
Shortest Feasible Paths with Charging Stops
for Battery Electric Vehicles∗

Moritz Baum
Karlsruhe Institute of

Technology (KIT)
moritz.baum@kit.edu

Julian Dibbelt
Karlsruhe Institute of

Technology (KIT)
dibbelt@kit.edu

Andreas Gemsa
Karlsruhe Institute of

Technology (KIT)
gemsa@kit.edu

Dorothea Wagner
Karlsruhe Institute of

Technology (KIT)
dorothea.wagner@kit.edu

Tobias Zündorf
Karlsruhe Institute of

Technology (KIT)
zuendorf@kit.edu

ABSTRACT
We study the problem of minimizing overall trip time for
battery electric vehicles (EVs) in road networks. As bat-
tery capacity is limited, stops at charging stations may be
inevitable. Careful route planning is crucial, since charging
stations are scarce and recharging is time-consuming. We
extend the Constrained Shortest Path (CSP) problem for
EVs with realistic models of charging stops, including varying
charging power and battery swapping stations. While the
resulting problem is NP-hard, we propose a combination
of algorithmic techniques to achieve good performance in
practice. Extensive experimental evaluation shows that our
approach (CHArge) enables computation of optimal solu-
tions on realistic inputs, even of continental scale. Finally,
we investigate heuristic variants of CHArge that derive high-
quality routes in well below a second on sensible instances.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, network problems; G.2.3 [Discrete Mathemat-
ics]: Applications

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
route planning, road networks, speedup technique, shortest
paths, electric vehicles, energy consumption, charging station

∗Supported by EU FP7, grant no. 609026 (MOVESMART).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’15, November 3–6, 2015, Bellevue, WA, USA
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-3967-4/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2820783.2820826

1. INTRODUCTION
Electromobility promises independence of fossil fuels, zero

(local) emissions, and higher energy-efficiency, especially for
city traffic. Yet, most of the significant algorithmic progress
on route planning in road networks [2] has focused on conven-
tional combustion-engine cars. EVs, however, have limited
driving range, charging stations are still much rarer than gas
stations, and recharging is time-consuming. Thus, routes can
become infeasible (the battery runs empty), and fast routes
may be less favorable when accounting for recharging time.

Related work. Classic route planning approaches apply
Dijkstra’s algorithm [10] to a graph representation of the
transportation network. For faster queries, speedup tech-
niques [2] have been proposed, with different benefits in terms
of preprocessing time and space, query speed, and simplicity.
A* Search [21] uses vertex potentials to guide the search to-
wards the target. A successful variant, ALT (A*, Landmarks,
Triangle inequality) [18], obtains good potentials from pre-
computed distances. Contraction Hierarchies (CH) [16], on
the other hand, iteratively contract vertices during prepro-
cessing, maintaining distances between all remaining vertices
by adding shortcut arcs where necessary. The CH query
is then bidirectional, starting from source and target, and
proceeds only from less important to more important ver-
tices. Combining both techniques, Core-ALT [3] contracts
all but the most important vertices, performing ALT on the
remaining core graph. This approach can also be extended
to more complex scenarios, such as edge constraints (mod-
eling, e. g., maximum allowed vehicle height or weight) [15].
More recently, techniques (including variants of CH and ALT)
were introduced that allow an additional customization after
preprocessing, to account for dynamic or user-dependent
metrics [6, 9, 11]. Also, approaches towards extended scenar-
ios exist, such as shortest via paths [1, 8] or batched shortest
paths [7]. Here, a common approach is to make use of a (rel-
atively fast) target selection phase, precomputing distances
to relevant points of interest to allow for faster queries. How-
ever, the techniques mentioned above were only evaluated for
single-criterion search (where distance between two vertices
is always a unique scalar value). For multi-criteria scenar-
ios, on the other hand, problem complexity and solution
sizes increase significantly, and practical approaches are only



known for basic problem variants [13, 14]. See [2] for a more
complete overview of techniques and combinations.
For EVs, the battery must not deplete, but energy is recu-

perated when braking (e. g., going downhill), up to the max-
imum capacity. These battery constraints must be checked
during route computation. This can be done implicitly, by
weighting each road segment with a consumption profile,
mapping current state of charge (SoC) to actual consump-
tion wrt. constraints [5, 12]. Still, both preprocessing and
queries are slower, compared to the standard shortest path
problem, if battery constraints have to be obeyed [5, 12, 30].
Several natural problem formulations specific to EV routing
exist. Some optimize energy consumption [5, 12, 28], often,
however, resulting in routes resorting to minor (i. e., slow)
roads to save energy. Constrained Shortest Path (CSP) [20]
formulations ask to find the most energy-efficient route with-
out exceeding a certain driving time—or finding the fastest
route that does not violate battery constraints [30]. Simi-
larly, one can compute all trade-offs between driving time
and energy consumption (or a subset for faster queries, but
dropping optimality [4]). Another approach separates queries
into two phases, optimizing driving time and energy con-
sumption, respectively [19]. Techniques presented in [4, 19]
allow for reasonably fast queries (even without preprocssing),
but results are not optimal in general (i. e., there might be
paths with lower trip time that respect battery constraints).
Without recharging, large parts of the road network are

simply not reachable by an EV, rendering long distance trips
impossible. (For conventional cars, broad availability of gas
stations and short refuel duration allow to neglect this in
route optimization.) Charging stations have been considered
by [19, 29, 30] under the simplifying assumption that using
a charging station always results in a fully-recharged battery,
and that the charging process takes constant time (indepen-
dent of the initial SoC). As such, feasible paths between
stations are independent of source and target, hence eas-
ily precomputed. However, this assumption only holds for
battery swapping stations, which are still an unproven tech-
nology and business model. For regular charging stations,
charging time depends on the desired SoC. Moreover, while
nearly linear for low SoC, the charging rate decreases when
approaching the battery limit. Thus it can be reasonable to
only charge up to a fraction of the battery’s limit. In [31],
this behavior is modeled by combining a linear with an ex-
ponential function for high SoC. In [25], recharging above
80% SoC is suppressed altogether. However, neither ap-
proach was shown to scale to road networks of realistic size.
Also, while omitting the possibility of charging beyond 80%
might be appropriate for regions well covered with charging
stations, it drastically decreases reachability in regions with
only few charging stations, where recharging to a full battery
can become inevitable.

Our Contribution. In this work, we extend the CSP prob-
lem to planning routes that, while respecting battery con-
straints, minimize overall trip time, including time spent at
charging stations. Our solution handles all types of stations
accurately: battery swapping stations, regular charging sta-
tions with various charging powers, as well as superchargers.
In particular, charging times are not independent of the
remaining SoC when arriving at a charging station. Addi-
tionally, the charging process can be interrupted as soon as
further charging would increase the arrival time at the target.

Since the resulting problem is NP-hard, we do not guarantee
polynomial running times. However, carefully incorporating
recharging in speedup techniques, enables us to solve the
problem optimally and within seconds, even for continental
road networks. For even faster queries, we propose heuristic
approaches that offer high (empirical) quality. Extensive
experiments on detailed and realistic data show that our
approach, while designed to solve a more complex problem,
clearly outperforms and broadens the state-of-the-art.

Outline. Section 2 sets necessary notation. Section 3 speci-
fies the problem formulation, while Section 4 presents our
basic approach. In Section 5, we propose speedup techniques.
Section 6 introduces heuristics, which drop correctness for
faster queries. Section 7 experimentally evaluates all ap-
proaches. We close with final remarks in Section 8.

2. PRELIMINARIES
We consider directed, weighted graphs G = (V,A), with

two arc weight functions d : A → R≥0 and c : A → R, rep-
resenting driving time and energy consumption on an arc,
respectively. Note that consumption can be negative due to
recuperation (though cycles with negative consumption are
physically ruled out). An s–t-path in a graph G is defined
as a sequence P = [s = v1, v2 . . . , vk = t] of vertices, such
that (vi, vi+1) ∈ A for 1 ≤ i ≤ k − 1. If s = t, we call P a
cycle. Given two paths P = [v1, . . . , vi] and Q = [vi, . . . , vk],
we denote by P ◦Q := [v1, . . . , vi, . . . , vk] their concatenation.
The driving time on a path P is d(P ) =

∑k−1
i=1 d(vi, vi+1).

For energy consumption this is more involved: the battery
has a limited capacity M (which can neither be exceeded nor
drop below zero), so we must take battery constraints into
account. To reflect battery constraints on an s–t-path P , we
define its consumption profile fP : [0,M ]→ [−M,M ] ∪ {∞}
that determines the actual consumption depending on the
SoC βs at s, so the SoC at t is βt = βs−fP (βs); see Figure 1
for an example. We use the value ∞ to indicate that the
SoC at s is not sufficient to reach t, i. e., P is not feasible
for the corresponding SoC at s. As shown in [12], fP can
be represented using only three values, namely, the mini-
mum SoC inP ∈ [0,M ] required to traverse P , its energy
consumption costP ∈ [−M,M ] (which can be less than inP
due to recuperation), and the maximum possible SoC after
traversing P , denoted outP ∈ [0,M ]. We then have

fP (β) :=


∞ if β < inP ,
β − outP if β − costP > outP ,
costP else.

For an arc a ∈ A, fa is given by costa := c(a), ina :=
max{0, c(a)}, and outa := min{M,M − c(a)}. For two con-
sumption profiles fP and fQ of paths P and Q, we obtain
the linked profile fP◦Q by setting

inP◦Q := max{inP , costP + inQ}
outP◦Q := min{outQ, outP − costQ}

costP◦Q := max{costP + costQ, inP − outQ}.

An example of two consumption profiles as well as the result
of linking them is shown in Figure 1.
Given a graph, two (nonnegative) functions (representing

weight and consumption) on its arcs, and vertices s and t,
the Constrained Shortest Path Problem asks for a path of



· · · · ·u v w x y2– -3– -2– 3–

Linking

1 2 3 4

−1

0

1

2

3

4
∞

fP (β)

ou
t P

costP

inP

1 2 3 4
−1

0

1

2

3

4
∞

fQ(β) ou
t Q

costQinQ

1 2 3 40

1

2

3

4
∞

fP◦Q(β)
ou

t P
◦Q

costP◦QinP◦Q

Figure 1: Two consumption profiles fP , fQ (for
paths P = [u, v, w] and Q = [w, x, y]) and the re-
sulting profile fP ◦Q after linking them. The battery
capacity isM = 4. The first profile fP is represented
by costP = −1, inP = 2 and outP = 4, the pro-
file fQ is given by costQ = 1, inQ = 1 and outQ = 1.
Linking these profiles yields costP ◦Q = 1, inP ◦Q = 2
and outP ◦Q = 1. (Observe that costP ◦Q is greater
than the sum costP + costQ = 0.)

minimum weight such that its consumption does not exceed
a certain bound. While being NP-hard [20], CSP can be
solved using a (exponential-time) bicriteria variant [26] of
Dijkstra’s algorithm [10]. In our scenario, this algorithm
maintains a label set L(·) of labels (tuples of driving time
and SoC) for each v ∈ V . A label (Pareto) dominates an-
other label of the same vertex, if it is better in one criterion
and not worse in the other. Initially, all label sets are empty,
except for the label (0, βs) at the source s, which is also
added to a priority queue. In each step, the algorithm set-
tles the minimum label ` of the queue. This is done by
extracting the label ` = (τ, β) (associated to some vertex u),
and scanning all arcs (u, v) outgoing from u. If the new
label `′ := (τ + d(u, v), β − c(u, v)) is not dominated by any
label in L(v), it is added to L(v) (removing labels dominated
by `′ from L(v)) and the queue. Using driving time as key
in the priority queue (breaking ties by SoC), the algorithm
is label setting (extracted labels are never dominated). An
optimal (constrained) path is found once a label (with non-
negative SoC) at t is extracted. Battery constraints can be
incorporated by on-the-fly checks during the algorithm [4].
A potential function π : V → R is consistent (wrt. driving

time) if d((u, v)) − π(u) + π(v) ≥ 0 for all (u, v) ∈ A. The
A* algorithm [21] adds the potential of a vertex to the keys
of its labels, changing the order in which they are extracted.
In CH [16], vertices are iteratively contracted during pre-

processing (according to a given vertex ordering), while
introducing shortcuts between their neighbors to maintain
distances (wrt. d and c). To avoid unnecessary shortcuts,

witness searches are run between neighbors to identify ex-
isting paths that dominate a shortcut candidate. Adding
shortcuts may lead to (nondominated) multi-arcs. A CH
query runs bidirectional, scanning only upward arcs (wrt.
the ordering) in the forward search, and downward arcs in
the backward search.

3. PROBLEM STATEMENT
In this work, we consider stops at charging stations to

recharge the battery (while spending charging time). In
our model, a subset S ⊆ V of the vertices represents charg-
ing stations. Each vertex v ∈ S has a designated charging
function cfv : [0,M ] × R≥0 → [0,M ], mapping initial SoC
and charging time to the resulting SoC. We presume that
charging functions are concave (i. e., charging speed decreases
as the battery’s SoC increases) and monotonically increas-
ing wrt. charging time (i. e., charging for a longer time never
decreases the SoC). Additionally, we demand that for arbi-
trary charging times τ1, τ2 ∈ R≥0 and SoC values β ∈ [0,M ]
the shifting property cfv(cfv(β, τ1), τ2) = cfv(β, τ1 +τ2) holds.
These conditions are met by realistic physical models of
charging stations [32]. Moreover, exploiting the shifting
property, it is possible to represent the (bivariate) charging
function cfv using a univariate function c̃cfv : R≥0 → [0,M ]
with c̃cfv(τ) := cfv(0,τ). Let cf −1

v (β1, β2) := c̃cf −1
v (β2)− c̃cf −1

v (β1)
denote the time to charge the battery from β1 to β2, then
we have cfv(β, τ) = c̃cfv(τ + cf −1

v (0, β)).
The notion of charging functions is flexible enough to rep-

resent realistic charging stations, including, e. g., swapping
stations (cf(τ, β) = M for all τ ∈ R≥0, β ∈ [0,M ]). Finally,
we assign to every v ∈ S a constant arrangement time τa(v)
that is spent when charging at v. Thereby, we model time
overhead at a charging station (e. g., parking the car or
swapping the battery). For the sake of simplicity (and mo-
tivated by data input used in our experimental evaluation),
we assume that charging functions are not only concave and
increasing—but also piecewise linear. However, this is not a
necessary condition for correctness of our approaches.
We consider the following objective: for given s, t ∈ V

and an initial SoC βs ∈ [0,M ], find a feasible s–t-path that
minimizes the trip time (the sum of driving time and total
charging time at charging stations). Note that if the input
graph contains neither charging stations (S = ∅) nor arcs
with negative consumption values, we have an instance of
CSP, hence the problem is NP-hard.

4. BASIC APPROACH
Since charging functions are continuous, there is no straight-

forward way to apply the bicriteria algorithm described in
Section 2 to our setting (as it might require an infinite num-
ber of Pareto optimal labels after settling a charging station).
Hence, we generalize the bicriteria approach to our setting.
The charging function propagating (CFP) algorithm extends
labels to represent (infinite, continuous) sets of nondomi-
nated solutions. The core idea is that a label now represents
all possible trade-offs between charging time and resulting
SoC induced by the last visited charging station (if it exists).
Our algorithm is initialized with a single label (0, βs,⊥,⊥)

at the source s, and proceeds as the bicriteria algorithm
described in Section 2. Additionally, when extracting a label
at some vertex u, we check whether u ∈ S. If this is the case,
we create new labels to account for possible recharging. There



are, in general, infinitely many feasible, nondominated pairs
of charging time and resulting SoC (one for each reasonable
charging time τc ∈ [0, cf −1

u (β,M)]). We implicitly represent
these pairs in one label by storing the charging station u in
the label. Observe that this no longer allows us to apply
battery constraints on-the-fly: for vertices v visited after u,
labels have no fixed SoC (it depends on how much energy
was charged at u). Hence, we compute the consumption
profile f[u,...,v] of the subpath from u to v. Therefore, a
label ` = (τt, βu, u, f[u,...,v]) at vertex v consists of the trip
time τt of the path from s to v (including charging time on
every previous charging station except u), the SoC βu when
reaching u, the last charging station u, and the consumption
profile f[u,...,v] of the subpath from u to v.
When reaching a new charging station v, we have to replace

the last station u of the current label ` (unless no station
was visited before). We do so by fixing the charging time
at u. Then we can evaluate f[u,...,v], and thereby determine
the SoC βv at v for the label `. However, we still face the
problem that there are (in general) infinitely many possible
charging times (at u). Theorem 1 shows that if charging
at v, we only have to consider a small (finite) number of
charging times at u. Thus, spawning a small number of
new labels (each fixing a certain charging time at u and
setting the last charging station to v) suffices to represent
all nondominated solutions. While Theorem 1 considers only
piecewise linear functions, a similar property can be shown
for general (convex, increasing) functions.
In order to prove Theorem 1, we define the SoC-function b`

of a label `, to represent all feasible pairs of trip time
and SoC associated with the label ` = (τt, βu, u, f[u,...,v]).
Let τ ′ := τt + τa(u), then the SoC-function b` is defined as

b`(τ) := cfu(βu, τ − τ ′)− f[u,...,v](cfu(βu, τ − τ ′))

for all τ ≥ τ ′, else b`(τ) := −∞; see Figure 2 for an example.
The definition of SoC-functions reflects the interpretation of
our labels, which represent all trade-offs between charging
time and resulting SoC induced by the charging function cfu
of the last station. Note that, while charging functions
can have arbitrary complexity, we propagate them using
labels of constant size. Assume that v is another charging
station, then we have to set a charging time τc at u (so
that a new label with v as its last visited charging station
can be created). For a given SoC-function b` at a charging
station v ∈ S, we define bτ` := b`′ with `′ := (τ, b`(τ), v, 0).
The function bτ` corresponds to picking some charging time τc
for charging at u, such that the trip time from s to v is τ =
τt + τa + τc, and v is reached with a SoC of b`(τ). We
now prove Theorem 1, stating that we require new SoC-
functions bτ` only for a small number of values τ .

Theorem 1. For a vertex v ∈ S and a label ` at v, let
the associated SoC-function b` be represented by the sequence
[(τ1, β1), . . . , (τk, βk)] of breakpoints (i. e., τi < τj for i < j,
b`(x) = −∞ for τ < τ1 and b`(τ) = βk for τ > τk). For
every τ ≥ τ1, there exists an i ∈ {1, . . . , k} such that bτi

`

dominates bτ` (i. e., bτi
` (x) ≥ bτ` (x) for all x ≥ 0).

Proof. We prove this theorem in two steps. First, we
show that bτk

` is greater (or equal to) bτ` for the special case
of τ ≥ τk. Afterwards, we prove the claim for the case of τ
being between two breakpoints, i. e., τ1 ≤ τ ≤ τk. In what
follows, let τ ′ := τ + τa(v), and let ` = (τt, βu, u, f[u,...,v]).

Label ` at v: (τt = 3, βu = 0.5, u, f[u,...,v])

s
u

v

Charging function of u:

0 1 2 3 4 5
τ

0

1

2

3

4 SoC

c̃cfu(τ)

Consumption profile
from u to v:

1 2 3 4

−1

0

1

2

3

4
∞

f[u,...,v](β)

SoC-function b`(τ):

1 2 3 4 5 6 7 8 9
τ

0

1

2

3

4

−∞

SoC cfu(βv, τ − τt)

b`(τ)

Figure 2: Construction of the SoC-function b` for
a given label ` = (τt, βu, u, f[u,...,v]), representing a
path in the graph from s to v. The last charging sta-
tion u was reached with a SoC of βu = 0.5. The func-
tion c̃cfu is shown on the left, its arrangement time
is τa(u) = 0. Consumption on the subpath from u
to v is given by the profile f[u,...,v] on the right. With-
out recharging at u, it takes τt = 3 time to reach v.
The function cfu(βu, τ − τt) (in gray; bottom) re-
flects pairs of trip time and SoC when charging
at u, but ignores consumption on the u–v-subpath.
To obtain cfu(βu, τ − τt), we shift c̃cfu by τt = 3
to the right and by cf −1

u (0, βu = 0.5) = 0.25 to
the left (see Section 3). We subtract the consump-
tion f[u,...,v](cfu(0.5, τ −3)) on the u–v-path, and ob-
tain b(τ) (in black; bottom). We have b(τ) = −∞
for τ < 3.25 (the minimum charging time at u is 0.25,
as a SoC of 1 is required to reach v) and b(τ) = 3
for τ ≥ 3.75 (charging beyond SoC of 2 never pays
off, as it wastes energy from recuperation).

Case 1: τ ≥ τk. We have to show that bτk
` (x) ≥ bτ` (x)

holds for all x ≥ 0. In the case of x < τ ′ we have bτ` (x) = −∞,
hence bτk

` (x) ≥ bτ` (x) holds. For x ≥ τ ′, let τ ′k := τk + τa(v),
then we have

b
τk
` (x) = cfv(b`(τk), x− τ ′k)− f[u,...,v](cfu(b`(τk), x− τ ′k))

= cfv(b`(τ), x− τ ′k)− f[u,...,v](cfu(b`(τ), x− τ ′k))
= bτ` (x+ τ − τk) ≥ bτ` (x).

First, we can replace τk with τ in the definition of bτk
` (·),

since b`(·) is constant for values greater or equal to τk. This
leaves us with bτ` (·), only shifted by τ − τk, which (according
to our assumption) is greater or equal to 0. As all involved



1 2 3 4 5

time (x)
0

1

2

3

4

5

6 SoC

−∞

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)
c̃cf v

(x
)

c̃cf v
(x

)

Charging function c̃cfv

ττi

1 2 3 4 5 6 7 8

time (x)
0

1

2

3

4

5

6 SoC

−∞

b`(x)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ i
), x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

∆

Case 2a

τ τi+1

1 2 3 4 5 6 7 8

time (x)
0

1

2

3

4

5

6 SoC

−∞

b`(x)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ i
+1),
x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

cf v
(b

(̀τ)
, x
−
τ)

∆

Case 2b

Figure 3: Examples for cases 2a and 2b. The charging function at v is given by the sequence [(0, 0), (1, 2), (5, 6)]
in both cases (τa(v) = 0). For case 2a, the SoC-function b` is defined by [(2, 0), (3, 3), (7, 5)], so the slope
of b` at x = τ is lower than the slope of cfv(b`(τ), x) at x = τ . For case 2b, the SoC-function b` is given
by [(3, 1), (5, 5)], thus the slope of b` at x = τ is greater than the slope of cfv(b`(τ), x) at x = τ . In both cases
the charging function can be shifted to the left by ∆, such that it intersects b` at a breakpoint and the initial
function is dominated by the shifted one. (Note that a function dominates the area beneath it).

charging functions are monotonically increasing, this shift
can only increase the value of the function bτ` . Thus, bτk

`

dominates bτ` for τ ≥ τk.
Case 2: τ < τk. In this case, there is an i∈{1, . . . , k − 1},

such that τi ≤ τ < τi+1 holds (recall that τ ≥ τ1 holds
by assumption). We now show that, depending on the
slopes of b` and cfv at τ , either bτi

` or bτi+1
` dominates bτ` .

To formally define the slope of some piecewise linear func-
tion g, let (∂g(x′)/∂x′)(x) denote its right derivative at
some x ∈ R≥0 (hence, slope is well-defined at breakpoints).
Case 2a: We first consider the case of

∂b`(x)
∂x

(τ) = bi+1 − bi
τi+1 − τi

<
∂ cfv(b`(τ), x− τ ′)

∂x
(τ).

Intuitively, this means that the charging station at v provides
a better charging rate than the station at u (if the battery is
charged at u such that v is reached at time τ with SoC b(τ)).
Hence, leaving u earlier to charge more energy at v (to benefit
from the higher charging rate) pays off. This implies that bτi

`

dominates bτ` , which we now prove formally, by exploiting
that b` is piecewise linear and cfv is concave.
For all x < τ ′ we know that bτ` (x) = −∞ (and thus is

dominated by bτk
` (x)). For x ≥ τ ′, we can make use of the

shifting property to obtain some value ∆ such that

cfv(b`(τi), x− τ ′i) = cfv(b`(τ), x+ ∆− τ ′),

where τ ′i := τi + τa(v). In other words, we change the point
in time at which we stop charging at u to spend more time
charging at v from τ to τi, which is equivalent to shifting
the charging function cfu on the x-axis; see Figure 3 for
an example. Recall that cf −1

v (β1, β2) is the time required to
charge the battery from β1 to β2 (see Section 3). We obtain

cfv
(
b`(τi), x− τ ′i

)
= cfv

(
0, x− τ ′i + cf −1

v (0, b`(τi))
)

= cfv
(
b`(τ), x− τ ′i + cf −1

v (0, b`(τi))− cf −1
v (0, b`(τ))

)
= cfv

(
b`(τ), x− τ ′i − cf −1

v (b`(τi), b`(τ))
)

= cfv
(
b`(τ), x− τ ′ + τ ′ − τ ′i − cf −1

v (b`(τi), b`(τ))
)
,

and therefore, ∆ = τ ′ − τ ′i − cf −1
v (b(τi), b(τ)). Further-

more, ∆ ≥ 0 holds, since τ ′− τ ′i = τ − τi ≥ cf −1
v (b(τi), b(τ)).

Here, τ − τi is the time needed to charge from b`(τi) to b`(τ)
(using cfu at u), and cf −1

v (b`(τi), b`(τ)) is the time needed to
charge the same amount at the station v. We know that the
slope δb` (τi) = δb` (τ) (at the charging station u) is (strictly)
less than the slope δcfv (τi) ≥ δcfv (τ) at the charging sta-
tion v. Therefore, the station v requires less time to charge
from b`(τi) to b`(τ). Given that ∆ ≥ 0, for x ≥ τ ′ we have

bτi
` (x) = cfv(b`(τi), x− τ ′i)− f[u,...,v](cfu(b`(τi), x− τ ′i))

= cfv(b`(τ), x+∆−τ ′)−f[u,...,v](cfu(b`(τ), x+∆−τ ′))
= bτ` (x+ ∆) ≥ bτ` (x).

Case 2b: The second case we have to address is
∂b`(x)
∂x

(τ) = bi+1 − bi
τi+1 − τi

≥ ∂ cfv(b`(τ), x− τ ′)
∂x

(τ).

An example for this case is shown in Figure 3b. In this case,
the charging station at u offers a more (or equally) favorable
charging rate, thus it pays off to spend more time charging
at u. Proceeding along the lines of case 2a, we obtain a
value ∆ = cf −1

v (b(τ), b(τi+1))− (τ ′i+1 − τ ′) such that

cfv(b`(τi+1), x− τ ′i+1) = cfv(b`(τ), x+ ∆− τ ′),

The value ∆ is the difference between the time to charge
from b`(τ) to b`(τi+1) at v and the time to charge the same
amount at u. Since u offers a charging speed at least as
high as the one at v, this difference, and therefore ∆, is
again not negative. Thus, we can show (similar to case 2a)
that bτi+1

` (x) ≥ bτ` (x) for all x ≥ τ ′ (the case x < τ ′ is again
trivial). This completes the proof.

Consequently, we spawn one new label, representing the
charging function cfv at v, for each breakpoint of b`. Note
that the original label ` is not thrown away (accounting for
the possibility of not using the charging station at v at all).
After checking if the current vertex v is a charging sta-

tion (possibly creating and enqueuing new labels at v),
we scan all outgoing arcs (v, w). Let the current label
be ` = (τt, β, u, f[u,...,v]), then scanning the arc (v, w) creates
the new label `′ = (τt+d(v, w), β, u, f[u,...,v]◦(v,w)), which can



be computed in constant time (and independent of the charg-
ing function complexity). The new label `′ is then added to
the label set at vertex w. Note that we perform no domi-
nance checks at this point. Instead, we split label sets L(·)
into two sets Lset(·) and Luns(·) containing settled (i. e., ex-
tracted) and unsettled labels, respectively. Sets Luns(·) are
organized as min-heaps, allowing efficient extraction of the
next unsettled vertex. We maintain the invariant that for
each v ∈ V , the minimum label ` (wrt. its key, defined as the
minimum feasible trip time of b`) in Luns(v) is not dominated
by any label in Lset(v). Every time an element of the heap
is extracted (or added), we check whether the new minimum
is dominated by a label in Lset(v), and remove it in this
case (as it cannot lead to an optimal solution). Using heaps
for unsettled labels, we avoid unnecessary dominance checks.
To determine whether a label ` dominates another label `′,
we check whether b`(τ) ≥ b`′(τ) for all τ ≥ 0 (which requires
a linear sweep over the breakpoints of both SoC-functions).
When extracting a label at the target vertex t, we pick

the least charging time at the last station such that t can be
reached, and the algorithm terminates. Correctness of CFP
follows immediately from Theorem 1. We can also handle
related query types (e. g., arrive at t with at least x%SoC).
For path unpacking, we add two pointers to each label,
storing its parent vertex and parent label (for v∈S, v can
be its own parent). Two consecutive identical parents imply
the use of a charging station, the according charging time is
the difference between the trip times of both labels.

5. SPEEDUP TECHNIQUES
We present techniques based on A* Search, CH, and a

combination of them, to reduce the running times of the
basic approach, CFP, introduced in Section 4.

A* Search. We describe potential functions that are based
on backward searches from the target vertex t, providing
lower bounds on the trip time from any vertex to t. Clearly,
we can obtain a consistent potential πd by running a single-
criterion (backward) Dijkstra from t using d as metric, which
yields for each v ∈ V its minimum (unconstrained) driving
time to t. However, we can do better, exploiting that the
trip time from v to t depends on the SoC β at v. (Observe
that both the charging time as well as the route, and hence,
the driving time of the optimal v–t-path can change with
varying values of β.) Therefore, we propose a potential func-
tion π : V ×[0,M ]→ R≥0, such that π(v, β) yields a lower
bound on the trip time from v to t if the SoC at v is β. To
maintain correctness of our approach, we generalize the no-
tion of consistency: a potential function π : V×[0,M ]→ R is
consistent if d(u, v)− π(u, β) + π(v, β − f(u,v)(β)) ≥ 0 holds
for all (u, v) ∈ A and β ∈ [0,M ]. Moreover, for the SoC-
function b` represented by a label ` = (τt, β, u, f[u,...,v]) at v,
let k(τ, b`(τ)) := τ + π(v, b`(τ)) denote the key (used in the
priority queue) of some point (τ, b`(τ)) of the SoC-function.
Then the key k(`) of ` is consistent if k(`) ≤ k(τ, b`(τ)) for
all τ ≥ 0. If label keys as well as the potential function
are consistent (as is the case for the basic approach from
Section 4), keys of labels extracted from the priority queue
are increasing (note that labels spawned at charging stations
never lead to decreasing keys). Thus, the algorithm is label
setting (implying correctness).
For our first potential function, let cfmax denote the maxi-

mum slope of any charging function in S (i. e., the maximum

charging speed available). At swapping stations, we incorpo-
rate arrangement time to obtain finite slopes. We define a
new weight function ω : A→ R, ω(a) := d(a) + (c(a)/ cfmax).
This function adds to the driving time of every arc a (possibly
negative) lower bound on the time required for charging the
energy consumed on the arc. Before an s–t query, we perform
three (backward) single-criterion Dijkstra runs from t to
obtain, for all v ∈ V , the distances distd(v, t), distc(v, t),
and distω(v, t) from v to t, wrt. the edge weights d, c,
and ω, respectively. Note that computation of distc(v, t)
and distω(v, t) is label correcting, due to negative weights. (We
omit potential shifting [24] because the effect on overall run-
ning time is negligible.) Using these distances, we define
a potential function πω by setting πω(v, β) := distd(v, t)
if β ≥ distc(v, t), and πω(v, β) := distω(v, t) − (β/ cfmax)
otherwise. The resulting potential function πω provides a
lower bound on the remaining trip time on any path to t. It
is easy to see that the potential is also consistent. Regard-
ing consistent label keys, observe that both τ + distd(v, t)
and τ + distω(v, t)− (b`(τ)/ cfmax) are increasing in τ . We
obtain the consistent key of a label ` by computing the
value k(τ, b`(τ)) = τ + πω(v, b`(τ)) for the first feasible
point (τ1, b`(τ1)) of b` and for the first point (τ2, b`(τ2)) at
which b`(τ2) ≥ distc(v, t), if it exists. The minimum of both
these values is used as consistent key.
While the potential πω incorporates SoC, it may be too

conservative in that it presumes recharging is possible at
any time and at the best charging rate. We attempt to be
more precise by computing actual lower bound functions.
Again, we run (at query time) a backward search from t,
this time computing for each vertex v a piecewise linear
function πf : [0,M ]→ R≥0 mapping SoC to a lower bound
on the trip time from v to t. Note that by construction, these
functions are convex (and decreasing) for single paths. To
simplify the search, we ignore battery constraints (thereby
obtaining lower bounds on consumption). Scanning an arc a
then corresponds to shifting the function by −c(a) and d(a)
on the x-axis and y-axis, respectively. Moreover, rather than
keeping sets of labels, we explicitly merge functions after
scanning an arc (similar to time-dependent approaches [2]).
Since merging may create functions that are no longer convex,
we compute, after each merge operation, the convex lower hull
of the result. While (slightly) deteriorating the quality of the
bound, this reduces the number of breakpoints, and simplifies
settling of charging stations (linking of two convex functions
can be done in linear time). Again, it is easy to see that
the resulting potential function πf : V × [0,M ]→ R≥0, using
the computed bounds, is consistent. The consistent key of a
label ` (at vertex v) is k(`) = min{τ + πf (v, b`(τ)) | τ ≥ 0}.
Since both b` and πf (v) are piecewise linear, this minimum
can be computed in a linear sweep over the breakpoints.
Note that computing the potential for every vertex is

wasteful for short-range queries. Therefore, we suspend the
backward search once it settled s. If we encounter a vertex v
during the forward search that has not been covered by the
backward search, we resume the backward search until a
potential for v is determined.

Contraction Hierarchies. When adapting CH [16] to our
scenario, vertex contraction becomes more expensive (each
shortcut represents a pair of driving times and consump-
tion profile, and we need shortcuts for all nondominated
paths). Hence, we contract only some vertices (the compo-



Table 1: Preprocessing and query performance for different instances and battery capacity. We report prepro-
cessing times in [m:s] for CHArge (which also applies to Hf and Hω) and HA

ω , the percentage of feasible paths,
as well as heuristic and exact query times in [ms]. Results from [30] are as-is from a Core i3-2310M, 2.1GHz.

Preprocessing Exact Query Heuristic Query
Instance M CHArge HA

ω Feasible CHArge [30] Hf Hω HA
ω

O
nl
y
B
SS Osg-r1000 100 km 11:37 2:30 100% 122 539 94 38 3

Osg-r100 150 km 11:10 2:15 99% 206 1 150 117 27 1
Osg-c643 100 km 11:21 2:32 98% 326 — 283 48 3
Osg-c643 150 km 11:28 2:29 99% 308 — 270 23 3

O
nl
y
B
SS Ger-c1966 16 kWh 5:03 4:33 100% 1 398 — 995 436 21

Ger-c1966 85 kWh 4:59 5:31 100% 1 013 — 975 48 28
Eur-c13810 16 kWh 30:32 28:38 63% 10 786 — 7567 9943 207
Eur-c13810 85 kWh 30:16 29:47 100% 47 921 — 35 060 1022 41

M
ix
ed

C
S Ger-c1966 16 kWh 5:03 4:33 100% 8 629 — 1495 1 357 155

Ger-c1966 85 kWh 4:59 5:31 100% 2 614 — 1894 342 34
Eur-c13810 16 kWh 30:32 28:38 63% 24 148 — 10 039 17 630 2 694
Eur-c13810 85 kWh 30:16 29:47 100% 86 193 — 48 243 26 867 600

nent), leaving an uncontracted core. In particular, we keep
all charging stations uncontracted [30]. Thus, complexity
induced by charging stations only is contained within the
core (simplifying the search in the component).
In order to reduce preprocessing time, we simplify our

witness searches (possibly inserting unnecessary shortcuts,
though without affecting correctness). We only search for
single witnesses that dominate a shortcut candidate (hence,
we might insert a shortcut that is dominated by a set of
paths). During witness search we limit the number of labels
per vertex to a small constant (10 in our experiments), delet-
ing one of the two closest (wrt. driving time) whenever this
size is exceeded. Finally, we prune the search after a fixed
hop limit (20 in our experiments).
Since we compute a partial CH, the query algorithm con-

sists of two phases. During the first, we run a (unidirec-
tional) backward CH search from t, restricted to the compo-
nent (pruning the query at core vertices). As the component
contains no charging stations, a standard bicriteria search suf-
fices. Note, however, that the SoC at t is yet unknown, hence,
we compute consumption profiles instead of SoC values. The
second phase runs a multi-target CFP query restricted to
upward and core arcs.

CHArge. Combining CH and A* (restricting A* to the
core), we obtain our fastest exact algorithm, CHArge. The
query consists of three phases: a unidirectional (backward)
phase from t in the component, a backward query in the
(much smaller) core to compute potentials (πω or πf ), and a
forward phase running (multi-target) CFP from s, restricted
to upward and core arcs. As before, we suspend the second
phase if the potential is known for all vertices in the (forward)
queue. To decrease running time of the second phase, we
preprocess lower bounds on core shortcuts for πf .

6. HEURISTIC APPROACHES
With an NP-hard problem at hand, we consider heuristic

approaches based on CHArge, dropping optimality to reduce
query times. When scanning multiple shortcuts (u, v) be-
tween u and v, we add at most one label to L(v). This saves
time for dominance checks and label insertions at L(v), and
reduces the number of labels in the queue. The idea is to

use the potential at v to determine a shortcut minimizing
the key of the new label, and add only this label to L(v).
Our first heuristic, Hf , uses πf to determine the best

shortcut. For each shortcut (u, v), this requires a linear
sweep over the breakpoints of b`′ (`′ being the label created
after scanning the shortcut) and πf (v) to find the best key.
The idea of our second heuristic, Hω, is to use πω, instead.
However, if we ignore battery constraints and assume that
we are not close to the target (i. e., βv < distc(v, t)), the
best shortcut (u, v) does not depend on the SoC at u, but
only on distω(u, t). Hence, for each pair of neighbors u
and v we can precompute the optimal shortcut (the one
that minimizes ω((u, v))). During the query, we always use
the precomputed shortcut for each neighbor v of u (instead
of scanning all shortcuts). A third, even more aggressive
variant, HA

ω , uses the same idea during vertex contraction
for CH, keeping only the ω-optimal shortcut for each pair
of vertices. This significantly reduces the total number of
shortcuts, allowing contraction of further vertices. The query
of HA

ω is similar to Hω, however, since operating on a sparser
graph, solutions may differ. Despite their heuristic nature, it
is actually possible to prove that under certain circumstances,
the heuristics Hω and HA

ω use an optimal shortcut. The basic
idea is that, if charging is inevitable and charging at a rate
of cfmax is possible when needed, then distω(·,·) yields a tight
bound on the trip time.
We also tried to combine CHArge with other well-known

heuristics to reduce query complexity (e. g., ε-dominance and
limiting label set sizes [4]). However, preliminary experiments
showed that this drastically reduces solution quality.

Table 2: Instances. We report number of vertices,
arcs, negative consumption arcs (as a fraction of to-
tal arcs), as well as charging stations (CS) obtained
from ChargeMap. Note that the Osg instance has
many degree-2 vertices, meant for visualization.
Ins. #Vertices #Arcs #Arcs with c < 0 #CS
Ger 4 692 091 10 805 429 1 119 710 (10.36%) 1 966
Eur 22 198 628 51 088 095 6 060 648 (11.86%) 13 810
Osg 5 588 146 11 711 088 1 142 391 (9.75%) 643



Table 3: Detailed performance on Ger-c1966 85 kWh for Mixed and Realistic CS. For each query algorithm,
we report settled labels, pairwise domination checks (Dom.) and runtime. For the resulting trips, we report
the percentage of feasible and optimal paths, and average/maximum increase in trip time.

Query Trip Quality

CS Algorithm #Labels #Dom. Time [ms] Feasible Optimal Avg. ×τt Max. ×τt
M
ix
ed

CHArge 482 712 36 527 376 2 614 100% 100% 1.0000 1.0000
Hf 443 134 139 897 1 894 100% 85% 1.0010 1.0725
Hω 190 955 5 578 309 342 100% 80% 1.0004 1.0213
HA
ω 11 309 29 695 34 100% 52% 1.0200 1.2387

R
ea
lis
tic

CHArge 395 841 48 611 726 2 457 100% 100% 1.0000 1.0000
Hf 359 150 117 083 1 542 100% 82% 1.0007 1.0323
Hω 169 618 3 680 130 246 100% 70% 1.0009 1.0481
HA
ω 12 330 26 435 34 100% 61% 1.0128 1.1299

7. EXPERIMENTS
All implementations are in C++ using g++ 4.8.3 (-O3) as

compiler. Experiments were conducted on a single core of a
4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, 128GiB of
DDR4-2133 RAM, 10MiB of L3 and 256KiB of L2 cache.

Instances. Our main instances are based on a road net-
work of Europe (Eur) and the subnetwork of Germany (Ger),
kindly provided by PTV AG (ptvgroup.com). As in [5], we
extracted average speeds and categories of road segments,
augmented by elevation data from the Shuttle Radar To-
pography Mission, v4.1 (srtm.csi.cgiar.org). We derived
realistic energy consumption from a detailed micro-scale emis-
sion model [23], calibrated to a real Peugeot iOn. It has a
battery capacity of 16 kWh, but we also evaluate for 85 kWh,
as in high-end Tesla models. Moreover, we located charging
stations on ChargeMap (chargemap.com). We also evaluate
the largest instance of [30]: it uses OpenStreetMap data of
Southern Germany (Osg) with SRTM, a basic physical con-
sumption model, and 100–1,000 randomly chosen charging
stations, but we also test on ChargeMap stations. See Ta-
ble 2 for instance sizes. We consider several types of stations:
battery swapping stations (BSS), superchargers (charging
50% SoC in 20min, 80% in 40min), and stations with
fast (44 kW), medium (22 kW) and slow (11 kW) charging
power (using the physical model of [32]), each approximated
with 6 breakpoints (at 0, 80, 85, 90, 95, 100% SoC). We set
arrangement time to 3min for BSS, 1min for all others.

Table 4: Impact of different core sizes on perfor-
mance (Ger-c1966, 16 kWh).

Core size Prepr. Query [ms]
Ødeg. #Vertices [h:m:s] Only BSS Mixed CS

8 344 066 (7.33%) 2:58 1 474.1 47 979.9
16 11 6917 (2.49%) 4:01 536.5 1 669.0
32 65 375 (1.39%) 5:03 436.1 1 356.8
64 43 036 (0.91%) 7:07 449.8 1 408.8

128 30 526 (0.65%) 11:16 509.6 1 585.4
256 22 592 (0.48%) 20:22 647.5 2 098.5
512 17 431 (0.37%) 37:11 880.7 2 739.9

1024 13 942 (0.29%) 1:05:51 1 264.6 3 934.2
2048 11 542 (0.24%) 2:00:27 1 822.6 5 670.1
4096 9 842 (0.20%) 4:17:36 2 706.6 8 420.1

Evaluation. We discuss preprocessing and query perfor-
mance of our algorithms. We only report the fastest exact
method (CHArge with πf ), for results on plain CFP see
below. For each algorithm, we ran 1 000 queries between ran-
dom source and target vertices, at maximum initial battery
capacity, i. e., βs = M . Table 1 shows detailed figures, orga-
nized in three blocks: the first considers instances from [30],
using only BSS, randomly placed charging stations (r100,
r1000) and battery capacities that translate to a certain range
in the physical model. The second block also considers only
BSS, but ChargeMap stations and the Peugeot iOn model
for different battery capacities. The third block additionally
uses a mixed composition of chargers (10% BSS, 20% super
chargers, 30% fast chargers, 40% slow chargers).
Preprocessing times are quite practical, considering the

problem at hand, ranging from about 5–30 minutes. Table 4
shows details on preprocessing effort and query performance
for different core sizes on the Germany instance (16 kWh).
Vertex contraction was stopped as soon as the average vertex
degree in the core reached the threshold shown in the first
column. We report resulting core sizes and preprocessing
time, as well as query times of Hω (the fastest query variant
that uses the same core as CHArge) for the BSS and mixed
station composition, respectively. While preprocessing effort
increases with decreasing core size, we achieve best query
performance at average core degree 32, hence we always
stop vertex contraction at this threshold. The corresponding
relative core sizes are 1.3–1.7% on PTV and 0.3–0.4% on
OpenStreetMap data.
Regarding query performance (see Table 1), we observe

that our approach is considerably faster than that of [30],
even when accounting for differences in hardware. At the
same time, CHArge is more general and not inherently re-
stricted to BSS. Furthermore, a denser distribution of random
charging stations enables faster query times (since the pro-
posed potentials more often rightly assume that a station will
be available along the path). We see that using ChargeMap
station locations (Osg-c643) gives a slightly harder instance.
Overall, we are able to solve instances that are harder than
those evaluated in [30].
For the instances representing larger networks (Ger and

Eur), the mixed scenarios are (slightly) harder to solve (as
vertex potentials are less accurate). On the other hand,
increasing the maximum battery capacity leads to faster
queries: less charging is required, hence goal direction is
more helpful. A notable exception is the 16 kWh battery



25 27 29 211 213 215 217 219 221 223 225
10−1

100

101

102

103

104

105

Rank

T
im

e
[m

s]
CHArge
CFP
Hω

Hf

HA
ω

Exact
Heuristic

Figure 4: Scalability of our approaches on Europe with a 85 kWh battery and Mixed CS.

on the Europe instance. In this instance, the number of
feasible queries drops significantly, due to a highly non-
uniform distribution of charging stations (sparse in parts of
Southern and Eastern Europe). This benefits approaches
based on πf -potentials (as we can detect infeasibility already
during potential computation), but often deteriorates the
performance of πω-based algorithms (because the target is
never reached, hence large parts of the graph are explored
until the queue is empty). All in all, running times of the
exact algorithm are below 10 s on average on all Germany
instances and below 90 s on Europe, which is quite notable
given that we could not even run a single (long-distance) CFP
query on this instance in several hours. Also, the Mixed CS
configuration was the hardest configuration in our evaluation
(we also tried other configurations, e. g., without BSS). For
heuristic approaches, we see that (in contrast to CHArge),
those based on πω are faster (except for instances with many
infeasible queries).
Table 3 reports detailed query times of the Germany in-

stance with 85 kWh battery, which contains the most sensible
queries: due to a reasonably dense distribution of charging
stations, all queries are feasible, and the target is always
reachable with a small number of charging stops (in con-
trast to the harder queries across Europe, which we chose
rather to analyze scalability of our algorithms). We also
add numbers for a (currently) more realistic scenario, con-
taining no BSS, 20% superchargers, 40% fast and medium
regular stations, respectively. We see that the number of
queue extractions is a good indicator of the running time
of all approaches. Moreover, all approaches are quite prac-
tical: computing optimal routes takes only a few seconds.
The heuristic Hω provides a good trade-off between run-
ning times (some 300ms) with small errors (below 0.1%
on average, below 5% in the worst case). Our aggressive
approach HA

ω allows query times of 34ms on average, which
is fast enough even for real-time applications, however, we
see that solution quality is up to 24% off the optimum in
the worst case. Still, the average error of all (CHArge-based)
heuristics is very low, and the optimal solution is found in
more than half of the cases.
Figure 4 shows median times on our hardest instance,

distributed by their Dijkstra rank (the logarithm of the
number of queue extractions when running Dijkstra from s
to t on unconstrained driving distance [2]). We ran 100

queries per rank. Query times for CFP are only reported
up to a rank of 17, for higher ranks at least one query did
not terminate within an hour. Moreover, charging becomes
necessary at a Dijkstra rank of (roughly) 22— running times
increase significantly at this rank for our faster approaches. It
is also clear that all approaches have exponential performance
(while still being practical even for ranks beyond 20).

Turn Costs. Finally, we also considered graphs enriched
with turn costs, i. e., additional time and energy consumption
to take account of acceleration and deceleration at turns (or
when speed limits change). Using a simple model to assign
time and consumption overhead to turns, we modified our
input instances according to the edge-based model of [17].
For the enriched network of Europe, CH preprocessing took
slightly longer (37min, 35 s), resulting in a smaller relative
core size (1.2%). Query times were also similar to the
standard case, e. g., below 89 s on average on the hardest
instance (Europe, 85 kWh). This clearly indicates that our
approach can be readily extended to handle turn costs and
turn restrictions.

8. CONCLUSION
We introduced CFP, a new approach to route planning

for EVs that computes shortest feasible paths with charg-
ing stops, minimizing overall trip time. Combining vertex
contraction and charging-aware goal-directed search, we intro-
duced CHArge, which solves this NP-hard problem optimal
and with practical performance even on large realistic inputs.
Future work includes allowing multiple driving speeds (and

consumption values) per road segment, e. g., in order to
save energy on the highway by driving at reasonable lower
speeds [4, 19, 22]. Moreover, we are interested in more de-
tailed models for energy consumption on turns, as well as
historic and live traffic. To allow for the latter, the adap-
tation of customization techniques appears to be a natural
extension of our approach. While preliminary experiments
showed that CHArge performs equally fast on vertex orders
required by Customizable Contraction Hierarchies [9], a ma-
jor challange is the design of fast customization algorithms
that can handle the dynamic data structures required by
label sets in our approach. On the other hand, preprocessing
time for CHArge is already in the order of minutes (and can



even be reduced by increasing core size at the cost of query
times, see Table 4). This is fast enough for many applications
that require frequent updates of the underlying graph.
From a theoretical perspective, approximability is an open

question. Recent results [27] show that an FPTAS exists for
a very similar problem, which might extend to our setting.

Acknowledgements. We thank Raphael Luz for providing
consumption data, Martin Uhrig for charging functions, and
Sabine Storandt for benchmark data.

9. REFERENCES
[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and

R. F. Werneck. HLDB: Location-Based Services in
Databases. In: ACM SIGSPATIAL’12, pp. 339–348.
ACM, 2012.

[2] H. Bast, D. Delling, A. V. Goldberg,
M. Müller–Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route Planning in
Transportation Networks. Technical Report
abs/1504.05140, ArXiv e-prints, 2015.

[3] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner. Combining Hierarchical
and Goal-directed Speed-up Techniques for Dijkstra’s
Algorithm. ACM JEA, 15(2.3):1–31, 2010.

[4] M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor,
and D. Wagner. Speed-Consumption Tradeoff for
Electric Vehicle Route Planning. In: ATMOS’14, pp.
138–151. OASIcs, 2014.

[5] M. Baum, J. Dibbelt, T. Pajor, and D. Wagner.
Energy-Optimal Routes for Electric Vehicles. In: ACM
SIGSPATIAL’13, pp. 54–63. ACM, 2013.

[6] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable Route Planning in Road
Networks. Transp. Sci., 2015.

[7] D. Delling, A. V. Goldberg, and R. F. Werneck. Faster
Batched Shortest Paths in Road Networks. In:
ATMOS’11, pp. 52–63. OASIcs, 2011.

[8] D. Delling and R. F. Werneck. Customizable
Point-of-Interest Queries in Road Networks. In: ACM
SIGSPATIAL’13, pp. 490–493. ACM, 2013.

[9] J. Dibbelt, B. Strasser, and D. Wagner. Customizable
Contraction Hierarchies. In: SEA’14, LNCS 8504, pp.
271–282. Springer, 2014.

[10] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik, 1(1):269–271,
1959.

[11] A. Efentakis and D. Pfoser. Optimizing
Landmark-Based Routing and Preprocessing. In:
IWCTS’13, pp. 25:25–25:30. ACM, 2013.

[12] J. Eisner, S. Funke, and S. Storandt. Optimal Route
Planning for Electric Vehicles in Large Networks. In:
AAAI, pp. 1108–1113. AAAI, 2011.

[13] S. Funke and S. Storandt. Polynomial-Time
Construction of Contraction Hierarchies for
Multi-Criteria Objectives. In: ALENEX’13, pp. 31–54.
SIAM, 2013.

[14] R. Geisberger, M. Kobitzsch, and P. Sanders. Route
Planning with Flexible Objective Functions. In:
ALENEX’10, pp. 124–137. SIAM, 2010.

[15] R. Geisberger, M. Rice, P. Sanders, and V. Tsotras.

Route Planning with Flexible Edge Restrictions. ACM
JEA, 17(1):1–20, 2012.

[16] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter.
Exact Routing in Large Road Networks Using
Contraction Hierarchies. Transp. Sci., 46(3):388–404,
2012.

[17] R. Geisberger and C. Vetter. Efficient Routing in Road
Networks with Turn Costs. In: SEA’11, LNCS 6630,
pp. 100–111. Springer, 2011.

[18] A. V. Goldberg and C. Harrelson. Computing the
Shortest Path: A* Search Meets Graph Theory. In:
SODA’05, pp. 156–165. SIAM, 2005.

[19] M. T. Goodrich and P. Pszona. Two-Phase Bicriterion
Search for Finding Fast and Efficient Electric Vehicle
Routes. In: ACM SIGSPATIAL’14, pp. 193–202. ACM,
2014.

[20] G. Y. Handler and I. Zang. A Dual Algorithm for the
Constrained Shortest Path Problem. Networks,
10(4):293–309, 1980.

[21] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107,
1968.

[22] F. Hartmann and S. Funke. Energy-Efficient Routing:
Taking Speed into Account. In: KI’14, LNCS 8736, pp.
86–97. Springer, 2014.

[23] S. Hausberger, M. Rexeis, M. Zallinger, and R. Luz.
Emission Factors from the Model Phem for the HBEFA
Version 3. TR I-20/2009, Univ. of Technology, Graz,
2009.

[24] D. B. Johnson. Efficient Algorithms for Shortest Paths
in Sparse Networks. In: JACM, 24(1):1–13, 1977.

[25] C. Liu, J. Wu, and C. Long. Joint Charging and
Routing Optimization for Electric Vehicle Navigation
Systems. In: IFAC’14, pp. 2106–2111. IFAC, 2014.

[26] E. Q. V. Martins. On a Multicriteria Shortest Path
Problem. Eur. J. Oper. Res., 16(2):236–245, 1984.

[27] S. Merting, C. Schwan, and M. Strehler. Routing of
Electric Vehicles: Constrained Shortest Path Problems
with Resource Recovering Nodes. In: ATMOS’15, pp.
29–41. OASIcs, 2015.

[28] M. Sachenbacher, M. Leucker, A. Artmeier, and
J. Haselmayr. Efficient Energy-Optimal Routing for
Electric Vehicles. In: AAAI, pp. 1402–1407. AAAI,
2011.

[29] O. J. Smith, N. Boland, and H. Waterer. Solving
Shortest Path Problems with a Weight Constraint and
Replenishment Arcs. Comput. Oper. Res.,
39(5):964–984, 2012.

[30] S. Storandt. Quick and Energy-Efficient Routes:
Computing Constrained Shortest Paths for Electric
Vehicles. In: ACM SIGSPATIAL’12, pp. 20–25. ACM,
2012.

[31] T. M. Sweda, I. S. Dolinskaya, and D. Klabjan.
Adaptive Routing and Recharging Policies for Electric
Vehicles. Northwestern University, Illinois, Working
Paper No. 14-02, 2014.

[32] M. Uhrig, L. Weiß, M. Suriyah, and T. Leibfried.
E-Mobility in Car Parks – Guidelines for Charging
Infrastructure Expansion Planning and Operation
Based on Stochastic Simulations. In: EVS28, 2015.


