
Space-Efficient SHARC-Routing?

Edith Brunel1, Daniel Delling1,2, Andreas Gemsa1, and Dorothea Wagner1

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany. edith@brunel-online.de, {gemsa,dorothea.wagner}@kit.edu
2 Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043.

dadellin@microsoft.com

Abstract. Accelerating the computation of quickest paths in road networks has
been undergoing a rapid development during the last years. The breakthrough
idea for handling road networks with tens of millions of nodes was the concept
of shortcuts, i.e., additional arcs that represent long paths in the input. Very re-
cently, this concept has been transferred to time-dependent road networks where
travel times on arcs are given by functions. Unfortunately, the concept of short-
cuts is very space-consuming in time-dependent road networks since the travel
time functions assigned to the shortcuts may become quite complex.
In this work, we present how the space overhead induced by time-dependent
SHARC, a technique relying on shortcuts as well, can be reduced significantly.
We are able to reduce the overhead stemming from SHARC by a factor of up to
11.5 for the price of a loss in query performance of a factor of 4. The methods we
present allow a trade-off between space consumption and query performance.

1 Introduction

Route Planning is a prime example of algorithm engineering. Modeling the network as
graph G with arc weights depicting travel times, the shortest path in G equals the quick-
est connection in the transportation network. In general, DIJKSTRA’s algorithm [12]
solves this task, but unfortunately, the algorithm is way to slow to be used in transporta-
tion networks with tens of millions of nodes. Therefore, so called speed-up techniques
split the work into two parts. During an offline phase, called preprocessing, additional
data is computed that accelerates queries during the online phase. The main concept for
route planning in road networks was the introduction of so called shortcuts, i.e., arcs
representing long paths, to the graph. A speed-up technique then relaxes the shortcut
instead of the whole path if the target is “sufficiently far away”.

However, adapting the concept of shortcuts to time-dependent road networks yields
several problems. A travel time function assigned to the shortcut is as complex as all
arc functions the shortcut represents. The reason for this is that we need to link piece-
wise linear functions (cf. [8] for details). For example, a straightforward adaption of
Contraction Hierarchies [13], a technique relying solely on shortcuts yields an overhead
of ≈ 1000 bytes per node [1] in a time-dependent scenario whereas the overhead in a
time-independent scenario is almost negligible.
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[9] gives an overview over time-independent speed-up techniques, while [11] sum-
marizes the recent work on time-dependent speed-up techniques. As already mentioned,
all efficient speed-up techniques for road networks rely on adding shortcuts to the graph
making the usage of them in a limited time-dependent environment complicated. Mem-
ory efficient variants of time-independent speed-up techniques however exist. For ex-
ample, Contraction Hierarchies [13] have been implemented on a mobile device [21].
The straightfoward time-dependent variant [1] is very space-consuming. The ALT [14]
algorithm, which works in a time-dependent scenario as well [19], has been imple-
mented on an external device [15] as well. However, space consumption of ALT is
rather high and performance is clearly inferior to SHARC. Work on the compression
of time-independent graph data structures can also be found in [4, 5]. To the best of
our knowledge, we were the first who studied the problem of compressing a high-
performance time-dependent speed-up technique [7]. However, since the publication
of [7], the memory consumption of time-dependent Contraction Hierarchies has been
reduced [2]. Still, our approach yields a factor of 1.6 less overhead.

In this work, we present how to compress the preprocessing of SHARC, introduced
in [3] and augmented to the time-dependent scenario in [8], without too high of a loss in
query performance. The key idea is to identify unimportant parts of the preprocessing
and remove them in such a way that correctness of SHARC can still be guaranteed.
After settling preliminaries and recalling SHARC in Section 2, we present our main
contribution in Section 3. There, we show how to reduce the overhead stemming from
arc-flags stored to the graph, by mapping unimportant arc-flag vectors to important
ones. The advantage of this approach over other compression schemes such as bloom
filters [6] is that we do not need to change the query algorithm of SHARC. Due to
this fact, we keep the additional computational effort limited. Moreover, we show that
we can remove shortcuts from SHARC, again without changing the query algorithm.
Finally, we may even remove the complex travel time functions from the shortcuts by
reproducing the length function on-the-fly. In Section 4 we run extensive tests in order to
show the feasibility of our compression schemes. It turns out that we can safely remove
40% of the arc-flag information without any loss in query performance. Moreover, about
30% of the shortcuts added by SHARC are of limited use as well. So, we may also
remove them. Finally, it turns out that by removing the travel time functions from the
remaining shortcuts, we can reduce the overall overhead of SHARC significantely. As
a result, we are able to reduce the overhead induced by SHARC by a factor of up to
11.5. The resulting memory efficient variant of SHARC yields an overhead of 13.5
(instead of 156) bytes per node combined with average query times of about 3 ms (on
the German road network with realistic time-dependent traffic), around 500 times faster
than DIJKSTRA’s algorithm.

2 Preliminaries

A (directed) graph G = (V,A) consists of a finite set V of nodes and a finite set E of
arcs. An arc is an ordered pair (u,v) of nodes u,v ∈ V , the node u is called the tail
of the arc, v the head. The number of nodes |V | is denoted by n, the number of arcs
by m. Throughout the whole work we restrict ourselves to directed graphs which are
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weighted by a piece-wise linear periodic travel time function len. A travel time function
len(e) is defined by several interpolation points, each consisting of a timestamp t and a
travel time w > 0, depicting the travel time on e at time t. The travel time between two
interpolation points is done by linear interpolation. The composition of two travel time
functions f ,g is defined by f ⊕g := f +(g◦ ( f + id)).

A partition of V is a family C = {C0,C1, . . . ,Ck} of sets Ci ⊆V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. A
multilevel partition of V is a family of partitions {C 0,C 1, . . . ,C l} such that for each
i < l and each Ci

n ∈ C i a cell Ci+1
m ∈ C i+1 exists with Ci

n ⊆Ci+1
m . In that case the cell

Ci+1
m is called the supercell of Ci

n. The supercell of a level-l cell is V .
The original arc-flag approach [17, 16] first computes a partition C of the graph

and then attaches a label AF to each arc e. A label contains, for each cell Ci ∈ C , a
flag AFCi(e) which is true if a shortest path to a node in Ci starts with e. A modified
DIJKSTRA then only considers those arcs for which the flag of the target node’s cell is
true. Given two arc-flag vectors AF1,AF2. The OR arc-flags vector AF1∨AF2 has all
arc-flags set to true that are true in AF1 or AF1. The AND of two arc-flags vectors is
defined analogously and is denoted by AF1∧AF2.

Note that more and more arcs have a flag set for the target’s cell when approaching
the target cell (called the coning effect) and finally, all arcs are considered as soon as
the search enters the target cell. Hence, [18] introduces a second layer of arc-flags for
each cell. Therefore, each cell is again partitioned into several subcells and arc-flags are
computed for each. This approach can be extended to a multi-level arc-flags scenario
easily. A multi-level arc-flags query then first uses the flags on the topmost level and as
soon as the query enters the target’s cell on the topmost level, the lower-level arc-flags
are used for pruning. In the following we denote by the level of an arc-flag the level of
layer it is responsible for.

SHARC [3]. The main disadvantage of a multi-level arc-flags approach is the time-
consuming preprocessing [16]. SHARC improves on this by the integrating of contrac-
tion, i.e., a routine iteratively removing unimportant nodes and adding shortcuts in order
to preserve distances between non-removed nodes. Preprocessing of SHARC is an iter-
ative process: during each iteration step i, we contract the graph and then compute the
level i arc-flags. One key observation of SHARC is that we are able to assign arc-flags
to all bypassed arcs during contraction. More precisely, any arc (u,v) outgoing from a
non-removed node and heading to a removed one gets only one flag set to true, namely,
for the region v is assigned to. Any other bypassed arc gets all flags set to true. By this
procedure, unimportant arcs are only relaxed at the beginning and end of a query. Al-
though these suboptimal arc-flags already yield a good query performance, SHARC
improves on this by a (very local) arc-flag refinement routine. The key observation here
is that bypassed arcs may inherit flags from arcs not bypassed during contraction (cf. [3]
for details). It should be noted SHARC integrates contraction in such a natural way that
the multi-level arc-flags query can be applied to SHARC without modification.

Due to its unidirectional query algorithm, SHARC was a natural choice for aug-
menting it to a time-dependent [8] and a multi-criteria scenario [10]. The idea is the
same for both augmentations: adapt the basic ingredients of the preprocessing, i.e.,
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arc-flags, contraction, and arc-flags refinement, such that correctness of them can still
be guaranteed and leave the basic concept untouched. It turns out that SHARC per-
forms pretty well in both augmented scenarios. However, a crucial problem for time-
dependent route planning are shortcuts representing paths in the original graph. While
this is “cheap” in time-independent networks, the travel time functions assigned to time-
dependent shortcuts may become quite complex. In fact, the number of interpolation
points defining the shortcut is approximately the sum of all interpolation points as-
signed to the arcs the shortcut represents. See [8] for details. In fact, the overhead of
SHARC increases by a factor of up to 10 when switching from a time-independent to a
time-dependent scenario exactly because of these complex travel time functions.

SHARC adds auxiliary data to the graph. More precisely, the overhead stems from
several ingredients: Region information, arc-flags, topological information of shortcuts,
the travel time functions of shortcuts and shortcut unpacking information. We call the
graph enriched by shortcuts and any other auxiliary data the output graph.

The first overhead, i.e., the region information, is used for determining which arc-
flag to evaluate during query times. This information is encoded by an integer and
cannot be compressed without a significant performance penalty. We have a arc-flags
vector for each arc. However, the number of unique arc-flags vectors is much smaller
than the number of arcs. So, instead of storing the arc-flags directly at each arc, we use
a separate table containing all possible unique arc-flags sets. In order to access the flags
efficiently, we assign an additional pointer to each arc indexing the correct arc-flags set
in the table. The main overhead, however, stems from the shortcuts we add to the graph.
For each added shortcut, we need to store the topological information, i.e., the head
and tail of the arc, and the travel time function depicting the travel time on the path the
shortcut represents. Moreover, we need to store the arcs the shortcut represents in order
to retrieve the complete description of a computed path.

3 Preprocessing Compression

In this section, we show how to reduce the space consumption of SHARC by removing
unimportant arc-flags, shortcuts, and functions without violating correctness.

Arc-Flags. The first source of overhead for SHARC is storing the arc-flags for each
arc. As already mentioned, our original SHARC implementation already compresses
the arc-flag information by storing each unique arc-flag set separately in a table (called
the arc-flags table) and each arc stores an index to the arc-flag table. Figure 1 gives a
small example.

Lemma 1. Given a correct SHARC preprocessing. Flipping (arbitrary) arc-flags from
false to true does not violate the correctness of SHARC.

Proof. Let P = (u1, . . . ,uk) be an arbitrary shortest path in G. Since SHARC-Routing
is correct, we know that each arc (ui,ui+1) has the arc-flag being responsible for t set to
true. Since we only flip bits from false to true, this also holds after bit-flipping. ut
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Fig. 1. Compression of Arc-Flags. The input is partitioned into three cells, indicated by coloring.
A set arc-flag is indicated by color and a one. Instead of storing the flags directly at the arcs (left
figure), we store each unique arc-flags vector in a separate table with arcs indexing the right arc-
flags vector (middle figure). We additionally compress the table by flipping bits from false to
true (right figure) and thus, we reduce the number of entries in the table. The remapped indices
are drawn thicker.

This lemma allows us to flip bits in the arc-flag table from false to true. Hence,
we compress the arc-flag table by bit-flipping. Let AFr,AFm be two unique arc-flag
vectors such that AFr ⊆ AFm, i.e., all arc-flags set in AFr are also set in AFm. Then,
we may remove AFr from our arc-flag table and all arcs indexing AFr are remapped to
AFm. Note that this compression scheme has no impact on the query algorithm.

The compression rate achieved by bit-flipping highly depends on which arc-flag
vectors to remove and to which arc-flag vectors they are mapped. We introduce an
arc-flag costs function cost assigning an importance value to each arc-flags vector.
The idea is as follows: for each layer i of the multi-level partition, we introduce a
value costi. Let |AFi| be the number of flags set to true on level i. Then we de-
fine cost(AF) = ∑

l
i=0 costi ·|AFi|. The higher the costs of an arc-flags vector scores,

the more important it is. So, a good candidate for removing it from the table should
have low costs. The remaining question is what a good candidate for mapping is.
Therefore, we define the flipping costs between two arc-flag vectors AFr,AFm with
AFr ⊆ AFm as cost(AFr∧AFm). A good mapping candidate AFm for a vector AFr to
be removed is the arc-flags vector with minimal flipping costs. It is easy to see that
cost(AFr∧AFm) = cost(AFm)− cost(AFr) holds. We reduce the overhead induced by
arc-flags by iteratively removing arc-flags vectors from the table. Therefore, we order
the unique arc-flags vectors non-decreasing by their costs. Then, we remove the arc-
flags vector AFr with lowest costs from the table and remap all arcs indexing AFr to the
arc-flags vector AFm with minimal costs and for which AFr ⊆ AFm holds.

Shortcuts. In Section 2, we discussed that, at least in the time-dependent scenario,
the main source of overhead derives from the (time-dependent) shortcuts added to the
graph. In [3], we already presented a subroutine to remove all shortcuts from SHARC.
However, this yielded a high penalty in query performance. The following lemma recaps
the main idea.

Lemma 2. Given a correct SHARC preprocessing. Let (u,v) be an added shortcut dur-
ing preprocessing and let Puv = (u,u0, . . . ,uk,v) be the path it represents. By remov-
ing (u,v) from the graph and setting AF(u,u0) = AF(u,u0)∨AF(u,v), correctness of
SHARC is not violated.
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Proof. Let P = (s, . . . ,u,v, . . . , t) be an arbitrary shortest path using shortcut (u,v) in
the output graph of SHARC. Let also (u,u0) be the first edge of the path (u,v) rep-
resents in the original graph. We need to show that after removing (u,v), the path
P′ = (s, . . . ,u,u0, . . . , t) has all flags for t set to true. Since SHARC is correct, we
know that the subpath (s, . . . ,u) has correct flags set. Moreover, (u,u0) has proper flag
set as well, since we propagate all flags from (u,v) to (u,u0). We also know that the
shortest path from u0 to t must not contain (u,v) since we restrict ourselves to positive
length functions (cf. Section 2). Due to correctness of SHARC, the shortest path from
u0 to t must have proper flags set. Hence, P′ has proper flags set as well. ut

u v

u0 uk

010100

010111 010111000010

u v

u0 uk
010111 010111010110

Fig. 2. Example for removing
the shortcut (u,v), represent-
ing (u,u0,uk,v), by propagat-
ing flags from (u,v) to (u,u0).

In other words, we reroute any shortest path query
using a removed shortcut (u,v) to its path it represents,
Figure 2 gives an example. The lemma allows us to re-
move arbitrary shortcuts from the output graph. Note that
we may again leave the SHARC query untouched. Some
shortcuts are more important than others and the ordering
in which we remove shortcuts has a high impact on the
resulting query performance. Generally, a removed short-
cut should only have low arc-flags costs (cf. Section 4).
Furthermore, let l(u) be the level of an arbitrary node u,
given by iteration u was removed during the original pre-
processing of SHARC (cf. Section 2). We define the tail-
level of a shortcut (u,v) by l(u), while l(v) is the head-
level. Presumably, shortcuts with low head and tail levels are less important than those
with high ones. A fourth indicator for the importance of a shortcut is the so-called
search space coning coefficient. Let (u,v) be a shortcut and let Puv = (u,u0, . . . ,uk,v)
be the path it represents. Then the search space coning coefficient of (u,v) is given
by sscc(u,v) = ∑ui∈Puv ∑(ui,w)∈E,w6=ui+1

cost
(
AF(u,v)∧AF(ui,w)

)
. In other words, the

search space coning coefficient depicts how many arcs may be relaxed additionally if
(u,v) was removed, i.e., the search cones. Therefore, the arc-flags of any outgoing arc
from ui ∈ Puv is examined and whenever a flag is set that is also set for the shortcut, the
search space coning coefficient increases.

Our shortcut-removal compression scheme iteratively removes shortcuts from the
graph and sets arc-flags according to Lemma 2. We use a priority queue to determine
which shortcut to remove next. The priority of a shortcut is given by a linear combi-
nation of its head level, its tail level, its arc-flag costs, and the search space coning
coefficient. We normalize these values by their maximal values during initialization.

Removing Travel Time Functions. Removing shortcuts from the output graph increases
the search space since unnecessary arcs may be relaxed during traversing the path the
shortcut represents. However, the main problem of time-dependent shortcuts are their
complex travel time functions. Another possibility to remedy this space consumption is
to remove the travel time functions but to keep the shortcut itself. Now, when a shortcut
is relaxed, we compute the weight of it by unpacking the shortcut on-the-fly. The ad-
vantage of this over complete removal of the shortcut is that the search space does not
increase. However, due to on-the-fly unpacking query times may increase.
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Again, like for removing shortcuts and arc-flags compression, we are able to remove
the travel time functions only from some of the shortcuts. On the one hand, we want
to remove a shortcut with a complex function, and on the other hand, it should not be
relaxed too frequentely. Hence, we use a priority queue in order to determine which
function to delete next. As key for (u,v) we use a linear combination of the number of
interpolation points of len(u,v) and the arc-flag costs of AF(u,v).

4 Experiments

Our experimental evaluation has been done on one core of an AMD Operon 2218 run-
ning SUSE Linux 11.1. The machine is clocked at 2.6 GHz, has 16 GB of RAM and
2 x 1 MB of L2 cache. The program was compiled with GCC 4.3, using optimization
level 3. Our implementation is written in C++. As priority queue we use a binary heap.

We use the German road network as input, it has approximately 4.7 million nodes
and 10.8 million arcs. We have access to five different traffic scenarios, generated from
realistic traffic simulations: Monday, midweek (Tuesday till Thursday), Friday, Satur-
day, and Sunday. All data has been provided by PTV AG [20] for scientific use.

For testing our compression schemes, we run a complete time-dependent SHARC
preprocessing (heuristic variant [8]) on our Monday instance, we use our default pa-
rameters from [8]. The input has a space consumption of 44.2 bytes per node. SHARC
adds about 2.7 million shortcuts and increases the number of interpolation points (for
time-dependent arcs) from 12.7 million to about 92.1 million, yielding a total over-
head of 156.94 additional bytes per node. Form those 156.94 bytes per node, 11.55 are
stemming from shortcuts (topology and unpacking information), 8.2 from the arc-flag
information, 2.0 from the region information, while 135.31 bytes per node stem from
the additional interpolation points added to the graph. Hence, the main overhead stems
from the latter. Note that the total overhead is slightly higher than reported in [8]. The
reason for this is a change (we now store no interpolation point for a time-independent
edge) to a more space-efficient graph data structure. Note that the heuristic variant of
SHARC may compute a path that is slightly longer than the shortest in very few occa-
sions [8]. However, all insights gained her also hold for any other variant.

In order to evaluate how well our schemes work, we evaluate the query performance
of this SHARC preprocessing after compression. Therefore, we run 100 000 s-t queries
for which we pick s, t, and the departure time uniformly at random. Then, we provide
the average query time. Note that we do not report the time for unpacking the whole
path. However, this can be done in less than 0.1 ms.

Arc-Flags. Figure 3 depicts the performance of time-dependent SHARC in our Mon-
day scenario after removing a varying amount of arc-flags vectors for different cost
functions. Note that we do not provide running times for compression since it takes less
than one minute to compress the arc-flags. This is only a small fraction of the time the
SHARC preprocessing takes (3-4 hours). We observe that the choice of the cost function
has a high impact on the success of our flag compression scheme. As expected, a cost
function that prefers flipping of low-level flags (cost function 1,3,9,27,243) performs
better than one that prefers high-level flags (cost function 16,8,4,2,1). Interestingly, we
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Fig. 3. Removing arc-flags (left) and shortcuts (right) from the output graph with cost functions.
For arc-flags, the entry on the left indicates the costs for flipping a low level flag, while the right
most entry shows the costs for flipping the highest level.

may remove up to 40% of the arc-flags vectors without any loss in performance. This
reduces the overhead induced by arc-flags from 8.2 bytes per node to 7.2. By removing
60% of the vectors (resulting overhead: 6.9), the query performance decreases only by
10%. However, removing more than 70% of the flags yields a significant penalty in per-
formance, although the overhead (for arc-flags) is only reduced to 6.3 bytes per node.
So, since arc-flags contribute only a small fraction to the overhead, it seems reasonable
to settle for a arc-flag compression rate of 40%.

Shortcuts. Figure 3 depicts the performance of SHARC after removing a varying
amount of shortcuts for different linear coefficients introduced in Section 3. Note again
that we do not report running times for compression since it takes less than one minute
to obtain the reduced preprocessed data. We observe that we can remove up to 45% of
the shortcuts yielding a mild increase in query performance (≈ 10%). This reduces the
overhead of the shortcuts from 11.55 bytes per node to 7.51. Moreover, the overhead
induced by travel time functions is reduced from 135.31 to 118.72 bytes per node since
some of the removed shortcuts are time-dependent. Up to 65%, the loss in query per-
formance is still acceptable (a factor of 2), especially when keeping the gain in mind:
the overhead for shortcuts reduces to 5.3 bytes per node and 97.7 bytes per node for
additional interpolation points. Analyzing the impact of ordering, we observe that the
level of head and tail seem to be the most important parameters. Interestingly, the head
level seems to be more important than the tail level. The reason for this is that short-
cuts from lower to higher levels are relaxed at the beginning of a query, while shortcuts
from higher to lower levels are relaxed at the end. Since removing shortcuts cones the
query (cf. Section 3), the latter shortcuts are less important. The influence of the search
space coning coefficient is minor and only observable for very low compression rates: at
20%, the loss in performance is almost negligible. In the following, we will use values
of 20%, 45%, and 65% as default parameters.
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Fig. 4. Removing travel time functions. The x-
axis indicates how many of the additional in-
terpolation points are removed by the compres-
sion scheme. Coefficients not indicated are set to
zero.

Travel Time Functions. Figure 4 indi-
cates the query performance of SHARC
after removing travel time functions from
time-dependent shortcuts. We here evalu-
ate different orderings given by different
weights for the coefficients arc-flag costs
and number of interpolation points, as
explained in Section 3. We observe that
for low compression rates, the arc-flag
costs are more important than the number
of points on the shortcut. However, the
situation is vice versa between compres-
sion rates between 60% and 85%: here an
ordering based on the number of points
performs better than the order based on
arc-flag costs. However, the differences
are marginal, hence we use arc-flag costs
as default for determing the ordering. In
general, we may remove up to 40% of the
additional points for a loss of query performance of about 25%. This already reduces
the overhead induced by additional interpolation points to 81.2 bytes per node. The
corresponding figures for a compression rate of 60% are a query performance penalty
of factor 2 and a resulting overhead of 63.1. Most remarkably, we may even remove
all additional interpolation points from the output graph with paying “only” a loss of
performance of a factor of 3.2. This yields a total overhead of 21.6 bytes per node, a
reduction of factor of 7.5 over the uncompressed preprocessing. Still the average query
performance of 2.3 ms is still a speedup of a factor of 678 over DIJKSTRA’s algorithm.

Combinations. Up to now, we evaluated each compression scheme separately. Table 1
gives an overview if we combine all three schemes among each other. We here report
the overhead of the preprocessed data in terms of additional bytes per node. For eval-
uating the query performance, we not only provide query times but also the average
number of settled nodes and relaxed arcs for 100 000 random s-t queries. Moreover, we
report the speed-up over our (efficient) implementation of time-dependent Dijkstra. On
this input, the latter settles about 2.2 million arcs in about 1.5 seconds on average. We
observe that we may vary the compression rate yielding different total overhead and
query performance. A good trade-off seems to be achieved for compressing shortcuts
by 20%, interpolation points by 60%, and flags by 40%. This reduces space overhead
in total by a factor of 2 and yields a loss in query performance by a factor of 1.85. For
this is reason, we call these values a medium compression setup. Our high compression
setup removes 65% of all shortcuts, removes all interpolation points from remaining
time-dependent shortcuts and reduces the flag-table by 40%. This reduces the overhead
induced by SHARC by a factor of almost 11.5 while query performance is ≈ 4 times
slower than without compression. Any compression beyond this point yields a big per-
formance loss without a significant reduction in preprocessed data.
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Table 1. Query performance for different combinations of our compression schemes. As input,
we use the German road network with traffic scenario Monday.

SHORTCUTS POINTS FLAGS TOTAL QUERIES

rem. overhead rem. overhead rem. overhead overhead comp. #sett. #rel. time speed
[bytes/n] [%] [bytes/n] [%] [bytes/n] [bytes/n] [%] nodes arcs [ms] up

0 11.55 0 135.31 0 8.20 156.94 0.0 775 984 0.68 2 288
20 9.72 40 75.67 40 7.03 94.29 39.9 876 1 095 0.87 1 786
20 9.72 60 50.22 40 7.03 68.84 56.1 876 1 095 1.26 1 238
20 9.72 100 0.00 40 7.03 18.62 88.1 876 1 095 2.44 636
45 7.51 40 67.19 40 6.67 83.24 47.0 949 1 167 0.94 1 654
45 7.51 60 44.78 40 6.67 60.83 61.2 949 1 167 1.43 1 087
45 7.51 100 0.00 40 6.67 16.05 89.8 949 1 167 2.56 606
65 5.30 40 54.66 40 6.34 68.17 56.6 1 717 1 971 1.39 1 118
65 5.30 60 37.97 40 6.34 51.48 67.2 1 717 1 971 1.88 827
65 5.30 100 0.00 40 6.34 13.52 91.4 1 717 1 971 2.98 521
65 5.30 100 0.00 60 6.10 13.27 91.5 1 811 2 085 3.07 506

Traffic Scenarios. Our final testset evaluates the impact of different traffic scenarios
on our compression schemes. Besides our Monday scenario which we evaluated up
to this point, we now also apply a midweek (Tuesday to Thursday), Friday, Saturday,
Sunday, and “no traffic” scenario. Note that the latter is a time-independent network.
Our graph data structures occupy 44.2, 44.1, 41.0, 31.4, 27.8, and 22.4 bytes per node,
respectively. We here also report the additional overhead induced by SHARC, as well
as the total time of preprocessing (including compression). The resulting figures can be
found in Tab. 2.

We observe that for all time-dependent inputs, our medium compression setup re-
duces the space consumption by a factor of 2 combined with a performance penalty
between 1.5 and 1.9, depending on the degree of time-dependency in the network. Our
high compression rate yields an overhead of ≈ 13.5 bytes per node, independently of
the applied traffic scenario. This even holds for our “no traffic scenario”. The query
performance however, varies between 0.37 ms (no traffic) and 3.06 ms (midweek). The
reason for this is that in a high traffic scenario, more are arcs are time-dependent and
hence, more arcs need to be evaluated when unpacking a (time-dependent) shortcut on-
the-fly. Since the no traffic input contains no time-dependent arcs, no shortcut has a
travel time function assigned. Hence, the costly on-the-fly unpacking needs not to be
done during query times.

Comparison. Finally, we compare our memory-efficient version of SHARC (high
compression) with the most recent variant of Contraction Hierachies (CH) [2]. The
input is Germany midweek. CH achieves a speed-up of 714 over Dijkstra’s algorithm,
assembling 23 additional bytes per node in 37 minutes. SHARC yields a slightly lower
speed-up (491) with less overhead (13.5 bytes per node) for the price of a longer pre-
processing time (around 4 hours). However, our heuristic variant of SHARC (which
we use in this paper) drops correctness while CH is provably correct. Still, in (very)
space-limited time-dependent environment, SHARC seems to be the first choice.
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Table 2. Query performance of heuristic time-dependent SHARC applying different traffic sce-
narios for our German road network. Column compression rate indicates our default rates from
Section 4. Columns increase edges, points indicate the increase in number of edges and points
compared to the input.

PREPROCESSING QUERIES

comp. time inc. inc. space comp #sett. #rel. time speed
scenario rate [h:m] edges points [bytes/n] [%] nodes arcs [ms] up

none 3:52 25.2% 621.1% 156.94 0.0 775 984 0.68 2 288
Monday med 3:54 19.9% 230.5% 68.84 56.1 876 1 095 1.26 1 238

high 3:54 8.2% 0.0% 13.52 91.4 1 717 1 971 2.98 521
none 3:46 25.2% 621.8% 156.45 0.0 777 990 0.68 2 203

midweek med 3:48 20.0% 229.3% 68.35 56.3 880 1 102 1.28 1 177
high 3:48 8.2% 0.0% 13.54 91.3 1 715 1 971 3.06 491
none 3:22 25.1% 654.4% 142.90 0.0 733 930 0.63 2 400

Friday med 3:24 19.9% 240.4% 63.22 55.8 837 1 043 1.17 1 302
high 3:24 8.2% 0.0% 13.59 90.5 1 691 1 932 2.79 543
none 2:24 24.7% 784.2% 92.37 0.0 624 782 0.49 3 001

Saturday med 2:26 19.6% 286.8% 44.58 51.7 726 892 0.81 1 825
high 2:26 8.0% 0.0% 13.69 85.2 1 615 1 817 1.95 752
none 1:53 24.3% 859.4% 67.43 0.0 593 735 0.44 3 299

Sunday med 1:55 19.2% 317.8% 35.58 47.2 693 844 0.68 2 159
high 1:55 7.9% 0.0% 13.64 79.8 1 576 1 762 1.64 893
none 0:10 23.3% 0.0% 20.90 0.0 277 336 0.18 6 784

no med 0:12 18.4% 0.0% 17.80 14.8 327 390 0.20 5 990
high 0:12 7.5% 0.0% 13.12 37.2 758 838 0.37 3 332

5 Conclusion

In this work, we showed how to reduce the space consumption of SHARC without too
high of a loss in query performance. The key idea is to identify unimportant parts of
the preprocessing and remove them in such a way that correctness of SHARC can still
be guaranteed. More precisely, we showed how to reduce the overhead stemming from
arc-flags stored to the graph, how to remove shortcuts and how to remove complex
travel time functions assigned to shortcuts. As a result, we were able to reduce the
overhead induced by SHARC by a factor of up to 11. We thereby solved the problem
of high space consumption of time-dependent route planning: SHARC does not yield
a space-consumption penalty for switching from time-independent to time-dependent
route planning, making it an interesting candidate for mobile devices.

Regarding future work, it would be interesting to compress the time-dependent in-
put graphs. Techniques from [4, 5, 21] show how to compress the topology information
of a graph. The main challenge, however, seems to be the reduction of the space con-
sumption needed for storing the travel time functions. A possible approach could be the
following: Real-world networks often assign a so called delay-profile to each edge. So,
instead of storing the travel functions at the edges, one could use an index pointing to
the (small number of) delay profiles. Note that this approach is similar to the arc-flags
compression scheme.
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