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2 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemanndetermine relevant onnetions for their ustomers. Sine there has been impres-sive progress with speed-up tehniques for related problems in road networks,it seems natural to start an attempt to transfer the underlying methods to arailway senario.In this paper, we report on a projet where we worked out the neessarydetails to augment standard searh tehniques by additional information ob-tained in a preproessing phase. We investigate two key speed-up tehniques fora multi-riteria variant of Dijkstra's algorithm � ar �ags and ontration.Related Work. Many speed-up tehniques for single-riteria senarios havebeen developed during the last years. Due to spae limitations, we diret theinterested reader to [8℄ and [10℄, whih give reent overviews over single-riteriatime-independent and time-dependent route planning tehniques, respetively.Basis. The straightforward approah to �nd all Pareto optimal paths is thegeneralization [15, 18, 20℄ of Dijkstra's algorithm: Eah node v ∈ V gets anumber of multi-dimensional labels assigned, representing all Pareto paths to
v. For the biriteria ase, Hansen [15℄ was the �rst presenting suh a general-ization, while Theune [30℄ desribes multi-riteria algorithms in detail. By thisgeneralization, Dijkstra loses the property that eah node is visited only one.It turns out that a ruial problem for multi-riteria routing is the number oflabel entries assigned to the nodes. The more label entries are reated, the morenodes are reinserted in the priority queue yielding onsiderably slow-downs om-pared to the single-riterion setup. In the worst ase, the number of labels an beexponential in |V | yielding impratial running times [15℄, and also memory on-sumption beomes an issue. Hene, Hansen [15℄ and Warburtun [31℄ present anFPTAS (fully polynomial time approximation sheme) for the biriteria shortestpath problem.Speed-up Tehniques. Most of the work on speed-up tehniques for multi-riteriasenarios was done on networks derived from timetable information. In suh net-works, Müller-Hannemann and Weihe [23℄ observed that the number of labelsis often limited suh that the brute fore approah for �nding all Pareto pathsis often feasible. Experimental studies �nding Pareto paths in timetable graphsan be found in [25, 26, 29, 27, 21, 14, 11℄.We would like to point out that one hasto distinguish between �nding all Pareto paths and only �nding one representa-tive for eah equivalenve lass of paths with the same tuple of objetive values.Previous work usually guarantees only the weaker seond version.SHARC, a route planning algorithm developed by one of this work's o-authors, has been introdued in [2, 3℄. Originally, SHARC only worked on time-independent networks. In [6, 7℄, it has suessfully been adapted to time-depen-dent road and railway networks, and very reently, even to a (time-independent)multi-riteria senario [9℄. However, experiments for the multi-riteria variantwere only onduted on time-independent road networks. So, to the best of ourknowledge, no advaned speed-up tehnique has yet been adapted to a realistimulti-riteria timetable information system on time-dependent networks.



Aelerating Time-Dependent Multi-Criteria Timetable Information 3Our ontribution and overview. This paper is devoted to transfer advanedspeed-up tehniques to time-dependent railway networks. In ontrast to mostprevious sienti� work, we onsider a senario with the following features:� Our model is a fully realisti model, where tra� days, business rules onrequired transfer times between onneting trains, footpaths between neigh-boring stations, train attributes, and the like are respeted.� We aim at �nding all Pareto optimal paths for two riteria, travel time andnumber of transfers. We would like to emphasize that we here mean thestrong version whih really enumerates all Pareto paths, and not just onerepresentative path for eah non-dominated pair of objetive values. Sinethere are often several possibilities to hange between the same two trains,this leads to a muh larger set of paths. The motivation to searh for thesepaths omes from pratie: railway ompanies have preferenes at whihstations their passengers should hange trains. Hene, they would like toselet from the omplete set of Pareto paths a subset whih they present toustomers.� We want to perform a range searh for an arbitrary user-spei�ed start-timeinterval (not only from a single desired start point). As a result, we are ableto ompute the omplete onnetion table between two arbitrary stations fora full day.To model this senario we will introdue a station graph model with trainroutes whih is slightly more ompat than those used in Disser et al. [11℄. WhileDijkstra's algorithm an be easily generalized to time-dependent graphs in thesingle-riterion ase [5℄, one has to be more areful in a multi-riteria setting.The ruial operation in a multi-riteria searh algorithm is to deide whihsubpaths an be safely dominated. To ensure orretness subpath optimality isrequired, and therefore Müller-Hannemann and Berger [4℄ extended the lassialtime-dependent model to an event-dependent model.In this work, we mainly investigate two prominent speed-up tehniques, ar-�ags and ontration, and their ombination. We� disuss how these tehniques have to be adapted to work for the abovesenario,� explain why they do not lead to as large speed-ups as one might have hopedfor, and� develop two new re�nements whih ahieve at least some signi�ant speed-upover previous work on range queries.Classial ar �ags turn out to be rather weak for arbitrary multi-riteriarange queries: almost all ar �ags must be set to true to guarantee orretnessof the query algorithm sine for any ar there is almost surely one point in timewhere this ar is part of some Pareto-optimal path towards the target station.However, from our preproessing we do know exatly at whih points of time anypartiular ar might be neessary. By this observation we re�ne the lassial ar�ags to time-period ar �ags. The idea is to divide the overall range for whih



4 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannour preproessing is valid into short time intervals, for example into intervals oftwo hours. Then eah ar maintains a �ag for eah ombination of time interval(period) and region whih tells whether the ar might be �useful� for a partiularquery.Standard node ontration su�ers from the dilemma that our station graphhas due to many parallel routes already a very high average degree of ≈ 43 (inomparison, road networks have empirially an average degree below 4). Thus,bypassing a node leads to the introdution of many shortut ars. While manyshortut ars an be pruned away in a single-riterion searh in time-independentroad networks, domination riteria in a multi-riteria senario are muh weakerin event-dependent railway networks, as we will explain in Setion 4. Therefore,we deided to develop and implement a di�erent onept whih an be ombinedwith ar-�ags: route ontration. The idea behind route ontration is to insertfor a path omposed by ars on the same route a new shortut ar, providedthat all intermediate stations on this path are lassi�ed as bypassable. A stationis bypassable if (a) it is neither the beginning or end of some route, (b) it has atmost two di�erent neighbors, and () it is not a boundary node of some regionused in the node partition for the ar-�ags. In Germany, about 60% of all stationsare bypassable with respet to this de�nition.In addition, we have realized a variant of goal-direted searh whih for eahquery �rst omputes minimum travel times from eah node towards the targetstation and then uses these values as lower bounds during the searh. Extensiveomputational experiments indiate that the ombination of these methods to-gether with a greedy strategy allow range queries for a full day in about 0.53seonds. This gives a speed-up of about 10.1 over our baseline variant.The remainder of the paper is organized as follows. In Setion 2, we brie�yreview the lassial ar-�ag method and SHARC. Then, in Setion 3, we dis-uss modeling issues for multi-riteria time-table information. We introdue ourstation graph model and explain the baseline variant of a multi-riteria gener-alization of Dijkstra's algorithm. Afterwards, we desribe how to adapt the pre-proessing phase for ar-�ags and ontration to a multi-riteria time-dependentversion. In partiular, we introdue the new onepts of time-period ar-�ags androute ontration. Results of an experimental study are presented in Setion 5.Finally, we onlude with a short summary.2 PreliminariesA (direted) graph G = (V, A) onsists of a �nite set V of nodes and a �nite set
A of ars. An ar is an ordered pair (u, v) of nodes u, v ∈ V , the node u is alledthe tail of the ar, v the head. Throughout the whole work we restrit ourselvesto direted graphs whih are weighted by a length funtion len, whih we speifyin Setion 3. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ Vsuh that eah node v ∈ V is ontained in exatly one set Ci. An element of apartition is alled a region. The boundary nodes BC of a region C are all nodes



Aelerating Time-Dependent Multi-Criteria Timetable Information 5
u ∈ C for whih at least one node v ∈ V \C exists suh that (v, u) ∈ A. We all
v a pre-boundary node of the region u is assigned to.SHARC. Introdued in [2, 3℄, SHARC ombines ideas from ar-�ags [17, 16℄ andontration [28, 12℄. The original ar-�ag approah �rst omputes a partition Cof the graph and then attahes a label to eah ar a. A label ontains, for eahregion C ∈ C, a �ag AFC(a) whih is true if a shortest path to at least one nodein C starts with a. A modi�ed Dijkstra then only onsiders those ars for whihthe �ag of the target node's region is true. The main downside of this approah isthe high preproessing e�ort. Hene, SHARC improves on this by the integrationof ontration, i.e., a routine iteravely removing unimportant nodes and addingso-alled shortuts in order to preserve distanes between non-removed nodes.One key observation of SHARC is that we are able to assign ar-�ags to allbypassed ars during ontration. More preisely, any ar (u, v) outgoing from anon-removed node and heading to a removed one gets only one �ag set to true,namely, for the region v is assigned to. Any other bypassed ar gets all �ags setto true. By this proedure, unimportant ars are only relaxed at the beginningand end of a query.3 Modeling IssuesUp to now, two models have been introdued for e�ient timetable informationsystems: the time-expanded and time-dependent approah. See the survey pa-per [22℄ for details. In this setion we extend the time-dependent approah to anevent-dependent senario (see [4℄) and introdue a more ompat graph model.3.1 Elementary Connetions, Connetions and Connetion Tables.Before explaining our station graph model, we need the notion of onnetionswithin a timetable. Let S be the set of stations. An elementary onnetion
ce = (depv(time), arrw(time), T ) represents exatly one train T whih departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time)in station w ∈ S without stops. An elementary onnetion-table Ce is a setof elementary onnetions with idential origin v and destination w. Further-more, there exists a set of minimum transfer times transs(T, T ′) ∈ N betweentrains T, T ′ with respet to eah station s ∈ S. These transfer times ensurethe possibility to transfer between two trains with respet to di�erent situ-ations. We all two elementary onnetions ce = (depv(time), arrw(time), T )and c′e = (depv′(time), arrw′(time), T ′) onatinable if and only if w = v′ and
depv′(time)− arrw(time) ≥ transw(T, T ′). We denote a sequene of elementaryonnetions ce1

, . . . , cek
as onnetion c = (ce1

, cek
, transfer) if eah adjaentpair of elementary onnetions (cei

, cei+1
) in the sequene is onatinable. At-tribute transfer ounts the number of transfers using onnetion c.Note, that thisde�nition allows to onatenate onnetions if there ending and starting elemen-tary onnetions are onatinable. We denote with c(depv(time)), c(depv(train))



6 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannand c(arrw(time)), c(arrw(train)) the starting and ending departure and ar-rival times/trains of onnetion c. Analogously to elementary onnetion-tableswe de�ne a onnetion-table C as a set of onnetions with idential origin v anddestination w. Last, we de�ne an operator ⊕ on onnetion tables C, C′ whihassigns to eah pair of onnetion tables (C, C′) a new onnetion table C′′.
C′′ ontains all onnetions c′′ onsisting of onatinable pairs of onnetions
(c, c′) ∈ C ×C′. In the following, we assign elementary onnetion-tables to arsbut also ompute onnetion-tables between arbitrary pairs of stations.3.2 Station Graph ModelOur approah is based on a direted graph G = (V, A) without loops but withparallel ars whih is alled station graph. Eah node v ∈ V models a station s ∈
S. Inserting ars is more sophistiated. In a �rst step we onnet two stations ifand only if there exist at least one elementary onnetion between these stations.Next, we identify trains with the following properties: they stop exatly at thesame sequene of stations, have the same train attributes and days of operation,and never violate the FIFO property, i.e., they always run in the same order oneah ar. We denote suh sequenes of stations as routes and get for eah ar aset of di�erent routes using this ar. Now, we replae eah ar (v, w) by parallelroute ars (v, w)i, one for eah route on this ar. We add the new attribute routenumber to eah elementary onnetion. In a last step we assign to eah routear the orresponding elementary onnetion-table.Foot-Ars. Our data also ontains foot paths modeling inter-station transfersreahable by foot. In our graph model, we simply onnet the orrespondingstations v, w by a foot-ar with onstant length l orresponding to the timeneessary for traversing the ar (v, w) by foot F . Hene, we an assoiate witheah foot ar an elementary onnetion table whih ontains for eah disretepoint of time an elementary onnetion ce = (depv(time), arrw(time), F ) with
arrw(time) − depv(time) = l.3.3 Route Planning in the Station Graph ModelIn this work, we onentrate on omputing optimal onnetion tables betweentwo arbitrary stations s and t at a given start time interval [τstart, τend] for sta-tion s with respet to the travel time and number of transfers. We denote thetravel time of a onnetion c with ttime(c) and the number of transfers with
transfer(c). Eah onnetion an be seen as an event-dependent path in thestation graph. Müller-Hannemann and Berger introdued event-dependent mod-els as an extension of time-dependent approahes in [4℄. The reason to introduethis extension is that our seond optimization riterion �number of transfers�not only depends on time but additionally on train numbers. This leads to newde�nitions for time-dependent settings and their generalizations. First, we as-sign to eah ar a = (v, u) ∈ A and departure event depv at v an arrival event
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arru whih de�nes the arrival event at vertex u if we depart in v with depar-ture event depv and traverse ar a. This models our elementary onnetions.For time-dependent models an event onsists only of the attribute time. There-fore, all departure events with the same departure time at a vertex v will beonsidered as equal events. In our senario an event onsists of attributes depar-ture or arrival time, train number and route number. We de�ne for all v ∈ Va set of departure events Depv and arrival events Arrv . Consider all onne-tions in a onnetion table between station s and t. Then suh a onnetion
c = ((deps(time), arrw(time), T ), (depv(time), arrt(time), T ′), transfer) is analternating sequene (deps, arrw, . . . , depv, arrt) of departure and arrival eventswhih onsist of attributes (time, train, routenumber). For an (s, t)-query weignore all arrival events at s, but add an arti�ial �arrival event� starts withan earliest start time starts(time) := τstart at the beginning of c. Furthermore,we de�ne one arti�ial �departure event� endt whih is added to the end of c.We denote suh an alternating sequene as event-dependent path Pstarts,endt

:=
(starts, c, endt). Furthermore, we all an alternating subsequene of an event-dependent path Pstarts,endt

starting at starts and ending in an arrival event arrvas event-dependent subpath Pstarts,arrv
. We de�ne the weight w(Pstarts ,arrv

) ∈
N

2 of an event-dependent path Pstarts,arrv
in the �rst omponent as the traveltime ttime(c) and in the seond omponent as the number of transfers transfer(c)of the underlying onnetion c. Note that all events belonging to an event-dependent path are distint, but we do not rule out that orresponding stationsare repeated.If we want to use a generalized version of Dijkstra's algorithm to omputeall event-dependent Pareto-paths, we need for orretness subpath optimality.To deide the optimality of an event-dependent subpath we may only omparesubpaths whih possess on their ends idential departure events, see [4℄. Hene, inthe ase of a time-dependent senario we may ompare all subpaths whih possesson their ends only idential arrival times. A generalized version of Dijkstra'salgorithm, (see Algorithm 1), omputes all event-dependent Pareto-paths. Thisalgorithm uses a data struture for a label L whih onsists of1. an arrival event arrv ,2. a list lw of weights w ∈ R

k
+ for event-dependent paths Pstarts,arrv

,3. a list lp of predeessor arrival events arru for event-dependent paths Pstarts,arrv
.Note that in this version we onstrut a label for eah route ar and thisnotion of a label inludes all partial onnetions from the start station. Thus,we an identify suh a label with a omputed onnetion table representing allnon-dominated onnetions from the start station up to the orresponding arfound so far. Upon termination, eah label inludes all Pareto-optimal paths.To deide whether two alternatives dominate eah other or not, we are able toompare all event-dependent subpaths not only ending with idential departureevents but ending with di�erent departure events and an idential route number.Hene, we an give speial rules to delete some of these subpaths. In the nextsetion we explain these �rules of dominane�.



8 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannAlgorithm 1: Generalized Dijkstra Event-DependentInput: Origin s, destination t, earliest start time starts(time)Output: Set of all event-dependent Pareto-optimal (s, t)-paths.reate empty priority pq;1 for arrival events arrv do2 if v 6= s then onstrut label Larrv
with empty list lw;3 else4 onstrut label Lstarts

;5
pq. insert(Lstarts

);6 while ¬pq. empty() do7
Larrv

← pq. extract-min() /* key is the smallest arrival time8
arrv(time) */ompute with respet to transv possible departure events depv at vertex v;9 /* eah departure event belongs to exatly one arrival event */determine the orresponding arrival event arru to Larru

;10 for these arrival events arru do11 if label Larru
6∈ pq then pq. insert(Larru

) and store a �ag that Larru
is12 in pq;for weights stored in Larrv

.lw do13
w(Pstarts, arru

)← w(Pstarts, arrv
) + w(arrv, depv) + w(depv, arru);14 if w(Pstarts, arru

) not dominated in Larru
.lw then15

Larru
.lw. insert (w (Pstarts, arru

));delete dominated weights in label Larru
.lw;16Rules of Dominane. Our station graph model allows additional rules toompare onnetions within eah onnetion table on a route ar. In general,we may only ompare onnetions with idential ending arrival times in oneonnetion table. In our senario the rules of dominane with respet to subpath-optimality don't hange but in several ases we an deide the non-optimality ofsome subpaths in advane. Consider the omputed onnetion table on route ar

r in Figure 1. The third onnetion will be deleted beause there is no Pareto-optimal (s, t)-path whih an ontain this onnetion as a subpath. Assume,this would be the ase. Then the �rst onnetion in our time table an use thesame onnetion from v to t as in this Pareto-path. Beause the �rst and thirdonnetion end on the same route ar either both have to transfer at v or bothontinue on the same route. Hene, the (s, t)-path using onnetion 1 possess asmaller travel time and a smaller number of transfers. In ontradition to ourassumption the path using onnetion 3 is dominated. Note, that we annotdelete onnetion 2 in this onnetion table. If the last train of onnetion 2is the same as the only elementary onnetion on (v, t), onnetion 2 an beextended to a Pareto-optimal path from (s, t). Similar but stronger argumentsan be found in omparing onnetion tables of two di�erent route ars r, r′ending at station v. In Table 1 we give our speial deletion rules. We all therules in line 1 and 2 route dominane and the rule in line 3 station dominane.
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c1, c2 omparable if delete c2 ⇔1 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) ≥
c2(arrv(time))− ttime(c2)

transfer(c1) < transfer(c2)2 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) ≤ transfer(c2)3 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) < transfer(c2)Table 1. Comparability and deletion riteria of two onnetions on route ars endingin station v.

s t

r

v

ttime1h2h3h arrival7.008.009.00 112 11.0010.00
transfer

Fig. 1. Example: Route dominane at a onnetion table for paths from s to ar r.Note that we annot delete onnetion 2 in this table if the elementary onnetion onar (v, t) uses the same train as onnetion 2. However, onnetion 3 an be safelydeleted.4 Augmenting IngredientsIn this setion, we present how to adapt the basi ontration and ar-�ags toour senario.4.1 ContrationOne of the main reasons of the suess of reent hierarhial (single-riteria)speed-up tehniques is ontration, a routine that iteratively removes unimpor-tant nodes from the graph and inserts so alled shortuts to preserve orretdistanes between the remaining nodes. Hene, in order to use this tehnique inour senario, we need to augment this onept. In general, ontration works intwo phases: vertex- and ar-redution.Vertex-Redution. Adaption of vertex-redution is straightforward. We by-pass a node u by removing all its inoming ars I(u) and all outgoing ars O(u).In order to preserve Pareto-paths between the remaining nodes, we introdue, foreah ombination (v, u) ∈ I(u), (u, v′) ∈ O(u) and their onnetion tables C(v,u)and C(u,v′), a new ar (v, v′) with onnetion-table C(v,v′) = C(v,u) ⊕ C(u,v′).
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c1, c2 omparable if delete c2 ⇔1 c1(depv(event)) = c2(depv(event))
c1(arrw(route)) = c2(arrw(route))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(arrw(event)) = c2(arrw(event))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)3 c1(depv(event)) = c2(depv(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(arrw(event)) = c2(arrw(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)5 c1(depv(time)) > c2(depv(time))
ttime(c1) + c1(depv(time)) ≤

c2(depv(time)) + ttime(c2)
transfer(c1) + 2 < transfer(c2)Table 2. Comparability and deletion riteria of two onnetions on parallel shortutars (u, v).From vertex-redution in other senarios, we know that the order in whihwe remove verties from the graph hanges the resulting graph. Hene, weuse a priority queue to determine whih node to bypass next. The priorityof a node u within the queue is de�ned by the expansion ζ(u) := (degin(u) ·

degout(u))/(degin(u) + degout(u)). We stop the vertex-redution as soon as wewould bypass a node with an expansion beyond a given threshold. All nodesremaining in the graph, we all ore-nodes. The ore of a graph ontains allore-nodes and all ars (inluding shortuts) between ore-nodes.Theorem 1. Vertex-redution preserves event-dependent Pareto-optimal pathsbetween ore-nodes.Ar-Redution. Our vertex-redution reates a new onnetion-table for eahadded shortut yielding quite a high inrease in the total number of onnetionsin the graph. Fortunately, we an remove some onnetions on the shortutsbeause they may be dominated by other onnetions. In the best ase, all on-netions on a shortut are dominated. Then, we an safely remove the shortutfrom the graph. One might expet that it su�ient to run a (v�v′)�query foreah added shortut (v, v′) and then remove all onnetions from (v, v′) that aredominated. Unfortunately, this violates orretness sine (v, v′) an be a su�xand/or pre�x of a shortest path (f. Setion 3). Still we an run a (v�v′)�queryfor eah shortut but in order to preserve orretness, we have to use weaker(than those introdued in Setion 3) rules of dominane during the query. Theseweaker rules are given in Table 2. The reason for these modi�ed rules is that wehave to ompare paths ending in possibly two di�erent events.Theorem 2. Ar-Redution preserves event-dependent Pareto-optimal paths be-tween ore-nodes.The proof of Theorem 2 an be found in Appendix A. In Figures 2-4, wegive an example how Vertex-Redution and Ar-Redution work in our senario.
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dep 0.5httime route27.30x wvu

dep 1.0httime0.5h route11dep8.009.00 0.5httime0.5h route11 10.009.00dep6.008.00 0.5httime0.5h route11
Fig. 2. Small exerpt of the station graph with elementary onnetions.dep ttime routedep6.008.00 0.5httime0.5h route11 transfer1,18.00 2.0h

x wu

9.00 1.5h 1,1 008.00 1,1 12.5h
dep ttime route transfer117.307.30 3.0h2.5h 2,12,1Fig. 3. Vertex-redution at vertex v.

wdep ttime route transfer226.006.00 4.5h4.0h 1,2,11,2,1x

dep ttime route transfer1,1,16.00 4.0h 08.00 3.5h 1,1,1 0
Fig. 4. After vertex-redution at u, anar-redution of the lower ar between
x and w is possible.Figure 2 represents a small exerpt of a station graph with elementary onnetiontables on eah route ar. In Figure 3, we delete vertex v and determine newonnetion tables on short ut ars. Note, that none of the new onnetion tablesan be deleted. In Figure 4, vertex u is deleted and the new onnetion table onthe lower ar (x, w) is dominated and an be deleted.Route Contration. As mentioned in the Introdution, this standard nodeontration su�ers from the dilemma that our station graph has already a veryhigh average degree of ≈ 43 due to the many parallel routes (in omparison,road networks have empirially an average degree below 4). Thus, bypassing anode leads to the introdution of many shortut ars whih annot be deleted.Therefore, we deided to develop and implement a di�erent onept: route on-tration. In a �rst step we partition the set of stations S in k several subsets

Ci with i ∈ {1, . . . , k} whih we all regions. The idea behind route ontra-tion is to insert for a path omposed by ars on the same route a new shortutar, provided that all intermediate stations on this path are lassi�ed as bypass-able. Reall from the Introdution that a station is bypassable if (a) it is neitherthe beginning or end of some route, (b) it has at most two di�erent neighbors,and () is not boundary node of some region Ci. Thus our notion of bypassablenodes models in some sense �unimportant stations�, for whih we assume thatat them no transfer makes sense. In Germany, about 60% of all stations are by-passable with respet to this de�nition. After determining all bypassable vertiesin station graph G we an identify inlusion-maximal paths Pv,w from v to w



12 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannontaining only ars of the same route and only bypassable verties u 6= v, w inits interior. Eah suh path Pv,w is ontrated to a shortut ar (v, w). Ar (v, w)gets a new elementary onnetion table Ce only ontaining elementary onne-tions ce. Eah suh onnetion ce represents exatly one train T whih departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time) instation w ∈ S without stops.4.2 Ar-FlagsIn a time-dependent single-riteria senario, a set ar-�agAFC(a) denotes wheth-er e is important for region C. Similar to the augmentations given in [6, 9℄, we usethe following intuition to set an ar-�ags in our event-dependent multi-riteriasenario. Set AFC = true as soon as e is important for at least one Pareto-pathfor all possible departure times. In the following, we show how to inorporatethis intuition orretly.Augmentation. A ommon approah to ompute ar-�ags in the time-indepen-dent single-riteria senario is based on running Dijkstra-queries on the bak-ward graph from eah boundary node of the graph. Similarly, we ompute event-dependent multi-riteria ar-�ags by running our version of Dijkstra's algo-rithm on the bakward graph from all departure events of eah pre-boundarynode b′ of boundary node b. Let C be the assoiated region of b. Note thatwe run the queries from the pre-boundary nodes. The reason for this is that itsimpli�es ase distintions onsiderably. Using boundary nodes instead wouldrequire to distinguish between paths ending at the boundary node and pathsending somewhere else within the target region C. Again, like for ar-redution,we have to use weaker rules of dominane during our queries, given in Table 4of the Appendix. For all ars a of the graph, we end up in onnetion tablesrepresenting Pareto paths starting with ar a towards the boundary node b. Ifthe omputed onnetion table of ar a is not empty, then a is used for at leastone Pareto-path towards C. Hene, we set AFC(a) to true.Theorem 3. Event-dependent multi-riteria ar-�ags are orret.Unfortunately, lassial ar �ags turn out to be rather weak: almost all ar�ags must be set to true to guarantee orretness of the query algorithm sinefor any ar there is almost surely one point in time where this ar is part of somePareto-optimal path towards the target station. However, from our preproessingwe do know exatly at whih points of time any partiular ar might be neessary.Therefore, we re�ne the lassial ar �ags to time-period ar �ags. The idea isto divide the overall range for whih our preproessing is valid into short timeintervals. A good ompromise between size of the neessary �ags and the desiredre�nement is to divide a full day into 12 intervals of two hours. Then eah armaintains a �ag for eah ombination of time interval (period) and region whihtells whether the ar might be �useful� for a partiular query within a ertainperiod.



Aelerating Time-Dependent Multi-Criteria Timetable Information 134.3 SHARCIn this work, we use a slightly redued variant of SHARC. We only use a 1-levelsetup (due to the limited size of the graphs deriving from our model) and do notuse re�nement of ar-�ags (f. Setion 2). By this, preproessing is split into threephases. First, we partition the graph into k regions. Then, we perform a route-ontration step aording to the above desription. Any ar (u, v) bypassedduring ontration diretly gets its �nal ar-�ags assigned, depending on its tail
u. If u has been bypassed, (u, v) gets all �ags assigned to true, while if u is part ofthe ore, (u, v) gets all �ags assigned to false, exept for the region v is assignedto, this �ag is set to true. Note that in order to guarantee orretness, our route-ontration needs to be region-aware, i.e., a boundary node is never bypassed.After route ontration, we perform an ar-�ags preproessing as stated aboveon the resulting ore. Sine we use a setup with one level, our query algorithmis our standard one with a small modi�ation: we only relax ars whih have atime-period ar-�ag for the target's region assigned true. However, there is onesubtle detail: we have to explore �ags for all time periods whih an still lead toa Pareto-optimal solution at the target. We use lower bounds on the minimumtravel time towards the target to determine whih �ags we have to onsider.5 Experiments5.1 Computational SetupTest data. Our omputational study is based on the German train shedule of2008. This shedule onsists of 8817 stations, 40034 trains on 15428 routes, 392foot paths, and 1,135,479 elementary onnetions. In our station graph modelwe obtain a graph with 189,214 ars. For our tests, we used di�erent types ofqueries (randomly hosen start stations and destinations, real ustomer queries,and handmade). The query start interval has been varied between a full day(denoted by [0-24℄) and typial two-hour intervals (for example, rush hour [8-10℄, lunh time [12-14℄, and late evening [20-22℄), as well as one hour [7-8℄, sixhour [6-12℄, and twelve hour [6-18℄ intervals.Environment. All experiments were run on a standard PC (Intel R©CoreTM2Quad CPU Q6600, 2.4GHz, 4MB ahe, 8GB main memory under Ubuntu linuxversion 9.04. Only one ore has been used by our program. Our ode is writtenin C++ and has been ompiled with g++ 4.3.3 and ompile option -O3.Preproessing. Using the graph partitioning library SCOTCH [24℄ and addi-tional postproessing by a loal optimization routine, we have partitioned thegiven set of stations into 16 regions. This number of regions seems to be a reason-able ompromise between the average region size and the omputational e�ortfor the ar �ags. The time to ompute the partitioning into regions and the time



14 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannto ompute shortut ars is negligible (less than a minute CPU time). The over-all ar �ag omputation, however, is really expensive: it requires 33h 37min butan easily be parallelized. Using all four ores it an be redued to 8h 40min.We an bypass 5,248 out of 8,817 stations, and 55,742 out of 189,214 originalars. This leads to the insertion of 19,929 additional shortut ars. Flag vetorsare quite full, on average 41.4% of their bits are set to 1. This learly limits thee�et whih we an expet from ar-�ags.Route vs. station dominane. A ruial point for the e�ieny of the queryalgorithm is the appropriate hoie of dominane rules. The stronger the domi-nane rules, the less priority queue operations have to be performed. However,the appliation of stronger rules is omputationally more expensive. In partiu-lar, applying station and route dominane turned out to be atually a slow-downin omparison with only using route dominane. Although the ombined appli-ation of rules saves about 30% of priority queue operations, it almost doublesthe omputation time. Therefore, we use only route dominane in the following.Query variants. We ompare CPU times and operation ounts for the numberof priority queue delete-min operations for the following algorithmi variants:� base: the pure multi-dimensional Dijkstra algorithm without any speed-uptehnique.� base+lb: base plus lower bounds for the domination at the terminal.� ar-�ags: base+lb ombined with time period ar �ags but no shortuts.� greedy ar-�ags: ar-�ags with a greedy strategy explained below.� SHARC: ar-�ags with shortuts based on route ontration.� SHARC+goal: SHARC ombined with goal diretion.� greedy SHARC: SHARC with a greedy strategy explained below.� greedy SHARC+goal: the previous variant ombined with goal diretion.The �greedy strategy� does the following: whenever we arrive at some stationand onsider the next ar, we hoose only the very �rst reahable onnetionon this ar. In general, this strategy will fail to �nd all Pareto-optimal paths,but exept for somewhat pathologial situations we will �nd for eah equivalenelass of paths with the same pair of objetive values at least one representative.5.2 Computational ResultsExperiment 1: Full day senario. One primary goal of this projet is toprovide an e�ient range query for a omplete day of operation between twoarbitrary stations. Table 3 shows the results for this senario. While our baselinevariant base requires an average CPU time of 7.85s, already turning on our lowerbound domination redues the average CPU time to 4.54s. Ar-�ags ahieve aspeed-up of 3.15 over base, and SHARC inreases the speed-up further to 4.01over base. Turning on the greedy strategy yields a speed-up of 7.41 over basefor greedy SHARC. The fastest variant is the ombination of greedy SHARCwith goal-direted searh. It redues the average query time to 0.6s and yields aspeed-up fator of 13.08.



Aelerating Time-Dependent Multi-Criteria Timetable Information 15average average speed-up fatorQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 7.85 233,203 1.00 1.00base+lb 4.54 144,325 1.73 1.62ar-�ags 2.49 130,569 3.15 1.79SHARC 1.96 95,685 4.01 3.91SHARC+goal 1.00 52,663 7.85 4.43greedy ar-�ags 1.38 84,444 5.69 2.76greedy SHARC 1.06 59,589 7.41 3.91greedy SHARC+goal 0.60 37,867 13.08 6.16Table 3. Experimental results for a omplete day, i.e., the start range interval [0-24℄.Experiment 2: Two-hour range queries. In our next experiment we areinterested in range queries for two-hour periods in the �morning rush hour� [8-10℄, at �lunh time� [12-14℄, and in the �late evening� [20-22℄. Detailed resultsare given in the Appendix, see Tables 5-7. As expeted, two-hour range queriesare faster than full day queries. While queries for the �morning rush hour� [8-10℄and for �lunh time� [12-14℄ behave very similar � the fastest variant requires0.27s and 0.29s on average, the �late evening� period is muh easier and yieldsaverage omputation times of 0.13s for greedy SHARC+goal.Experiment 3: Variation of the range width. We ompare the speed-upfor di�erent widths of the start interval: 1h, 2h, 6h, 12h, and 24h. Figure 5 showsthat the speed-up fators inrease with the width of the interval, i.e., the largerthe searh spae the better is the speed-up.
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16 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannNumber of Pareto-optimal paths. For a query range interval of 24h (fullday range) we obtain about 7 Pareto-optimal paths on average. Figure 6 showsa histogram for the size of Pareto-optimal paths for the time period of a full day.The maximum number of Pareto-optimal paths whih we observe in these testsis 81. An interesting question is whether versions using the greedy strategy orversions using shortut edges lose any Pareto optima. The good news is that inboth ases we have always found the idential set of equivalene lasses of Pareto-optimal paths with the same objetive values. Di�erenes our, however, in thetotal number of alternatives whih are identi�ed by these methods. For a full dayrange, the number of alternatives drops by about 1%. For shorter time periods,the di�erene is somewhat larger, about 5%.
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number of Pareto optimal pathsFig. 6. Frequeny of Pareto-optimal paths for a full day range.6 ConlusionWe presented the �rst study on advaned speed-up tehniques like ar-�ags andontration in a multi-riteria time- and event-dependent senario whih allowus to answer arbitrary range queries. An important lesson we learned from thisprojet is that the lassial extension of ar-�ags and ontration does not workwell. However, with two new onepts, time-period ar �ags and route ontra-tion, we an ahieve speed-ups of about 13 over the baseline variant for a fullday.It remains an open hallenge to develop more powerful speed-up tehniquesfor a multi-riteria time-dependent senario without sarifying exatness. Sinepreproessing for ar �ags is very time-onsuming, there is also need for teh-
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Aelerating Time-Dependent Multi-Criteria Timetable Information 19AppendixA Proof of Theorem 2Theorem 2. Ar-Redution preserves event-dependent Pareto-optimal paths be-tween ore-nodes.Proof. We only prove the orretness for Line 2 of table 2. The other ases anbe shown very similarly. We onsider two onnetions c1 and c2 on short ut ars
(u, v) whih ful�ll the onditions in line 2 and olumn 1. Let P2 be an event-dependent s, t-path starting at s with earliest start time starts and ends in twith an arti�ial departure event endt at t. Furthermore P2 ontains onnetion
c2. Let Pstarts,arru

be the event-dependent (s, u)-subpath from P2 and Pdepv ,endtbe the event-dependent (u, t)-subpath from P2. We denote with arru(route) theroute number of the arrival event at u and with depv(route) the route numberof departure event depv. We distinguish between four ases.1. s = u and v = t. Then Pstarts,arru
and Pdepu,endt

are empty paths. Weonstrut the event-dependent path P1 whih starts with the earliest starttime starts and ends with the arti�ial departure event endt. This is pos-sible beause deptime(c1) > deptime(c2) is valid. P1 and P2 are ompara-ble event-dependent paths and with the onditions in olumn 2 it followsthat ttime(P1) < ttime(P2) and transfer(P1) < transfer(P2). This im-plies P1 <dom P2.2. s 6= u and s 6= t. We distinguish between four di�erent ases.(a) arru(route) 6= depc2
(route) and arrc2

(route) 6= depv(route). We on-strut the event-dependent path P1 whih onsists of Pstarts,arru
, onne-tion c1 and Pdepu,endt

. This is possible beause it is ful�lled deptime(c1) >
deptime(c2) and arrtime(c1) = arrtime(c2). P1 and P2 are omparableevent-dependent paths and with the onditions in olumn 2 it followsthat ttime(P1) ≤ ttime(P2) and transfer(P1) < transfer(P2). Thisimplies P1 <dom P2.(b) arru(route) = depc2

(route) and arrc2
(route) 6= depu(route). We on-strut the event-dependent path P1 whih onsists of the maximumevent-dependent s, s′-subpath of Pstarts,arru

using routes whih are notidential with route depc2
, then takes the event-dependent s′, u-pathwhih uses route depc2

(route) without transfers and ontains onnetion
c1 and Pdepu,endt

. This is possible beause it is ful�lled deptime(c1) >
deptime(c2), arrtime(c1) = arrtime(c2) and depc2

(route) = depc1
(route).This implies at s′ a later departure time for P1. P1 and P2 are om-parable event-dependent paths and with the onditions in olumn 2 itfollows that ttime(P1) = ttime(P2) and transfer(P1) < transfer(P2).This implies P1 <dom P2.() arru(route) 6= depc2

(route) and arrc2
(route) = depu(route). Analo-gously to ase b).
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(route) and arrc2

(route) = depu(route). Analo-gously to ase b).
P1 and P2 are omparable event-dependent paths and with the onditionsin olumn 2 it follows that ttime(P1) = ttime(P2). and transfer(P1) <
transfer(P2). This implies P1 <dom P2.3: s 6= u and v = t. Analogously to ase 2.4: s = u and v 6= t. Analogously to ase 2.In all four ases we an onstrut an event-dependent path P1 whih is ompa-rable with P2, dominates P2 and does not ontain onnetion c2. It follows thatwe an delete onnetion c2.A.1 Dominane Rules for Ar Flag PreproessingTable 4 presents the dominane rules whih have to be used in the preproessingphase. Let c1, c2 be two onnetions starting at station v and eah ending in adeparture event at pre-boundary vertex w.

c1, c2 omparable if delete c2 ⇔1 c1(depv(route)) = c2(depv(route))
c1(depw(route)) = c2(depw(route))
c1(depw(time)) ≤ c2(depw(time))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(depw(time)) ≤ c2(depw(time))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1)+ < transfer(c2)3 c1(depw(route)) = c2(depw(route))

c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfers(c1) + 2 < transfers(c2)Table 4. Dominane rules for the preproessing phase.

B Additional Computational ResultsTables 5-7 show the results of our Experiment 2.
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average average speed-up fatorQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.26 71,422 1.00 1.00base+lb 2.15 68,263 1.05 1.05ar-�ags 1.20 62,291 1.88 1.15SHARC 0.92 44,060 2.46 1.62SHARC+goal 0.49 21,645 4.61 3.30greedy ar-�ags 0.65 38,696 3.48 1.85greedy SHARC 0.51 26,704 4.43 2.67greedy SHARC+goal 0.27 12,646 8.37 5.65Table 5. Experimental results for the start range interval [08-10℄ (�morning rush hour�).average average speed-up fatorQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.17 67,517 1.00 1.00base+lb 2.07 64,534 1.05 1.04ar-�ags 1.13 57,931 1.92 1.17SHARC 0.86 40,692 2.52 1.66SHARC+goal 0.47 20,549 4.62 3.29greedy ar-�ags 0.68 39,052 3.19 1.73greedy SHARC 0.53 26,905 4.09 2.51greedy SHARC+goal 0.29 13,583 7.48 4.97Table 6. Experimental results for the start range interval [12-14℄ (�lunh time�).average average speed-up fatorQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 0.41 15,915 1.00 1.00base+lb 0.39 15,098 1.05 1.05ar-�ags 0.24 14,058 1.71 1.13SHARC 0.19 9,823 2.16 1.62SHARC+goal 0.16 7,192 2.56 2.21greedy ar-�ags 0.19 10,893 2.17 1.46greedy SHARC 0.15 7,586 2.73 2.10greedy SHARC+goal 0.13 5,472 3.15 2.91Table 7. Experimental results for the start range interval [20-22℄ (�late evening�).


