
Speed-Consumption Tradeoff for Electric Vehicle
Route Planning∗

Moritz Baum1, Julian Dibbelt1, Lorenz Hübschle-Schneider2,
Thomas Pajor3, and Dorothea Wagner1

1 Department of Informatics, Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe, Germany
firstname.lastname@kit.edu

2 Department of Computer Science, University of Leicester
Leicester LE1 7RH, United Kingdom
lorenz@4z2.de

3 Microsoft Research, Mountain View, CA 94043, USA
tpajor@microsoft.com

Abstract
We study the problem of computing routes for electric vehicles (EVs) in road networks. Since their
battery capacity is limited, and consumed energy per distance increases with velocity, driving
the fastest route is often not desirable and may even be infeasible. On the other hand, the
energy-optimal route may be too conservative in that it contains unnecessary detours or simply
takes too long. In this work, we propose to use multicriteria optimization to obtain Pareto sets
of routes that trade energy consumption for speed. In particular, we exploit the fact that the
same road segment can be driven at different speeds within reasonable intervals. As a result, we
are able to provide routes with low energy consumption that still follow major roads, such as
freeways. Unfortunately, the size of the resulting Pareto sets can be too large to be practical.
We therefore also propose several nontrivial techniques that can be applied on-line at query time
in order to speed up computation and filter insignificant solutions from the Pareto sets. Our
extensive experimental study, which uses a real-world energy consumption model, reveals that
we are able to compute diverse sets of alternative routes on continental networks that closely
resemble the exact Pareto set in just under a second—several orders of magnitude faster than
the exhaustive algorithm.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases electric vehicles, shortest paths, route planning, bicriteria optimization,
algorithm engineering

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.138

1 Introduction

Personal electromobility has gained substantial momentum in recent years, which demands
for novel route planning algorithms, considering factors such as speed and terrain. Although
the past decade has seen a great amount of research conducted in the area of route planning
in general, most of it shares one trait, though, and that is a focus on conventional vehicles

∗ Support by DFG grant WA 654/16-1, by the EU FP7/2007-2013 under grant agreement no. 609026
(project MOVESMART), and by the Federal Ministry of Economics and Technology under grant
no. 01ME12013 (project iZeus). This work was done while the third and fourth authors were at
Karlsruhe Institute of Technology. It is based on a Bachelor thesis of the third author [18].

© Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 138–151

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.138
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 139

using internal combustion engines. With electric vehicles, however, new factors become
important that must be considered when planning routes: Battery capacity and thus cruising
range are severely limited, while driving down-hill and breaking allow for recuperation of
energy. Charging is a time-consuming process and therefore not viable en route. It turns out
that traditional route planning techniques do not suffice, and new approaches are required.

A recent algorithmic survey for route planning in road networks is given by Bast et al. [2].
While many of the methods optimize a single criterion (typically travel time), some also
extend to multiple criteria by utilizing multi-dimensional vertex labels that represent sets of
Pareto-optimal paths [15, 21]. While theoretically hard [13], in some transportation networks
this problem may actually be “feasible in practice” [22]. For general networks, the recent
NAMOA* algorithm is an extension of A* search [16] to the multicriteria case [20], where
vertex potentials help reducing the number of label scans. This approach was also applied to
road networks [19] and later parallelized [24, 10]. For the case that the metric is a linear
combination of two or more criteria, practical algorithms are available as well [14, 12].

For electric vehicles, most papers have focused on the integration of battery capacity
constraints and negative edge weights (a result of recuperation) into classical single-criterion
route planning algorithms optimizing energy consumption [9, 23, 4]. However, such routes
may have disproportionate detours: driving slower saves energy at the cost of greatly longer
travel time. Storandt [25] therefore optimizes energy consumption, but bounding the amount
by which travel time may increase. Instead, we would like to present users a reasonably-sized
set of routes that differently trade energy consumption and driving time, enabling them to
adequately pick the one most suitable to them. Moreover, all known approaches assume
a fixed driving speed per road segment, neglecting attractive solutions that still use major
roads (such as freeways) but save energy by actually driving below the posted speed limits.

In this work, we compute comprehensive sets of routes that reasonably trade speed and
energy consumption. Not only do we consider travel time and energy consumption as criteria,
but also explore the possibility of driving the same road segment at different speeds (within
reasonable bounds). Even though this extended scenario greatly increases query complexity,
we demonstrate that it is practically possible to compute such routes for electric vehicles on
large road networks. Applying several nontrivial improvements at query time, we reduce
the (empirical) running time of our algorithm by several orders of magnitude (still computing
full Pareto sets). Adding heuristic filtering techniques, we further reduce running times to
750ms for continental road networks and a realistic electric vehicle model.

The paper is structured as follows. Section 2 provides necessary foundations. Section 3
describes our basic approach to compute the full set of Pareto-optimal paths. It also describes
extensions that improve the algorithm’s running time while retaining correctness. Section 4
introduces heuristic approaches, which aim to reduce the size of the Pareto sets by keeping
only the most significant solutions. An experimental evaluation of all presented techniques is
given in Section 5, while Section 6 concludes with final remarks.

2 Preliminaries

We consider directed, weighted (multi-)graphs G = (V,E) where E ⊆ V × V is a multiset of
edges (i. e., there is a mapping m : E → N denoting the multiplicity of each edge). In other
words, parallel edges are allowed. We call u the tail and v the head of an edge (u, v), and
vertices are neighbors if they are connected by an edge. Moreover, a weight function ω : E → Z
assigns weights to every edge inG. An s–t-path inG is a sequence Ps,t = [s = v1, v2 . . . , vk = t]
of vertices, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1. If s = t, we call Ps,t a cycle. A path is

ATMOS’14

140 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

s

t

−2

4

−1

bmin

c

rmax
b

γb(P)

M

M
0

∞

bmin

c
rmax

Figure 1 Left: An s–t-path P with edge weights −2, 4, −1. Right: The cost γb(P) of traversing P
subject to the battery’s state of charge b at the source vertex s. A state of charge below bmin is not
sufficient to reach t, i. e., γb(P) = ∞. In case b exceeds M − |rmax|, the overcharging constraint
limits recuperation on the first edge, which leads to a higher total cost γb(P). This typical shape of
the cost profile was first observed in Eisner et al. [9]. The cost of any (feasible, nonnegative) path is
within the shaded area.

called simple if it contains no cycles. The weight (or cost) ω(Ps,t) =
∑k−1
i=1 ω(vi, vi+1, i) of a

path Ps,t is the sum of its edge weights. A potential function φ : V → R on the vertices is
called feasible, if ω(u, v)− φ(u) + φ(v) ≥ 0 for all e ∈ E. Any feasible potential induces a
graph G′ of nonnegative reduced edge weights by shifting the weight of every edge e = (u, v),
setting ω′(e) = ω(u, v)− φ(u) + φ(v). This definition extends to paths canonically.

Dijkstra’s algorithm [7] is a well-known approach to solve the shortest path problem on
weighted graphs in (almost) linear time. It maintains (scalar) distance labels d(·) for each
vertex, initially set to 0 for the source vertex s and ∞ otherwise. In each iteration, the
algorithm extracts a vertex u with minimum d(u) from a priority queue (initialized with s).
It then scans all edges (u, v): if d(u) + ω(u, v) improves d(v), it updates d(v) accordingly
and adds (or updates) v in the priority queue. If all edge weights are nonnegative, Dijkstra’s
algorithm has the label-setting property: Once a vertex v has been extracted from the queue,
the distance label d(v) is final and corresponds to the shortest path distance to v. The actual
path can be retrieved by maintaining parent pointers during the algorithm.

In this work, we consider graphs representing road networks with two associated weight
functions on the edges: travel time τ and energy consumption γ. Specific travel time
and energy consumption values are denoted by x and y, respectively. We say that a
tuple d1 = (x1, y1) dominates a tuple d2 = (x2, y2) if d1 is smaller in both criteria than d2
and strictly better in at least one. A set D of tuples is called a Pareto set if there are no two
tuples d1, d2 ∈ D such that d1 dominates d2. Similarly, a path Ps,t is called nondominated, if
no other path exists that dominates Ps,t with respect to τ(Ps,t) and γ(Ps,t). The bicriteria
shortest-path (BSP) algorithm [15, 21] is a natural extension of Dijkstra’s algorithm to
the bicriteria setting. Instead of scalar values, the label sets D(·) of a vertex may hold an
arbitrary number of labels (x, y). The algorithm starts with empty label sets, adding the
label (0, 0) to D(s). Then, it works along the lines of Dijkstra’s algorithm, but propagating
labels instead of label sets: In each step, it extracts the label d with smallest associated key
from a priority queue, scanning all corresponding outgoing edges (u, v). For each, it generates
a new label d′ by adding the costs of (u, v) to d. If d′ is not dominated by any label in D(v),
it adds d′ to D(v), removing any dominated labels (by d′) in D(v) on the fly. If edge weights
of G are nonnegative, and the priority of labels in the queue is a linear combination of their
costs, the algorithm is label-setting, that is, once a label has been extracted from the queue,
it cannot be dominated anymore.

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 141

As mentioned before, recuperation of energy may lead to negative γ-values on some edges.
(Note that cycles with negative weight are physically ruled out.) While in this setting the BSP
algorithm is still correct, it loses its label-setting property. Also, since the battery has a
limited capacity M (which cannot be exceeded), we must take additional battery constraints
into account: for an s–t path Ps,t to be feasible, the battery’s state of charge, denoted b,
has to remain within the interval [0,M] at every vertex along Ps,t. Battery constraints
can be satisfied by additional checks during the query with negligible overhead; see [9, 4].
Figure 1 shows how consumed energy along a path is influenced by battery constraints. For
a study of different strategies to cope with negative edge weights in the context of electric
vehicle routing, see Artmeier et al. [1]. They conclude that for metrics representing energy
consumption, a label-correcting variant of Dijkstra’s algorithm outperforms the Bellman-Ford
algorithm [5] in practice (despite its exponential theoretical worst-case running time).

3 Problem Statement and Basic Approach

Traditional route planning algorithms compute routes on a model that assumes a fixed travel
speed on each road segment of the network, usually reflected by the posted speed limit
including (typical or historic) traffic conditions. Therefore, optimizing energy consumption
in this model will likely result in unattractive routes that follow slow roads in order to save
energy. On the other hand, energy could also be saved by following fast roads but driving
below the speed limit: The onboard navigation system could instruct the user about the
recommended speed in order to meet a certain total energy consumption goal.

In our model we define with each edge of the graph an interval of minimum and maximum
speeds, given by the input. Thereby, we only consider a limited number of discrete speed
values in the interval (typically in 10 kph steps) in order to make it easy for the driver to
comply with them. Hence, given the road network, we create a multigraph G = (V,E),
in which each road segment of the input is added to E as many times (weighted with
appropriate τ and γ values) as there are possible speeds to traverse it. Now, given vertices
s and t, our goal is to compute the full Pareto set of all nondominated paths from s to t.
Note that besides providing alternative routes, we can also use this Pareto set to derive
constrained paths, such as the one with minimal travel time subject to energy consumption at
most c (for some c ∈ [0,M]). In what follows, we present our basic algorithm for computing
full Pareto sets, and then describe several improvements that help reducing the query time.

Basic Approach. To solve the problem, we can immediately use the BSP algorithm (cf. Sec-
tion 2) on the multigraph G. Recall however, that because the graph may contain negative
edge weights (due to recuperation), the algorithm is not label-setting. By these means we
cannot use target pruning: a label that is dominated by the current (tentative) target label
set may still belong to a Pareto-optimal path with a suffix containing negative consumption
values. However, as negative cycles are ruled out, we can safely use a technique called hopping
reduction [8]: after extracting a label (x, y) and before scanning an edge (u, v), we check
whether v is the predecessor on the current path to u. If this is the case, traversing this edge
provably cannot improve the label set at v. We can thus discard it.

Label-Setting Property. Next, we describe a way to obtain feasible vertex potential func-
tions. These will help to make the algorithm label-setting, which, in turn, enables target
pruning. While any feasible (cf. Section 2) potential for the energy consumption function
γ would be sufficient to achieve our goal, we present a potential function that addition-

ATMOS’14

142 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

ally helps guide the search toward the target, similarly to A∗-search [16]. Building upon
a technique by Tung and Chew [26], we compute the potential by running two Dijkstra
queries prior to the BSP algorithm. Both queries work on the reverse graph (i. e., the input
graph with all edges reversed), starting from the target vertex t. The first uses the (scalar)
edge consumption values and computes labels dγ(·) at all vertices. Note that this query is
actually label-correcting. We prune the search whenever a label exceeds the battery capacity,
however, for correctness we must ignore the overcharging constraint (thereby obtaining lower
bounds on consumption). The second query uses travel times to compute labels dτ (·), and is
restricted to those vertices in G that have been reached by the first query. Since both queries
optimize a single criterion within a limited range around t, their running time is negligible
compared to the subsequent BSP query.

Given the labels of both queries, we obtain at every vertex v potentials φτ (v) = dτ (v) for
travel time, and φγ(v) = dγ(v) for energy consumption. Since the potentials constitute lower
bounds on both costs from v to t, feasibility directly follows from the triangle inequality. We
now make the BSP query label-setting by adjusting the key of labels (x, y) in the priority
queue to be a linear combination of the reduced costs (of its corresponding path) according
to our potentials φτ and φγ . The following Theorem 1 formally proves that this is indeed
sufficient to make the algorithm label-setting.

I Theorem 1. For a label (x, y) at vertex v, let the priority queue key be defined as λ(x+
φτ (v)) + µ(y + φγ(v)) (with λ, µ ∈ R≥0). Then the BSP algorithm is label-setting.

Proof. Assume to the contrary, that a label (x, y) at a vertex v is dominated at some
point after being extracted from the queue. Since (reduced) weights are positive, keys of
subsequently extracted labels have increasing keys. Hence, the label is dominated after
extracting a label (x′, y′) (at some neighbor u of v) with greater or equal key. Without loss
of generality, let λ = 1, then we have

x′ + φτ (u) + µ(y′ + φγ(u)) ≥ x+ φτ (v) + µ(y + φγ(v)). (1)

On the other hand, after scanning an outgoing edge (u, v), the label (x, y) is dominated,
i. e., x′ + τ(u, v) ≤ x and y′ + γ(u, v) ≤ y (and in at least one case, equality must not hold).
However, due to feasibility of the potential, we know that τ(u, v) ≥ φτ (u)− φτ (u) holds for
travel time. Plugging this bound into the domination condition (and proceeding analogously
for consumption) yields

x′ + φτ (u) ≤ x+ φτ (v) and (2)
y′ + φγ(u) ≤ y + φγ(v). (3)

However, demanding that inequality holds in Equations (2) or (3) immediately contradicts
Equation (1). This completes the proof. J

Target Pruning. Potentials enable target pruning as follows. Whenever the algorithm is
about to add a label (x, y) to a label set at vertex v, it first checks if the label (x+ φτ (v), y+
φγ(v)) is dominated by any label of the target’s label set D(t). In this case, it discards (x, y):
the distances φτ (v) = dτ (v) and φγ(v) = dγ(v) yield lower bounds on the cost of any path
from v to t, hence, (x, y) cannot be part of the Pareto-optimal solution at t.

We can further exploit the two performed extra queries to strengthen our target pruning.
As we already computed the fastest paths from reachable vertices to t (in the second query),
we may quickly compute the energy consumption ymax of the fastest s–t path by traversing

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 143

its edges, applying battery constraints accordingly. We then add a “virtual” solution (0, ymax)
to D(t), which is only used for target pruning in the subsequent BSP algorithm. (Note that
no label dominated by (0, ymax) can be part of a Pareto-optimal solution.) The same cannot
be done for the energy-optimal path as easily, since the lower bounds from the first query
are not tight; in fact, battery constraints may not only imply a different consumption along
the path, but even render it infeasible.

Contracting Vertices with Two Neighbors. Adding parallel edges to the graph may greatly
increase the number of Pareto optimal solutions. This becomes particularly evident for
long sequences of vertices with parallel edges: Assume a chain of n vertices, each connected
to its (at most) two neighbors by k edges. At every vertex u, the BSP algorithm scans k
edges (u, v) for each label in the label set D(u), each possibly creating a new label at v. Thus,
in the worst case we get Θ(kn) nondominated labels at the last vertex of the chain. Indeed,
by these means the sizes of the Pareto sets depend on the level of detail present in the model
of the road network, rather than its structure. Also, requiring users to frequently adjust their
driving speed on long road segments is unreasonable. We therefore contract (some) of these
vertices. More precisely, we remove v from the graph and for each pair of edges e1 = (u, v)
and e2 = (v, w), we add (u,w) to E, iff the driving speeds of e1 and e2 coincide. By these
means, the number of edges can only decrease. Note that we do not contract vertices that
represent intersections, or at which the road category or speed limit changes (see Section 5).

Subgraph Extraction. We can improve locality of the BSP algorithm as follows. After
running the two initial Dijkstra searches, we extract the (comparatively small) induced
subgraph of the reachable vertices. More precisely, we run Dijkstra’s algorithm from s, using
a linear combination of the reduced weights for every edge (u, v), i. e., λ(τ(u, v)− φτ (u) +
φτ (v)) + µ(γ(u, v) − φγ(u) + φγ(v)). Thereby, whenever we extract a vertex, it (and its
incident edges) are immediately added to a search graph G′. Also, we prune at vertices at
which the lower bound on consumption (induced by φγ(·)) exceeds that of the (previously
computed) fastest route. As a result, the graph G′ is small and its vertices are arranged in
Dijkstra rank order. This greatly improves spatial locality of the subsequent BSP query,
which we now run on G′ instead of G.

4 Heuristic Improvements

All aforementioned techniques preserve the correctness of the algorithm, i. e., they compute
full Pareto sets. However, label set sizes still grow quickly with distance from s (exponentially
in the worst case). Therefore, computing the full Pareto set is prohibitive for long-range
queries. In what follows, we present several heuristic techniques that aim to reduce label set
sizes by discarding labels at certain points during the query. Though we drop exactness, our
experimental evaluation (cf. Section 5) shows that they still provide high-quality solutions
while greatly improving performance. We present three independent techniques in turn,
which can be combined to improve running time further.

Early Aborting. When extracting a label d at some vertex u and scanning parallel edges
with head vertex v, we abort the scan at the first (newly generated) label that is dominated
by the label set at v, i. e., no more edges with head v are scanned for the label d. The
intuition of this early aborting technique is that, locally, the tentative labels created by

ATMOS’14

144 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

parallel edges usually differ only slightly, and the effect on solution quality is little. Despite
the simplicity of this method, its impact on running time is notable (see Section 5).

Relaxing Dominance. A common technique to heuristically reduce the size of large Pareto
sets is to relax dominance. For an overview of common notions of relaxed dominance and an
experimental comparison, see Batista et al. [3]. In this work, we consider ε-dominance: For
given nonnegative values ετ and εγ , a label (x′, y′) ε-dominates a label (x, y) iff (x′−ετ , y′−εγ)
dominates (x, y). Applying this rule, new labels (x, y) are added to an existing label set only
if they are not ε-dominated by any of its labels. In other words, we add the label (x, y) only
if it yields a significant improvement. The input parameters ετ and εγ control the amount
by which dominance is relaxed.

Label-Discarding Techniques. The next strategy to reduce label set sizes periodically
discards insignificant labels from the label sets simultaneously at all vertices of the graph.
However, arbitrarily removing labels may lead to infinite loops in the algorithm. Hence, we
first establish a sufficient condition that guarantees algorithm termination. We then present
two discarding techniques, which obey the termination condition.

To see why removing labels can cause infinite loops, consider the following simple example.
Take two adjacent vertices u and v with label sets D(u) = {(x, y)} and D(v) = ∅. Scanning
the label (x, y) will generate a new label (x′, y′) at D(v). If the label (x, y) is cleared
before (x′, y′) is scanned, the algorithm will reinsert a new label (x′′, y′′) into D(u). Now,
clearing D(v) will exactly recreate the initial configuration, potentially causing an infinite
loop in the algorithm.

We now show that we can remedy this issue and, more generally, always guarantee
algorithm termination, if the lexicographically smallest label is kept in each label set during
the discarding process.

I Theorem 2. If the graph contains no negative edge weights, all cycles in the graph have
positive weights, and, for each label set, the (lexicographically) smallest label is never discarded,
the BSP algorithm terminates.

Proof. We show that after a finite number of extractions, the queue of the BSP algorithm
is empty, thus, implying algorithm termination. Recall that the queue operates on single
labels, and each label corresponds to a distinct path in the graph. Also, since new labels
are created by appending edges to existing paths, every distinct path in the graph (more
precisely, the label representing it) is added to the queue at most once. To prove the claim,
it suffices to show that the number of distinct inserted paths is finite.

If discarding is not applied, only labels representing simple paths are inserted into the
queue; labels of paths containing cycles are always dominated by those representing the same
path, but excluding all cycles. In this case termination follows immediately, since there is
only a finite number of simple paths in the graph. With discarding applied, however, we can
no longer guarantee that a label in the queue corresponds to a simple path, e. g., if the label
representing its simple subpath has been removed previously.

However, we show that for every label, the (reduced) cost (of both τ and γ) of its path is
bounded. Recall that the lexicographically smallest label is never discarded from a label set.
Consider an arbitrary (nonempty) label set D(v), and let k(v) denote the key of its smallest
label. At some point (after a finite number of extractions), the minimum key in the queue
exceeds k(v). This is because keys of inserted labels increase due to nonnegative reduced
edge weights and strictly positive cycles, while k(v) can only decrease. Let d(v) denote the

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 145

smallest label in D(v) at this point. This label can only be removed from the label set D(v) if
it is dominated. Hence, after a finite number of extractions, no labels representing s–v-paths
dominated by d(v) are added to D(v). Therefore, every label must have bounded costs.

It remains to show that the number of paths that are not dominated by d(v) is finite.
This, however, is easy to see, since every path in the graph is composed of a simple path and
an arbitrary numbers of cycles attached to it. As every cycle has strictly positive weight, only
a finite number of cycles can be added to a simple path before it is dominated by d(v). J

Next, we present two approaches for periodically discarding labels. Both are applied
every k iterations of the algorithm (where k is a tuning parameter), removing insignificant
labels from all label sets that have been modified since the previous discarding procedure.

The first method attempts to identify clusters of labels, from which it deletes all but a small
number of “representative” ones. We implement this method by using DBSCAN (Density-
Based Spatial Clustering of Applications with Noise), a known approach for clustering [11].
In general it takes as input a set of points (of some metric space) and two parameters: a
threshold distance ε and a minimum neighborhood size k. Initially, each point is its own
cluster and marked unvisited. While there are unvisited points, the algorithm picks one
and checks whether its number of neighbors (i. e., points at distance at most ε) is at least k.
In this case, the algorithm joins the clusters of the point and its neighbors, recursing on
each newly-added neighbor. In our implementation, we use the Euclidean distance according
to (scaled) energy consumption and travel time as metric. For each cluster, we keep every
i-th label, including the smallest and largest ones (wrt. lexicographic order; i being a tuning
parameter). The running time of the algorithm is in O(n logn) [11], and it requires dynamic
data structures, such as a queue of unvisited neighbors when growing clusters. Also, labels
are discarded from clusters based on lexicographic order, rather than a quality measure.

Next, we propose delta discarding, which aims at discarding labels based on relative quality
measures. For a given label set it scans labels (x, y) in ascending order, comparing each with
its (lexicographic) predecessor (xpre, ypre). It does so by evaluating the differences ∆x =
|x− xpre| and ∆y = |y − ypre|. If both are sufficiently small, we discard one label. Assume,
without loss of generality, that y < ypre (hence, x > xpre). To decide which label to discard,
we consider the ratio ∆c/∆t. If it is below a predefined threshold, i. e., little overhead in
consumption achieves a high gain in travel time, we discard (x, y), as (xpre, ypre) provides
the better tradeoff. Otherwise, we discard (xpre, ypre). Note that this algorithm sweeps over
the label set only once (presuming it is sorted), with little computational overhead per label.

5 Experiments

We implemented all algorithms in C++, using clang++ 3.4.1 (flags -O3) as compiler, run on
one core of a dual 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz with 64 GiB of
DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache.

Input Data. Our experiments are based on road network data which is kindly provided
by PTV AG for scientific use. Elevation information stems from the Shuttle Radar To-
pography Mission (SRTM) data version 4.1, freely available from the CGIAR Consortium
for Spatial Information.1 It covers large parts of the world with a resolution of three arc
seconds (≈ 90 meters at the equator). We delete areas from the graph for which elevation

1 http://srtm.csi.cgiar.org/

ATMOS’14

http://srtm.csi.cgiar.org/

146 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Table 1 Evaluating our exact BSP algorithm. We use a battery capacity of 4 kWh on 100 random
queries. The columns PE (parallel edges), A* (goal-directed search), TP (target pruning), and
HR (hopping reduction) indicate whether the respective improvement is enabled (•) or not (◦).

improvements subgraph extr. BSP algorithm

PE A* TP HR #vert. time [ms] # extr. # comp. # sol. time [ms] spdup

◦ ◦ ◦ ◦ 9524 206.7 277 k 16M 18 151 —
• ◦ ◦ ◦ 9524 220.2 13 218 k 152 132M 1 300 261 641 1.0
• • ◦ ◦ 1921 221.9 2 558 k 5 310M 1 300 12 648 20.7
• • • ◦ 1921 222.0 197 k 593M 1 300 710 368.5
• • • • 1921 222.1 197 k 593M 1 300 700 373.8

information was missing in the data (removing large parts of Scandinavia). Also, we do not
consider private roads and ferries, as we have no energy consumption values available for
those. For all edges in the input graph, we define an interval of admissible driving speeds
depending on the speed limit and the road type. We bound the minimum admissible speed
such that traffic flow is still maintained and also by a threshold below which no more energy
is saved. For example, we set the minimum speed on motorways to 90 kph. Within these
speed intervals, we add parallel edges for every step of 10 kph. We then contract vertices
with two neighbors subject to the following conditions. First, their number of incoming and
outgoing edges needs to be identical. Second, all edges must share the same road category,
with corresponding consumption values having the same sign (note that this is a necessary
condition to retain correctness in the presence of battery constraints). From this graph we
extract the largest strongly connected component for our experiments. It has 19,046,204
vertices and 66,297,320 edges (44,675,948 unique edges). About 11% of the edges have a
negative consumption value.

The energy consumption data originates from PHEM (Passenger Car and Heavy Duty
Emission Model) [17], developed by the Graz University of Technology. PHEM is a microscale
emission model based on backwards longitudinal dynamics simulations. Among others, it
contains electric vehicle energy consumption values for a large variety of traffic situations,
road categories, speed limits, and slopes. We carefully map these values to our network
by measuring the similarity of road segments from the PTV data and the parameters of
PHEM. The vehicle chosen for our experiments is a Peugeot iOn, for which highly detailed
consumption data is available in PHEM. Its battery capacity is 16 kWh.

Evaluating the Exact Algorithm. The first experiment considers the performance of our
exact BSP algorithm and its improvements from Section 3. Here, we use a smaller battery
capacity of 4 kWh, since running times for 16 kWh are in the order of hours (for plain BSP). For
each variant, we evaluate (the same) 100 queries with source and target vertices s, t selected
uniformly at random. We pick s and t such that t is always reachable from s (otherwise,
the first Dijkstra query during initialization would quickly determine that the target is
unreachable). For all queries, we assume that the vehicle battery is fully charged (thereby
maximizing range). Based on preliminary experiments, we solely use the energy consumption
value of labels as key in the priority queue, which turned out as fastest.

Table 1 reports figures for several variants of BSP, each computing the full Pareto set.
We indicate whether the following improvements are active (•) or not (◦): goal-directed
search (A*), target pruning (TP) and hopping reduction (HR). The table also reports the

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 147

average time to extract the subgraph and its size (#vert.), the average number of queue
extractions (# extr.), the average number of label comparisons during BSP (#comp.), the
average size of the Pareto set at t (# sol.), the running time, and the speedup (spdup). In
addition, the first (PE disabled) row shows BSP for the case that no parallel edges are added
to the graph, i. e., the driving speed on each road segment is fixed to the speed limit.

We observe that adding parallel edges greatly increases the number of nondominated
solutions and, hence, query complexity. This justifies our approach: Many viable solutions
are not captured when fixed speeds on the edges are presumed. Subgraph extraction takes
around 220ms on average, resulting in a search graph containing 1921 vertices (9524 vertices
without A*, as no pruning is applied during subgraph extraction in this case). Making the
algorithm label-setting (A* enabled), improves the average running time by an order of
magnitude and greatly decreases the number of extracted vertices and label comparisons.
Adding target pruning, further accelerates the algorithm by another order of magnitude. On
the other hand, hopping reduction turns out to be of little benefit. Since our implementation
quickly detects dominated labels (by maintaining sorted label sets), hopping reduction saves
only few label comparisons at the additional cost of checking the label’s parent pointer.
Summarizing, we observe that already for such short-range queries (the battery charge is
only 4 kWh), the exact Pareto sets contain over a thousand solutions on average, justifying
the use of our heuristics.

Evaluating the Heuristics. This experiment uses a battery capacity of 16 kWh and evaluates
the impact of the heuristics from Section 4. Before discussing performance, we define their
parameters (a detailed evaluation of the parameters follows later) and explain how we evaluate
the quality of the obtained solutions.

Regarding ε-dominance, we set ετ = 1.6 s and εγ = 4.0Wh. Recall that this indicates
the minimum cost by which two routes have to differ in order to be included in a solution.
For DBSCAN, initial experiments showed that requiring two points within a neighborhood
of 1000 units works well for most queries. A unit is either 1mWh (energy consumption)
or 0.4ms (travel time). Recall that we use Euclidean distance according to these units as
metric. For each cluster, we keep the (lexicographically) first and last label together with
every fifth label of the cluster. Finally, for delta discarding, we set a difference of 1.0 s (time)
and 3.0Wh (energy consumption) as similarity criteria. We set the threshold that determines
which labels to keep to 2.5Wh/s (9 kW). Both discarding techniques are applied every 28 queue
extractions (set to 210 if discarding is combined with another heuristic).

Regarding solution quality, we use two measures. The first considers how well the solution
of a heuristic covers the optimal paths (of the exact algorithm). The second measure evaluates
the relative error in travel time and energy consumption for the Pareto set.

For coverage we compare the set of nondominated paths Pheu from a heuristic to the
exact Pareto set Popt from the the exhaustive BSP algorithm at t. We do so by first
determining, for each path Pi ∈ Pheu, its most similar path P ′i ∈ Popt according to the
weighted (by geographical length len) Sørensen-Dice index [6], which is defined for paths P1, P2
as d(P1, P2) = 2 len(P1 ∩ P2)/(lenP1 + lenP2). The similarity of Pheu and Popt is then the
accumulated similarity of each previously matched pair Pi, P ′i , that is, d(Pheu,Popt) =
2

∑
i len(Pi ∩ P ′i)/

∑
i(len(Pi) + len(P ′i)). Note that d ∈ [0, 1] (larger values are better).

To measure relative errors of Pareto sets, we use the S-metric [27]: Given a Pereto set P ,
consider the rectangles Ri enclosed by each point Pi ∈ P and a fixed reference point P ∗.
We set P ∗ = (tmax,M), where tmax is the (maximum) travel time of the energy-optimal
path and M the battery capacity. (Note that the rectangle enclosed by the points (0,−M)

ATMOS’14

148 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Table 2 Evaluating our heuristics on 100 random queries with a battery capacity of 16 kWh.
Columns EA (early aborting), DB (DBSCAN), ∆ (delta discarding), εD (ε-dominance) indicate
whether a technique is used (•) or not (◦). We always enable all improvements from Table 1.

heuristics query performance solution quality

EA DB ∆ εD #extr. # comp. # sol. time [ms] cov. [%] err. [%]

◦ ◦ ◦ ◦ 32 697 k 487 054M 11 867 808 993 100.0 0.00
• ◦ ◦ ◦ 21 056 k 170 843M 7 664 295 974 99.6 0.13
◦ • ◦ ◦ 10 617 k 139 539M 9 871 413 169 97.4 0.76
• • ◦ ◦ 9 823 k 66 229M 6 159 220 198 97.9 0.72
◦ ◦ • ◦ 722 k 2 243M 1 964 3 106 97.5 0.82
• ◦ • ◦ 618 k 949M 1 474 1 898 98.0 0.75
◦ ◦ ◦ • 995 k 315M 333 1 618 99.2 0.35
• ◦ ◦ • 703 k 158M 248 1 149 96.3 1.93
◦ ◦ • • 294 k 60M 227 750 97.6 0.79
• ◦ • • 215 k 23M 140 644 95.1 2.45

and P ∗ bounds the objective space.) Then, the S-metric S(P) is defined as the area of
⋃
iRi,

i. e., the size of the set of points dominated by P , and the relative error of a Pareto set Pheu
is 1− S(Pheu)/S(Popt). Note that relative errors are in [0, 1], and smaller values are better.

Table 2 reports results on 100 random queries for a vehicle with a battery capacity
of 16 kWh. Regarding query performance, the table reports the average number of queue
extractions (# extr.), the average number of label comparisons (# comp.), the average number
of solutions (# sol.), and the average running time (which includes initialization). Regarding
quality, the table reports the average path coverage (cov.) and the relative error of the
Pareto set (err.). Extracting the subgraph takes under 500ms (marking 33 580 vertices on
average). We see that early aborting yields a speedup of more than two compared to the
basic approach, with only little loss in quality. On the other hand, DBSCAN has similar
running times, but with significantly lower quality in both dimensions. Delta discarding
and ε-dominance yield even faster queries, achieving speedups by more than two orders of
magnitude. However, ε-dominance computes solutions of higher quality with much smaller
Pareto sets. Note that the error of suboptimal solutions for ε-dominance is actually bounded
by ε. We also evaluate the combination of several heuristics. Early aborting improves
running times of the discarding techniques by up to a factor 1.9 with negligible effect on
solution quality. The fastest combination is delta discarding with ε-dominance, yielding
query times of under 800ms. Note that in this case, the initialization phase (Dijkstra runs
and subgraph extraction) become the major bottleneck. All aforementioned combinations
produce solutions of excellent quality, covering more than 97.5% of all Pareto-optimal paths
with an average relative error below 1%. On the other hand, early aborting increases the
error significantly (to up to 2.45%), if it is combined with ε-dominance. We conclude, that
using delta discarding with ε-dominance, we are able to provide solutions of very good quality
in well under a second.

Finally, Figure 2 evaluates different parameters for the heuristics from Table 2. It plots
the relative error of the solution subject to the running time of the algorithm. Labels at
points of discarding techniques depict the (base-2) logarithm of the discarding frequency.
Labels at points of ε-dominance depict a factor ε, such that ετ = ε · 0.4 s and εγ = ε · 1.0 kWh.
The discarding frequency for combinations that include ε-dominance is always 210, as this

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 149

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

query time [s]

re
la
tiv

e
er
ro
r
[%

]
baseline with EA
∆-disc. with EA
DBSCAN with EA
ε-dom. with EA
ε-dom., ∆-disc. with EA

8
10 12

14 16
18

8

10
12

14
16

18

8

10

8

10

1
4

10

1

4

10

14

10
1

4

10

Figure 2 Error subject to query time for the heuristic approaches for different parameter choices,
indicated by labels at points of the plot. They represent the (base-2) logarithm of discarding
frequency for discarding techniques, and a parameter ε with ετ = ε · 0.4 s and εγ = ε · 1.0 kWh for
ε-dominance and combinations of ε-dominance and discarding (discarding frequency was fixed to 210

in this case). Note that the point corresponding to the baseline algorithm is not contained in the
plot (as it is beyond the visible region).

slightly outperforms other frequencies. The plot indicates that ε-dominance provides the
best quality. Also, by varying the dominance parameters, we can easily trade query time
and solution quality. Combining ε-dominance with delta discarding provides even faster
queries with smaller error (for similar query times). Considering delta discarding on the
other hand, early aborting greatly improves running time, with little impact on solution
quality. Moreover, we can reduce the discarding frequency in order to decrease errors (at the
cost of additional running time).

6 Conclusion

This paper dealt with computing sets of routes for electric vehicles that trade travel time
and energy consumption via Pareto optimization. In the process, we are—to the best of our
knowledge—the first to explicitly consider driving road segments at different speeds (below
the limit) in order to save energy. Since by that the number of solutions increases significantly,
we also proposed several improvements and heuristics, which (in their combination) accelerate
query times (for the 16 kWh battery) from hours to just under a second with very little error
in solution quality. This makes our approach practical, e. g., for onboard navigation systems.

ATMOS’14

150 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Future work includes preprocessing for further speedup, enabling real-time applications.
We are also interested in incorporating turn costs. This would make the routes more realistic,
possibly even eliminating some insignificant Pareto-optimal solutions with tiny detours.

References
1 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The

Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles. In Proceedings
of the 33rd Annual German Conference on Advances in Artificial Intelligence, volume 6359
of Lecture Notes in Computer Science, pages 309–316. Springer, 2010.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

3 Lucas S. Batista, Felipe Campelo, Frederico G. Guimarães, and Jaime A. Ramírez. A
Comparison of Dominance Criteria in Many-Objective Optimization Problems. In IEEE
Congress on Evolutionary Computation, pages 2359–2366. IEEE, 2011.

4 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 54–63. ACM Press,
2013.

5 Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

6 Lee R. Dice. Measures of the Amount of Ecologic Association between Species. Ecology,
26(3):297–302, 1945.

7 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

8 Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-Criteria Shortest
Paths in Time-Dependent Train Networks. In Proceedings of the 7th Workshop on Exper-
imental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages
347–361. Springer, 2008.

9 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Network. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence. AAAI Press, 2011.

10 Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel Bi-objective Shortest Paths
Using Weight-Balanced B-trees with Bulk Updates. In Proceedings of the 13th Interna-
tional Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in
Computer Science, pages 111–122. Springer, 2014.

11 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), pages
226–231. AAAI Press, 1996.

12 Stefan Funke and Sabine Storandt. Polynomial-Time Construction of Contraction Hier-
archies for Multi-criteria Objectives. In Proceedings of the 15th Meeting on Algorithm
Engineering and Experiments (ALENEX’13), pages 31–54. SIAM, 2013.

13 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

14 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with Flexible
Objective Functions. In Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX’10), pages 124–137. SIAM, 2010.

15 Pierre Hansen. Bricriteria Path Problems. In Multiple Criteria Decision Making – Theory
and Application –, pages 109–127. Springer, 1979.

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 151

16 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

17 Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University
of Technology, Graz, 2009.

18 Lorenz Hübschle-Schneider. Speed-Consumption Trade-Off for Electric Vehicle Routing.
Bachelor thesis, Karlsruhe Institute of Technology, 2013.

19 Enrique Machuca and Lawrence Mandow. Multiobjective Heuristic Search in Road Maps.
Expert Systems with Applications, 39(7):6435–6445, 2012.

20 Lawrence Mandow and José-Luis Pérez-de-la-Cruz. Multiobjective A* Search with Consis-
tent Heuristics. Journal of the ACM, 57(5):27:1–27:24, 2010.

21 Ernesto Queiros Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 26(3):236–245, 1984.

22 Matthias Müller–Hannemann and Karsten Weihe. Pareto Shortest Paths is Often Feasible
in Practice. In Proceedings of the 5th International Workshop on Algorithm Engineering
(WAE’01), volume 2141 of Lecture Notes in Computer Science, pages 185–197. Springer,
2001.

23 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence. AAAI Press, 2011.

24 Peter Sanders and Lawrence Mandow. Parallel Label-Setting Multi-Objective Shortest
Path Search. In Proceedings of the 27th International Parallel and Distributed Processing
Symposium (IPDPS’13), pages 215–224. IEEE Computer Society, 2013.

25 Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, pages 20–25. ACM Press, 2012.

26 Chi Tung Tung and Kim Lin Chew. A multicriteria Pareto-optimal path algorithm. Euro-
pean Journal of Operational Research, 62(2):203–209, 1992.

27 Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach. Evolutionary Computation, IEEE
Transactions on, 3(4):257–271, 1999.

ATMOS’14

	Introduction
	Preliminaries
	Problem Statement and Basic Approach
	Heuristic Improvements
	Experiments
	Conclusion

