
can apply Pareto dominance to remove suboptimal labels; see Fig. 8a. Observe that
explicitly storing all four values bmin

� , bmax
� , rmin

� , and rmax
� is redundant; it actually

suffices to only keep three of them in the label to determine the last.
Using the modified vertex labels, we outline an adaptation of the multicriteria

shortest path algorithm [49]. The algorithm is initialized with a source label containing

123

1514 Algorithmica (2020) 82:1490–1546

the SoC range [bs, bs] and the charging range [0, 0]. The label is also inserted into
a priority queue. In each step of the main loop, the algorithm extracts a label � with
SoC range [bmin

� , bmax
�] and charging range [rmin

� , rmax
�] at some vertex u ∈ V with

maximum key in the priority queue (defined for the label � as, e. g., the difference
bmax
� − rmax

�). It then checks whether u is a charging station. If this is the case, it
merges the SoC range [bmin

u , bmax
u] into �, which yields the range

[bmin
� , bmax

�] ∪ [max{bmin
� , bmin

u },max{bmin
� , bmax

u }].

Similarly, the charging range is extended by the additional amount of energy that can
be recharged. Formally, we get the new range

[rmin
� , rmax

�] ∪ [rmin
� + max{bmin

u − bmin
� , 0}, rmin

� + max{bmax
u − bmin

� , 0}].

Note that this may create discontinuities in both ranges; see Fig. 8b. We resolve this
issue by generating a new label at u in such cases, so all labels still have constant
complexity. The new label is added to the priority queue, unless it is dominated by
some existing label at u. Afterwards, the outgoing edges of u are scanned (regard-
less of whether u is a charging station). Given the energy consumption c(u, v) of an
edge (u, v) ∈ E , we know that it cannot be traversed if bmax

u − c(u, v) < 0, so no new
label is generated in this case. Otherwise, we apply battery constraints and obtain the
new range

[max{0, bmin
u − c(u, v)},min{M, bmax

u − c(u, v)}]

for the new label generated at v. Similarly, battery constraints may affect the charging
range, so we shrink it by dropping values for which the path becomes infeasible or
recuperation is hindered; see Fig. 8c. We obtain a new label, which is added to the
label set at v and the priority queue if no label at v dominates it.

After termination of the algorithm, the label set at t contains a label with a pair of
SoC bt and charged energy rt that maximizes the objective (unless no feasible solution
exists, in which case the label set at t is empty). Correctness follows from the fact that
our search propagates all feasible solutions that are not dominated by others. However,
due to the complex nature of the algorithm, the analysis of its running time is rather
involved. Given that it is based on an exponential-time algorithm, it is not even clear
whether its running time is polynomial. In the next section, we present an alternative
approach that, building upon tools from Sect. 2, is conceptually simpler, can easily be
integrated with known speedup techniques, and runs in polynomial time.

4.3 A Polynomial-Time Algorithm

The basic approach described in the previous section uses label sets to model different
choices at charging stations. Instead, we now try to immediately determine the depar-
ture SoC at a charging station, so we only have to maintain a single label per vertex.
To this end, we first analyze relevant properties of charging stations. Afterwards, we

123

Algorithmica (2020) 82:1490–1546 1515

(a) (b) (c)

Fig. 8 Illustration of labels in the baseline approach. Theymap the amount of charged energy to the resulting
SoC, assuming M = 4 (charging ranges can exceed the value 4 if multiple charging stops are required).
a The blue segment shows different configurations of charging and resulting SoC of a label �. Labels
are dominated by � if and only if their corresponding segment is entirely contained in the shaded area. b
Scanning a charging station u ∈ S adds a new segment with SoC range [bmin

u , bmax
u] to the label, creating

a discontinuity. Both segments are collinear, though. c Scanning edges (with costs indicated by the arrows)
corresponds to a shift of the segment along the y-axis. Ranges shrink due to battery constraints, because
certain subranges have insufficient charge or waste energy from recuperation (Color figure online)

Fig. 9 Interdependence between initial SoC and the resulting optimal route with charging stops. Charging
stations are highlighted (red) and have a charging range of [0, 5], assuming a battery capacity of M = 5.
Independent of the initial SoC bs ∈ [0, M] at the source s, the objective at v is maximized when traversing

the u–v path with cost 0. For bs ∈ [0, 4), this requires recharging at u (departure SoC b
dep
u = 4) and

yields bv − rv = bs . The target t is always reached with an SoC of bt = 5, so the objective is equivalent to
minimizing the amount rt of charged energy. The optimal choice depends on the value bs : For bs ∈ [0, 2),
energy is recharged at u (bdepu = 2) and v (bdepv = 1), which yields a total amount rt = 3 − bs > 1 of

recharged energy; for bs ∈ [2, 3] it is optimal to charge only at v (bdepv = 1) to get rt = 1; for bs ∈ [3, 4)
energy is only charged at u (bdepu = 4) to get rt = 4−bs ≤ 1; no charging is necessary at all for bs ∈ [4, 5]
(Color figure online)

derive an algorithm that maintains one label per vertex on an extended search graph
and show that it runs in polynomial time.

Optimal Paths between Charging Stations When reaching a charging station u ∈ S,
the amount of energy that needs to be recharged depends on the route from u to the
target t ∈ V , which is not known in advance. Nevertheless, when charging at u, we
have to ensure that the SoC is sufficient to reach t or the next charging station v ∈ S.
Therefore, we examine an important subproblem, where we are given a charging
station u ∈ S, an (optimal) arrival SoC barru ∈ [0, M) before charging at u, the total
amount ru ∈ R≥0 of energy recharged so far (at any previous charging stations), and
a vertex v ∈ S ∪ {t}. We want to find a departure SoC bdepu > barru after charging at u

123

1516 Algorithmica (2020) 82:1490–1546

that maximizes the objective at the target vertex t under the assumption that v is the
next vertex where energy is recharged or v = t is the target itself.

If we compute the u–v profile fu,v , we can greedily optimize the objective on the
s–v path by picking an SoC bdepu > barru that maximizes fu,v(b

dep
u) − (ru + r), where

r := bdepu − barru is the amount of energy charged at u. Unfortunately, the s–v path
that maximizes this objective does not extend to the best solution at t in general.
The reason for this is that charging too much energy might prevent the vehicle from
recuperating energy on the following v–t path. Figure 9 shows an example. Assuming
a low initial SoC, the objective at v is maximized in this example when charging to
a departure SoC of 4 at the station u. Note that this enables the use of the path with
total consumption 0. However, it also prevents recuperation of a significant amount
of energy on the subsequent v–t path. Therefore, the objective at t is maximized after
charging only to a departure SoC of 2 at u and taking the more expensive subpath
from u to v instead.

Apparently, we need a more sophisticated approach. To this end, we identify depar-
ture SoC values that may possibly lead to an optimal solution. We know by the FIFO
property [29] that for an arbitrary fixed departure SoC bdepu ∈ [0, M], a u–v subpath
with minimum energy consumption must be an optimal choice (it cannot be beneficial
to pick a more expensive path in order to reach v with a lower SoC). By Theorem 1,
there are at most O(|V |) such u–v paths for all possible values of departure SoC,
namely, those that contribute to the u–v profile fu,v . Moreover, we claim that for
each u–v path P contributing to fu,v , we can identify a (unique) canonical departure
SoC bdepP ∈ [0, M] at u that always optimizes the objective at t under the assumption
that recharging is necessary at v (or v = t). To see this, consider the SoC function
fP of P and let bmin

P := c(P+
u) denote the minimum SoC that is necessary to tra-

verse P . In other words, fP (b) = −∞ if and only if b < bmin
P . Consequently, we

have bdepP ≥ bmin
P . We also know that the objective fP (bdepP)− (ru +bdepP −barru) of the

s–v path can only decrease for bdepP > bmin
P , since ru −barru is constant and the slope of

fP is at most 1 on the interval [bmin
P , M]. Assuming that we are recharging energy at v

anyway, chargingmore than bmin
P will also never turn out to be essential after visiting v:

If necessary, we can simply recharge the missing energy at v. Therefore, given the SoC
range [bmin

u , bmax
u] of u, we pick the canonical departure SoC bdepP := max{bmin

P , bmin
u }

for P , if this value lies in the SoC range of u. Otherwise, we have bmax
u < bmin

P , which
implies that charging at u never renders the path P feasible.

In conclusion, althoughwe cannot compute the optimal u–v subpathwithout further
knowledge about the subsequent v–t path, there is a limited number of candidate paths
and for each, there is a unique canonical departure SoC when leaving the charging
station u. Moreover, observe that once we fix a departure SoC bdepu at u, the objectives
of the subpaths from s to u and from u to t are independent of each other: We obtain
an optimal solution via u with departure SoC bdepu by concatenating an s–u path
with maximum objective (subject to the constraint barru < bdepu) and a u–t path that

maximizes the objective for an initial SoC bdepu . Based on these observations, we
construct a search graph that serves as input for a modified version of EVD.

123

Algorithmica (2020) 82:1490–1546 1517

Fig. 10 Search graph for energy-optimal routes with charging stops, based on the original graph depicted
in Fig. 9. Vertices in the charging station graph (shaded area) are labeled with their departure SoC. Edge
labels indicate costs in the original graph, arrival SoC in the charging station graph, and SoC restrictions
for transfer edges

Search Graph Construction Given the original graph G = (V , E) and the target
vertex t ∈ V , we augment G with a charging station (sub-)graph Gc = (Vc, Ec),
which enables efficient search between charging stations; see Fig. 10 for an example.
The basic idea is to create copies of charging stations for every canonical departure SoC
and insert edges that connect feasible sequences of charging stops. For each vertex u ∈
S, we create one charging vertex u′ per distinct canonical departure SoC bdepP ∈ [0, M]
of any contributing path P from u to another charging station or to the target. The
vertex u′ itself is added to Vc. We explicitly store the corresponding departure SoC
bdepP with the vertex u′, i. e., we keep a mapping bdep : Vc → [0, M] ∪ {∞} and

set bdep(u′) := bdepP . We also add a dummy target t ′ to Vc with bdep(t ′) := ∞.
Edges in the charging station graph represent energy-optimal paths between charg-

ing stations. Let P be a (contributing) path from a charging station u ∈ S to
another vertex v ∈ S ∪ {t} and fP its SoC function. We add edges (u′, v′) from
the (unique) vertex u′ ∈ Vc with bdep(u′) = bdepP to every charging vertex v′ ∈ Vc
of v with fP (bdepP) < bdep(v′) to Ec. Together with the edge (u′, v′), we also store
the SoC upon arrival at v′, i. e., we store a mapping barr : Ec → [0, M] and set
barr(u′, v′) := fP (bdepP).

The search is run on the union of the input graph G and the charging station
graph Gc. To connect both graphs, we add (directed) transfer edges (v, v′) from each
charging station v ∈ S∪{t} to all its corresponding departure vertices v′ ∈ Vc. Transfer
edges have no cost, but may only be traversed if the current SoC is below the departure
SoC bdep(v′) of the respective departure vertex v′, i. e., energy must be recharged to
reach the next charging station (or the target). We can model this constraint implicitly,
by assigning the SoC function f(v,v′) defined as

f(v,v′)(b) :=
{
b if b < bdep(v′),
−∞ otherwise,

(3)

123

1518 Algorithmica (2020) 82:1490–1546

to the edge (v, v′). Although this function does not fulfill the FIFO property (as it is not
increasing), correctness is maintained because charging edges only control transfer to
the charging station graph. A path with departure SoC bdep(v′) may still be traversed
in the original graph (without recharging at v) if b ≥ bdep(v′).

Let Ex denote the set of all transfer edges. Our search operates on the augmented
graph, which is defined asG ′ := (V ∪Vc, E∪Ex∪Ec). Note that its size is polynomial
in the size of G, since the number of dummy vertices of a charging station v ∈ S is
bounded by the number of distinct canonical departure SoC values, which, in turn, is
bounded by the number of paths that contribute to profiles from v to other charging
stations (or the target vertex).

Algorithm Description Using the augmented graph, we modify the EVD algorithm
introduced in Sect. 3.1 to find energy-optimal routes in the presence of charging
stations; see Algorithm 3 for pseudocode. As before, the algorithm takes as input the
source s ∈ V , the target t ∈ V , and the initial SoC bs ∈ [0, M], but it operates on the
augmented graph G ′. It maintains a single label �(v) per vertex v ∈ V ∪ Vc, which
stores the best values of SoC bv ∈ [0, M] ∪ {−∞} and recharged energy rv ∈ R≥0 of
all s–v paths encountered so far, i. e., the pair of values that maximizes the objective
bv − rv at v. Initially, it sets bv = −∞ and rv = 0 for all v ∈ V , except for the label
�(s) = (bs, 0) at s, which is also inserted into a priority queue. In each iteration of
the main loop, the label �(u) = (bu, ru) of some vertex u ∈ V ∪ Vc in the augmented
graph with maximum key bu −ru is extracted from the queue. If u is an original vertex,
i. e., u ∈ V , the algorithm proceeds exactly like plain EVD by scanning its outgoing
edges; see Lines 9–14 of Algorithm 3. If, additionally, u is a charging station, i. e.,
u ∈ S, its corresponding charging vertices u′ ∈ Vc are updated in the priority queue
if bu < bdep(u′) and �(u) yields an improvement to the label �(u′). Note that this
is done implicitly in Algorithm 3, by scanning transfer edges and making use of the
artificial SoC functions according to Equation 3. Alternatively, if u ∈ Vc is a charging
station, it is handled separately by the algorithm; see Lines 16–22 in Algorithm 3.
All outgoing edges (u, v) ∈ Ec in Gc are scanned, generating for each a new label
(b, r) with b ∈ [0, M] and r ∈ R≥0 as follows. Its SoC is set to the arrival SoC
b = barr(u, v) at v. To account for recharging at u, the total amount of charged energy
is set to r = ru + bdep(u) − bu . If the label (b, r) improves the objective of �(v), the
latter is updated accordingly and v is inserted or updated in the queue.

After termination, the label at the dummy target vertex t ′, i. e., the unique ver-
tex t ′ ∈ Vc with bdep(t ′) = ∞, contains the optimal pair of SoC and recharged
energy. Correctness of the algorithm follows from the construction of the search
graph and the properties of canonical departure SoC discussed above. To retrieve
the actual path description, predecessor pointers are used as in Dijkstra’s algorihm.
Underlying paths between vertices u ∈ Vc and v ∈ Vc in Gc can be retrieved by
(pre-)computing an energy-optimal path between their corresponding original ver-
tices with initial SoC bdep(u).

Complexity Before we analyze the running time of the modified EVD algorithm, we
show that we can make it label setting. We claim that the potential functions described
in Sect. 3.1 carry over to the charging station graphGc, by setting the potential of every

123

Algorithmica (2020) 82:1490–1546 1519

Algorithm 3: EVD with charging stops.
Input: An (augmented) graph G′ := (V ∪ Vc, E ∪ Ex ∪ Ec), a cost function c : E → R, a

capacity M ∈ R≥0, two mappings bdep : Vc → [0, M] ∪ {∞} and barr : Ec → [0, M], a
source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0, M].

Output: For each vertex v ∈ V , the maximum objective bv − rv corresponding to the path that
minimizes overall consumption.

// initialize labels
1 foreach v ∈ V ∪ Vc do
2 �(v) = (bv, rv) ←− (−∞, 0);

3 �(s) ←− (bs , 0);
4 Q.insert(s, bs);

// run main loop
5 while Q.isNotEmpty() do
6 u ←− Q.deleteMax();
7 (bu , ru) ←− �(u);
8 if u ∈ V then

// scan outgoing edges in the original graph and transfer edges
9 foreach (u, v) ∈ E ∪ Ex do

10 b ←− f(u,v)(bu);
11 (bv, rv) ←− �(v);
12 if b − ru > bv − rv then
13 �(v) ←− (b, ru);
14 Q.update(v, b − ru);

15 else
// scan outgoing edges in the charging station graph

16 foreach (u, v) ∈ Ec do
17 b ←− barr(u, v);

18 r ←− ru + bdep(u) − bu ;
19 (bv, rv) ←− �(v);
20 if b − r > bv − rv then
21 �(v) ←− (b, r);
22 Q.update(v, b − r);

vertex in Vc to the potential of its corresponding original vertex. To see this, we define
the cost c(u, v) := bdep(u)−barr(u, v)of an edge (u, v) ∈ Ec as the difference between
the objectives before and after scanning the edge (u, v), respectively. Observe that,
due to battery constraints, c(u, v) is greater or equal to the cost of a shortest u–v path in
the original graph G. Thus, the reduced cost c(u, v)−π(u)+π(v) is nonnegative for
vertex potentials induced by a consistent potential function π : V → R on the original
vertices V . The same holds true for transfer edges, since they have nonnegative energy
consumption. Thus, we can use any consistent potential function for the original graph
to make the algorithm label setting. Note that this also allows us to establish a stopping
criterion for the dummy vertex t ′.

We argue that the label-setting algorithm enables us to solve the problem of finding
energy-optimal routes with charging stops in polynomial time. In summary, it requires
the following steps.

123

1520 Algorithmica (2020) 82:1490–1546

1. Compute a consistent potential function for the input graph.
2. Construct the charging station graph Gc.
3. Run our modified EVD algorithm to find an optimal solution.

For the first step, we can use the polynomial-time algorithm of Bellman–Ford [14,31]
to compute a vertex-induced potential (see Sect. 3.1). Regarding the second step, we
have argued above that the size of the charging station graph Gc is polynomial in the
size of the input graph G. To construct it, we have to compute a quadratic number of
SoC profiles, which can be done in polynomial time using profile search (see Sect. 3.2).
Finally, the third step is solved by Algorithm 3. Using potential shifting, it becomes
label setting and the number of iterations in the main loop is bounded by the size of
the search graph. Hence, an optimal solution is found in polynomial time. Theorem 3
summarizes the theoretical insights of this section.

Theorem 3 Given a source s ∈ V and a target t ∈ V in the input graph, together with
an initial SoC bs ∈ [0, M], an energy-optimal s–t path with intermediate charging
stops can be computed in polynomial time.

4.4 A Heuristic Implementation

We discuss a practical variant of the EVD algorithm with charging stops introduced
in Sect. 4.3. The construction of the subgraph Gc is time-consuming on realistic
instances. Luckily, we can move most work to preprocessing, since paths between
charging stations are independent of source and target. We also propose a simpler
search graph, which can naturally be combined with CH for further speedup.

First, we obtain vertex potentials during preprocessing, using the more practical
variants of EVD described in Sect. 3.1 instead of the algorithm of Bellman–Ford.
Second, we have to construct the charging station graph for a given source s ∈ V
and a given target t ∈ V . In our practical variant, we replace the graph Gc with the
overlay GS = (VS, ES), where VS := S ∪ {t} and ES := S × (S ∪ {t}). Every edge
(u, v) ∈ ES stores as its cost function the u–v profile (with respect to the original
graph). Note that all edges in ES except for those that have t as their head vertex
can be precomputed. Using the overlay GS instead of Gc has several advantages: It
is straightforward to construct GS using profile search, and the number of vertices in
the search graph is significantly smaller. Additionally, integration with CH (described
below) becomes much simpler.

Shortcuts (u, v) ∈ ES in the overlay GS are used during the search to greedily
determine the departure SoC at the charging station u ∈ VS and the arrival SoC
at the vertex v ∈ VS . This requires a slight modification to the EVD algorithm;
see Algorithm 4 for pseudocode. During its main loop, the next vertex u ∈ V with
label �(u) = (bu, ru) is determined as before. If u represents a charging station,
i. e., u ∈ S, all outgoing shortcuts (u, v) ∈ ES are scanned. For each, the departure
SoC b∗ ∈ [0, M] that maximizes the objective f(u,v)(b∗) − (ru + b∗ − bu) at v is
picked under the constraint that b∗ ≥ bu and b∗ lies in the charging range of u (the
case b∗ = bu is always allowed, to account for the possibility of not recharging at u);
see Line 7 in Algorithm 4. If this yields an improvement to the label at v, it is updated

123

Algorithmica (2020) 82:1490–1546 1521

Algorithm 4: Heuristic variant of EVD with charging stops.
Input: An input graph G = (V , E), a cost function c : E → R, a source s ∈ V , a target t ∈ V , a

battery capacity M ∈ R≥0, and the initial SoC bs ∈ [0, M]. Moreover, it requires a set
S ⊆ V of charging stations with specified charging ranges.

Output: An SoC bv ∈ [0, M] ∪ {−∞} and a corresponding amount rv ∈ R of charged energy for
each v ∈ V .

1 initialize labels as in Algorithm 3;

2 while Q.isNotEmpty() do
3 u ←− Q.deleteMax();
4 (bu , ru) ←− �(u);
5 if u ∈ S then

// scan shortcuts between charging stations
6 foreach v ∈ S ∪ {t} do
7 b∗ ←− argmaxb∈[max{bu ,bmin

u },max{bu ,bmax
u }]∪{bu } f(u,v)(b) − b;

8 r ←− ru + b∗ − bu ;
9 b ←− f(u,v)(b

∗);
10 (bv, rv) ←− �(v);
11 if b − r > bv − rv then
12 �(v) ←− (b, r);
13 Q.update(v, b − r);

14 else
15 scan outgoing edges in the original graph as in Algorithm 3;

accordingly. Making use of vertex potentials, the search becomes label setting and
stops as soon as the target vertex is extracted from the priority queue.

As argued before, picking the SoC at v in this greedy fashionmay lead to suboptimal
results. For example, in Fig. 9 the upper path between u and v (with consumption 0)
always maximizes the objective at v, but the bottom path (with consumption 2) is the
better choice for low initial SoC, as it requires less charging and enables recuperation
on the subsequent v–t path. On real-world networks, however, this is very unlikely to
occur, as it requires an optimal route with two charging stops u ∈ S and v ∈ S, such
that the target t can be reached from u via v, but not directly, whereas charging too
much energy at u (to reach v on an optimal s–v path) prevents recuperation along the
v–t path due to a fully charged battery. Consequently, our heuristic approach always
produced optimal solutions in our tests; see Sect. 6.3.

Integration with Contraction Hierarchies To enable faster queries, we propose CH,
which have been extended to EV scenarios before [29]. In its basic variant, the speedup
technique CH [33] iteratively contracts vertices in increasing order of (heuristic)
importance during a preprocessing step, maintaining distances between all remaining
vertices by adding shortcut edges, if necessary. Witness searches determine whether
a shortcut is required to preserve distances. An online CH query runs bidirectional
from source and target on the input graph augmented by all shortcuts added during
preprocessing, following only upward edges (from less important to more important
vertices).

123

1522 Algorithmica (2020) 82:1490–1546

Similar to previous approaches [59], we do not contract vertices that represent
charging stations. Hence, we contract only some vertices, which form the component.
This leaves an uncontracted core, which is an overlay graph that contains all charg-
ing stations (and possibly other vertices). Note that in our scenario, a shortcut (u, v)

corresponds to a u–v profile, so shortcuts must store SoC functions. Shortcuts are
computed and updated during vertex contraction, using the general link and merge
operation described in Sect. 3.2. Consequently, SoC functions with multiple break-
points may emerge during contraction, which makes preprocessing more expensive.
After contraction has stopped, we run profile searches on the (relatively small) core
graph to quickly compute shortcuts between charging stations and construct the over-
lay GS . Shortcuts are only added to GS if their corresponding SoC function is finite
for some SoC (i. e., the head vertex is reachable from the tail).

In a basic approach,witness search ofCHpreprocessing is replaced byprofile search
to determine whether a shortcut is necessary. For faster preprocessing, an alternative
variant uses only the maximum finite consumption of an edge e with SoC function fe
in the current overlay graph, i. e., the finite value cmax≤M

e := maxb∈[0,M]{b − fe(b) |
fe(b) �= −∞} that maximizes its energy consumption. Observe that negative costs
are ruled out this way, since consumption must be at least 0 for a fully charged battery.
Hence, the witness search operates on a graph with scalar, nonnegative costs. This
reenables Dijkstra’s algorithm, which then computes an upper bound c̄ ∈ R≥0 on the
energy consumption between a given pair of vertices. A shortcut candidate is inserted
only if its SoC function f consumes less energy for some SoC, i. e., there exists an SoC
b ∈ [0, M] with b − f (b) < c̄. Using these upper bounds, we may end up inserting
unnecessary shortcuts. This does not affect correctness, but may slow down queries
slightly. (Similarly, Eisner et al. use a sampling approach to avoid costly profile search
during preprocessing in their implementation [29].)

In summary, our preprocessing routine comprises three steps: (1) computation of
a consistent potential function, (2) SoC preprocessing, and (3) construction of the
overlayGS . Afterwards, the query algorithm runs in two phases. The first runs a profile
search from the target t ∈ V on the backward graph of the component, which contain
original edges and shortcuts computed during preprocessing. In the component, the
search scans only upward edges with respect to the vertex order. Shortcuts between
charging stations in GS are ignored by this search. After its termination, SoC profiles
from each charging station to the target are known. We (temporarily) add the target
and all corresponding shortcuts to the overlay graph GS . Similarly, we include a
(temporary) shortcut from any vertex v ∈ V \ S visited by the profile search to the
target. Then, the second phase runs Algorithm 3 from the source s ∈ V with initial
SoC bs ∈ [0, M] on a search graph consisting of upward edges in the component and
all edges in the core (including GS).

To obtain the full path description, we enable path unpacking by storing via vertices
during contraction, as in plain CH [33]. Note, however, that we need one via vertex
per contributing path of an SoC function. Additionally, we have to reconstruct paths
represented by shortcuts between charging stations within the core. This can be done
by precomputing and storing the paths in the core graph explicitly, or by running an
EVD search on the core graph between each consecutive pair of charging stations in
the path. Finally, the paths in the core are unpacked as in plain CH. The amount of

123

Algorithmica (2020) 82:1490–1546 1523

energy that must be recharged at a charging station is easily obtained from the SoC
profiles in the overlay GS by picking a departure SoC b ∈ [0, M] for each profile f
that maximizes the objective f (b) − b at the next station.

Incorporating A* Search On large instances with many charging stations, scanning
shortcuts in the dense overlay graph GS induced by all charging stations becomes the
major bottleneck of the search. To reduce the search space, we combine our approach
with A* search [37] in a natural way. The basic idea of A* search is to compute a
consistent potential function on the vertices that changes the order inwhich vertices are
extracted from the priority queue, such that vertices closer to the target are extracted
first.

Prior to the forward search of a query, we run Dijkstra’s algorithm from the target
vertex on the backward graph, scanning upward edges in the component and all core
edges except for shortcuts between charging stations. The algorithm uses minimum
energy consumption as edge costs, defined for an edge e with SoC function fe in the
search graph as cmin

e := minb∈[0,M] b− fe(b). Since energy consumption can become
negative, the search is label correcting unless potential shifting is applied. After its
termination, each vertex label stores a scalar lower bound on the energy consumption
that is necessary to reach the target from this vertex. This yields a vertex-induced
potential for all vertices in the core (c. f. Sect. 3.1).

The forward search is then split into two phases. The first runs from the source
s ∈ V in the component, using potentials computed during preprocessing. It is pruned
at core vertices, i. e., the algorithm scans no outgoing edges from these vertices. The
second phase runs on the core graph enriched with the overlayGS , including shortcuts
to the target t ∈ V . The search is initialized with all core vertices scanned in the first
phase, but uses potentials obtained by the backward search. As the potential of each
vertex is a lower bound on energy consumption on the way to t , the second phase is
goal directed (vertices closer to the target have smaller keys).

An aggressive variant of A* search achieves further speedup at the cost of subopti-
mal results. As before, when a charging station u ∈ S is visited by the forward search,
all outgoing shortcuts (u, v) ∈ ES in GS are scanned. However, we update the label
of at most one vertex v ∈ S and insert it into priority queue, namely, the tentative label
with maximum key among all vertices that are improved by the scans. The subgraph
GS is rather dense, so this significantly reduces the number of subsequent vertex scans.

ImplementationDetails During contraction,wedetermine the next vertex that is con-
tracted using the measures Edge Difference (ED) and Cost of Queries (CQ) according
to Geisberger et al. [33]. The rank of a vertex is then set to 4 ED+CQ (vertices of
lower rank are contracted first). To improve query times, we reorder vertices after
preprocessing, such that core vertices are in consecutive memory for improved local-
ity. During CH queries, the forward EVD search and the backward profile search are
executed alternately, as in plain CH. Thereby, we avoid an exhaustive run of the costly
profile search in cases where the target is close to the source.

123

1524 Algorithmica (2020) 82:1490–1546

5 Extending Customizable Route Planning

Energy consumption is strongly influenced by a number of factors, such as vehicle
load, auxiliary consumers, weather condition, driving style, and traffic conditions [65].
While some factors are static, others, such as weather conditions and vehicle load, are
not. This makes fast preprocessing particularly important in our context. We introduce
a speedup technique that focuses on fast integration of changes in the cost function.
It extends the CRP approach introduced by Delling et al. [20], which exploits ideas
from Multi-Level Dijkstra (MLD) [22,39,43,56,57]. The algorithm has three phases:
a (potentially costly) offline metric-independent preprocessing phase, a customization
phase that handles metric-dependent preprocessing, and the (online) query phase.
Its main strength is that customization is very quick: A new cost function can be
incorporated in a few seconds, even on continental networks, while a single edge cost
can be updated in only a fewmicroseconds [20]. In this section, we tackle the problem
setting introduced in Sect. 2.1. Hence, we do not consider stops at charging stations.
In the following, we recap the preprocessing phase (Sect. 5.1) and the query phase
(Sect. 5.2) of the MLD algorithm, describing our extensions along the way.

5.1 Preprocessing and Customization

The preprocessing phase computes amultilevel overlay [43,57] of the input graphG =
(V , E). It is obtained from a nested multilevel partition of the vertices of G, defined
as follows. A partition of G is a family V = {V1, . . . , Vk} of cells Vi ⊆ V , such
that each vertex v ∈ V is contained in exactly one cell Vi , i. e., Vi ∩ Vj = ∅ for
i �= j and

⋃k
i=1 Vi = V . We call the subgraph of G induced by some cell Vi ,

with i ∈ {1, . . . , k}, the cell-induced subgraph of Vi . A (nested) multilevel partition
with L ∈ N levels is a family 	 = {V1, . . . ,VL} of partitions with nested cells, i. e.,
for each level � ∈ {1, . . . , L − 1} and cell V �

i ∈ V�, there is a cell V �+1
j ∈ V�+1 at

level � + 1 with V �
i ⊆ V �+1

j . We call V �+1
j the supercell of V �

i . For consistency, we

define V0 := {{v} | v ∈ V } and VL+1 := {V }. An edge (u, v) ∈ E is a boundary
edge (u and v are boundary vertices) on level �, if u and v are in different cells of V�.
Note that a boundary vertex of level � is also a boundary vertex of lower levels.

For a fixed level � ∈ {1, . . . , L}, the overlay graph of level � contains all edges of
G that are boundary edges of V�. Moreover, there is a shortcut edge (u, v) for every
pair u ∈ V �

i and v ∈ V �
i of boundary vertices per cell V �

i ∈ V�. This results in a
full clique of edges over a cell’s boundary vertices [20]. As preprocessing is metric
independent, no changes have to be made to adapt it to our scenario. Moreover, it
only needs to be rerun if the topology of the input changes (significantly). Since this
happens infrequently in practice, somewhat higher preprocessing times are no issue.

Customization The customization phase uses the output of the preprocessing phase
to compute the metric1 of the overlays, i. e., for each shortcut edge it must compute

1 Formally, energy consumption does not define a metric on the input graph due to negative costs and the
lack of symmetry. Nevertheless, we stick to the term as it is commonly used in the literature.

123

Algorithmica (2020) 82:1490–1546 1525

its SoC function. It proceeds in a bottom-up fashion, starting with the lowest level 1.
Within a fixed level � ∈ {1, . . . , L}, each cell V �

i ∈ V� is processed independently.
A cell V �

i is processed by running, for each boundary vertex u ∈ V �
i , a profile search

from u restricted to the subgraph induced by V �
i (i. e., it does not relax any edges

pointing outside V �
i). At every boundary vertex v ∈ V �

i , this results in a u–v profile,
which is assigned to the clique edge (u, v)ofV �

i .Note that, likeDelling et al. [20],when
processing a level � ∈ {2, . . . , L}, we make use of the already computed overlay of
level �−1 by running the profile search on this overlay, which improves customization
time significantly.

Parallelization Customization can be parallelized by distributing different cells (on
the same level) among processors. In contrast to scalar edge costs in plainCRP [20], the
complexity of SoC functions is not known in advance. Thus, our overlay uses a single
dynamic adjacency array to store breakpoints of shortcut edges. Note that updates to
this data structure must be synchronized. A common approach is using locks, which
is costly. Instead, each thread locally maintains a log of the SoC functions it has
computed. These logs are then merged sequentially after processing each level � ∈
{1, . . . , L}.

Preliminary experiments indicated that more than 80% of the functions have simple
form, so they can be compressed to constant size (see Sect. 3.2). Only for the remaining
cases a thread uses its log, while compressed functions are written to the (preallocated)
overlay directly. Unlike the preprocessing phase, customization is much faster, taking
mere seconds in practice when executed in parallel.

Implementation Details Similar to Delling et al. [20], we use a compact represen-
tation to store the overlays: Instead of keeping separate graphs, we store a common
vertex set for all levels, which is equivalent to the set of boundary vertices of V1. Only
shortcut edges are kept in a separate data structure per level, and they are organized
as matrices of preallocated contiguous memory (note that boundary edges are already
present in the input graph). Each matrix entry comes with a flag to indicate whether
it stores a compressed function or an index in the array containing the breakpoints of
the corresponding SoC function, similar to the dynamic adjacency array used during
profile search (see Sect. 3.2).

Vertices of the input graph G are represented by indices {1, . . . , |V |} in our imple-
mentation. We reorder them, such that overlay vertices of higher levels are pushed
to the front, breaking ties by cell index. Non-overlay vertices are ordered by their
level-1 cell indices. This improves spatial locality for customization and queries, and
simplifies mapping between original and overlay vertices.

When running profile searches during customization, a naïve implementation con-
structs a label per vertex of the input graph. Exploiting that search graphs are limited to
cells of the partition, we can save a significant amount of space by reducing the number
of distinct vertex labels. After reordering vertices during preprocessing, we compute
the range of vertex indices per cell and level. During customization, we can remap the
ranges of each level of the current cell to a smaller range of indices. The length of this
range depends on the maximum cell size in any of the overlays, which is known after

123

1526 Algorithmica (2020) 82:1490–1546

preprocessing. The following (mixed) variant worked best in our experiments:We only
remap bottom-level vertex indices of non-boundary vertices (the majority of vertices),
while keeping a distinct vertex label for each boundary vertex of any cell in the graph.
Thereby, we save a significant amount of space and improve locality, but keep vertex
mapping overhead limited during customization. Note that only customization on the
lowest level is affected by remapping in this variant.

To quickly reset labels of overlay vertices between different profile searches, we
exploit once more that vertices are reordered. We explicitly reset the labels of all
overlay vertices contained in the current cell (on the current level). With labels of each
level being on a contiguous range of memory, this can be done efficiently in practice.

Finally, we use clique flags [11] to reduce the number of edge scans during profile
searches. For each vertex v ∈ V in the overlay, a flag indicates if for any predecessor
vertex u ∈ V (i. e., any second to last vertex on a contributing path of the current
profile in the label of v), it holds that (u, v) is a boundary edge. Only if the flag is set,
we relax outgoing clique edges of v when it is scanned. Note that this does not violate
correctness, as there always exists an optimal path in the overlay that does not contain
two consecutive clique edges. This follows immediately from the triangle inequality
and the fact that we use full cliques in the overlay.

5.2 Queries

For a source s ∈ V , a target t ∈ V , and an SoC bs ∈ [0, M], the query operates on
a search graph G ′ consisting of (1) the overlay graph of the topmost level L , (2) all
cell-induced subgraphs in the overlays of all levels that contain s or t , and (3) the
subgraphs of the original graph induced by the level-1 cells that contain s or t . Then,
any algorithm described in Sect. 3 can be run on this search graph to get provably
optimal solutions for both query types. Also, potentials computed for the original
graph naturally carry over to the overlays. Therefore, we assume that potentials are
available in the remainder of this section. We refer to EVD running on the search
graph specified above asUnidirectionalMLD (Uni-MLD). Similarly,we refer to profile
search as Profile-MLD when run on this search graph. Note that the search graph does
not need to be constructed explicitly. Instead, the level and cell on which Uni-MLD or
Profile-MLD scan edges are determined implicitly from the partition data [20]. Just
as in plain MLD, shortcut edges e at level � ∈ {1, . . . , L} can be unpacked to obtain
the full path description after t was reached, by (recursively) running a local query on
the overlay of level � − 1, restricted to the level-� cell containing e (recall that level 0
corresponds to the original graph).

Bidirectional Search We discuss techniques to accelerate SoC queries based on
bidirectional search. Basically, bidirectional search simultaneously runs a forward
search from s and a backward search from t until a stopping condition is met. Observe
that, given a consistent potential function π onG ′, we immediately obtain a consistent
potential π̄ on its backward graph by setting π̄(v) := −π(v) for all v ∈ V . The
algorithm maximizes a tentative SoC value b∗ ∈ [0, M] ∪ {−∞} (initialized to −∞)
whenever the searches meet at some vertex v ∈ V . After stopping, the shortest path

123

Algorithmica (2020) 82:1490–1546 1527

with target SoC b∗ is obtained (if it exists) by concatenating the corresponding s–
v path and v–t path found by the searches. Unfortunately, the final SoC at t is not
known in advance, which prevents running a regular backward EVD search. Instead,
we present two approaches that augment the backward search [24]. We denote them
by Bidirectional Profile-Evaluating MLD (BPE-MLD) and Bidirectional Distance-
Bounding MLD (BDB-MLD). Both use a regular forward EVD search.

The first (straightforward) approach, BPE-MLD, runs a backward profile search
from t , which does not require an initial SoC value. It computes SoC functions fv
representing v–t profiles for all v ∈ V as vertex labels. Whenever the forward or
backward search scans an edge toward a vertex v ∈ V that has already been touched
by the opposite search, it evaluates the SoC function fv (obtained from the backward
search) at SoC b := b(v) (obtained from the forward search) and updates b∗ =
max{b∗, fv(b)}. The algorithm may stop as soon as any path it may still find has
SoC below b∗. Recall from Sect. 3.2 that the profile search uses minimum energy
consumption of a vertex label (plus a potential) as key in its priority queue. Let kF
denote the current maximum key in the queue of the forward search and let kB denote
the current minimum key in the queue of the backward search. We stop the search as
soon as the condition kF − kB ≤ max{b∗, 0} holds.

Unfortunately, running a backward profile search can be costly. Therefore, the
second (more sophisticated) approach, BDB-MLD, runs a cheaper backward search
that bounds the forward search in order to “guide” it toward t . (Note that a similar idea
is used byGutman [36].) However, we have to carefully account for battery constraints.
To do so, the backward search maintains three labels for each vertex v ∈ V , namely, a
lower and an upper bound on the cost of an energy-optimal path from v to t , denoted
c(v) and c̄(v), and an upper bound on the minimum SoC that is necessary to reach t ,
denoted b̄(v). We define c̄(v) consistently with b̄(v): An SoC of b̄(v) implies that t
can be reached from v with cost at most c̄(v). Labels are initially set to ∞, except
at t , for which they are set to c(t) = c̄(t) = b̄(t) = 0. The backward search then
runs Dijkstra’s algorithm using the labels c(·) (we use potential shifting to ensure
that the search is label setting). When scanning an edge e = (u, v) in the backward
graph, it uses its minimum energy consumption cmin

e = minb∈[0,M] b − fe(b) as edge
cost. During the same edge scan, c̄ and b̄ are computed as follows. Let bmin

e ∈ [0, M]
denote the minimum SoC that is necessary to traverse e, i. e., the smallest SoC value
for which fe is finite. Then the bound on the minimum SoC b̄(v) to travel from v

to t (via u) is determined by the maximum of bmin
e itself and the sum of the cost

ce(bmin
e) := bmin

e − fe(bmin
e) of traversing e with SoC bmin

e plus b̄(u), the minimum
SoC to get from u to t . On the other hand, the maximum cost c̄(v) at v is determined
by c̄(u) + cmax≤M

e , where cmax≤M
e is the maximum finite consumption of the edge,

i. e., the finite value that maximizes ce(b) = b − fe(b) for b ∈ [0, M]. Summarizing,
whenever the algorithm scans some edge e = (u, v) in the backward search graph,
it checks whether max{bmin

e , ce(bmin
e) + b̄(u)} ≤ b̄(v) and c̄(u) + cmax≤M

e ≤ c̄(v),
updating b̄(v) and c̄(v) if necessary.

The tentative SoC value b∗ is now maintained by the forward search and corre-
sponds to a lower bound on the target SoC of the energy-optimal s–t path, initialized
to −∞. Whenever it scans a vertex v ∈ V with SoC label b(v) that was already
visited by the backward search, it checks if b(v) ≥ b̄(v). Only in this case, it tries to

123

1528 Algorithmica (2020) 82:1490–1546

update b∗ by setting b∗ = max{b∗, b(v) − c̄(v)}. Moreover, given the current keys
kF and kB of the forward and backward search, respectively, the following test is per-
formed (independently of the previous check). The search is pruned at v (i. e., edges
outgoing from v are not scanned), if either v was scanned by the backward search
and b(v) − c(v) ≤ max{b∗, 0}, or v was not scanned by the backward search and
b(v)−kB ≤ max{b∗, 0} holds. The algorithm stops when the forward search reaches t
and determines the SoC b(t). We stop the backward search early if kF −kB ≤ 0 holds.

Parallelization To get additional speedup, we propose parallelizing the query in
a multi-core scenario. We assign different processors to the forward and backward
search, where they run independently. To update the tentative SoC value b∗ ∈
[0, M] ∪ {−∞}, each search must access vertex labels of the opposite search, poten-
tially involving a race condition. However, as long as reads to vertex labels are atomic,
race conditions can safely be ignored: The correct value b∗ will always be deter-
mined by the opposite search at a later point. Unfortunately, the backward search of
BPE-MLDmaintains non-atomic functions as vertex labels. Updating b∗ is, therefore,
restricted to the backward search (accesses to labels of the forward search are still
atomic). To ensure correctness, the forward search checks, whenever it scans a ver-
tex v ∈ V , if v has already been touched by the backward search (which is an atomic
read). If so, it adds v to a list. At the end, this list is processed sequentially, checking
if any vertex labels improve b∗. Note that this list is small in practice.

Reachability Flags If the target vertex is not reachable from the source (with the
given initial SoC), the forward search simply visits all reachable vertices, while the
backward search visits all vertices from which the target can be reached with at least
some initial SoC. To quickly identify and accelerate long-distance queries for which
the target is unreachable, we can additionally precompute reachability flags: For the
topmost level L of the partition, we keep a bit matrix, whose entry (i, j) is set if the
cell V L

j is reachable from any vertex in cell V L
i (with a full battery). To set the matrix

entries during customization, we run, for each cell V L
i at level L (in parallel), a multi-

source variant ofDijkstra’s algorithmon the level-L overlay from all boundary vertices
of the cell V L

i . (One could also interpret the search as Dijkstra’s algorithm running
from a super source that is added to the overlay together with edges to all boundary
vertices with energy consumption 0.) It uses lower bounds minb∈[0,M] b − fe(b) on
consumption as cost of a given edge e in the overlay.We set all flags (i, j) of thematrix
for which there exists a boundary vertex of cell V L

j at distance at most M . In practice,
storing these bits requires little additional space. During a query, we first check the
flag for the pair of cells containing s and t . If it is not set, we may stop immediately.

Implementation Details We reuse several techniques from the customization to fur-
ther improve queries. In particular, we exploit again that vertices are represented by
indices {1, . . . , |V |} and reordered during preprocessing. Recall that we precompute
and store the corresponding range of vertex indices for each cell and level. After a
query, we reset only the labels of the (at most two) cells per level containing s and t ,
along with all labels of vertices on the level-L overlay. We also use clique flags during

123

Algorithmica (2020) 82:1490–1546 1529

queries. Note that this becomes even simpler for SoC queries compared to profile
search, since predecessor vertices are always unique in this case (c. f. Sect. 5.1).

Additionally, we save space by storing cell indices (for each level) only at the
boundary vertices of a cell. Before running the actual query algorithm, indices of the
source and target cell (which are required to implicitly construct the search graph) are
retrieved at negligible overhead by running a DFS from both the source and the target,
until each encounter a boundary vertex.

6 Experiments

In what follows, we describe the experimental setup (Sect. 6.1). Afterwards, we
evaluate our basic algorithms (Sect. 6.2), approaches for routes with charging stops
(Sect. 6.3), and our customizable technique (Sect. 6.4). Finally, we also compare our
new algorithms to previous approaches (Sect. 6.5).

6.1 Methodology

We implemented all evaluated algorithms in C++, using g++ 4.8.5 (flag -O3) as com-
piler and OpenMP for parallelization. Obtained results were always checked against
reference implementations (typically variants of Dijkstra’s algorithm) for correctness.
Experiments were conducted on two different machines, depending on whether the
considered technique exploits parallelism. Details are given below.

• Experiments involving parallel algorithms were conducted on two 8-core Intel
Xeon E5-2670 clocked at 2.6Ghz, with 64GiB of DDR3-1600 RAM, 20MiB of
L3 cache, and 256KiB of L2 cache, hereafter denoted machine-p.

• All other experiments were conducted on a single core of a 4-core Intel Xeon
E5-1630v3 clocked at 3.7GHz, with 128GiB of DDR4-2133 RAM, 10MiB of L3
cache, and 256KiB of L2 cache, hereafter denoted machine-s.

All reported query times are average values of 1000 queries. SoC queries assume a
full battery bs = M at the source s ∈ V . Note that a lower initial SoC would only
result in faster query times.

Our main benchmark instance, named Eur-PTV, is based on the road network of
Western Europe, kindly provided by PTV AG.2 We retrieved elevation information
for the vertices from the freely available NASA Shuttle Radar Topography Mission
(SRTM) dataset.3 It covers large parts of the world with tiles at a resolution of three
arc seconds (approximately 90 meters). The elevation of a vertex is obtained by bilin-
ear interpolation from the four corners of the SRTM tile containing the vertex. We
filled (rarely) missing data samples by interpolating from neighbors We removed all
vertices from the graph where no elevation data is available (not even via sensible
interpolation).

Our energy consumption data originates from the Passenger Car and Heavy Duty
Emission Model (PHEM), developed by the Graz University of Technology [38].

2 http://www.ptvgroup.com.
3 http://srtm.csi.cgiar.org.

123

http://www.ptvgroup.com
http://srtm.csi.cgiar.org

1530 Algorithmica (2020) 82:1490–1546

PHEM is a micro-scale emission model based on backwards longitudinal dynamics
simulation. Besides other applications, PHEM is used to calculate emissions for pas-
senger cars, as well as heavy and light duty vehicles for the Handbook on Emission
Factors for Road Traffic (HBEFA) [38]. The HBEFA driving cycles cover a large
variety of road categories, slopes, speed limits, and traffic situations. These cycles
were evaluated using different EV configurations and vehicle types to generate energy
consumption estimates for all available driving situations. We carefully mapped con-
sumption data obtained from PHEM to our network by a heuristic that measures the
similarity between road segments of the network and the parameters of PHEM. We
deleted edgeswhich cannot bemapped to a PHEM road category (such as private roads
and ferries). Finally, we extracted the largest strongly connected component from the
remaining input. The resulting graph consists of 22198628 vertices and 51088095
edges.

We use two different EV models from PHEM. The first, denoted PG-16, is based
on the real production vehicle Peugeot iOn and has a battery capacity of 16kWh
(corresponding to a range of 100–150km). The second, EV-85, is based on an artificial
PHEM model [66], for which we assume a larger battery capacity of 85kWh (similar
to that of current high-end Tesla models with a range of 400–500km). To get the
best possible cruising range, we disabled auxiliary consumers in both models. Besides
extending the range, this also increases the amount of road segments where the vehicle
is able to recuperate (making the instances only “harder” for our algorithms): The
resulting amount of edges with negative energy consumption is 11.8% and 15.2%
for the model based on an Peugeot iOn and the artificial model, respectively. Edge
consumption values are stored in mWh, to avoid rounding issues along short-distance
edges.

6.2 Basic Algorithms

Weevaluate the variants of EVDand profile search discussed in Sect. 3. Since the range
of the vehicle models PG-16 and EV-85 is restricted, evaluating random queries (as
it is common) would not be meaningful: For most queries, the target vertex would be
unreachable. Further, in most cases we can easily identify such out-of-range queries
with little effort, e. g., by utilizing reachability flags; recall Sect. 5.2. Instead, we
generate in-range queries by first picking a source s ∈ V uniformly at random, from
which we run a preliminary search with initial SoC bs = M . The target t is picked
uniformly at random from its search space (i. e., all vertices within the vehicle’s range).

Evaluating Queries Table 1 reports figures for our basic algorithms and 1000 random
in-range queries. In addition to basic EVD, we ran the same queries after establishing
a global stopping criterion (denoted sc.-g, using the minimum cost c∗ of any path in
the graph for the stopping criterion) and a local stopping criterion (sc.-�, storing the
value c∗

v for every v ∈ V). We also tested the different potential functions (πv , πb,
and πh). See Sect. 3.1 for details on the different stopping criteria. Except for the basic
variant, metric-dependent preprocessing is required if edge costs change. For EVD-
sc.-g and EVD-sc.-�, customization times indicate the time to compute the values c∗

v

for each v ∈ V . For all other variants, we show the time required to compute the

123

Algorithmica (2020) 82:1490–1546 1531

Table 1 Evaluation of basic algorithms on Eur-PTV for both vehicle models

Algorithm PG-16 EV-85

Custom. Query Custom. Query

Space Time #Vertex Time Space Time #Vertex Time
(B/n) (s) Scans (ms) (B/n) (s) Scans (ms)

EVD – – 388,817 49.6 – – 4,392,002 636.5

EVD-sc.-g 0.0 2.61 321,728 40.8 0.0 3.44 2,823,076 402.8

EVD-sc.-� 4.0 2.61 196,704 24.6 4.0 3.44 2,284,079 323.5

EVD-πv 4.0 3.43 184,322 18.3 4.0 3.48 2,089,126 219.6

EVD-πb 4.0 2.61 184,164 23.0 4.0 3.44 2,137,157 295.0

EVD-πh 4.0 0.37 184,523 21.9 4.0 0.37 2,137,282 292.2

Profile-πh 4.0 0.37 192,559 31.0 4.0 0.37 2,212,806 410.6

For different variants of the EVD algorithm (employing different stopping criteria) and for each vehicle
model, we report space consumption in bytes per vertex (B/n), customization time, as well as the average
number of vertex scans and running time of queries

potential function. The space overhead is exactly four bytes (one integer) per vertex
for all variants with a stopping criterion, except EVD-sc.-g (which only keeps one
integer in total).

Regarding queries, we report the number of vertex (re-)scans and query times. It is
not surprising that the basic label-correcting approach is the slowest for both models,
although the number of vertex rescans is comparatively low (less than 10% of all
vertex scans are rescans of vertices that were already scanned before; not shown in
the table). With EVD-sc.-g, we achieve a first speedup, but the rather weak stopping
criterion still results in a large search space size. Nevertheless, observe that computing
the offset c∗ already amortizes after 15 queries on average for EV-85, while producing
virtually no space overhead. The local stopping criterion (EVD-sc.-�) yields another
improvement in running time at the cost of higher space consumption. The different
variants of vertex potentials allow for even better query times by making EVD label
setting. Somewhat surprisingly, EVD-πv yields the best times, however, with higher
variance (available from Fig. 11). Since EVD-πh is more robust and provides the best
customization time by far, we use height-induced potentials for profile search and all
algorithms tested in the remainder of this section. Finally, we see that—in contrast
to time-dependent route planning [4,19,24]—profile queries admit practical running
times in our scenario: We observe a slowdown by a factor of less than 2 compared
to EVD.

Evaluating ScalabilityWe analyze the scalability of our basic algorithms for the EV-
85model, following theDijkstra rankmethod [3,52]. Given two vertices s ∈ V and t ∈
V , the Dijkstra rank with respect to s and t is the number of vertex scans performed by
Dijkstra’s algorithm in an s–t query, presuming that the algorithm stops as soon as t is
scanned. Thus, higher ranks reflect harder queries. Given that costs can be negative in
our scenario, the label-correcting variants of EVD may scan vertices multiple times,
while vertex potentials strongly influence the order in which vertices are scanned.

123

1532 Algorithmica (2020) 82:1490–1546

Fig. 11 Running times of basic algorithms subject to Dijkstra rank (EV-85). Low ranks indicate local
queries. Battery capacity is increased to the point where range is not constrained

Hence, we use a slightly altered definition of Dijkstra rank: We order the vertices by
the time theywere last extracted from the priority queuewhen running label-correcting
EVD and determine ranks from this order. As in regular Dijkstra ranks, the maximum
rank is bounded by the graph size. For each rank in {21, . . . , 2�log |V |�}, we generate
1000 queries this way from sources chosen uniformly at random. To get meaningful
results, we increase battery capacity from 85 to 1000kWh, which corresponds to a
cruising range of roughly 5000km—enough tomake the target reachable in all queries.

Figure 11 shows resulting query times for EVD and profile search with different
potential functions in a box-and-whisker plot. Interestingly, EVD-πv has much higher
variance compared to EVD-πb and EVD-πh . Moreover, query times of EVD-πv are
lower for long-distance queries, but significantly worse for local queries of low rank.
Recall that the potential functionπv is induced by distances from a single vertex, which
results in a highly distorted search space. Apparently, the lower average query time
of EVD-πv reported in Table 1 is mostly induced by long-distance queries, whereas
more local queries are typically rather costly. For the highest ranks, median running
times of all approaches are above 2s. Profile search is consistently slower than EVD
(except EVD-πv for low ranks) by a factor of at most 2–3.

Remarks In conclusion, only a label-correcting variant of EVD that does not employ a
stopping criterion can be usedwithout preprocessing effort.Using a global value for the
stopping criterion (EVD-sc.-g) offers mild speedup at negligible space consumption.
All other methods require an additional integer value to be stored with each vertex.
Potential functions offer polynomial guarantees on running time and are slightly faster
in practice. Fastest average query times are achieved by EVD-πv after a few seconds
of customization. An alternative variant, EVD-πb, yields more robust query times and
slightly faster customization. Finally, the potential function πh requires that elevation
data of the network is available and consistent with consumption data. Yet, it offers

123

Algorithmica (2020) 82:1490–1546 1533

Table 2 Impact of core size on
performance (Ger-PTV, PG-16)

Core size Prepr. Query (ms)

ØDeg. #Vertices T. (s) CH CH+A*

0 – 176.8 526.3 1681.8

16 31,063 (0.66%) 257.5 16.3 16.9

32 5904 (0.13%) 416.7 12.0 4.9

48 3472 (0.07%) 548.5 11.2 4.2

64 2701 (0.06%) 633.7 11.8 4.1

128 2029 (0.04%) 786.8 12.6 6.4

∞ 1966 (0.04%) 832.7 12.4 8.9

Vertex contraction stopped once the average degree in the core reached
a given threshold (ØDeg.), or only charging stations were left in the
core.We report resulting core size (#Vertices), preprocessing time, and
average query times for CH as well as CH combined with A* search

the lowest customization time (less than 0.5 s) and robust query times that compete
with the other techniques. Furthermore, note that we include space overhead of four
bytes per vertex for storing the height-induced potential πh(v) = α · h(v) at each
vertex v ∈ V . If height values are already available as part of the input, we may as
well just store the single value α ∈ R, and compute π(v) on demand in the algorithm.
This reduces space overhead to a single integer value (similar to EVD-sc.-g).

6.3 Routes with Charging Stops

To analyze our algorithms that allow intermediate stops at charging stations, we con-
duct experiments on Eur-PTV and a subnetwork, Ger-PTV,which represents Germany
and consists of 4,692,091 vertices and 10,805,429 edges. Unless mentioned otherwise,
we use 13,810 charging stations (1966 of them in Germany), which we located on
ChargeMap.4 All charging stations have the SoC range [0, M]. As before, the initial
SoC in each query is bs = M . Reported query times are average values of 1000
queries, with source and target vertices picked uniformly at random. All algorithms
use height-induced potential functions.

Evaluating Queries Table 2 evaluates performance of CH for different core sizes. In
this experiment, vertex contraction on Ger-PTV was stopped as soon as the average
degree of vertices in the core reached a given threshold. Although it is possible to
contract all vertices except for charging stations at moderate preprocessing effort (less
than 15 minutes), we observe that aborting contraction earlier actually improves query
times. This is due to the fact that the number of shortcuts (and hence, the number of
edge scans during queries) is much smaller when using a larger but also sparser core
graph. Consequently, query times of CH are fastest for an average core degree of
48, while CH combined with A* search achieves best results for an average degree
of 64. Compared to a variant that does not contract any vertices and only computes
the charging station graph GS (first row of Table 2), this results in a speedup by a

4 http://www.chargemap.com.

123

http://www.chargemap.com

1534 Algorithmica (2020) 82:1490–1546

Table 3 Performance of approaches taking charging stops into account (Eur-PTV)

Techniques PG-16 EV-85

GS CH A* Ag. Prepr. (s) #V.Sc. T. (ms) Prepr. (s) #V.Sc. T. (ms)

◦ ◦ ◦ ◦ – 8,895,038 20,160.9 – 11,033,760 32,928.8

• ◦ ◦ ◦ 1487 759, 951 710.0 15,062 7,753,601 6285.7

• • ◦ ◦ 2860 8433 309.6 3246 19,616 1281.5

• • • ◦ 2860 3563 128.2 3246 10,418 297.5

• • • • 2860 1599 41.0 3246 9579 157.8

Columns GS , CH, A*, and Ag. (Aggressive A*) indicate whether a technique is enabled (•) or not (◦). For
each approach andmodel, we report preprocessing time, the number of vertex scans during queries (#V.Sc.),
and query times

factor of almost 45 for CH and 410 for CH combined with A* search. Note that A*
search does not pay off for large core sizes, as the backward profile search becomes
a bottleneck. In all following experiments that involve CH, we stop contraction on
Ger-PTV at an average core degree of 48. On Eur-PTV, we set this threshold to 32
(obtained in preliminary experiments).

Table 3 compares different approaches to compute energy-optimal routes with
charging stops on our main test instance (Eur-PTV), for both vehicle models. Applied
techniques are indicated by the four leftmost columns. The first row (no speedup tech-
nique enabled) shows our exact baseline approach introduced in Sect. 4.2. It requires no
preprocessing, but takes 20–30s to answer queries, which is rather impractical. Simply
plugging in the charging station graph GS and using the modified EVD (see Sect. 4.4)
already reduces query times significantly. However, scalability of this approach is
limited, because increasing the vehicle range affects both preprocessing (longer paths
between charging stations must be precomputed) and queries (the search in the uncon-
tracted network dominates running times). Integrating CH clearly pays off, as it further
reduces the number of vertex scans and query time after a moderate preprocessing
effort of less than an hour. Query times of CH are dominated by the search in GS .
A* search helps reducing the effort spent searching in GS and makes our approach
rather practical, with running times of less than 300ms for the artificial model. Even
though we use a formally inexact implementation, the optimal solution is found in all
queries.

The aggressive variant ofA* search further reduces query times at the cost of inexact
results, even in practice. The average relative error (not reported in the table) is 0.7%
for PG-16 and less than 0.01% for the artificial EV-85 model. This discrepancy in
relative error can be explained by the fact that a larger battery allows the EV to stick to
energy-optimal paths (fewer detours are necessary), so the quality of the bounds used
in A* search increases. Consequently, outliers for PG-16 exceed 10% in relative error
in about 1% of the cases, while even the maximum error is below 0.5% for EV-85.
For all techniques, queries for EV-85 are harder to solve. This is mostly due to the
dense charging station graph (in case of the baseline approach, more labels created
per vertex), as more charging stations are reachable from each station.

123

Algorithmica (2020) 82:1490–1546 1535

Table 4 Performance for varying distributions of charging stations (Ger-PTV, PG-16)

Scenario |S| Prepr. Queries

T. (s) |ES | #V.Sc. #E.Sc. T. (ms)

reg-cm 1966 548.5 539,145 4592 125,535 4.22

mix-cm 1966 548.1 539,145 4592 125,381 4.19

reg-r0.01 469 487.2 22,231 2234 50,070 1.30

reg-r0.1 4692 582.7 2,263,310 8904 223,779 7.97

reg-r1.0 46, 920 965.0 227,514,459 60,527 1,828,581 73.46

We investigate our fastest empirically exact approach (CH+A*). Besides timings for preprocessing and
queries, we report the number of charging stations (|S|), edges in GS (|ES |), as well as average vertex scans
(#V.Sc.) and edge scans (#E.Sc.)

EvaluatingScalabilityRunning times of all approaches are dominated by the search in
the charging station graph. Hence, we analyze the effect of different types of charging
stations, the total number of stations, and vehicle range on overall performance. In
Table 4, we evaluate the performance of our fastest empirically exact approach (CH
combined with A* search) under varying types and distributions of charging stations.
We consider five different scenarios.

The first scenario (reg-cm) uses stations from ChargeMap with default SoC ranges
Rv = [0, M] for all charging stations v ∈ S. The second (mix-cm) uses the same
stations, but assigns to each vertex v ∈ S the charging range of a regular sta-
tion (Rv = [0, M]), a supercharger that quickly charges to 80%SoC (Rv = [0, 0.8M]),
or a swapping station (Rv = [M, M]), with equal probability. The results indicate that
SoC ranges have little effect on performance. This is not surprising, since restrict-
ing the departure SoC can only reduce the search space (the effect is negligible,
though).

Furthermore, we consider random distributions of charging stations (reg-r0.01,
reg-r0.1, reg-r1.0) with default SoC ranges, where we pick 0.01%, 0.1%, and 1.0%
of the vertices in V as charging stations, respectively, chosen uniformly at random.
We observe that the number of charging stations has a more significant impact on
algorithm performance. Given that the number of edges in GS grows quadratically
in the number of charging stations, preprocessing and queries slow down for very
dense charging networks. This limits scalability, but our approach handles realis-
tic distributions of charging stations (note that for the scenario reg-1.0, the number
of charging stations is in fact higher than the current number of gas stations in
Germany).

Figure 12 shows running times of our algorithms for different battery capacities.
We use the PG-16 model, but vary its battery capacity as indicated in the plot. Without
A* search, running times roughly double with battery capacity, because GS becomes
denser and hence, the number of reachable charging stations increases. Adding A*
search, scalability improves significantly, since vertex potentials quickly guide the
search towards the target and decrease the search space in the dense subgraph GS .

123

1536 Algorithmica (2020) 82:1490–1546

Fig. 12 Running times subject
to cruising range
(Eur-PTV, PG-16). Each point
in the plot corresponds to the
median running time of 1000
queries for one of the different
approaches (CH, CH with A*,
CH with aggressive A*) and
varying battery capacities

6.4 Customizable Energy-Optimal Routes

Since our implementation of MLD exploits parallelism in both metric-dependent
preprocessing and queries, experiments reported in this section were conducted
on machine-p. As partitioning tool we used PUNCH (Partitioning Using Natural Cut
Heuristics) [21], which is explicitly developed for road networks and aims at mini-
mizing the number of boundary edges. Given a bound k̄ ∈ N, it partitions the vertices
of the input graph G into cells with at most k̄ vertices each. We proceed by first parti-
tioning the topmost level. Lower levels are computed by recursively running PUNCH
on each cell-induced subgraph (of a higher level) independently. For Europe, we use
a 4-level partition with maximum cell sizes 26, 210, 214, and 218, respectively (values
determined in preliminary experiments). Computing the partition took 24 minutes.
Considering that the road topology rarely changes (the partition needs to be updated
only when roads are built or closed), this is sufficiently fast in practice.

Evaluating Queries Table 5 reports figures for our MLD algorithms on the main
test instance Eur-PTV, using the models PG-16 and EV-85 and the same set of 1000
queries as in Sect. 6.2. Recall that the target is always reachable in these queries.
Customization times include both metric customization and potential computation
(we do not use reachability flags). For comparison, we also show results for EVD. All
algorithms use height-induced potentials. We also parallelize the computation of the
potential function, although the achieved speedup is moderate (factor of 3–4).

Regarding MLD, customization takes less than 4s when parallelized, enabling
frequent metric updates for the whole network. Executed sequentially, customization
takes 34.8 s (respective 40.4 s) for the PG-16 (EV-85) model (not reported in the table).
Thus, parallelization on 16 cores yields a very good speedup factor of about 11.
Customization of a single cell, e. g., when only local updates are required, is much
faster and takes about 100ms (not shown in the table). In all cases, customization
times for EV-85 are higher, which we attribute to its larger number of negative edges.

Space consumption is dominated by breakpoints of profiles, which are piecewise
linear functions. Most profiles (about 80%) have compressed form, so they are stored
as a single 32-bit integer. Of the remaining profiles, the majority (more than 90%)
consist of at most two breakpoints. For both models, there are only very few (below

123

Algorithmica (2020) 82:1490–1546 1537

Table 5 Evaluation of MLD approaches for both vehicle models (Eur-PTV)

Algorithm PG-16 EV-85

Custom. Query Custom. Query

Space Time #Vertex Time Space Time #Vertex Time
(B/n) (s) Scans (ms) (B/n) (s) Scans (ms)

EVD 4.0 0.19 184,523 27.48 4.0 0.19 2,137,282 369.19

Uni-MLD 13.6 3.20 900 0.37 14.5 3.67 2305 1.24

BPE-MLD 13.6 3.20 891 0.30 14.5 3.67 2194 0.92

BDB-MLD 13.6 3.20 1120 0.25 14.5 3.67 2754 0.67

Pr.-MLD 13.6 3.20 1068 0.75 14.5 3.67 2763 3.60

We report figures as in Table 1, for the same set of 1000 queries

2000 out of over 30million) shortcuts with profiles containing 10 or more breakpoints.
As a result, overhead in space consumption is moderate, requiring only a few bytes
per vertex. One can further reduce it by removing the lowest level of the partition for
the query phase, keeping it only to accelerate customization [20]: For both models,
this saves space by a factor of 2, while queries are slowed down by only about 10% on
average (not reported in the table). Furthermore, note that for all variants, we include
space overhead for storing the height-induced potential at each vertex. As mentioned
in Sect. 6.2, we can save space by just keeping a single value α ∈ R for the whole
graph. Altogether, taking these measures can reduce customization space to about four
bytes per vertex for each model.

All MLD query variants provide SoC query times of below 2ms, for both vehicle
models. Compared to EVD, this improves query times by more than two orders of
magnitude. Bidirectional search also clearly outperforms Uni-MLD. We observe that
BDB-MLD is faster than BPE-MLD by about 20–30% on average. Note, however,
that depending on the application, bidirectional search might not pay off: It is run on
two cores, but the speedup achieved is (slightly) less than 2. Finally, our approach also
enables profile queries within a few milliseconds (Pr.-MLD). Compared to unidirec-
tional SoC queries, we observe a slowdown by a factor of 2–3 on average.

Evaluating Scalability Figure 13 shows scalability of our MLD algorithms, using
the Dijkstra rank method as explained in Sect. 6.2. For the same set of 1000 random
queries per rank, we report results for Uni-MLD, BPE-MLD, BDB-MLD, and pro-
file search (Pr.-MLD). As before, we use the EV-85 model, but set battery capacity
to 1000kWh. We observe that except for very local queries (below rank 212), bidi-
rectional search always pays off. Moreover, our most sophisticated method for SoC
queries, BDB-MLD, is consistently the fastest approach for all ranks. Using BDB-
MLD, we achieve maximal query times of under 4.0ms for the highest ranks, while
Uni-MLD stays below 6.4ms. Profile search, on the other hand, is slower for all ranks
and produces most outliers. This can be explained by the fact that running times
vary with the number of breakpoints necessary to represent profiles. Thus, times may
increase for mountainous areas, where profiles likely consist of more breakpoints and
shortcut scans become particularly expensive. As a result, we obtain maximal profile

123

1538 Algorithmica (2020) 82:1490–1546

Fig. 13 Running times of MLD subject to Dijkstra rank. We use the same vehicle model and queries as in
Fig. 11. Battery capacity is increased such that range is not constrained

query times of over 70ms. Still, MLD yields a speedup of more than two orders of
magnitude compared to plain profile search.

Figure 14 shows running times subject to Dijkstra rank for the PG-16model. Again,
we use the same set of queries as in Fig. 11. However, in contrast to Fig. 13, we
enable reachability flags and keep battery capacity at 16kWh. Hence, the plot shows
the effect of reachability flags on long-distance queries for different MLD variants.
Starting with rank 218, query times drop gradually. Beyond rank 222, the target is
almost never reachable, which results in median query times of under 0.01ms for Uni-
MLD. Differences in query times between the techniques for high ranks are explained
by initialization overhead, which is more expensive for variants that employ profile
search (because dynamic data structures have to be cleared). Similar to Fig. 13, BDB-
MLD is consistently the fastest approach except for very high ranks, where queries are
always aborted after initialization, while profile search is the slowest algorithm. The
topmost level of our partition contains 99 cells, hence, reachability flags require 992

bits (less than 10kb) of space in total. Computing them in parallel took less than 5ms.

6.5 Comparison of Approaches

We compare the performance of different approaches that compute routes for EVs
(without charging stops). First, we consider the fastest previous technique to solve the
problem and the new approaches presented in this work. Second, we examine energy
consumption on paths that minimize travel time or distance.

Comparison of Speedup Techniques The fastest available approach that computes
energy-optimal routes for EVs is based onCH [29,60]. The authors adapt plainCH [33]
to the scenario of optimizing energy consumption in the following way: To avoid

123

Algorithmica (2020) 82:1490–1546 1539

Fig. 14 Running times of the PG-16 model subject to Dijkstra rank, with reachability flags enabled. As in
Fig. 11, smaller ranks indicate more local queries

costly profile computation in witness searches during preprocessing, they acquire
upper bounds on witness paths by sampling. This simplifies preprocessing, but may
result in a larger number of shortcuts. For the bidirectional CH query, they extract the
whole backward search graph with a BFS instead of running a profile search.

To compare our MLD algorithms and our own implementation of CH for EVs
with the existing method, we ran experiments on the largest instance used in the
previous works, Jap-OSM [60], which was kindly given to us by the authors. The
instance is based on an OpenStreetMap (OSM)5 export of the road network of Japan,
augmented with SRTM data. It has 25,970,678 vertices and 54,141,580 edges. Note
that these figures are slightly higher than for our main instance (Eur-PTV), however,
OSM networks are notorious for having exceptionally many vertices of low degree
that only model geometry. Taking this into account, our MLD approach uses a 4-level
partition with increased maximum cell sizes of 27, 211, 215, and 219 vertices. Using
PUNCH [21], computing the partition took less than half an hour.

Eisner et al. [29,60] use a simple consumption model, where energy consumption
of an edge e = (u, v) ∈ E is assumed to depend only on horizontal distance d(e) of
the edge and vertical heights h(u) and h(v) of the vertices. More precisely, the energy
consumption c(e) of the edge e is

c(e) :=
{

κ · d(e) + λ · (h(v) − h(u)) if h(v) − h(u) ≥ 0,

κ · d(e) + μ · (h(v) − h(u)) otherwise.
(4)

In accordance with the previous studies [60], we set κ = 0.02, λ = 1, and μ = 0.25.
Note that when applying this model to the European network, we observe that the
amount of negative edges drops to 4.4%. Further, note that a height-induced potential

5 http://www.openstreetmap.org.

123

http://www.openstreetmap.org

1540 Algorithmica (2020) 82:1490–1546

Table 6 Comparison of speedup techniques for SoC queries (Jap-OSM)

Algorithm Custom. Query

Space Time #Vertex Time
(B/n) (s) Scans (ms)

EVD 4.0 – 12,661,423 2044.63

EVD [60] 4.0 – 14,431,809 6492.58

CH [60] 23.0 14,329.87 10,024 44.93

CH (scal.) [60] 23.0 7188.77 10,024 14.15

CH [our] 44.8 1076.74 252 0.88

Uni-MLD 7.7 1.83 2196 0.67

BPE-MLD 7.7 1.83 2252 0.62

BDB-MLD 7.7 1.83 2650 0.46

For different variants and implementations of EVD, CH, and MLD, we report space consumption (in bytes
per vertex) and time for preprocessing. For queries, we report the average number of vertex scans and
timings. For figures taken from existing work [60], we also report scaled timings

follows from themodel (we setα := −μ). Therefore, computing the potential function
does not require any customization time. Similar to Eisner et al. [29,60], we assume
a very large battery capacity. As a result, the target is always in range and we disable
reachability flags.

Table 6 reports results on Jap-OSM for our implementation of CH following the
description in Sect. 4.4, but contracting all vertices in the graph because there are
no charging stations (S = ∅), as well as different variants of MLD. The experiments
were conducted onmachine-p. Additionally, the table shows figures for existing imple-
mentations of EVD and CH [60]. Since they were obtained on slower machines, we
report scaled timings. There are two established approaches to scale running times
between machines: (1) Using running times of a common baseline algorithm, (2) hav-
ing access to the same hardware for scaling experiments. Eisner et al. [29,60] use two
machines (an AMD Opteron 6172 with 2.1GHz for preprocessing, an Intel i3-2310M
with 2.1GHz for queries), so we resort to both approaches. For query times of CH, we
obtain a scaling factor based on the EVD implementations, maintaining their speedup
of about 145. Since we have an Opteron 6172 available, scaling of preprocessing time
is done by our own scaling experiment. Although not specifically mentioned, we infer
that the existing EVD implementation uses a stopping criterion: The reported search
space is about 56% of the graph size [29,60].

At first glance, Jap-OSM seems to be harder than Eur-PTV: Our EVD variant scans
more vertices and has higher query times on Jap-OSM, due to the larger graph size and
unlimited range. However, we observe that all MLD variants perform better on Jap-
OSM than on Eur-PTV. Observe that the modeling overhead in OSM has an impact
only on the lowest level of the partition. Regarding CH, our implementation is sig-
nificantly faster in both preprocessing and queries, but has higher space consumption
compared to the existing variant [29,60]. The latter can be explained by the fact that,
unlike Eisner et al., we contract all vertices of the graph and maintain via vertices for
every breakpoint of profiles (which is simple but also redundant). However, contract-

123

Algorithmica (2020) 82:1490–1546 1541

Table 7 Comparison of energy-optimal routes to other metrics

Instance Travel time Distance

Unr. Extra energy Extra time Unr. Extra energy Extra dist.

Eur-PTV (PG-16) 56% 41% 47% 23% 11% 5%

Eur-PTV (EV-85) 62% 61% 62% 28% 16% 4%

Jap-OSM – – – 0% 25% 11%

For routes that minimize travel time or distance, respectively, we report the percentage of routes that become
infeasible (Unr.), the additional amount of energy spent, and the loss in the respective metric (travel time
or distance) when using an energy-optimal path

ing all vertices clearly pays off in terms of query performance: The average search
space is smaller by a factor of 40 compared to the existing implementation. Interest-
ingly, MLD provides the best query times. At the same time, its (metric-dependent)
preprocessing is faster than CH by more than a factor of 500 and requires a frac-
tion of the space. Even when run on a single core, customization of MLD still only
requires 19.6 s and is more than 50 times as fast as CH preprocessing. Our findings
add to previous observations that, compared to CH [20], separator-based approaches
are more robust towards metrics other than (unconstrained) travel time [11,20,25].
Moreover, CH suffers from its bidirectional nature, since the backward profile search
becomes the major bottleneck of SoC queries. Consequently, CH outperforms MLD
when answering profile queries (not reported in the table). In this case, average query
times of CH are only slightly higher (0.98ms), while MLD is slowed down by a factor
of 3 (1.83ms). Thereby, our techniques also outperform a previous implementation of
profile search based on CH by Schönfelder et al. [55] (they report an average query
time of 19ms on a much smaller graph and mention that their implementation is not
finely tuned).

Comparison of Metrics We also compare energy-optimal routes to those that mini-
mize travel time and covered distance, respectively. Table 7 shows results for Eur-PTV
and Jap-OSM. We use the same 1000 queries as in Table 1 for Eur-PTV and Table 6
for Jap-OSM, respectively. For each metric, we report the percentage of queries where
the target becomes unreachable when optimizing travel time or distance. For cases
where the target is reachable, we show the average amount of extra energy spent on
the quickest or shortest route (instead of the energy-optimal one) and the extra time or
distance requiredwhen using the energy-optimal route. Travel timeswere not available
for Jap-OSM, so we only evaluate the distance metric on this instance.

As driving speed has a huge impact on energy consumption, minimizing the travel
time greatly reduces range. Consequently, more than half of the targets that are reach-
able on an energy-optimal route become unreachable when taking the quickest route
instead. Even if the target is reachable on both routes, optimizing one criterion greatly
increases the other. This effect becomes less significant when comparing energy con-
sumption to distance. This indicates that there is a strong correlation between energy
consumption and covered distance. However, since there are many other factors—

123

1542 Algorithmica (2020) 82:1490–1546

such as road type and slope—that influence energy consumption, minimizing travel
distance still fails to retain reachability of the target in more than 20% of the cases
on Eur-PTV. In conclusion, explicitly optimizing for energy consumption clearly pays
off and increases the range of an EV significantly.

7 Final Remarks

Westudied the computation of energy-optimal routes for EVs.Key challenges included
negative costs to model recuperation and battery capacity constraints. We examined
SoC profiles that model these constraints and proved that their complexity is at most
linear in the graph size. Furthermore, we derived basic algorithms to solve two rele-
vant query types, namely, SoC queries and profile queries. We investigated different
strategies to establish stopping criteria and developed a polynomial-time algorithm
for profile queries.

We also discussed energy-optimal routes with charging stops and showed how
profile search can be utilized to solve the problem in polynomial time. The problem
setting can be seen as a transition between (efficiently solvable) energy-optimal routes
without charging stops [29,51] and NP-hard time-constrained variants that include
charging stops [8,62] (which generalize the problem setting considered in this work).
Our findings prove that it is indeed the addition of a second optimization criterion
(travel time) that makes the latter settings NP-hard, rather than the incorporation of
charging stations in combination with battery constraints. We also proposed a practi-
cal variant, which (empirically) computes optimal results in well below a second on
realistic, large-scale networks.

Finally, we presented algorithms based on theCRP approach [20], which in addition
to the above challenges, handle frequently changing metrics in a sound manner. We
integrated profile search into customization and discussed a nontrivial adaptation of
bidirectional search. On the continental network of Europe, our approach incorporates
new metrics within seconds and answers queries in less than a millisecond—making
it the fastest available technique for energy-optimal route planning for EVs.

Future Work Next steps include the integration of turn costs (in terms of energy
consumption), where recuperation due to brakingmust be taken into account. Realistic
models are important to produce meaningful results in practice, as energy-optimal
routes often resort to minor roads comprising many turns.

Regarding routes with charging stops, interesting lines of future include reducing
the number of edges in the overlay of charging stations for better performance and
scalability of CH [20,39,57] or integration with Customizable Contraction Hierarchies
(CCH) [25] for faster preprocessing. Itmight also beworthwhile to extend the proposed
A* search to an adaptation ofALT [34] for faster queries.Moreover, one could consider
a profile variant of this problem setting, i. e., ask for an SoC profile with intermediate
charging stops. The problem setting could also be extended to account for time spent at
charging stations in optimization, e. g., by restricting the number of charging stops [61].
Note that adding travel time (including charging time) as an optimization criterion
typically results in NP-hard problem settings [8,62].

123

Algorithmica (2020) 82:1490–1546 1543

Finally, note that customization has to be rerun whenever the battery capacity of
a vehicle changes. However, custom capacities may be desirable in many situations,
e. g., when modeling battery aging or user constraints on minimum SoC during a ride.
Therefore, one could make use of a more flexible representation of profiles that is
independent of the capacity M ∈ R≥0 (e. g., by explicitly storing lengths of certain
important subpaths of contributing paths; see the characterization of SoCprofiles given
by Lemma 1 in Sect. 2.2). Then, the parameter M could be part of the query input.

Acknowledgements We would like to thank Raphael Luz for providing the consumption data [38,66],
Renato Werneck for running PUNCH [21], Moritz Kobitzsch for interesting discussions, and Christian
Schulz and Dennis Luxen for providing Buffoon [53] and OSRM [48], respectively, which we used in
our preliminary experiments. We thank Sabine Storandt for making Jap-OSM available, and Konstantinos
Demestichas for providing sample data on energy consumption of EVs.

Funding Funding was provided by Deutsche Forschungsgemeinschaft (Grant No. WA 654/23-1).

References

1. Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited:
optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on
Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–
316. Springer (2010)

2. Atallah, M.J.: Some dynamic computational geometry problems. Comput. Math. Appl. 11(12), 1171–
1181 (1985)

3. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D.,
Werneck, R.F.: Route Planning in Transportation Networks, Lecture Notes in Computer Science, vol.
9220, pp. 19–80. Springer (2016)

4. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contrac-
tion hierarchies. ACM J. Exp. Algorithmics 18, 1.4:1–1.4:43 (2013)

5. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In:
Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in
Computer Science, vol. 7501, pp. 169–180. Springer (2012)

6. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierar-
chical and goal-directed speed-up techniques for Dijkstra’s algorithm. ACM J. Exp. Algorithmics 15,
2.3:1–2.3:31 (2010)

7. Baum,M.: Engineering Route PlanningAlgorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe
Institute of Technology (2018)

8. Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops
for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015)

9. Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for
electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for
TransportationModeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics
(OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)

10. Baum,M.,Dibbelt, J., Pajor, T.,Wagner,D.: Energy-optimal routes for electric vehicles. In: Proceedings
of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS’13), pp. 54–63. ACM (2013)

11. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route planning in road net-
works with user preferences. In: Proceedings of the 15th International Symposium on Experimental
Algorithms (SEA’16), Lecture Notes in Computer Science, vol. 9685, pp. 33–49. Springer (2016)

12. Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path
algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on
Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–
11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)

123

1544 Algorithmica (2020) 82:1490–1546

13. Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric
vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experi-
mental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp.
19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)

14. Bellman, R.: On a routing problem. Q Appl. Math. 16(1), 87–90 (1958)
15. Cherkassky, B.V., Georgiadis, L., Goldberg, A.V., Tarjan, R.E.,Werneck, R.F.: Shortest-path feasibility

algorithms: an experimental evaluation. ACM J. Exp. Algorithmics 14, 2.7:1–2.7:37 (2010)
16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,

Cambridge (2009)
17. Davenport, H., Schinzel, A.: A combinatorial problem connected with differential equations. Am. J.

Math. 87(3), 684–694 (1965)
18. Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical

Report, Massachusetts Institute of Technology (2004)
19. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)
20. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks.

Transp. Sci. 51(2), 566–591 (2017)
21. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts.

In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’11), pp. 1135–1146. IEEE (2011)

22. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing,
dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. Amer-
ican Mathematical Society (2009)

23. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th
Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp.
52–65. Springer (2007)

24. Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol.
5868, pp. 207–230. Springer (2009)

25. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM J. Exp. Algorithmics
21, 1.5:1–1.5:49 (2016)

26. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
27. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)
28. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings

of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science
(IWCTS’13), pp. 25–30. ACM (2013)

29. Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In:
Proceedings of the 25thAAAIConference onArtificial Intelligence (AAAI’11), pp. 1108–1113. AAAI
Press (2011)

30. Fiori, C., Ahn, K., Rakha, H.A.: Power-based electric vehicle energy consumption model: model
development and validation. Appl. Energy 168, 257–268 (2016)

31. Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, Cali-
fornia (1956)

32. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorith-
mica 68(4), 1075–1097 (2014)

33. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using con-
traction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

34. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceed-
ings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165.
SIAM (2005)

35. Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and efficient electric vehicle
routes. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (GIS’14), pp. 193–202. ACM (2014)

36. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road net-
works. In: Proceedings of the 6thWorkshop onAlgorithm Engineering&Experiments (ALENEX’04),
pp. 100–111. SIAM (2004)

37. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

123

Algorithmica (2020) 82:1490–1546 1545

38. Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the
HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009)

39. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries.
ACM J. Exp. Algorithmics 13, 2.5:1–2.5:26 (2009)

40. Huber, G., Bogenberger, K.: Long-trip optimization of charging strategies for battery electric vehicles.
Transp. Res. Record: J. Transp. Res. Board 2497, 45–53 (2015)

41. Johnson, D.B.: A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)
42. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)
43. Jung, S., Pramanik, S.: An efficient path computationmodel for hierarchically structured topographical

road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)
44. Kluge, S., Sánta, C., Dangl, S., Wild, S.M., Brokate, M., Reif, K., Busch, F.: On the computation of the

energy-optimal route dependent on the traffic load in Ingolstadt. Transp. Res. Part C: Emerg. Technol.
36, 97–115 (2013)

45. Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles
in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent
Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011)

46. Liao, C.S., Lu, S.H., Shen, Z.J.M.: The electric vehicle touring problem. Transp. Res. Part B:Methodol.
86, 163–180 (2016)

47. Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation
systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress
(IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014)

48. Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’11),
pp. 513–516. ACM (2011)

49. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)
50. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21(3), 295–319

(1991)
51. Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for

electric vehicles. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11),
pp. 1402–1407. AAAI Press (2011)

52. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Proceedings of
the 13th Annual European Conference on Algorithms (ESA’05), Lecture Notes in Computer Science,
vol. 3669, pp. 568–579. Springer (2005)

53. Sanders, P., Schulz, C.:Distributed evolutionary graph partitioning. In: Proceedings of the 14thMeeting
on Algorithm Engineering & Experiments (ALENEX’12), pp. 16–29. SIAM (2012)

54. Schönfelder, R., Leucker,M.:Abstract routingmodels and abstractions in the context of vehicle routing.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp.
2639–2645. AAAI Press (2015)

55. Schönfelder, R., Leucker,M.,Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings
of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer
Science, vol. 8662, pp. 21–30. Springer (2014)

56. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: an empirical case study from public
railroad transport. ACM J. Exp. Algorithmics 5, 12:1–12:23 (2000)

57. Schulz, F.,Wagner,D., Zaroliagis,C.:Usingmulti-level graphs for timetable information in railway sys-
tems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02),
Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002)

58. Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and
replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)

59. Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric
vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational
Transportation Science (IWCTS’12), pp. 20–25. ACM (2012)

60. Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013)
61. Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceed-

ings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press
(2012)

62. Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid vehicles.
Transp. Res. Part B: Methodol. 103, 111–135 (2017)

123

1546 Algorithmica (2020) 82:1490–1546

63. Sun, Z., Zhou, X.: To save money or to save time: intelligent routing design for plug-in hybrid electric
vehicle. Transp. Res. Part D: Transp. Environ. 43, 238–250 (2016)

64. Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive Routing and Recharging Policies for Electric
Vehicles. Working paper no. 14-02, Northwestern University, Illinois (2014)

65. Sweeting,W.J., Hutchinson, A.R., Savage, S.D.: Factors affecting electric vehicle energy consumption.
Int. J. Sustain. Eng. 4(3), 192–201 (2011)

66. Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric
vehicles save energy? In: Proceedings of the 12th International Conference on ITSTelecommunications
(ITST’12), pp. 232–237. IEEE (2012)

67. Wang, Y., Jiang, J., Mu, T.: Context-aware and energy-driven route optimization for fully electric
vehicles via crowdsourcing. IEEE Trans. Intell. Transp. Syst. 14(3), 1331–1345 (2013)

68. Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport–Schinzel sequences by segments.
Discret. Comput. Geom. 3(1), 15–47 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Moritz Baum1 · Julian Dibbelt2 · Thomas Pajor2 · Jonas Sauer1 ·
Dorothea Wagner1 · Tobias Zündorf1

B Moritz Baum
moritz.baum@kit.edu

Jonas Sauer
jonas.sauer2@kit.edu

Dorothea Wagner
dorothea.wagner@kit.edu

Tobias Zündorf
tobias.zuendorf@kit.edu

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2 Sunnyvale, USA

123

http://orcid.org/0000-0003-0898-7244

	Energy-Optimal Routes for Battery Electric Vehicles
	Abstract
	1 Introduction
	2 Integrating Battery Constraints
	2.1 Model and Problem Statement
	2.2 On the Complexity of Profiles

	3 Basic Algorithms
	3.1 SoC Queries
	3.2 Profile Queries

	4 Energy-Optimal Routes with Charging Stops
	4.1 Model and Problem Statement
	4.2 Baseline Approach
	4.3 A Polynomial-Time Algorithm
	4.4 A Heuristic Implementation

	5 Extending Customizable Route Planning
	5.1 Preprocessing and Customization
	5.2 Queries

	6 Experiments
	6.1 Methodology
	6.2 Basic Algorithms
	6.3 Routes with Charging Stops
	6.4 Customizable Energy-Optimal Routes
	6.5 Comparison of Approaches

	7 Final Remarks
	Acknowledgements
	References

