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t. Speeding up multi-
riteria sear
h in real timetable informa-tion systems remains a 
hallenge in spite of impressive progress a
hievedin re
ent years for related problems in road networks. Our goal is toperform multi-
riteria range queries, that is, to �nd all Pareto-optimal
onne
tions with respe
t to travel time and number of transfers withina given start time interval. This problem 
an be modeled as a pathsear
h problem in a time- and event-dependent graph. In this paper, weinvestigate two key speed-up te
hniques for a multi-
riteria variant ofDijkstra's algorithm � ar
 �ags and 
ontra
tion � whi
h seem to bestrong 
andidates for railway networks, too. We des
ribe in detail howthese two te
hniques have to be adapted for a multi-
riteria s
enario andexplain why we 
an expe
t only marginal speed-ups (
ompared to obser-vations in road networks) from a dire
t implementation. Based on theseinsights we extend traditional ar
-�ags to time-period �ags and introdu
eroute 
ontra
tion as a substitute for node 
ontra
tion. A 
omputationalstudy on real queries demonstrates that these te
hniques 
ombined withgoal-dire
ted sear
h lead to a speed-up of fa
tor 13.08 over the baselinevariant for range queries for a full day.Keywords: timetable information, multi-
riteria sear
h, time-dependentnetworks, ar
 �ags, 
ontra
tion1 Introdu
tionIn re
ent years there has been growing interest in high-performan
e timetableinformation systems [22℄. While exa
t single-
riterion sear
h is well understoodand already quite e�
ient, multi-
riteria timetable information remains a 
hal-lenge. Therefore, 
ommer
ial state-of-the-art systems still use only heuristi
s to
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onne
tions for their 
ustomers. Sin
e there has been impres-sive progress with speed-up te
hniques for related problems in road networks,it seems natural to start an attempt to transfer the underlying methods to arailway s
enario.In this paper, we report on a proje
t where we worked out the ne
essarydetails to augment standard sear
h te
hniques by additional information ob-tained in a prepro
essing phase. We investigate two key speed-up te
hniques fora multi-
riteria variant of Dijkstra's algorithm � ar
 �ags and 
ontra
tion.Related Work. Many speed-up te
hniques for single-
riteria s
enarios havebeen developed during the last years. Due to spa
e limitations, we dire
t theinterested reader to [8℄ and [10℄, whi
h give re
ent overviews over single-
riteriatime-independent and time-dependent route planning te
hniques, respe
tively.Basi
s. The straightforward approa
h to �nd all Pareto optimal paths is thegeneralization [15, 18, 20℄ of Dijkstra's algorithm: Ea
h node v ∈ V gets anumber of multi-dimensional labels assigned, representing all Pareto paths to
v. For the bi
riteria 
ase, Hansen [15℄ was the �rst presenting su
h a general-ization, while Theune [30℄ des
ribes multi-
riteria algorithms in detail. By thisgeneralization, Dijkstra loses the property that ea
h node is visited only on
e.It turns out that a 
ru
ial problem for multi-
riteria routing is the number oflabel entries assigned to the nodes. The more label entries are 
reated, the morenodes are reinserted in the priority queue yielding 
onsiderably slow-downs 
om-pared to the single-
riterion setup. In the worst 
ase, the number of labels 
an beexponential in |V | yielding impra
ti
al running times [15℄, and also memory 
on-sumption be
omes an issue. Hen
e, Hansen [15℄ and Warburtun [31℄ present anFPTAS (fully polynomial time approximation s
heme) for the bi
riteria shortestpath problem.Speed-up Te
hniques. Most of the work on speed-up te
hniques for multi-
riterias
enarios was done on networks derived from timetable information. In su
h net-works, Müller-Hannemann and Weihe [23℄ observed that the number of labelsis often limited su
h that the brute for
e approa
h for �nding all Pareto pathsis often feasible. Experimental studies �nding Pareto paths in timetable graphs
an be found in [25, 26, 29, 27, 21, 14, 11℄.We would like to point out that one hasto distinguish between �nding all Pareto paths and only �nding one representa-tive for ea
h equivalenve 
lass of paths with the same tuple of obje
tive values.Previous work usually guarantees only the weaker se
ond version.SHARC, a route planning algorithm developed by one of this work's 
o-authors, has been introdu
ed in [2, 3℄. Originally, SHARC only worked on time-independent networks. In [6, 7℄, it has su

essfully been adapted to time-depen-dent road and railway networks, and very re
ently, even to a (time-independent)multi-
riteria s
enario [9℄. However, experiments for the multi-
riteria variantwere only 
ondu
ted on time-independent road networks. So, to the best of ourknowledge, no advan
ed speed-up te
hnique has yet been adapted to a realisti
multi-
riteria timetable information system on time-dependent networks.
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ontribution and overview. This paper is devoted to transfer advan
edspeed-up te
hniques to time-dependent railway networks. In 
ontrast to mostprevious s
ienti�
 work, we 
onsider a s
enario with the following features:� Our model is a fully realisti
 model, where tra�
 days, business rules onrequired transfer times between 
onne
ting trains, footpaths between neigh-boring stations, train attributes, and the like are respe
ted.� We aim at �nding all Pareto optimal paths for two 
riteria, travel time andnumber of transfers. We would like to emphasize that we here mean thestrong version whi
h really enumerates all Pareto paths, and not just onerepresentative path for ea
h non-dominated pair of obje
tive values. Sin
ethere are often several possibilities to 
hange between the same two trains,this leads to a mu
h larger set of paths. The motivation to sear
h for thesepaths 
omes from pra
ti
e: railway 
ompanies have preferen
es at whi
hstations their passengers should 
hange trains. Hen
e, they would like tosele
t from the 
omplete set of Pareto paths a subset whi
h they present to
ustomers.� We want to perform a range sear
h for an arbitrary user-spe
i�ed start-timeinterval (not only from a single desired start point). As a result, we are ableto 
ompute the 
omplete 
onne
tion table between two arbitrary stations fora full day.To model this s
enario we will introdu
e a station graph model with trainroutes whi
h is slightly more 
ompa
t than those used in Disser et al. [11℄. WhileDijkstra's algorithm 
an be easily generalized to time-dependent graphs in thesingle-
riterion 
ase [5℄, one has to be more 
areful in a multi-
riteria setting.The 
ru
ial operation in a multi-
riteria sear
h algorithm is to de
ide whi
hsubpaths 
an be safely dominated. To ensure 
orre
tness subpath optimality isrequired, and therefore Müller-Hannemann and Berger [4℄ extended the 
lassi
altime-dependent model to an event-dependent model.In this work, we mainly investigate two prominent speed-up te
hniques, ar
-�ags and 
ontra
tion, and their 
ombination. We� dis
uss how these te
hniques have to be adapted to work for the aboves
enario,� explain why they do not lead to as large speed-ups as one might have hopedfor, and� develop two new re�nements whi
h a
hieve at least some signi�
ant speed-upover previous work on range queries.Classi
al ar
 �ags turn out to be rather weak for arbitrary multi-
riteriarange queries: almost all ar
 �ags must be set to true to guarantee 
orre
tnessof the query algorithm sin
e for any ar
 there is almost surely one point in timewhere this ar
 is part of some Pareto-optimal path towards the target station.However, from our prepro
essing we do know exa
tly at whi
h points of time anyparti
ular ar
 might be ne
essary. By this observation we re�ne the 
lassi
al ar
�ags to time-period ar
 �ags. The idea is to divide the overall range for whi
h
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essing is valid into short time intervals, for example into intervals oftwo hours. Then ea
h ar
 maintains a �ag for ea
h 
ombination of time interval(period) and region whi
h tells whether the ar
 might be �useful� for a parti
ularquery.Standard node 
ontra
tion su�ers from the dilemma that our station graphhas due to many parallel routes already a very high average degree of ≈ 43 (in
omparison, road networks have empiri
ally an average degree below 4). Thus,bypassing a node leads to the introdu
tion of many short
ut ar
s. While manyshort
ut ar
s 
an be pruned away in a single-
riterion sear
h in time-independentroad networks, domination 
riteria in a multi-
riteria s
enario are mu
h weakerin event-dependent railway networks, as we will explain in Se
tion 4. Therefore,we de
ided to develop and implement a di�erent 
on
ept whi
h 
an be 
ombinedwith ar
-�ags: route 
ontra
tion. The idea behind route 
ontra
tion is to insertfor a path 
omposed by ar
s on the same route a new short
ut ar
, providedthat all intermediate stations on this path are 
lassi�ed as bypassable. A stationis bypassable if (a) it is neither the beginning or end of some route, (b) it has atmost two di�erent neighbors, and (
) it is not a boundary node of some regionused in the node partition for the ar
-�ags. In Germany, about 60% of all stationsare bypassable with respe
t to this de�nition.In addition, we have realized a variant of goal-dire
ted sear
h whi
h for ea
hquery �rst 
omputes minimum travel times from ea
h node towards the targetstation and then uses these values as lower bounds during the sear
h. Extensive
omputational experiments indi
ate that the 
ombination of these methods to-gether with a greedy strategy allow range queries for a full day in about 0.53se
onds. This gives a speed-up of about 10.1 over our baseline variant.The remainder of the paper is organized as follows. In Se
tion 2, we brie�yreview the 
lassi
al ar
-�ag method and SHARC. Then, in Se
tion 3, we dis-
uss modeling issues for multi-
riteria time-table information. We introdu
e ourstation graph model and explain the baseline variant of a multi-
riteria gener-alization of Dijkstra's algorithm. Afterwards, we des
ribe how to adapt the pre-pro
essing phase for ar
-�ags and 
ontra
tion to a multi-
riteria time-dependentversion. In parti
ular, we introdu
e the new 
on
epts of time-period ar
-�ags androute 
ontra
tion. Results of an experimental study are presented in Se
tion 5.Finally, we 
on
lude with a short summary.2 PreliminariesA (dire
ted) graph G = (V, A) 
onsists of a �nite set V of nodes and a �nite set
A of ar
s. An ar
 is an ordered pair (u, v) of nodes u, v ∈ V , the node u is 
alledthe tail of the ar
, v the head. Throughout the whole work we restri
t ourselvesto dire
ted graphs whi
h are weighted by a length fun
tion len, whi
h we spe
ifyin Se
tion 3. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ Vsu
h that ea
h node v ∈ V is 
ontained in exa
tly one set Ci. An element of apartition is 
alled a region. The boundary nodes BC of a region C are all nodes
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u ∈ C for whi
h at least one node v ∈ V \C exists su
h that (v, u) ∈ A. We 
all
v a pre-boundary node of the region u is assigned to.SHARC. Introdu
ed in [2, 3℄, SHARC 
ombines ideas from ar
-�ags [17, 16℄ and
ontra
tion [28, 12℄. The original ar
-�ag approa
h �rst 
omputes a partition Cof the graph and then atta
hes a label to ea
h ar
 a. A label 
ontains, for ea
hregion C ∈ C, a �ag AFC(a) whi
h is true if a shortest path to at least one nodein C starts with a. A modi�ed Dijkstra then only 
onsiders those ar
s for whi
hthe �ag of the target node's region is true. The main downside of this approa
h isthe high prepro
essing e�ort. Hen
e, SHARC improves on this by the integrationof 
ontra
tion, i.e., a routine iteravely removing unimportant nodes and addingso-
alled short
uts in order to preserve distan
es between non-removed nodes.One key observation of SHARC is that we are able to assign ar
-�ags to allbypassed ar
s during 
ontra
tion. More pre
isely, any ar
 (u, v) outgoing from anon-removed node and heading to a removed one gets only one �ag set to true,namely, for the region v is assigned to. Any other bypassed ar
 gets all �ags setto true. By this pro
edure, unimportant ar
s are only relaxed at the beginningand end of a query.3 Modeling IssuesUp to now, two models have been introdu
ed for e�
ient timetable informationsystems: the time-expanded and time-dependent approa
h. See the survey pa-per [22℄ for details. In this se
tion we extend the time-dependent approa
h to anevent-dependent s
enario (see [4℄) and introdu
e a more 
ompa
t graph model.3.1 Elementary Conne
tions, Conne
tions and Conne
tion Tables.Before explaining our station graph model, we need the notion of 
onne
tionswithin a timetable. Let S be the set of stations. An elementary 
onne
tion
ce = (depv(time), arrw(time), T ) represents exa
tly one train T whi
h departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time)in station w ∈ S without stops. An elementary 
onne
tion-table Ce is a setof elementary 
onne
tions with identi
al origin v and destination w. Further-more, there exists a set of minimum transfer times transs(T, T ′) ∈ N betweentrains T, T ′ with respe
t to ea
h station s ∈ S. These transfer times ensurethe possibility to transfer between two trains with respe
t to di�erent situ-ations. We 
all two elementary 
onne
tions ce = (depv(time), arrw(time), T )and c′e = (depv′(time), arrw′(time), T ′) 
on
atinable if and only if w = v′ and
depv′(time)− arrw(time) ≥ transw(T, T ′). We denote a sequen
e of elementary
onne
tions ce1

, . . . , cek
as 
onne
tion c = (ce1

, cek
, transfer) if ea
h adja
entpair of elementary 
onne
tions (cei

, cei+1
) in the sequen
e is 
on
atinable. At-tribute transfer 
ounts the number of transfers using 
onne
tion c.Note, that thisde�nition allows to 
on
atenate 
onne
tions if there ending and starting elemen-tary 
onne
tions are 
on
atinable. We denote with c(depv(time)), c(depv(train))



6 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannand c(arrw(time)), c(arrw(train)) the starting and ending departure and ar-rival times/trains of 
onne
tion c. Analogously to elementary 
onne
tion-tableswe de�ne a 
onne
tion-table C as a set of 
onne
tions with identi
al origin v anddestination w. Last, we de�ne an operator ⊕ on 
onne
tion tables C, C′ whi
hassigns to ea
h pair of 
onne
tion tables (C, C′) a new 
onne
tion table C′′.
C′′ 
ontains all 
onne
tions c′′ 
onsisting of 
on
atinable pairs of 
onne
tions
(c, c′) ∈ C ×C′. In the following, we assign elementary 
onne
tion-tables to ar
sbut also 
ompute 
onne
tion-tables between arbitrary pairs of stations.3.2 Station Graph ModelOur approa
h is based on a dire
ted graph G = (V, A) without loops but withparallel ar
s whi
h is 
alled station graph. Ea
h node v ∈ V models a station s ∈
S. Inserting ar
s is more sophisti
ated. In a �rst step we 
onne
t two stations ifand only if there exist at least one elementary 
onne
tion between these stations.Next, we identify trains with the following properties: they stop exa
tly at thesame sequen
e of stations, have the same train attributes and days of operation,and never violate the FIFO property, i.e., they always run in the same order onea
h ar
. We denote su
h sequen
es of stations as routes and get for ea
h ar
 aset of di�erent routes using this ar
. Now, we repla
e ea
h ar
 (v, w) by parallelroute ar
s (v, w)i, one for ea
h route on this ar
. We add the new attribute routenumber to ea
h elementary 
onne
tion. In a last step we assign to ea
h routear
 the 
orresponding elementary 
onne
tion-table.Foot-Ar
s. Our data also 
ontains foot paths modeling inter-station transfersrea
hable by foot. In our graph model, we simply 
onne
t the 
orrespondingstations v, w by a foot-ar
 with 
onstant length l 
orresponding to the timene
essary for traversing the ar
 (v, w) by foot F . Hen
e, we 
an asso
iate withea
h foot ar
 an elementary 
onne
tion table whi
h 
ontains for ea
h dis
retepoint of time an elementary 
onne
tion ce = (depv(time), arrw(time), F ) with
arrw(time) − depv(time) = l.3.3 Route Planning in the Station Graph ModelIn this work, we 
on
entrate on 
omputing optimal 
onne
tion tables betweentwo arbitrary stations s and t at a given start time interval [τstart, τend] for sta-tion s with respe
t to the travel time and number of transfers. We denote thetravel time of a 
onne
tion c with ttime(c) and the number of transfers with
transfer(c). Ea
h 
onne
tion 
an be seen as an event-dependent path in thestation graph. Müller-Hannemann and Berger introdu
ed event-dependent mod-els as an extension of time-dependent approa
hes in [4℄. The reason to introdu
ethis extension is that our se
ond optimization 
riterion �number of transfers�not only depends on time but additionally on train numbers. This leads to newde�nitions for time-dependent settings and their generalizations. First, we as-sign to ea
h ar
 a = (v, u) ∈ A and departure event depv at v an arrival event
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arru whi
h de�nes the arrival event at vertex u if we depart in v with depar-ture event depv and traverse ar
 a. This models our elementary 
onne
tions.For time-dependent models an event 
onsists only of the attribute time. There-fore, all departure events with the same departure time at a vertex v will be
onsidered as equal events. In our s
enario an event 
onsists of attributes depar-ture or arrival time, train number and route number. We de�ne for all v ∈ Va set of departure events Depv and arrival events Arrv . Consider all 
onne
-tions in a 
onne
tion table between station s and t. Then su
h a 
onne
tion
c = ((deps(time), arrw(time), T ), (depv(time), arrt(time), T ′), transfer) is analternating sequen
e (deps, arrw, . . . , depv, arrt) of departure and arrival eventswhi
h 
onsist of attributes (time, train, routenumber). For an (s, t)-query weignore all arrival events at s, but add an arti�
ial �arrival event� starts withan earliest start time starts(time) := τstart at the beginning of c. Furthermore,we de�ne one arti�
ial �departure event� endt whi
h is added to the end of c.We denote su
h an alternating sequen
e as event-dependent path Pstarts,endt

:=
(starts, c, endt). Furthermore, we 
all an alternating subsequen
e of an event-dependent path Pstarts,endt

starting at starts and ending in an arrival event arrvas event-dependent subpath Pstarts,arrv
. We de�ne the weight w(Pstarts ,arrv

) ∈
N

2 of an event-dependent path Pstarts,arrv
in the �rst 
omponent as the traveltime ttime(c) and in the se
ond 
omponent as the number of transfers transfer(c)of the underlying 
onne
tion c. Note that all events belonging to an event-dependent path are distin
t, but we do not rule out that 
orresponding stationsare repeated.If we want to use a generalized version of Dijkstra's algorithm to 
omputeall event-dependent Pareto-paths, we need for 
orre
tness subpath optimality.To de
ide the optimality of an event-dependent subpath we may only 
omparesubpaths whi
h possess on their ends identi
al departure events, see [4℄. Hen
e, inthe 
ase of a time-dependent s
enario we may 
ompare all subpaths whi
h possesson their ends only identi
al arrival times. A generalized version of Dijkstra'salgorithm, (see Algorithm 1), 
omputes all event-dependent Pareto-paths. Thisalgorithm uses a data stru
ture for a label L whi
h 
onsists of1. an arrival event arrv ,2. a list lw of weights w ∈ R

k
+ for event-dependent paths Pstarts,arrv

,3. a list lp of prede
essor arrival events arru for event-dependent paths Pstarts,arrv
.Note that in this version we 
onstru
t a label for ea
h route ar
 and thisnotion of a label in
ludes all partial 
onne
tions from the start station. Thus,we 
an identify su
h a label with a 
omputed 
onne
tion table representing allnon-dominated 
onne
tions from the start station up to the 
orresponding ar
found so far. Upon termination, ea
h label in
ludes all Pareto-optimal paths.To de
ide whether two alternatives dominate ea
h other or not, we are able to
ompare all event-dependent subpaths not only ending with identi
al departureevents but ending with di�erent departure events and an identi
al route number.Hen
e, we 
an give spe
ial rules to delete some of these subpaths. In the nextse
tion we explain these �rules of dominan
e�.



8 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannAlgorithm 1: Generalized Dijkstra Event-DependentInput: Origin s, destination t, earliest start time starts(time)Output: Set of all event-dependent Pareto-optimal (s, t)-paths.
reate empty priority pq;1 for arrival events arrv do2 if v 6= s then 
onstru
t label Larrv
with empty list lw;3 else4 
onstru
t label Lstarts

;5
pq. insert(Lstarts

);6 while ¬pq. empty() do7
Larrv

← pq. extract-min() /* key is the smallest arrival time8
arrv(time) */
ompute with respe
t to transv possible departure events depv at vertex v;9 /* ea
h departure event belongs to exa
tly one arrival event */determine the 
orresponding arrival event arru to Larru

;10 for these arrival events arru do11 if label Larru
6∈ pq then pq. insert(Larru

) and store a �ag that Larru
is12 in pq;for weights stored in Larrv

.lw do13
w(Pstarts, arru

)← w(Pstarts, arrv
) + w(arrv, depv) + w(depv, arru);14 if w(Pstarts, arru

) not dominated in Larru
.lw then15

Larru
.lw. insert (w (Pstarts, arru

));delete dominated weights in label Larru
.lw;16Rules of Dominan
e. Our station graph model allows additional rules to
ompare 
onne
tions within ea
h 
onne
tion table on a route ar
. In general,we may only 
ompare 
onne
tions with identi
al ending arrival times in one
onne
tion table. In our s
enario the rules of dominan
e with respe
t to subpath-optimality don't 
hange but in several 
ases we 
an de
ide the non-optimality ofsome subpaths in advan
e. Consider the 
omputed 
onne
tion table on route ar


r in Figure 1. The third 
onne
tion will be deleted be
ause there is no Pareto-optimal (s, t)-path whi
h 
an 
ontain this 
onne
tion as a subpath. Assume,this would be the 
ase. Then the �rst 
onne
tion in our time table 
an use thesame 
onne
tion from v to t as in this Pareto-path. Be
ause the �rst and third
onne
tion end on the same route ar
 either both have to transfer at v or both
ontinue on the same route. Hen
e, the (s, t)-path using 
onne
tion 1 possess asmaller travel time and a smaller number of transfers. In 
ontradi
tion to ourassumption the path using 
onne
tion 3 is dominated. Note, that we 
annotdelete 
onne
tion 2 in this 
onne
tion table. If the last train of 
onne
tion 2is the same as the only elementary 
onne
tion on (v, t), 
onne
tion 2 
an beextended to a Pareto-optimal path from (s, t). Similar but stronger arguments
an be found in 
omparing 
onne
tion tables of two di�erent route ar
s r, r′ending at station v. In Table 1 we give our spe
ial deletion rules. We 
all therules in line 1 and 2 route dominan
e and the rule in line 3 station dominan
e.
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c1, c2 
omparable if delete c2 ⇔1 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) ≥
c2(arrv(time))− ttime(c2)

transfer(c1) < transfer(c2)2 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) ≤ transfer(c2)3 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) < transfer(c2)Table 1. Comparability and deletion 
riteria of two 
onne
tions on route ar
s endingin station v.

s t

r

v

ttime1h2h3h arrival7.008.009.00 112 11.0010.00
transfer

Fig. 1. Example: Route dominan
e at a 
onne
tion table for paths from s to ar
 r.Note that we 
annot delete 
onne
tion 2 in this table if the elementary 
onne
tion onar
 (v, t) uses the same train as 
onne
tion 2. However, 
onne
tion 3 
an be safelydeleted.4 Augmenting IngredientsIn this se
tion, we present how to adapt the basi
 
ontra
tion and ar
-�ags toour s
enario.4.1 Contra
tionOne of the main reasons of the su

ess of re
ent hierar
hi
al (single-
riteria)speed-up te
hniques is 
ontra
tion, a routine that iteratively removes unimpor-tant nodes from the graph and inserts so 
alled short
uts to preserve 
orre
tdistan
es between the remaining nodes. Hen
e, in order to use this te
hnique inour s
enario, we need to augment this 
on
ept. In general, 
ontra
tion works intwo phases: vertex- and ar
-redu
tion.Vertex-Redu
tion. Adaption of vertex-redu
tion is straightforward. We by-pass a node u by removing all its in
oming ar
s I(u) and all outgoing ar
s O(u).In order to preserve Pareto-paths between the remaining nodes, we introdu
e, forea
h 
ombination (v, u) ∈ I(u), (u, v′) ∈ O(u) and their 
onne
tion tables C(v,u)and C(u,v′), a new ar
 (v, v′) with 
onne
tion-table C(v,v′) = C(v,u) ⊕ C(u,v′).
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c1, c2 
omparable if delete c2 ⇔1 c1(depv(event)) = c2(depv(event))
c1(arrw(route)) = c2(arrw(route))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(arrw(event)) = c2(arrw(event))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)3 c1(depv(event)) = c2(depv(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(arrw(event)) = c2(arrw(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)5 c1(depv(time)) > c2(depv(time))
ttime(c1) + c1(depv(time)) ≤

c2(depv(time)) + ttime(c2)
transfer(c1) + 2 < transfer(c2)Table 2. Comparability and deletion 
riteria of two 
onne
tions on parallel short
utar
s (u, v).From vertex-redu
tion in other s
enarios, we know that the order in whi
hwe remove verti
es from the graph 
hanges the resulting graph. Hen
e, weuse a priority queue to determine whi
h node to bypass next. The priorityof a node u within the queue is de�ned by the expansion ζ(u) := (degin(u) ·

degout(u))/(degin(u) + degout(u)). We stop the vertex-redu
tion as soon as wewould bypass a node with an expansion beyond a given threshold. All nodesremaining in the graph, we 
all 
ore-nodes. The 
ore of a graph 
ontains all
ore-nodes and all ar
s (in
luding short
uts) between 
ore-nodes.Theorem 1. Vertex-redu
tion preserves event-dependent Pareto-optimal pathsbetween 
ore-nodes.Ar
-Redu
tion. Our vertex-redu
tion 
reates a new 
onne
tion-table for ea
hadded short
ut yielding quite a high in
rease in the total number of 
onne
tionsin the graph. Fortunately, we 
an remove some 
onne
tions on the short
utsbe
ause they may be dominated by other 
onne
tions. In the best 
ase, all 
on-ne
tions on a short
ut are dominated. Then, we 
an safely remove the short
utfrom the graph. One might expe
t that it su�
ient to run a (v�v′)�query forea
h added short
ut (v, v′) and then remove all 
onne
tions from (v, v′) that aredominated. Unfortunately, this violates 
orre
tness sin
e (v, v′) 
an be a su�xand/or pre�x of a shortest path (
f. Se
tion 3). Still we 
an run a (v�v′)�queryfor ea
h short
ut but in order to preserve 
orre
tness, we have to use weaker(than those introdu
ed in Se
tion 3) rules of dominan
e during the query. Theseweaker rules are given in Table 2. The reason for these modi�ed rules is that wehave to 
ompare paths ending in possibly two di�erent events.Theorem 2. Ar
-Redu
tion preserves event-dependent Pareto-optimal paths be-tween 
ore-nodes.The proof of Theorem 2 
an be found in Appendix A. In Figures 2-4, wegive an example how Vertex-Redu
tion and Ar
-Redu
tion work in our s
enario.
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dep 0.5httime route27.30x wvu

dep 1.0httime0.5h route11dep8.009.00 0.5httime0.5h route11 10.009.00dep6.008.00 0.5httime0.5h route11
Fig. 2. Small ex
erpt of the station graph with elementary 
onne
tions.dep ttime routedep6.008.00 0.5httime0.5h route11 transfer1,18.00 2.0h

x wu

9.00 1.5h 1,1 008.00 1,1 12.5h
dep ttime route transfer117.307.30 3.0h2.5h 2,12,1Fig. 3. Vertex-redu
tion at vertex v.

wdep ttime route transfer226.006.00 4.5h4.0h 1,2,11,2,1x

dep ttime route transfer1,1,16.00 4.0h 08.00 3.5h 1,1,1 0
Fig. 4. After vertex-redu
tion at u, anar
-redu
tion of the lower ar
 between
x and w is possible.Figure 2 represents a small ex
erpt of a station graph with elementary 
onne
tiontables on ea
h route ar
. In Figure 3, we delete vertex v and determine new
onne
tion tables on short 
ut ar
s. Note, that none of the new 
onne
tion tables
an be deleted. In Figure 4, vertex u is deleted and the new 
onne
tion table onthe lower ar
 (x, w) is dominated and 
an be deleted.Route Contra
tion. As mentioned in the Introdu
tion, this standard node
ontra
tion su�ers from the dilemma that our station graph has already a veryhigh average degree of ≈ 43 due to the many parallel routes (in 
omparison,road networks have empiri
ally an average degree below 4). Thus, bypassing anode leads to the introdu
tion of many short
ut ar
s whi
h 
annot be deleted.Therefore, we de
ided to develop and implement a di�erent 
on
ept: route 
on-tra
tion. In a �rst step we partition the set of stations S in k several subsets

Ci with i ∈ {1, . . . , k} whi
h we 
all regions. The idea behind route 
ontra
-tion is to insert for a path 
omposed by ar
s on the same route a new short
utar
, provided that all intermediate stations on this path are 
lassi�ed as bypass-able. Re
all from the Introdu
tion that a station is bypassable if (a) it is neitherthe beginning or end of some route, (b) it has at most two di�erent neighbors,and (
) is not boundary node of some region Ci. Thus our notion of bypassablenodes models in some sense �unimportant stations�, for whi
h we assume thatat them no transfer makes sense. In Germany, about 60% of all stations are by-passable with respe
t to this de�nition. After determining all bypassable verti
esin station graph G we 
an identify in
lusion-maximal paths Pv,w from v to w
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ontaining only ar
s of the same route and only bypassable verti
es u 6= v, w inits interior. Ea
h su
h path Pv,w is 
ontra
ted to a short
ut ar
 (v, w). Ar
 (v, w)gets a new elementary 
onne
tion table Ce only 
ontaining elementary 
onne
-tions ce. Ea
h su
h 
onne
tion ce represents exa
tly one train T whi
h departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time) instation w ∈ S without stops.4.2 Ar
-FlagsIn a time-dependent single-
riteria s
enario, a set ar
-�agAFC(a) denotes wheth-er e is important for region C. Similar to the augmentations given in [6, 9℄, we usethe following intuition to set an ar
-�ags in our event-dependent multi-
riterias
enario. Set AFC = true as soon as e is important for at least one Pareto-pathfor all possible departure times. In the following, we show how to in
orporatethis intuition 
orre
tly.Augmentation. A 
ommon approa
h to 
ompute ar
-�ags in the time-indepen-dent single-
riteria s
enario is based on running Dijkstra-queries on the ba
k-ward graph from ea
h boundary node of the graph. Similarly, we 
ompute event-dependent multi-
riteria ar
-�ags by running our version of Dijkstra's algo-rithm on the ba
kward graph from all departure events of ea
h pre-boundarynode b′ of boundary node b. Let C be the asso
iated region of b. Note thatwe run the queries from the pre-boundary nodes. The reason for this is that itsimpli�es 
ase distin
tions 
onsiderably. Using boundary nodes instead wouldrequire to distinguish between paths ending at the boundary node and pathsending somewhere else within the target region C. Again, like for ar
-redu
tion,we have to use weaker rules of dominan
e during our queries, given in Table 4of the Appendix. For all ar
s a of the graph, we end up in 
onne
tion tablesrepresenting Pareto paths starting with ar
 a towards the boundary node b. Ifthe 
omputed 
onne
tion table of ar
 a is not empty, then a is used for at leastone Pareto-path towards C. Hen
e, we set AFC(a) to true.Theorem 3. Event-dependent multi-
riteria ar
-�ags are 
orre
t.Unfortunately, 
lassi
al ar
 �ags turn out to be rather weak: almost all ar
�ags must be set to true to guarantee 
orre
tness of the query algorithm sin
efor any ar
 there is almost surely one point in time where this ar
 is part of somePareto-optimal path towards the target station. However, from our prepro
essingwe do know exa
tly at whi
h points of time any parti
ular ar
 might be ne
essary.Therefore, we re�ne the 
lassi
al ar
 �ags to time-period ar
 �ags. The idea isto divide the overall range for whi
h our prepro
essing is valid into short timeintervals. A good 
ompromise between size of the ne
essary �ags and the desiredre�nement is to divide a full day into 12 intervals of two hours. Then ea
h ar
maintains a �ag for ea
h 
ombination of time interval (period) and region whi
htells whether the ar
 might be �useful� for a parti
ular query within a 
ertainperiod.



A

elerating Time-Dependent Multi-Criteria Timetable Information 134.3 SHARCIn this work, we use a slightly redu
ed variant of SHARC. We only use a 1-levelsetup (due to the limited size of the graphs deriving from our model) and do notuse re�nement of ar
-�ags (
f. Se
tion 2). By this, prepro
essing is split into threephases. First, we partition the graph into k regions. Then, we perform a route-
ontra
tion step a

ording to the above des
ription. Any ar
 (u, v) bypassedduring 
ontra
tion dire
tly gets its �nal ar
-�ags assigned, depending on its tail
u. If u has been bypassed, (u, v) gets all �ags assigned to true, while if u is part ofthe 
ore, (u, v) gets all �ags assigned to false, ex
ept for the region v is assignedto, this �ag is set to true. Note that in order to guarantee 
orre
tness, our route-
ontra
tion needs to be region-aware, i.e., a boundary node is never bypassed.After route 
ontra
tion, we perform an ar
-�ags prepro
essing as stated aboveon the resulting 
ore. Sin
e we use a setup with one level, our query algorithmis our standard one with a small modi�
ation: we only relax ar
s whi
h have atime-period ar
-�ag for the target's region assigned true. However, there is onesubtle detail: we have to explore �ags for all time periods whi
h 
an still lead toa Pareto-optimal solution at the target. We use lower bounds on the minimumtravel time towards the target to determine whi
h �ags we have to 
onsider.5 Experiments5.1 Computational SetupTest data. Our 
omputational study is based on the German train s
hedule of2008. This s
hedule 
onsists of 8817 stations, 40034 trains on 15428 routes, 392foot paths, and 1,135,479 elementary 
onne
tions. In our station graph modelwe obtain a graph with 189,214 ar
s. For our tests, we used di�erent types ofqueries (randomly 
hosen start stations and destinations, real 
ustomer queries,and handmade). The query start interval has been varied between a full day(denoted by [0-24℄) and typi
al two-hour intervals (for example, rush hour [8-10℄, lun
h time [12-14℄, and late evening [20-22℄), as well as one hour [7-8℄, sixhour [6-12℄, and twelve hour [6-18℄ intervals.Environment. All experiments were run on a standard PC (Intel R©CoreTM2Quad CPU Q6600, 2.4GHz, 4MB 
a
he, 8GB main memory under Ubuntu linuxversion 9.04. Only one 
ore has been used by our program. Our 
ode is writtenin C++ and has been 
ompiled with g++ 4.3.3 and 
ompile option -O3.Prepro
essing. Using the graph partitioning library SCOTCH [24℄ and addi-tional postpro
essing by a lo
al optimization routine, we have partitioned thegiven set of stations into 16 regions. This number of regions seems to be a reason-able 
ompromise between the average region size and the 
omputational e�ortfor the ar
 �ags. The time to 
ompute the partitioning into regions and the time
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ompute short
ut ar
s is negligible (less than a minute CPU time). The over-all ar
 �ag 
omputation, however, is really expensive: it requires 33h 37min but
an easily be parallelized. Using all four 
ores it 
an be redu
ed to 8h 40min.We 
an bypass 5,248 out of 8,817 stations, and 55,742 out of 189,214 originalar
s. This leads to the insertion of 19,929 additional short
ut ar
s. Flag ve
torsare quite full, on average 41.4% of their bits are set to 1. This 
learly limits thee�e
t whi
h we 
an expe
t from ar
-�ags.Route vs. station dominan
e. A 
ru
ial point for the e�
ien
y of the queryalgorithm is the appropriate 
hoi
e of dominan
e rules. The stronger the domi-nan
e rules, the less priority queue operations have to be performed. However,the appli
ation of stronger rules is 
omputationally more expensive. In parti
u-lar, applying station and route dominan
e turned out to be a
tually a slow-downin 
omparison with only using route dominan
e. Although the 
ombined appli-
ation of rules saves about 30% of priority queue operations, it almost doublesthe 
omputation time. Therefore, we use only route dominan
e in the following.Query variants. We 
ompare CPU times and operation 
ounts for the numberof priority queue delete-min operations for the following algorithmi
 variants:� base: the pure multi-dimensional Dijkstra algorithm without any speed-upte
hnique.� base+lb: base plus lower bounds for the domination at the terminal.� ar
-�ags: base+lb 
ombined with time period ar
 �ags but no short
uts.� greedy ar
-�ags: ar
-�ags with a greedy strategy explained below.� SHARC: ar
-�ags with short
uts based on route 
ontra
tion.� SHARC+goal: SHARC 
ombined with goal dire
tion.� greedy SHARC: SHARC with a greedy strategy explained below.� greedy SHARC+goal: the previous variant 
ombined with goal dire
tion.The �greedy strategy� does the following: whenever we arrive at some stationand 
onsider the next ar
, we 
hoose only the very �rst rea
hable 
onne
tionon this ar
. In general, this strategy will fail to �nd all Pareto-optimal paths,but ex
ept for somewhat pathologi
al situations we will �nd for ea
h equivalen
e
lass of paths with the same pair of obje
tive values at least one representative.5.2 Computational ResultsExperiment 1: Full day s
enario. One primary goal of this proje
t is toprovide an e�
ient range query for a 
omplete day of operation between twoarbitrary stations. Table 3 shows the results for this s
enario. While our baselinevariant base requires an average CPU time of 7.85s, already turning on our lowerbound domination redu
es the average CPU time to 4.54s. Ar
-�ags a
hieve aspeed-up of 3.15 over base, and SHARC in
reases the speed-up further to 4.01over base. Turning on the greedy strategy yields a speed-up of 7.41 over basefor greedy SHARC. The fastest variant is the 
ombination of greedy SHARCwith goal-dire
ted sear
h. It redu
es the average query time to 0.6s and yields aspeed-up fa
tor of 13.08.
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torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 7.85 233,203 1.00 1.00base+lb 4.54 144,325 1.73 1.62ar
-�ags 2.49 130,569 3.15 1.79SHARC 1.96 95,685 4.01 3.91SHARC+goal 1.00 52,663 7.85 4.43greedy ar
-�ags 1.38 84,444 5.69 2.76greedy SHARC 1.06 59,589 7.41 3.91greedy SHARC+goal 0.60 37,867 13.08 6.16Table 3. Experimental results for a 
omplete day, i.e., the start range interval [0-24℄.Experiment 2: Two-hour range queries. In our next experiment we areinterested in range queries for two-hour periods in the �morning rush hour� [8-10℄, at �lun
h time� [12-14℄, and in the �late evening� [20-22℄. Detailed resultsare given in the Appendix, see Tables 5-7. As expe
ted, two-hour range queriesare faster than full day queries. While queries for the �morning rush hour� [8-10℄and for �lun
h time� [12-14℄ behave very similar � the fastest variant requires0.27s and 0.29s on average, the �late evening� period is mu
h easier and yieldsaverage 
omputation times of 0.13s for greedy SHARC+goal.Experiment 3: Variation of the range width. We 
ompare the speed-upfor di�erent widths of the start interval: 1h, 2h, 6h, 12h, and 24h. Figure 5 showsthat the speed-up fa
tors in
rease with the width of the interval, i.e., the largerthe sear
h spa
e the better is the speed-up.
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16 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannNumber of Pareto-optimal paths. For a query range interval of 24h (fullday range) we obtain about 7 Pareto-optimal paths on average. Figure 6 showsa histogram for the size of Pareto-optimal paths for the time period of a full day.The maximum number of Pareto-optimal paths whi
h we observe in these testsis 81. An interesting question is whether versions using the greedy strategy orversions using short
ut edges lose any Pareto optima. The good news is that inboth 
ases we have always found the identi
al set of equivalen
e 
lasses of Pareto-optimal paths with the same obje
tive values. Di�eren
es o

ur, however, in thetotal number of alternatives whi
h are identi�ed by these methods. For a full dayrange, the number of alternatives drops by about 1%. For shorter time periods,the di�eren
e is somewhat larger, about 5%.
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y of Pareto-optimal paths for a full day range.6 Con
lusionWe presented the �rst study on advan
ed speed-up te
hniques like ar
-�ags and
ontra
tion in a multi-
riteria time- and event-dependent s
enario whi
h allowus to answer arbitrary range queries. An important lesson we learned from thisproje
t is that the 
lassi
al extension of ar
-�ags and 
ontra
tion does not workwell. However, with two new 
on
epts, time-period ar
 �ags and route 
ontra
-tion, we 
an a
hieve speed-ups of about 13 over the baseline variant for a fullday.It remains an open 
hallenge to develop more powerful speed-up te
hniquesfor a multi-
riteria time-dependent s
enario without s
arifying exa
tness. Sin
eprepro
essing for ar
 �ags is very time-
onsuming, there is also need for te
h-
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h 
an also be applied in an online s
enario where dynami
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-Redu
tion preserves event-dependent Pareto-optimal paths be-tween 
ore-nodes.Proof. We only prove the 
orre
tness for Line 2 of table 2. The other 
ases 
anbe shown very similarly. We 
onsider two 
onne
tions c1 and c2 on short 
ut ar
s
(u, v) whi
h ful�ll the 
onditions in line 2 and 
olumn 1. Let P2 be an event-dependent s, t-path starting at s with earliest start time starts and ends in twith an arti�
ial departure event endt at t. Furthermore P2 
ontains 
onne
tion
c2. Let Pstarts,arru

be the event-dependent (s, u)-subpath from P2 and Pdepv ,endtbe the event-dependent (u, t)-subpath from P2. We denote with arru(route) theroute number of the arrival event at u and with depv(route) the route numberof departure event depv. We distinguish between four 
ases.1. s = u and v = t. Then Pstarts,arru
and Pdepu,endt

are empty paths. We
onstru
t the event-dependent path P1 whi
h starts with the earliest starttime starts and ends with the arti�
ial departure event endt. This is pos-sible be
ause deptime(c1) > deptime(c2) is valid. P1 and P2 are 
ompara-ble event-dependent paths and with the 
onditions in 
olumn 2 it followsthat ttime(P1) < ttime(P2) and transfer(P1) < transfer(P2). This im-plies P1 <dom P2.2. s 6= u and s 6= t. We distinguish between four di�erent 
ases.(a) arru(route) 6= depc2
(route) and arrc2

(route) 6= depv(route). We 
on-stru
t the event-dependent path P1 whi
h 
onsists of Pstarts,arru
, 
onne
-tion c1 and Pdepu,endt

. This is possible be
ause it is ful�lled deptime(c1) >
deptime(c2) and arrtime(c1) = arrtime(c2). P1 and P2 are 
omparableevent-dependent paths and with the 
onditions in 
olumn 2 it followsthat ttime(P1) ≤ ttime(P2) and transfer(P1) < transfer(P2). Thisimplies P1 <dom P2.(b) arru(route) = depc2

(route) and arrc2
(route) 6= depu(route). We 
on-stru
t the event-dependent path P1 whi
h 
onsists of the maximumevent-dependent s, s′-subpath of Pstarts,arru

using routes whi
h are notidenti
al with route depc2
, then takes the event-dependent s′, u-pathwhi
h uses route depc2

(route) without transfers and 
ontains 
onne
tion
c1 and Pdepu,endt

. This is possible be
ause it is ful�lled deptime(c1) >
deptime(c2), arrtime(c1) = arrtime(c2) and depc2

(route) = depc1
(route).This implies at s′ a later departure time for P1. P1 and P2 are 
om-parable event-dependent paths and with the 
onditions in 
olumn 2 itfollows that ttime(P1) = ttime(P2) and transfer(P1) < transfer(P2).This implies P1 <dom P2.(
) arru(route) 6= depc2

(route) and arrc2
(route) = depu(route). Analo-gously to 
ase b).



20 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemann(d) arru(route) = depc2
(route) and arrc2

(route) = depu(route). Analo-gously to 
ase b).
P1 and P2 are 
omparable event-dependent paths and with the 
onditionsin 
olumn 2 it follows that ttime(P1) = ttime(P2). and transfer(P1) <
transfer(P2). This implies P1 <dom P2.3: s 6= u and v = t. Analogously to 
ase 2.4: s = u and v 6= t. Analogously to 
ase 2.In all four 
ases we 
an 
onstru
t an event-dependent path P1 whi
h is 
ompa-rable with P2, dominates P2 and does not 
ontain 
onne
tion c2. It follows thatwe 
an delete 
onne
tion c2.A.1 Dominan
e Rules for Ar
 Flag Prepro
essingTable 4 presents the dominan
e rules whi
h have to be used in the prepro
essingphase. Let c1, c2 be two 
onne
tions starting at station v and ea
h ending in adeparture event at pre-boundary vertex w.

c1, c2 
omparable if delete c2 ⇔1 c1(depv(route)) = c2(depv(route))
c1(depw(route)) = c2(depw(route))
c1(depw(time)) ≤ c2(depw(time))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(depw(time)) ≤ c2(depw(time))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1)+ < transfer(c2)3 c1(depw(route)) = c2(depw(route))

c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfers(c1) + 2 < transfers(c2)Table 4. Dominan
e rules for the prepro
essing phase.

B Additional Computational ResultsTables 5-7 show the results of our Experiment 2.
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average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.26 71,422 1.00 1.00base+lb 2.15 68,263 1.05 1.05ar
-�ags 1.20 62,291 1.88 1.15SHARC 0.92 44,060 2.46 1.62SHARC+goal 0.49 21,645 4.61 3.30greedy ar
-�ags 0.65 38,696 3.48 1.85greedy SHARC 0.51 26,704 4.43 2.67greedy SHARC+goal 0.27 12,646 8.37 5.65Table 5. Experimental results for the start range interval [08-10℄ (�morning rush hour�).average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.17 67,517 1.00 1.00base+lb 2.07 64,534 1.05 1.04ar
-�ags 1.13 57,931 1.92 1.17SHARC 0.86 40,692 2.52 1.66SHARC+goal 0.47 20,549 4.62 3.29greedy ar
-�ags 0.68 39,052 3.19 1.73greedy SHARC 0.53 26,905 4.09 2.51greedy SHARC+goal 0.29 13,583 7.48 4.97Table 6. Experimental results for the start range interval [12-14℄ (�lun
h time�).average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 0.41 15,915 1.00 1.00base+lb 0.39 15,098 1.05 1.05ar
-�ags 0.24 14,058 1.71 1.13SHARC 0.19 9,823 2.16 1.62SHARC+goal 0.16 7,192 2.56 2.21greedy ar
-�ags 0.19 10,893 2.17 1.46greedy SHARC 0.15 7,586 2.73 2.10greedy SHARC+goal 0.13 5,472 3.15 2.91Table 7. Experimental results for the start range interval [20-22℄ (�late evening�).


