Accelerating Time-Dependent Multi-Criteria
Timetable Information is Harder Than Expected*

Annabell Berger!, Daniel Delling?, Andreas Gebhardt!, and
Matthias Miiller-Hannemann?

! Department of Computer Science, Martin-Luther-University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle, Germany
{berger,gebhardt,muellerh}@informatik.uni-halle.de
2 Department of Computer Science, University of Karlsruhe, P.O. Box 6980, 76128
Karlsruhe, Germany. delling@informatik.uni-karlsruhe.de

Abstract. Speeding up multi-criteria search in real timetable informa-
tion systems remains a challenge in spite of impressive progress achieved
in recent years for related problems in road networks. Our goal is to
perform multi-criteria range queries, that is, to find all Pareto-optimal
connections with respect to travel time and number of transfers within
a given start time interval. This problem can be modeled as a path
search problem in a time- and event-dependent graph. In this paper, we
investigate two key speed-up techniques for a multi-criteria variant of
DuksTRA’s algorithm — arc flags and contraction — which seem to be
strong candidates for railway networks, too. We describe in detail how
these two techniques have to be adapted for a multi-criteria scenario and
explain why we can expect only marginal speed-ups (compared to obser-
vations in road networks) from a direct implementation. Based on these
insights we extend traditional arc-flags to time-period flags and introduce
route contraction as a substitute for node contraction. A computational
study on real queries demonstrates that these techniques combined with
goal-directed search lead to a speed-up of factor 13.08 over the baseline
variant for range queries for a full day.

Keywords: timetable information, multi-criteria search, time-dependent
networks, arc flags, contraction

1 Introduction

In recent years there has been growing interest in high-performance timetable
information systems [22]. While exact single-criterion search is well understood
and already quite efficient, multi-criteria timetable information remains a chal-
lenge. Therefore, commercial state-of-the-art systems still use only heuristics to
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determine relevant connections for their customers. Since there has been impres-
sive progress with speed-up techniques for related problems in road networks,
it seems natural to start an attempt to transfer the underlying methods to a
railway scenario.

In this paper, we report on a project where we worked out the necessary
details to augment standard search techniques by additional information ob-
tained in a preprocessing phase. We investigate two key speed-up techniques for
a multi-criteria variant of DIJKSTRA’s algorithm — arc flags and contraction.

Related Work. Many speed-up techniques for single-criteria scenarios have
been developed during the last years. Due to space limitations, we direct the
interested reader to [8] and [10], which give recent overviews over single-criteria
time-independent and time-dependent route planning techniques, respectively.

Basics. The straightforward approach to find all Pareto optimal paths is the
generalization [15,18,20] of DIJKSTRA’s algorithm: Each node v € V gets a
number of multi-dimensional labels assigned, representing all Pareto paths to
v. For the bicriteria case, Hansen [15] was the first presenting such a general-
ization, while Theune [30] describes multi-criteria algorithms in detail. By this
generalization, DIJKSTRA loses the property that each node is visited only once.
It turns out that a crucial problem for multi-criteria routing is the number of
label entries assigned to the nodes. The more label entries are created, the more
nodes are reinserted in the priority queue yielding considerably slow-downs com-
pared to the single-criterion setup. In the worst case, the number of labels can be
exponential in |V| yielding impractical running times [15], and also memory con-
sumption becomes an issue. Hence, Hansen [15] and Warburtun [31] present an
FPTAS (fully polynomial time approximation scheme) for the bicriteria shortest
path problem.

Speed-up Techniques. Most of the work on speed-up techniques for multi-criteria,
scenarios was done on networks derived from timetable information. In such net-
works, Miiller-Hannemann and Weihe [23] observed that the number of labels
is often limited such that the brute force approach for finding all Pareto paths
is often feasible. Experimental studies finding Pareto paths in timetable graphs
can be found in [25, 26,29, 27,21, 14, 11]. We would like to point out that one has
to distinguish between finding all Pareto paths and only finding one representa-
tive for each equivalenve class of paths with the same tuple of objective values.
Previous work usually guarantees only the weaker second version.

SHARC, a route planning algorithm developed by one of this work’s co-
authors, has been introduced in [2, 3]. Originally, SHARC only worked on time-
independent networks. In [6, 7], it has successfully been adapted to time-depen-
dent road and railway networks, and very recently, even to a (time-independent)
multi-criteria scenario [9]. However, experiments for the multi-criteria variant
were only conducted on time-independent road networks. So, to the best of our
knowledge, no advanced speed-up technique has yet been adapted to a realistic
multi-criteria timetable information system on time-dependent networks.
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Our contribution and overview. This paper is devoted to transfer advanced
speed-up techniques to time-dependent railway networks. In contrast to most
previous scientific work, we consider a scenario with the following features:

— Our model is a fully realistic model, where traffic days, business rules on
required transfer times between connecting trains, footpaths between neigh-
boring stations, train attributes, and the like are respected.

— We aim at finding all Pareto optimal paths for two criteria, travel time and
number of transfers. We would like to emphasize that we here mean the
strong version which really enumerates all Pareto paths, and not just one
representative path for each non-dominated pair of objective values. Since
there are often several possibilities to change between the same two trains,
this leads to a much larger set of paths. The motivation to search for these
paths comes from practice: railway companies have preferences at which
stations their passengers should change trains. Hence, they would like to
select from the complete set of Pareto paths a subset which they present to
customers.

— We want to perform a range search for an arbitrary user-specified start-time
interval (not only from a single desired start point). As a result, we are able
to compute the complete connection table between two arbitrary stations for
a full day.

To model this scenario we will introduce a station graph model with train
routes which is slightly more compact than those used in Disser et al. [11]. While
Dijkstra’s algorithm can be easily generalized to time-dependent graphs in the
single-criterion case [5], one has to be more careful in a multi-criteria setting.
The crucial operation in a multi-criteria search algorithm is to decide which
subpaths can be safely dominated. To ensure correctness subpath optimality is
required, and therefore Miiller-Hannemann and Berger [4] extended the classical
time-dependent model to an event-dependent model.

In this work, we mainly investigate two prominent speed-up techniques, arc-
flags and contraction, and their combination. We

— discuss how these techniques have to be adapted to work for the above
scenario,

— explain why they do not lead to as large speed-ups as one might have hoped
for, and

— develop two new refinements which achieve at least some significant speed-up
over previous work on range queries.

Classical arc flags turn out to be rather weak for arbitrary multi-criteria
range queries: almost all arc flags must be set to true to guarantee correctness
of the query algorithm since for any arc there is almost surely one point in time
where this arc is part of some Pareto-optimal path towards the target station.
However, from our preprocessing we do know exactly at which points of time any
particular arc might be necessary. By this observation we refine the classical arc
flags to time-period arc flags. The idea is to divide the overall range for which
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our preprocessing is valid into short time intervals, for example into intervals of
two hours. Then each arc maintains a flag for each combination of time interval
(period) and region which tells whether the arc might be “useful” for a particular
query.

Standard node contraction suffers from the dilemma that our station graph
has due to many parallel routes already a very high average degree of ~ 43 (in
comparison, road networks have empirically an average degree below 4). Thus,
bypassing a node leads to the introduction of many shortcut arcs. While many
shortcut arcs can be pruned away in a single-criterion search in time-independent
road networks, domination criteria in a multi-criteria scenario are much weaker
in event-dependent railway networks, as we will explain in Section 4. Therefore,
we decided to develop and implement a different concept which can be combined
with arc-flags: route contraction. The idea behind route contraction is to insert
for a path composed by arcs on the same route a new shortcut arc, provided
that all intermediate stations on this path are classified as bypassable. A station
is bypassable if (a) it is neither the beginning or end of some route, (b) it has at
most two different neighbors, and (c) it is not a boundary node of some region
used in the node partition for the arc-flags. In Germany, about 60% of all stations
are bypassable with respect to this definition.

In addition, we have realized a variant of goal-directed search which for each
query first computes minimum travel times from each node towards the target
station and then uses these values as lower bounds during the search. Extensive
computational experiments indicate that the combination of these methods to-
gether with a greedy strategy allow range queries for a full day in about 0.53
seconds. This gives a speed-up of about 10.1 over our baseline variant.

The remainder of the paper is organized as follows. In Section 2, we briefly
review the classical arc-flag method and SHARC. Then, in Section 3, we dis-
cuss modeling issues for multi-criteria time-table information. We introduce our
station graph model and explain the baseline variant of a multi-criteria gener-
alization of Dijkstra’s algorithm. Afterwards, we describe how to adapt the pre-
processing phase for arc-flags and contraction to a multi-criteria time-dependent
version. In particular, we introduce the new concepts of time-period arc-flags and
route contraction. Results of an experimental study are presented in Section 5.
Finally, we conclude with a short summary.

2 Preliminaries

A (directed) graph G = (V, A) consists of a finite set V' of nodes and a finite set
A of ares. An arc is an ordered pair (u,v) of nodes u,v € V, the node u is called
the tail of the arc, v the head. Throughout the whole work we restrict ourselves
to directed graphs which are weighted by a length function len, which we specify
in Section 3. A partition of V is a family C = {Cy,C1,...,Cx} of sets C; CV
such that each node v € V is contained in exactly one set C;. An element of a
partition is called a region. The boundary nodes B¢ of a region C are all nodes
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u € C for which at least one node v € V'\ C exists such that (v,u) € A. We call
v a pre-boundary node of the region u is assigned to.

SHARC. Introduced in |2, 3], SHARC combines ideas from arc-flags [17, 16] and
contraction [28,12]. The original arc-flag approach first computes a partition C
of the graph and then attaches a label to each arc a. A label contains, for each
region C' € C, a flag AF (a) which is true if a shortest path to at least one node
in C starts with a. A modified DIJKSTRA then only considers those arcs for which
the flag of the target node’s region is true. The main downside of this approach is
the high preprocessing effort. Hence, SHARC improves on this by the integration
of contraction, i.e., a routine iteravely removing unimportant nodes and adding
so-called shortcuts in order to preserve distances between non-removed nodes.
One key observation of SHARC is that we are able to assign arc-flags to all
bypassed arcs during contraction. More precisely, any arc (u, v) outgoing from a
non-removed node and heading to a removed one gets only one flag set to true,
namely, for the region v is assigned to. Any other bypassed arc gets all flags set
to true. By this procedure, unimportant arcs are only relaxed at the beginning
and end of a query.

3 Modeling Issues

Up to now, two models have been introduced for efficient timetable information
systems: the time-expanded and time-dependent approach. See the survey pa-
per [22] for details. In this section we extend the time-dependent approach to an
event-dependent scenario (see [4]) and introduce a more compact graph model.

3.1 Elementary Connections, Connections and Connection Tables.

Before explaining our station graph model, we need the notion of connections
within a timetable. Let S be the set of stations. An elementary connection
ce = (depy(time), arry, (time), T') represents exactly one train T which departs
at time dep,(time) in station v € S and arrives at arrival time arr, (time)
in station w € S without stops. An elementary connection-table C. is a set
of elementary connections with identical origin v and destination w. Further-
more, there exists a set of minimum transfer times transs(T,T’) € N between
trains 7,7’ with respect to each station s € S. These transfer times ensure
the possibility to transfer between two trains with respect to different situ-
ations. We call two elementary connections ¢, = (dep,(time), arry,(time), T)
and ¢, = (dep, (time), arry (time), T') concatinable if and only if w = v' and
dep, (time) — arry, (time) > trans, (T,T’). We denote a sequence of elementary
connections ce,,...,Ce, as connection ¢ = (Cey,Ce,,transfer) if each adjacent
pair of elementary connections (c,,ce, ,) in the sequence is concatinable. At-
tribute transfer counts the number of transfers using connection c¢. Note, that this
definition allows to concatenate connections if there ending and starting elemen-
tary connections are concatinable. We denote with c(dep,, (time)), c(dep,(train))
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and c(arry, (time)), clarry(train)) the starting and ending departure and ar-
rival times/trains of connection c. Analogously to elementary connection-tables
we define a connection-table C' as a set of connections with identical origin v and
destination w. Last, we define an operator @& on connection tables C,C’ which
assigns to each pair of connection tables (C,C’) a new connection table C”.
C" contains all connections ¢” consisting of concatinable pairs of connections
(¢,¢') € C' x C'. In the following, we assign elementary connection-tables to arcs
but also compute connection-tables between arbitrary pairs of stations.

3.2 Station Graph Model

Our approach is based on a directed graph G = (V, A) without loops but with
parallel arcs which is called station graph. Each node v € V models a station s €
S. Inserting arcs is more sophisticated. In a first step we connect two stations if
and only if there exist at least one elementary connection between these stations.
Next, we identify trains with the following properties: they stop exactly at the
same sequence of stations, have the same train attributes and days of operation,
and never violate the FIFO property, i.e., they always run in the same order on
each arc. We denote such sequences of stations as routes and get for each arc a
set of different routes using this arc. Now, we replace each arc (v, w) by parallel
route arcs (v, w);, one for each route on this arc. We add the new attribute route
number to each elementary connection. In a last step we assign to each route
arc the corresponding elementary connection-table.

Foot-Arcs. Our data also contains foot paths modeling inter-station transfers
reachable by foot. In our graph model, we simply connect the corresponding
stations v,w by a foot-arc with constant length [ corresponding to the time
necessary for traversing the arc (v, w) by foot F'. Hence, we can associate with
each foot arc an elementary connection table which contains for each discrete
point of time an elementary connection c. = (dep,(time), arry, (time), F') with
arry, (time) — dep, (time) = .

3.3 Route Planning in the Station Graph Model

In this work, we concentrate on computing optimal connection tables between
two arbitrary stations s and ¢ at a given start time interval [Ts¢qrt, Tend] for sta-
tion s with respect to the travel time and number of transfers. We denote the
travel time of a connection ¢ with ttime(c) and the number of transfers with
transfer(c). Each connection can be seen as an event-dependent path in the
station graph. Miiller-Hannemann and Berger introduced event-dependent mod-
els as an extension of time-dependent approaches in [4]. The reason to introduce
this extension is that our second optimization criterion “number of transfers”
not only depends on time but additionally on train numbers. This leads to new
definitions for time-dependent settings and their generalizations. First, we as-
sign to each arc a = (v,u) € A and departure event dep,, at v an arrival event
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arr, which defines the arrival event at vertex u if we depart in v with depar-
ture event dep, and traverse arc a. This models our elementary connections.
For time-dependent models an event consists only of the attribute time. There-
fore, all departure events with the same departure time at a vertex v will be
considered as equal events. In our scenario an event consists of attributes depar-
ture or arrival time, train number and route number. We define for all v € V
a set of departure events Dep, and arrival events Arr,. Consider all connec-
tions in a connection table between station s and ¢. Then such a connection
¢ = ((deps(time), arry, (time), T), (depy (time), arry(time), T'), trans fer) is an
alternating sequence (deps, arr., ..., dep,, arry) of departure and arrival events
which consist of attributes (time, train, routenumber). For an (s,t)-query we
ignore all arrival events at s, but add an artificial “arrival event” starts with
an earliest start time starts(time) := Tgtqrt at the beginning of ¢. Furthermore,
we define one artificial “departure event” end; which is added to the end of c.
We denote such an alternating sequence as event-dependent path Pgiart, end, =
(starts, ¢, end;). Furthermore, we call an alternating subsequence of an event-
dependent path Pgiqre, end, Starting at starts; and ending in an arrival event arr,
as event-dependent subpath Pyigrt, arr,. We define the weight w(Psiare, arr,) €
N? of an event-dependent path Pstart, arr, in the first component as the travel
time ttime(c) and in the second component as the number of transfers transfer(c)
of the underlying connection c. Note that all events belonging to an event-
dependent path are distinct, but we do not rule out that corresponding stations
are repeated.

If we want to use a generalized version of DIJKSTRA’s algorithm to compute
all event-dependent Pareto-paths, we need for correctness subpath optimality.
To decide the optimality of an event-dependent subpath we may only compare
subpaths which possess on their ends identical departure events, see [4]. Hence, in
the case of a time-dependent scenario we may compare all subpaths which possess
on their ends only identical arrival times. A generalized version of DIJKSTRA’s
algorithm, (see Algorithm 1), computes all event-dependent Pareto-paths. This
algorithm uses a data structure for a label L which consists of

1. an arrival event arr,,
2. a list [, of weights w € Ri for event-dependent paths Psiore,,arr,
3. alist [, of predecessor arrival events arr,, for event-dependent paths Psiort, arr, -

Note that in this version we construct a label for each route arc and this
notion of a label includes all partial connections from the start station. Thus,
we can identify such a label with a computed connection table representing all
non-dominated connections from the start station up to the corresponding arc
found so far. Upon termination, each label includes all Pareto-optimal paths.

To decide whether two alternatives dominate each other or not, we are able to
compare all event-dependent subpaths not only ending with identical departure
events but ending with different departure events and an identical route number.
Hence, we can give special rules to delete some of these subpaths. In the next
section we explain these “rules of dominance”.
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Algorithm 1: Generalized Dijkstra Event-Dependent

Input: Origin s, destination ¢, earliest start time starts(time)
Output: Set of all event-dependent Pareto-optimal (s, t)-paths.
1 create empty priority pg;

2 for arrival events arr, do

3 if v # s then construct label Lq,r, with empty list l,,;
4 else

5 construct label Lsiart,;

6 L pq. insert(Lstart, );

7 while —pq. empty() do

8 Larr, < pq.extract-min() /* key is the smallest arrival time
arry(time) */
9 compute with respect to trans, possible departure events dep, at vertex v;
/* each departure event belongs to exactly one arrival event */
10 determine the corresponding arrival event arr, to Larr,;
11 for these arrival events arr, do
12 if label Larr, € pq then pq.insert(Lqrr,) and store a flag that Layr, is
in pg;
13 for weights stored in Lorr, .l do
14 w(Pstarts,arru) — w(Pstarts,arrv) + U}(a’f‘ﬁ” depv) + w(depm aT‘Tu);
15 if w(Pstarts, arr,) not dominated in Larr, .lw then

Larr, lw. insert (w (Pstart,, arry));

16 delete dominated weights in label Loy, lw;

Rules of Dominance. Our station graph model allows additional rules to
compare connections within each connection table on a route arc. In general,
we may only compare connections with identical ending arrival times in one
connection table. In our scenario the rules of dominance with respect to subpath-
optimality don’t change but in several cases we can decide the non-optimality of
some subpaths in advance. Consider the computed connection table on route arc
r in Figure 1. The third connection will be deleted because there is no Pareto-
optimal (s,t)-path which can contain this connection as a subpath. Assume,
this would be the case. Then the first connection in our time table can use the
same connection from v to t as in this Pareto-path. Because the first and third
connection end on the same route arc either both have to transfer at v or both
continue on the same route. Hence, the (s, t)-path using connection 1 possess a
smaller travel time and a smaller number of transfers. In contradiction to our
assumption the path using connection 3 is dominated. Note, that we cannot
delete connection 2 in this connection table. If the last train of connection 2
is the same as the only elementary connection on (v,t), connection 2 can be
extended to a Pareto-optimal path from (s,¢). Similar but stronger arguments
can be found in comparing connection tables of two different route arcs r,r’
ending at station v. In Table 1 we give our special deletion rules. We call the
rules in line 1 and 2 route dominance and the rule in line 3 station dominance.
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c1,ce comparable if delete co &
c1(arry(time)) — ttime(cy) >
cz(arry(time)) — ttime(cz)
transfer(ci1) < transfer(cz)
ci1(arry (time)) — ttime(c1) >
ca(arry(time)) — ttime(cz)
transfer(c1) < transfer(ca)
c1(arry(time)) — ttime(c1) >
3| c1(arry(time)) < ca(arr,(time)) ca(arry(time)) — ttime(cz)
transfer(ci) < transfer(cz)
Table 1. Comparability and deletion criteria of two connections on route arcs ending
in station v.

c1(arry(time)) < ca(arry(time))
ci1(arry(route)) = ca(arry(route))

c1(arry(time)) < ca(arry(time))
c1(arry(route)) = ca(arry,(route))

ttime arrival transfer

1h 7.00 1

2h 8.00 1

3h 9.00 2
S v t
— . @

r

10.00 11.00

Fig. 1. Example: Route dominance at a connection table for paths from s to arc r.
Note that we cannot delete connection 2 in this table if the elementary connection on
arc (v,t) uses the same train as connection 2. However, connection 3 can be safely
deleted.

4 Augmenting Ingredients

In this section, we present how to adapt the basic contraction and arc-flags to
our scenario.

4.1 Contraction

One of the main reasons of the success of recent hierarchical (single-criteria)
speed-up techniques is contraction, a routine that iteratively removes unimpor-
tant nodes from the graph and inserts so called shortcuts to preserve correct
distances between the remaining nodes. Hence, in order to use this technique in
our scenario, we need to augment this concept. In general, contraction works in
two phases: vertex- and arc-reduction.

Vertex-Reduction. Adaption of vertex-reduction is straightforward. We by-
pass a node u by removing all its incoming arcs I(u) and all outgoing arcs O(u).
In order to preserve Pareto-paths between the remaining nodes, we introduce, for
each combination (v,u) € I(u), (u,v") € O(u) and their connection tables C(, )
and C(y,.), a new arc (v,v") with connection-table C, vy = C(y,u) ® Cra,vr)-
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c1,ce comparable if delete co &
e (depo(event)) = ca(depy(event)) |ttime(cr) < ttime(ca)
ci(arry(route)) = ca(arry(route)) |transfer(ci) < transfer(cz)
ol C1 (arrw(event)) = ca(arrw(event)) | ttime(c1) < ttime(cz)
ci1(depy(route)) = ca(depy(route)) |transfer(ci) < transfer(cz)
3| c1(depy(event)) = ca(dep,(event)) time(c1) < ttime(cz)

transfer(ci) +1 < transfer(cz)
ttime(c1) < ttime(cz)
transfer(c1) +1 < transfer(cz)
c1(depo(time)) > ca(depy(time))
ttime(c1) + c1(depy (time)) <

ca2(depy (time)) + ttime(cz)
transfer(c1) + 2 < transfer(cz)
Table 2. Comparability and deletion criteria of two connections on parallel shortcut
arcs (u,v).

4| c1(arry (event)) = ca(arry(event))

From vertex-reduction in other scenarios, we know that the order in which
we remove vertices from the graph changes the resulting graph. Hence, we
use a priority queue to determine which node to bypass next. The priority
of a node u within the queue is defined by the expansion ((u) := (deg;, (u) -
deg ¢ (u))/(deg;, (u) + deg,,+(u)). We stop the vertex-reduction as soon as we
would bypass a node with an expansion beyond a given threshold. All nodes
remaining in the graph, we call core-nodes. The core of a graph contains all
core-nodes and all arcs (including shortcuts) between core-nodes.

Theorem 1. Vertex-reduction preserves event-dependent Pareto-optimal paths
between core-nodes.

Arc-Reduction. Our vertex-reduction creates a new connection-table for each
added shortcut yielding quite a high increase in the total number of connections
in the graph. Fortunately, we can remove some connections on the shortcuts
because they may be dominated by other connections. In the best case, all con-
nections on a shortcut are dominated. Then, we can safely remove the shortcut
from the graph. One might expect that it sufficient to run a (v—v')—query for
each added shortcut (v,v") and then remove all connections from (v,v’) that are
dominated. Unfortunately, this violates correctness since (v,v’) can be a suffix
and/or prefix of a shortest path (cf. Section 3). Still we can run a (v—v’")—query
for each shortcut but in order to preserve correctness, we have to use weaker
(than those introduced in Section 3) rules of dominance during the query. These
weaker rules are given in Table 2. The reason for these modified rules is that we
have to compare paths ending in possibly two different events.

Theorem 2. Arc-Reduction preserves event-dependent Pareto-optimal paths be-
tween core-nodes.

The proof of Theorem 2 can be found in Appendix A. In Figures 2-4, we
give an example how Vertex-Reduction and Arc-Reduction work in our scenario.
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dep ttime route||dep ttime route||dep ttime route

6.00 0.5h 1| 8.00 0.5h 1| 9.00 1.0h 1
8.00 0.5h 1]/ 9.00 0.5h 1/{10.00 0.5h 1

T u v w

dep ttime route
7.30 0.5h 2

Fig. 2. Small excerpt of the station graph with elementary connections.

dep ttime route transfer

dep ttime route||dep ttime route transfer

6.00 4.0n 1,1,1 0
6.00 0.5h 1]/ 8.00 20n 1,1 0 8.00 3.5h 111 0
8.00 0.5h 1||-806—2 i
9.00 1.5h 1.1 0 O
x u w

dep ttime route transfer

6:00—40h—12,1+— 2
dep ttime route transfer 600 Loh 1212
730 25h 21 1
7.30 3.0h 2,1 1

Fig. 4. After vertex-reduction at u, an
arc-reduction of the lower arc between

Fig. 3. Vertex-reduction at vertex v. . .
z and w is possible.

Figure 2 represents a small excerpt of a station graph with elementary connection
tables on each route arc. In Figure 3, we delete vertex v and determine new
connection tables on short cut arcs. Note, that none of the new connection tables
can be deleted. In Figure 4, vertex u is deleted and the new connection table on
the lower arc (z,w) is dominated and can be deleted.

Route Contraction. As mentioned in the Introduction, this standard node
contraction suffers from the dilemma that our station graph has already a very
high average degree of ~ 43 due to the many parallel routes (in comparison,
road networks have empirically an average degree below 4). Thus, bypassing a
node leads to the introduction of many shortcut arcs which cannot be deleted.
Therefore, we decided to develop and implement a different concept: route con-
traction. In a first step we partition the set of stations S in k several subsets
C; with ¢ € {1,...,k} which we call regions. The idea behind route contrac-
tion is to insert for a path composed by arcs on the same route a new shortcut
arc, provided that all intermediate stations on this path are classified as bypass-
able. Recall from the Introduction that a station is bypassable if (a) it is neither
the beginning or end of some route, (b) it has at most two different neighbors,
and (c) is not boundary node of some region C;. Thus our notion of bypassable
nodes models in some sense “unimportant stations”, for which we assume that
at them no transfer makes sense. In Germany, about 60% of all stations are by-
passable with respect to this definition. After determining all bypassable vertices
in station graph G we can identify inclusion-maximal paths P, ., from v to w
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containing only arcs of the same route and only bypassable vertices u # v, w in
its interior. Each such path P, ,, is contracted to a shortcut arc (v, w). Arc (v, w)
gets a new elementary connection table C. only containing elementary connec-
tions c.. Each such connection c. represents exactly one train 7" which departs
at time dep,(time) in station v € S and arrives at arrival time arr,,(time) in
station w € S without stops.

4.2 Arc-Flags

In a time-dependent single-criteria scenario, a set arc-flag AF (a) denotes wheth-
er e is important for region C. Similar to the augmentations given in [6, 9], we use
the following intuition to set an arc-flags in our event-dependent multi-criteria
scenario. Set AF - = true as soon as e is important for at least one Pareto-path
for all possible departure times. In the following, we show how to incorporate
this intuition correctly.

Augmentation. A common approach to compute arc-flags in the time-indepen-
dent single-criteria scenario is based on running DIJKSTRA-queries on the back-
ward graph from each boundary node of the graph. Similarly, we compute event-
dependent multi-criteria arc-flags by running our version of DIJKSTRA’s algo-
rithm on the backward graph from all departure events of each pre-boundary
node b’ of boundary node b. Let C' be the associated region of b. Note that
we run the queries from the pre-boundary nodes. The reason for this is that it
simplifies case distinctions considerably. Using boundary nodes instead would
require to distinguish between paths ending at the boundary node and paths
ending somewhere else within the target region C. Again, like for arc-reduction,
we have to use weaker rules of dominance during our queries, given in Table 4
of the Appendix. For all arcs a of the graph, we end up in connection tables
representing Pareto paths starting with arc a towards the boundary node b. If
the computed connection table of arc a is not empty, then a is used for at least
one Pareto-path towards C. Hence, we set AF¢(a) to true.

Theorem 3. FEvent-dependent multi-criteria arc-flags are correct.

Unfortunately, classical arc flags turn out to be rather weak: almost all arc
flags must be set to true to guarantee correctness of the query algorithm since
for any arc there is almost surely one point in time where this arc is part of some
Pareto-optimal path towards the target station. However, from our preprocessing
we do know exactly at which points of time any particular arc might be necessary.
Therefore, we refine the classical arc flags to time-period arc flags. The idea is
to divide the overall range for which our preprocessing is valid into short time
intervals. A good compromise between size of the necessary flags and the desired
refinement is to divide a full day into 12 intervals of two hours. Then each arc
maintains a flag for each combination of time interval (period) and region which
tells whether the arc might be “useful” for a particular query within a certain
period.
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4.3 SHARC

In this work, we use a slightly reduced variant of SHARC. We only use a 1-level
setup (due to the limited size of the graphs deriving from our model) and do not
use refinement of arc-flags (cf. Section 2). By this, preprocessing is split into three
phases. First, we partition the graph into k regions. Then, we perform a route-
contraction step according to the above description. Any arc (u,v) bypassed
during contraction directly gets its final arc-flags assigned, depending on its tail
u. If u has been bypassed, (u,v) gets all flags assigned to true, while if u is part of
the core, (u,v) gets all flags assigned to false, except for the region v is assigned
to, this flag is set to true. Note that in order to guarantee correctness, our route-
contraction needs to be region-aware, i.e., a boundary node is never bypassed.
After route contraction, we perform an arc-flags preprocessing as stated above
on the resulting core. Since we use a setup with one level, our query algorithm
is our standard one with a small modification: we only relax arcs which have a
time-period arc-flag for the target’s region assigned true. However, there is one
subtle detail: we have to explore flags for all time periods which can still lead to
a Pareto-optimal solution at the target. We use lower bounds on the minimum
travel time towards the target to determine which flags we have to consider.

5 Experiments

5.1 Computational Setup

Test data. Our computational study is based on the German train schedule of
2008. This schedule consists of 8817 stations, 40034 trains on 15428 routes, 392
foot paths, and 1,135,479 elementary connections. In our station graph model
we obtain a graph with 189,214 arcs. For our tests, we used different types of
queries (randomly chosen start stations and destinations, real customer queries,
and handmade). The query start interval has been varied between a full day
(denoted by [0-24]) and typical two-hour intervals (for example, rush hour [8-
10], lunch time [12-14], and late evening [20-22]), as well as one hour [7-8], six
hour [6-12], and twelve hour [6-18] intervals.

Environment. All experiments were run on a standard PC (Intel®Core™2
Quad CPU Q6600, 2.4GHz, 4MB cache, 8GB main memory under Ubuntu linux
version 9.04. Only one core has been used by our program. Our code is written
in C++ and has been compiled with g++ 4.3.3 and compile option -O3.

Preprocessing. Using the graph partitioning library SCOTCH [24] and addi-
tional postprocessing by a local optimization routine, we have partitioned the
given set of stations into 16 regions. This number of regions seems to be a reason-
able compromise between the average region size and the computational effort
for the arc flags. The time to compute the partitioning into regions and the time
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to compute shortcut arcs is negligible (less than a minute CPU time). The over-
all arc flag computation, however, is really expensive: it requires 33h 37min but
can easily be parallelized. Using all four cores it can be reduced to 8h 40min.
We can bypass 5,248 out of 8,817 stations, and 55,742 out of 189,214 original
arcs. This leads to the insertion of 19,929 additional shortcut arcs. Flag vectors
are quite full, on average 41.4% of their bits are set to 1. This clearly limits the
effect which we can expect from arc-flags.

Route vs. station dominance. A crucial point for the efficiency of the query
algorithm is the appropriate choice of dominance rules. The stronger the domi-
nance rules, the less priority queue operations have to be performed. However,
the application of stronger rules is computationally more expensive. In particu-
lar, applying station and route dominance turned out to be actually a slow-down
in comparison with only using route dominance. Although the combined appli-
cation of rules saves about 30% of priority queue operations, it almost doubles
the computation time. Therefore, we use only route dominance in the following.

Query variants. We compare CPU times and operation counts for the number
of priority queue delete-min operations for the following algorithmic variants:

— base: the pure multi-dimensional Dijkstra algorithm without any speed-up
technique.

— base+1b: base plus lower bounds for the domination at the terminal.

— arc-flags: base+1b combined with time period arc flags but no shortcuts.

— greedy arc-flags: arc-flags with a greedy strategy explained below.

— SHARCGC: arc-flags with shortcuts based on route contraction.

— SHARC+goal: SHARC combined with goal direction.

— greedy SHARC: SHARC with a greedy strategy explained below.

— greedy SHARC-goal: the previous variant combined with goal direction.

The “greedy strategy” does the following: whenever we arrive at some station
and consider the next arc, we choose only the very first reachable connection
on this arc. In general, this strategy will fail to find all Pareto-optimal paths,
but except for somewhat pathological situations we will find for each equivalence
class of paths with the same pair of objective values at least one representative.

5.2 Computational Results

Experiment 1: Full day scenario. One primary goal of this project is to
provide an efficient range query for a complete day of operation between two
arbitrary stations. Table 3 shows the results for this scenario. While our baseline
variant base requires an average CPU time of 7.85s, already turning on our lower
bound domination reduces the average CPU time to 4.54s. Arc-flags achieve a
speed-up of 3.15 over base, and SHARC increases the speed-up further to 4.01
over base. Turning on the greedy strategy yields a speed-up of 7.41 over base
for greedy SHARC. The fastest variant is the combination of greedy SHARC
with goal-directed search. It reduces the average query time to 0.6s and yields a
speed-up factor of 13.08.
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average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 7.85 233,203 1.00 1.00
base+1b 4.54 144,325 1.73 1.62
arc-flags 2.49 130,569 3.15 1.79
SHARC 1.96 95,685 4.01 3.91
SHARC+goal 1.00 52,663 7.85 4.43
greedy arc-flags 1.38 84,444 5.69 2.76
greedy SHARC 1.06 59,589 7.41 3.91
greedy SHARC+goal| 0.60 37,867 13.08 6.16

Table 3. Experimental results for a complete day, i.e., the start range interval [0-24].

Experiment 2: Two-hour range queries. In our next experiment we are
interested in range queries for two-hour periods in the “morning rush hour” [8-
10], at “lunch time” [12-14], and in the “late evening” [20-22]. Detailed results
are given in the Appendix, see Tables 5-7. As expected, two-hour range queries
are faster than full day queries. While queries for the “morning rush hour” [8-10]
and for “lunch time” [12-14] behave very similar — the fastest variant requires
0.27s and 0.29s on average, the “late evening” period is much easier and yields
average computation times of 0.13s for greedy SHARC+goal.

Experiment 3: Variation of the range width. We compare the speed-up
for different widths of the start interval: 1h, 2h, 6h, 12h, and 24h. Figure 5 shows
that the speed-up factors increase with the width of the interval, i.e., the larger
the search space the better is the speed-up.

T
14 base+lb —— B
arc-flags &

13 greedy arc-flag
SHAR!

12 greedy SHARC i
SHARC+GOAL -
11 -greedy SHARC+GOAL &

speed-up factor

Fig. 5. The speed-up increases with the width of the query interval.
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Number of Pareto-optimal paths. For a query range interval of 24h (full
day range) we obtain about 7 Pareto-optimal paths on average. Figure 6 shows
a histogram for the size of Pareto-optimal paths for the time period of a full day.
The maximum number of Pareto-optimal paths which we observe in these tests
is 81. An interesting question is whether versions using the greedy strategy or
versions using shortcut edges lose any Pareto optima. The good news is that in
both cases we have always found the identical set of equivalence classes of Pareto-
optimal paths with the same objective values. Differences occur, however, in the
total number of alternatives which are identified by these methods. For a full day
range, the number of alternatives drops by about 1%. For shorter time periods,
the difference is somewhat larger, about 5%.
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Fig. 6. Frequency of Pareto-optimal paths for a full day range.

6 Conclusion

We presented the first study on advanced speed-up techniques like arc-flags and
contraction in a multi-criteria time- and event-dependent scenario which allow
us to answer arbitrary range queries. An important lesson we learned from this
project is that the classical extension of arc-flags and contraction does not work
well. However, with two new concepts, time-period arc flags and route contrac-
tion, we can achieve speed-ups of about 13 over the baseline variant for a full
day.

It remains an open challenge to develop more powerful speed-up techniques
for a multi-criteria time-dependent scenario without scarifying exactness. Since
preprocessing for arc flags is very time-consuming, there is also need for tech-



Accelerating Time-Dependent Multi-Criteria Timetable Information 17

niques which can also be applied in an online scenario where dynamic changes
of the schedule are taken into account.
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Appendix

A Proof of Theorem 2

Theorem 2. Arc-Reduction preserves event-dependent Pareto-optimal paths be-
tween core-nodes.

Proof. We only prove the correctness for Line 2 of table 2. The other cases can
be shown very similarly. We consider two connections ¢; and ¢, on short cut arcs
(u,v) which fulfill the conditions in line 2 and column 1. Let P, be an event-
dependent s, t-path starting at s with earliest start time starts; and ends in ¢
with an artificial departure event end; at t. Furthermore P, contains connection
2. Let Psiart, arr, be the event-dependent (s, u)-subpath from Py and Pyep, end,
be the event-dependent (u,t)-subpath from P,. We denote with arr, (route) the
route number of the arrival event at w and with dep, (route) the route number
of departure event dep,. We distinguish between four cases.

1. s = wand v = t. Then Psart, arr, and Pgep, end, are empty paths. We
construct the event-dependent path P; which starts with the earliest start
time starts and ends with the artificial departure event end;. This is pos-
sible because depiime(c1) > depiime(c2) is valid. P; and P, are compara-
ble event-dependent paths and with the conditions in column 2 it follows
that ttime(Py) < ttime(P2) and transfer(P;) < transfer(P). This im-
plies Pi <gom Ps.

2. s # u and s # t. We distinguish between four different cases.

(a) arry(route) # depc,(route) and arre,(route) # dep,(route). We con-
struct the event-dependent path P, which consists of Pstart, arr, , CONnec-
tion ¢1 and Pyep,, end, - This is possible because it is fulfilled depiime(c1) >
depiime(ca) and arrime(c1) = arrime(c2). P and P, are comparable
event-dependent paths and with the conditions in column 2 it follows
that ttime(Py) < ttime(P2) and transfer(Py) < transfer(Pz). This
implies P; <gom Ps.

(b) arry(route) = depe,(route) and arrc,(route) # dep,(route). We con-
struct the event-dependent path P; which consists of the maximum
event-dependent s, s’-subpath of Pgigrt, arr, using routes which are not
identical with route dep.,, then takes the event-dependent s’,u-path
which uses route dep., (route) without transfers and contains connection
c1 and Pyep, end,- This is possible because it is fulfilled depiime(c1) >
depiime(c2), arriime(c1) = arriime(c2) and dep, (route) = dep,, (route).
This implies at s’ a later departure time for P;. P; and P, are com-
parable event-dependent paths and with the conditions in column 2 it
follows that ttime(Py) = ttime(Pz) and transfer(Py) < transfer(P).
This implies Py <gom Ps.

(¢) arry(route) # dep.,(route) and arre,(route) = dep,(route). Analo-
gously to case b).
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(d) arry(route) = depe,(route) and arr,(route) = depy(route). Analo-
gously to case b).
P; and P, are comparable event-dependent paths and with the conditions
in column 2 it follows that ttime(Py) = ttime(Ps). and transfer(P;) <
transfer(Py). This implies Pi <gom Po.
3: s #u and v = t. Analogously to case 2.
4: s = u and v # t. Analogously to case 2.

In all four cases we can construct an event-dependent path P; which is compa-
rable with P, dominates P, and does not contain connection cs. It follows that
we can delete connection cs.

A.1 Dominance Rules for Arc Flag Preprocessing

Table 4 presents the dominance rules which have to be used in the preprocessing
phase. Let c¢1, co be two connections starting at station v and each ending in a
departure event at pre-boundary vertex w.

c1, ce2 comparable if delete co &
c1(depy(route)) = ca(depy(route)) time(c) < ttime(cs)
1| c1(depw(route)) = ca(depw(route)) ¢ fer(c) < t Fer(ca)
c1(depu(time)) < ca(depu(time)) ransfer(c ransfer(cz
ol 1 (depw(time)) < ca(depw(time)) |ttime(ci) < ttime(cz)
c1(depy(route)) = ca(depy(route)) |transfer(ci)+ < transfer(c2)
e (depw(route)) = ca(depw(route)) | ttime(c1) < ttime(cz)
c1(depw (time)) < ca(depw(time)) |transfer(ci) + 1 < transfer(cz)
) ) ttime(c1) < ttime(cz)
4| er(depu(time)) < ex(depy(time)) transfers(c1) + 2 < transfers(cz)

Table 4. Dominance rules for the preprocessing phase.

B Additional Computational Results

Tables 5-7 show the results of our Experiment 2.
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average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 2.26 71,422 1.00 1.00
base+1b 2.15 68,263 1.05 1.05
arc-flags 1.20 62,291 1.88 1.15
SHARC 0.92 44,060 2.46 1.62
SHARC+goal 0.49 21,645 4.61 3.30
greedy arc-flags 0.65 38,696 3.48 1.85
greedy SHARC 0.51 26,704 4.43 2.67
greedy SHARC+goal| 0.27 12,646 8.37 5.65

Table 5. Experimental results for the start range interval [08-10] (“morning rush hour”).

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 2.17 67,517 1.00 1.00
base+1b 2.07 64,534 1.05 1.04
arc-flags 1.13 57,931 1.92 1.17
SHARC 0.86 40,692 2.52 1.66
SHARC+goal 0.47 20,549 4.62 3.29
greedy arc-flags 0.68 39,052 3.19 1.73
greedy SHARC 0.53 26,905 4.09 2.51
greedy SHARC+goal| 0.29 13,583 7.48 4.97

Table 6. Experimental results for the start range interval [12-14] (“lunch time”).

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 0.41 15,915 1.00 1.00
base+1b 0.39 15,098 1.05 1.05
arc-flags 0.24 14,058 1.71 1.13
SHARC 0.19 9,823 2.16 1.62
SHARC+goal 0.16 7,192 2.56 2.21
greedy arc-flags 0.19 10,893 2.17 1.46
greedy SHARC 0.15 7,586 2.73 2.10
greedy SHARC+goal| 0.13 5,472 3.15 2.91

Table 7. Experimental results for the start range interval [20-22] (“late evening”).



