
On Modularity - NP-Completeness and Beyond?

Ulrik Brandes1, Daniel Delling2, Marco Gaertler2, Robert Görke2, Martin Hoefer1,
Zoran Nikoloski3, and Dorothea Wagner2

1 Department of Computer & Information Science, University of Konstanz,
{brandes,hoefer}@inf.uni-konstanz.de

2 Faculty of Informatics, Universität Karlsruhe (TH),
{delling,gaertler,rgoerke,wagner}@informatik.uni-karlsruhe.de

3 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, nikoloski@kam.mff.cuni.cz

Abstract. Modularity is a recently introduced quality measure for graph clusterings. It has im-
mediately received considerable attention in several disciplines, and in particular in the complex
systems literature, although its properties are not well understood. We here present first results on
the computational and analytical properties of modularity. The complexity status of modularity
maximization is resolved showing that the corresponding decision version is NP-complete in the
strong sense. We also give a formulation as an Integer Linear Program (ILP) to facilitate exact
optimization, and provide results on the approximation factor of the commonly used greedy al-
gorithm. Completing our investigation, we characterize clusterings with maximum modularity for
several graph families.

1 Introduction

Graph clustering is a fundamental problem in the analysis of relational data. Although
studied for decades, it applied in many settings, it is now popularly referred to as the
problem of partitioning networks into communities. In this line of research, a novel graph
clustering index called modularity has been proposed recently [1]. The rapidly growing
interest in this measure prompted a series of follow-up studies on various applications and
possible adjustments (see, e.g., [2,3,4,5,6]). Moreover, an array of heuristic algorithms has
been proposed to optimize modularity. These are based on a greedy agglomeration [7,8],
on spectral division [9,10], simulated annealing [11,12], or extremal optimization [13]
to name but a few prominent examples. While these studies often provide plausibility
arguments in favor of the resulting partitions, we know of only one attempt to characterize
properties of clusterings with maximum modularity [2]. In particular, none of the proposed
algorithms has been shown to produce optimal partitions with respect to modularity.

In this paper we provide first complexity-theoretic results by showing the hardness of
modularity maximization, thereby justifying the use of heuristic approaches. Moreover,
we cast the problem as an Integer Linear Program to facilitate exact optimization be-
yond enumeration of all clusterings, give a characterization of clusterings with maximum
modularity for several graph families, and investigate the worst-case behavior of the pop-
ular greedy agglomerative approach. In fact, we give a graph family for which the greedy
approach yields an approximation factor no better than two. In addition, our examples
indicate that the quality of the greedy clustering may heavily depend on its tie-breaking
strategy. Under worst-case conditions this can yield an infinitely large approximation

? This work was partially supported by the DFG under grants BR 2158/2-3, WA 654/14-3, Research Training
Group 1042 ”Explorative Analysis and Visualization of Large Information Spaces” and by EU under grant
DELIS (contract no. 001907).

factor. These performance studies are concluded by comparing greedy clusterings from
previous publications with the optimum, which yields further insight.

This paper is organized as follows. Section 2 shortly introduces preliminaries, formu-
lations of modularity and basic properties. Our NP-completeness proofs are given in
Section 3, followed by an analysis of the greedy approach in Section 4. The theoretical
investigation is extended by the ILP formulation, and characterizations of the optimum
clusterings for cliques and cycles in Section 5. Our work is concluded by revisiting exam-
ples from previous work in Section 6 and a brief discussion in Section 7.

2 Preliminaries

Throughout this paper, we will use the notation of [14]. More precisely, we assume
that G = (V, E) is an undirected connected graph with n := |V | vertices, m := |E| edges.
Denote by C = {C1, . . . , Ck} a partition of V . We call C a clustering of G and the Ci, which
are required to be non-empty, clusters ; C is called trivial if either k = 1 or k = n. We de-
note the set of all possible clusterings of a graph G with A (G). In the following, we often
identify a cluster Ci with the induced subgraph of G, i. e., the graph G[Ci] := (Ci, E(Ci)),
where E(Ci) := {{v, w} ∈ E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1 E(Ci) is the set of intra-

cluster edges and E\E(C) the set of inter-cluster edges. The number of intra-cluster edges
is denoted by m(C) and the number of inter-cluster edges by m(C). The set of edges that
have one end-node in Ci and the other end-node in Cj is denoted by E(Ci, Cj).

2.1 Definition of Modularity

Modularity is a quality index for clusterings. Given a simple graph G = (V, E), we
follow [1] and define the modularity q (C) of a clustering C as

q (C) :=
∑
C∈C

[
|E(C)|

m
−
(
|E(C)|+

∑
C′∈C |E(C, C ′)|
2m

)2
]

. (1)

Note that C ′ ranges over all clusters, so that edges in E(C) are counted twice in the
squared expression. This is to adjust proportions, since edges in E(C, C ′), C 6= C ′, are
counted twice as well, once for each ordering of the arguments. Note that we can rewrite
Equation (1) into the more convenient form

q (C) =
∑
C∈C

[
|E(C)|

m
−
(∑

v∈C deg(v)

2m

)2
]

. (2)

This reveals an inherent trade-off: To maximize the first term, many edges should be
contained in clusters, whereas the minimization of the second term is achieved by splitting
the graph into many clusters with small total degrees each. Note that the first term
|E(C)|/m is also known as coverage [14].

2.2 Basic Properties

The definition of modularity exhibits several basic properties, which are interesting by
themselves, but will also be useful later on. First, we focus on the range of modularity,
for which Lemma 1 gives the lower and upper bound.

2

Lemma 1. Let G be an undirected and unweighted graph and C ∈ A (G). Then −1/2 ≤
q (C) ≤ 1 holds.

Proof. Let mi = |E(C)| be the number of edges inside cluster C and me =
∑

C 6=C′∈C |E(C, C ′)|
be the number of edges having exactly one end-node in C. Then the contribution of C to
q (C) is:

mi

m
−
(mi

m
+

me

2m

)2

.

This expression is strictly decreasing in me and, when varying mi, the only maximum
point is at mi = (m−me)/2. The contribution of a cluster is minimized when mi is zero
and me is as large as possible. Suppose now mi = 0, using the inequality (a+b)2 ≥ a2 +b2

for all non-negative numbers a and b, modularity has a minimum score for two clusters
where all edges are inter-cluster edges. The upper bound is obvious from our reformulation
in Eq. (2), and has been observed previously [2,3,15]. It can only be actually attained in
the specific case of a graph with no edges, where coverage is defined to be 1.

As a result, any bipartite graph Ka,b with the canonic clustering C = {Ca, Cb} yields the
minimum modularity of −1/2. The following four results characterize the structure of a
clustering with maximum modularity.

Corollary 1. Isolated nodes have no impact on modularity.

Corollary 1 directly follows from the fact that modularity depends on edges and degrees,
thus, an isolated node does not contribute, regardless of its association to a cluster.
Therefore, we exclude isolated nodes from further consideration in this work, i. e., all
nodes are assumed to be of degree greater than zero.

Lemma 2. A clustering with maximum modularity has no cluster that consists of a single
node with degree 1.

Proof. Suppose for contradiction that there is a clustering C with a cluster Cv = {v} and
deg(v) = 1. Consider a cluster Cu that contains the neighbor node u. Suppose there are a
number of mi intra-cluster edges in Cu and me inter-cluster edges connecting Cu to other
clusters. Together these clusters add

mi

m
− (2mi + me)

2 + 1

4m2

to q (C). Merging Cv with Cu results in a new contribution of

mi + 1

m
− (2mi + me + 1)2

4m2

The merge yields an increase of

1

m
− 2mi + me

2m2
> 0

in modularity, because mi + me ≤ m and me ≥ 1. This proves the lemma.

Lemma 3. There is always a clustering with maximum modularity, in which each cluster
consists of a connected subgraph.

3

Proof. Consider for contradiction a clustering C with a cluster C of mi intra- and me inter-
cluster edges that consists of a set of more than one connected subgraph. The subgraphs
in C do not have to be disconnected in G, they are only disconnected when we consider
the edges E(C). Cluster C adds

mi

m
− (2mi + me)

2

4m2

to q (C). Now suppose we create a new clustering C ′ by splitting C into two new clusters.
Let one cluster Cv consist of the component including node v, i.e. all nodes, which can be
reached from a node v with a path running only through nodes of C, i.e. Cv =

⋃∞
i=1 Ci

v,
where Ci

v = {w | ∃(w,wi) ∈ E(C) with wi ∈ Ci−1
v } and C0

v = {v}. The other nonempty
cluster is given by C − Cv. Let Cv have mv

i intra- and mv
e inter-cluster edges. Together

the new clusters add

mi

m
− (2mv

i + mv
e)

2 + (2(m−mv
i) + m−mv

e)
2

4m2

to q (C ′). For a, b ≥ 0 obviously a2 + b2 ≤ (a + b)2, and hence q (C ′) ≥ q (C).

Corollary 2. A clustering of maximummodularity does not include disconnected clusters.

Corollary 2 directly follows from Lemma 3 and from the exclusion of isolated nodes.
Thus, the search for an optimum can be restricted to clusterings, in which clusters are
connected subgraphs and there are no clusters consisting of nodes with degree 1.

2.3 Counterintuitive Behavior

In the last section, we confirmed some intuitive properties like connectivity within clusters
for clusterings of maximum modularity. Due to the trade-off between coverage and the
sums of squared cluster degrees, the index also exhibits some counterintuitive behavior.

(a) (b) (c) (d)

Fig. 1. (a,b) Non-local behavior; (c) a clique K3 with leaves; (d) scaling behavior. Clusters are represented by
colours.

At first glance, modularity seems to be a local quality measure. Recalling Equa-
tion (2), each cluster contributes separately. However, the example presented in Fig-
ures 1(a) and 1(b) exhibit a typical non-local behavior. In these figures, clusters are
represented by color. By adding an additional node connected to the leftmost node, the
optimal clustering is altered completely. According to Lemma 2 the additional node has
to be clustered together with the leftmost node. This leads to a shift of the leftmost
white node from the white cluster to the black cluster, although locally its neighborhood
structure has not changed.

4

A clique with leaves is a graph of 2n nodes that consists of a clique Kn and n leaf
nodes of degree one, such that each node of the clique is connected to exactly one leaf
node. For a clique we show in Section 5 that the trivial clustering with k = 1 has
maximum modularity. For a clique with leaves, however, the optimal clustering changes
to k = n clusters, in which each cluster consists of a connected pair of leaf and clique
nodes. Figure 1(c) shows an example.

Figures 1(c) and 1(d) display the scaling behavior of modularity. By simply doubling
the graph presented in Figure 1(c), the optimal clustering is altered completely. While in
Figure 1(c) we obtain three clusters each consisting of the minor K2, the clustering with
maximum modularity of the graph in Figure 1(d) consists of two clusters, each being a
graph equal to the one in Figure 1(c).

This behavior is in line with the previous observations in [2,4], where it was observed
that size and structure of clusters in the optimum clustering depend on the total number
of links in the network. Hence, clusters that are identified in smaller graphs might be
combined to a larger cluster in a optimum clustering of a larger graph. The formulation
of Eq. 2 mathematically explains this observation as modularity optimization strives
to optimize the trade-off between coverage and degree sums. This provides a rigorous
understanding of the observations made in [2,4].

3 NP-Completeness

To formulate our complexity-theoretic result, we consider the following decision problem
underlying modularity maximization.

Problem 1 (Modularity) Given a graph G and a number K, is there a clustering C
of G, for which q (C) ≥ K?

Note that we may ignore the fact that, in principle, K could be a real number in the
range [−1/2, 1], because 4m2 · q (C) is integer for every partition C of G and polyno-
mially bounded in the size of G. Our hardness result for Modularity is based on a
transformation from the following decision problem.

Problem 2 (3-Partition) Given 3k positive integer numbers a1, . . . , a3k such that the
sum

∑3k
i=1 ai = kb and b/4 < ai < b/2 for an integer b and for all i = 1, . . . , 3k, is there

a partition of these numbers into k sets, such that the numbers in each set sum up to b?

We show that an instance A = {a1, . . . , a3k} of 3-Partition can be transformed into an
instance (G(A), K(A)) of Modularity, such that G(A) has a clustering with modularity
at least K(A), if and only if a1, . . . , a3k can be partitioned into k sets of sum b = 1/k ·∑k

i=1 ai each.
It is crucial that 3-Partition is strongly NP-complete [16], i.e. the problem remains

NP-complete even if the input is represented in unary coding. This implies that no
algorithm can decide the problem in time polynomial even in the sum of the input values,
unless P = NP . More importantly, it implies that our transformation need only be
pseudo-polynomial.

The reduction is defined as follows. Given an instance A of 3-Partition, construct
a graph G(A) with k cliques (completely connected subgraphs) H1, . . . , Hk of size a =

5

Fig. 2. An example graph G(A) for the instance A = {2, 2, 2, 2, 3, 3} of 3-Partition. Node labels indicate the
corresponding numbers ai ∈ A.

∑3k
i=1 ai each. For each element ai ∈ A we introduce a single element node, and connect it

to ai nodes in each of the k cliques in such a way that each clique member is connected
to exactly one element node. It is easy to see that each clique node then has degree a
and the element node corresponding to element ai ∈ A has degree kai. The number of
edges in G(A) is m = k/2 · a(a + 1). See Figure 2 for an example. Note that the size of
G(A) is polynomial in the unary coding size of A, so that our transformation is indeed
pseudo-polynomial.

Before specifying bound K(A) for the instance of Modularity, we will show three
properties of maximum modularity clusterings of G(A). Together these properties estab-
lish the desired characterization of solutions for 3-Partition by solutions for Modu-
larity.

Lemma 4. In a maximum modularity clustering of G(A), none of the cliques H1, . . . , Hk

is split.

We prove the lemma by showing that every clustering that violates the above condition
can be modified in order to strictly improve modularity.

Proof. We consider a clustering C that splits a clique H ∈ {H1, . . . , Hk} into different
clusters and then show how to obtain a clustering with strictly higher modularity. Suppose
that C1, . . . , Cr ∈ C, r > 1, are the clusters that contain nodes of H. For i = 1, . . . , r we
denote by ni the number of nodes of H contained in cluster Ci, mi = |E(Ci)| the number
edges between nodes in Ci, fi the number of edges between nodes of H in Ci and element
nodes in Ci, di be the sum of degrees of all nodes in Ci. The contribution of C1, . . . , Cr

to q (C) is

1

m

r∑
i=1

mi −
1

4m2

r∑
i=1

d2
i .

Now suppose we create a clustering C ′ by rearranging the nodes in C1, . . . , Cr into clusters
C ′, C ′

1, . . . , C
′
r, such that C ′ contains exactly the nodes of clique H, and each C ′

i, 1 ≤ i ≤ r,

6

the remaining elements of Ci (if any). In this new clustering the number of covered edges
reduces by

∑r
i=1 fi, because all nodes from H are removed from the clusters C ′

i. This
labels the edges connecting the clique nodes to other non-clique nodes of Ci as inter-
cluster edges. For H itself there are

∑r
i=1

∑r
j=i+1 ninj edges that are now additionally

covered due to the creation of cluster C ′. In terms of degrees the new cluster C ′ contains
a nodes of degree a. The sums for the remaining clusters C ′

i are reduced by the degrees
of the clique nodes, as these nodes are now in C ′. So the contribution of these clusters to
q (C ′) is given by

1

m

r∑
i=1

(
mi +

r∑
j=i+1

ninj − fi

)
− 1

4m2

(
a4 +

r∑
i=1

(di − nia)2

)
.

Setting ∆ := q (C ′)− q (C), we obtain

∆ =
1

m

(
r∑

i=1

r∑
j=i+1

ninj − fi

)
+

1

4m2

((
r∑

i=1

2dinia− n2
i a

2

)
− a4

)

=
1

4m2

(
4m

r∑
i=1

r∑
j=i+1

ninj − 4m
r∑

i=1

fi +

(
r∑

i=1

ni

(
2dia− nia

2
))

− a4

)
.

Using the equation that 2
∑r

i=1

∑r
j=i+1 ninj =

∑r
i=1

∑
j 6=i ninj, substituting m = k

2
a(a +

1) and rearranging terms we get

∆ =
a

4m2

(
−a3 − 2k(a + 1)

r∑
i=1

fi +
r∑

i=1

ni

(
2di − nia + k(a + 1)

∑
j 6=i

nj

))

≥ a

4m2

(
−a3 − 2k(a + 1)

r∑
i=1

fi +
r∑

i=1

ni

(
nia + 2kfi + k(a + 1)

r∑
j 6=i

nj

))
.

For the last inequality we use the fact that di ≥ nia + kfi. This inequality holds because
Ci contains at least the ni nodes of degree a from the clique H. In addition, it contains
both the clique and element nodes for each edge counted in fi. For each such edge there
are k − 1 other edges connecting the element node to the k − 1 other cliques. Hence, we
get a contribution of kfi in the degrees of the element nodes. Combining the terms ni

7

and one of the terms
∑

j 6=i nj we obtain

∆≥ a

4m2

(
−a3 − 2k(a + 1)

r∑
i=1

fi

)

+
a

4m2

(
r∑

i=1

ni

(
a

r∑
j=1

nj + 2kfi + ((k − 1)a + k)
r∑

j 6=i

nj

))

=
a

4m2

(
−2k(a + 1)

r∑
i=1

fi +
r∑

i=1

ni

(
2kfi + ((k − 1)a + k)

r∑
j 6=i

nj

))

=
a

4m2

(
r∑

i=1

2kfi(ni − a− 1)) + ((k − 1)a + k)
r∑

i=1

r∑
j 6=i

ninj

)

≥ a

4m2

(
r∑

i=1

2kni(ni − a− 1) + ((k − 1)a + k)
r∑

i=1

r∑
j 6=i

ninj

)
,

For the last step we note that ni ≤ a − 1 and ni − a − 1 < 0 for all i = 1, . . . , r. So
increasing fi decreases the modularity difference. For each node of H there is at most one
edge to a node not in H, and thus fi ≤ ni.
By rearranging terms and using the inequality a ≥ 3k we get

∆≥ a

4m2

r∑
i=1

ni

(
2k(ni − a− 1) + ((k − 1)a + k)

r∑
j 6=i

nj

)

=
a

4m2

r∑
i=1

ni

(
−2k + ((k − 1)a− k)

r∑
j 6=i

nj

)

≥ a

4m2
((k − 1)a− 3k)

r∑
i=1

r∑
j 6=i

ninj

≥ 3k2

4m2
(3k − 6)

r∑
i=1

r∑
j 6=i

ninj .

As we can assume k > 2 for all relevant instances of 3-Partition, we obtain ∆ > 0.
This shows that any clustering can be improved by merging each clique completely into
a cluster.

Next, we observe that the optimum clustering places at most one clique completely into
a single cluster.

Lemma 5. In a maximum modularity clustering of G(A), every cluster contains at most
one of the cliques H1, . . . , Hk.

Proof. Consider a maximum modularity clustering. Lemma 4 shows that each of the k
cliques H1, . . . , Hk is entirely contained in one cluster. Assume that there is a cluster C
which contains at least two of the cliques. If C does not contain any element nodes, then
the cliques form disconnected components in the cluster. In this case it is easy to see that

8

the clustering can be improved by splitting C into distinct clusters, one for each clique.
In this way we keep the number of edges within clusters the same, however, we reduce
the squared degree sums of clusters.
Otherwise, we assume C contains l > 1 cliques completely and in addition some element
nodes of elements aj with j ∈ J ⊆ {1, . . . , k}. Note that inside the l cliques la(a − 1)/2
edges are covered. In addition, for every element node corresponding to an element aj

there are laj edges included. The degree sum of the cluster is given by the la clique nodes
of degree a and some number of element nodes of degree kaj. The contribution of C to
q (C) is thus given by

1

m

(
l

2
a(a− 1) + l

∑
j∈J

aj

)
− 1

4m2

(
la2 + k

∑
j∈J

aj

)2

.

Now suppose we create C ′ by splitting C into C ′
1 and C ′

2 such that C ′
1 completely contains

a single clique H. This leaves the number of edges covered within the cliques the same,
however, all edges from H to the included element nodes eventually drop out. The degree
sum of C ′

1 is exactly a2, and so the contribution of C ′
1 and C ′

2 to q (C ′) is given by

1

m

(
l

2
a(a− 1) + (l − 1)

∑
j∈J

aj

)
− 1

4m2

((l − 1)a2 + k
∑
j∈J

aj

)2

+ a4

 .

Considering the difference we note that

q (C ′)− q (C) = − 1

m

∑
j∈J

aj +
1

4m2

(
(2l − 1)a4 + 2ka2

∑
j∈J

aj − a4

)

=
2(l − 1)a4 + 2ka2

∑
j∈J aj − 4m

∑
j∈J aj

4m2

=
2(l − 1)a4 − 2ka

∑
j∈J aj

4m2

≥ 9k3

2m2
(9k − 1)

> 0,

as k > 0 for all instances of 3-Partition.
Since the clustering is improved in every case, it is not optimal. This is a contradiction.

The previous two lemmas show that any clustering can be strictly improved to a
clustering that contains k clique clusters, such that each one completely contains one of
the cliques H1, . . . , Hk (possibly plus some additional element nodes). In particular, this
must hold for the optimum clustering as well. Now that we know how the cliques are
clustered we turn to the element nodes.
As they are not directly connected, it is never optimal to create a cluster consisting only
of element nodes. Splitting such a cluster into singleton clusters, one for each element
node, reduces the squared degree sums but keeps the edge coverage at the same value.
Hence, such a split yields a clustering with strictly higher modularity. The next lemma
shows that we can further strictly improve the modularity of a clustering with a singleton
cluster of an element node by joining it with one of the clique clusters.

9

Lemma 6. In a maximum modularity clustering of G(A), there is no cluster composed
of element nodes only.

Proof. Consider a clustering C of maximum modularity and suppose that there is an
element node vi corresponding to the element ai, which is not part of any clique cluster.
As argued above we can improve such a clustering by creating a singleton cluster C = {vi}.
Suppose Cmin is the clique cluster, for which the sum of degrees is minimal. We know
that Cmin contains all nodes from a clique H and eventually some other element nodes
for elements aj with j ∈ J for some index set J . The cluster Cmin covers all a(a − 1)/2
edges within H and

∑
j∈J aj edges to element nodes. The degree sum is a2 for clique

nodes and k
∑

j∈J aj for element nodes. As C is a singleton cluster, it covers no edges
and the degree sum is kai. This yields a contribution of C and Cmin to q (C) of

1

m

(
a(a− 1)

2
+
∑
j∈J

aj

)
− 1

4m2

(a2 + k
∑
j∈J

aj

)2

+ k2a2
i

 .

Again, we create a different clustering C ′ by joining C and Cmin to a new cluster C ′. This
increases the edge coverage by ai. The new cluster C ′ has the sum of degrees of both
previous clusters. The contribution of C ′ to q (C ′) is given by

1

m

(
a(a− 1)

2
+ ai +

∑
j∈J

aj

)
− 1

4m2

(
a2 + kai + k

∑
j∈J

aj

)2

,

so that

q (C ′)− q (C) =
ai

m
− 1

4m2

(
2ka2ai + 2k2ai

∑
j∈J

aj

)

=
1

4m2

(
2ka(a + 1)ai − 2ka2ai − 2k2ai

∑
j∈J

aj

)

=
ai

4m2

(
2ka− 2k2

∑
j∈J

aj

)
.

At this point recall that Cmin is the clique cluster with the minimum degree sum. For
this cluster the elements corresponding to included element nodes can never sum to more
than a/k. In particular, as vi is not part of any clique cluster, the elements of nodes in
Cmin can never sum to more than (a− ai)/k. Thus,∑

j∈J

aj ≤
1

k
(a− ai) <

1

k
a ,

and so q (C ′)− q (C) > 0. This contradicts the assumption that C is optimal.

We have shown that for the graphs G(A) the clustering of maximum modularity
consists of exactly k clique clusters, and each element node belongs to exactly one of the
clique clusters. Combining the above results, we now state our main result:

10

Theorem 3. Modularity is strongly NP-complete.

Proof. For a given clustering C of G(A) we can check in polynomial time whether q (C) ≥
K(A), so clearly Modularity ∈ NP .

For NP-completeness we transform an instance A = {a1, . . . , a3k} of 3-Partition
into an instance (G(A), K(A)) of Modularity. We have already outlined the construc-
tion of the graph G(A) above. For the correct parameter K(A) we consider a clustering in
G(A) with the properties derived in the previous lemmas, i. e., a clustering with exactly
k clique clusters. Any such clustering yields exactly (k − 1)a inter-cluster edges, so the
edge coverage is given by

∑
C∈C

|E(C)|
m

=
m− (k − 1)a

m
= 1− 2(k − 1)a

ka(a + 1)
= 1− 2k − 2

k(a + 1)
.

Hence, the clustering C = (C1, . . . , Ck) with maximum modularity must minimize deg(C1)
2+

deg(C2)
2 + . . . + deg(Ck)

2. This requires a distribution of the element nodes between the
clusters which is as even as possible with respect to the sum of degrees per cluster. In
the optimum case we can assign to each cluster element nodes corresponding to elements
that sum to b = 1/k ·a. In this case the sum up of degrees of element nodes in each clique
cluster is equal to k · 1/k · a = a. This yields deg(Ci) = a2 + a for each clique cluster Ci,
i = 1, . . . , k, and gives

deg(C1)
2 + . . . + deg(Ck)

2 ≥ k(a2 + a)2 = ka2(a + 1)2.

Equality holds only in the case, in which an assignment of b to each cluster is possible.
Hence, if there is a clustering C with q (C) of at least

K(A) = 1− 2k − 2

k(a + 1)
− ka2(a + 1)2

k2a2(a + 1)2
=

(k − 1)(a− 1)

k(a + 1)

then we know that this clustering must split the element nodes perfectly to the k clique
clusters. As each element node is contained in exactly one cluster, this yields a solution
for the instance of 3-Partition. With this choice of K(A) the instance (G(A), K(A)) of
Modularity is satisfiable only if the instance A of 3-Partition is satisfiable.

Otherwise, suppose the instance for 3-Partition is satisfiable. Then there is a parti-
tion into k sets such that the sum over each set is 1/k · a. If we cluster the corresponding
graph by joining the element nodes of each set with a different clique, we get a cluster-
ing of modularity K(A). This shows that the instance (G(A), K(A)) of Modularity is
satisfiable if the instance A of 3-Partition is satisfiable. This completes the reduction
and proves the theorem.

This result naturally holds also for the straightforward generalization of maximizing
modularity in weighted graphs [17]. Instead of using the numbers of edges the definition
of modularity employs the sum of edge weights for edges within clusters, between clusters
and in the total graph.

11

3.1 Special Case: Modularity with Bounded Number of Clusters

Next, we consider the two problems of computing the clustering with largest modularity
that splits the graph into exactly or at most two clusters. Although these are two different
problems, our hardness result will hold for both versions, hence, we define the problem
cumulatively.

Problem 4 (k-Modularity) Given a graph G and a number K, is there a clustering
C of G into exactly/at most k clusters, for which q (C) ≥ K?

We provide a proof using a reduction that is similar to the one given recently for showing
the hardness of the MinDisAgree[2] problem of correlation clustering [18]. We use the
problem Minimum Bisection for Cubic Graphs (MB3) for the reduction:

Problem 5 (Minimum Bisection for Cubic Graphs) Given a 3-regular graph G
with n nodes and an integer c, is there a clustering into two clusters of n/2 nodes each
such that it cuts at most c edges?

This problem has been shown to be strongly NP-complete in [19]. We construct an
instance of 2-Modularity from an instance of MB3 as follows. For each node v from
the graph G = (V, E) we attach n − 1 new nodes and construct an n-clique. We denote
these cliques as cliq(v) and refer to them as node clique for v ∈ V . Hence, in total
we construct n different new cliques, and after this transformation each node from the
original graph has degree n + 2. Note that a cubic graph with n nodes has exactly 1.5n
edges. In our adjusted graph there are exactly m = (n(n− 1) + 3)n/2 edges.

We will show that an optimum clustering which is denoted as C∗ of 2-Modularity in
the adjusted graph has exactly two clusters. Furthermore, such a clustering corresponds
to a minimum bisection of the underlying MB3 instance. In particular, we give a bound
K such that the MB3 instance has a bisection cut of size at most c if and only if the
corresponding graph has 2-modularity at least K.

We begin by noting that there is always a clustering C with q (C) > 0. Hence, C∗ must
have exactly two clusters, as no more than two clusters are allowed. This serves to show
that our proof works for both versions of 2-modularity, in which at most or exactly two
clusters must be found.

Lemma 7. For every graph constructed from a MB3 instance, there exists a cluster-
ing C = {C1, C2} such that q (C) > 0. In particular, the clustering C∗ has two clusters.

Proof. Consider the following partition into two clusters. We pick the nodes of cliq(v) for
some v ∈ V as C1 and the remaining graph as C2. Then

q (C) = 1− 3

m
− (n(n− 1) + 3)2 + ((n− 1)(n(n− 1) + 3))2

4m2

=
2n− 2

n2
− 3

m
=

2

n
− 2

n2
− 3

m
> 0 ,

as n ≥ 4 for every cubic graph. Hence q (C) > 0 and the lemma follows.

Next, we show that in an optimum clustering, all the nodes of one node clique cliq(v)
are located in one cluster:

12

Lemma 8. For every node v ∈ V there exists a cluster C ∈ C∗ such that cliq(v) ⊆ C.

Proof. For contradiction we assume a node clique cliq(v) for some v ∈ V is split in two
clusters C1 and C2 of the clustering C = {C1, C2}. Let ki := |Ci ∩ cliq(v)| be the number
of nodes located in the corresponding clusters, with 1 ≤ ki ≤ n−1. Note that k2 = n−k1.
In addition, we denote the sum of node degrees in both clusters excluding nodes from
cliq(v) by d1 and d2:

di =
∑

u∈Ci,u 6∈cliq(v)

deg(u).

Without loss of generality assume that d1 ≥ d2. Finally, we denote by m′ the number of
edges covered by the clusters C1 and C2.

We define a new clustering C ′ as {C1 \ cliq(v), C2 ∪ cliq(v)} and denote the difference
of the modularity as ∆ := q (C ′) − q (C). We distinguish two cases depending in which
cluster the node v was located with respect to C: In the first case v ∈ C2 and we obtain:

q (C) =
m′

m
− (d1 + k1(n− 1))2 + (d2 + (n− k1)(n− 1) + 3)2

4m2
,

q (C ′) =
m′ + k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2
and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1))2 + (d2 + (n− k1)(n− 1) + 3)2

4m2
.

We simplify expression of ∆ as follows:

∆ =
1

4m2

(
4mk1(n− k1)− d2

1 − (d2 + n(n− 1) + 3)2

+(d1 + k1(n− 1))2 + (d2 + (n− k1)(n− 1) + 3)2

)

=
1

4m2

(
4mk1(n− k1) + (2k2

1 − 2nk1)(n− 1)2 − 6k1(n− 1)

+2(d1 − d2)k1(n− 1)

)
≥ k1

4m2
(4m(n− k1)− 2(n− k1)(n− 1)2 − 6(n− 1)) .

We can bound the expression in the bracket in the following way by using the assumption
that d1 ≥ d2 and 1 ≤ k1 ≤ n− 1:

(n− k1)
(
4m− 2(n− 1)2

)
− 6(n− 1)≥ (n− k1)

(
4m− 2(n− 1)2 − 6(n− 1)︸ ︷︷ ︸

=:B

)
(3)

and, thus, it remains to show that B > 0. By filling in the value of m and using the facts
that 2n2(n− 1) > 2(n− 1)2 and 6n > 6(n− 1) for all n ≥ 4, we obtain B > 0 and thus
modularity strictly improves if all nodes are moved from cliq(v) to C2.

13

In the second case the node v ∈ C1 and we get the following equations:

q (C) =
m′

m
− (d1 + k1(n− 1) + 3)2 + (d2 + (n− k1)(n− 1))2

4m2
,

q (C ′) =
m′ + k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2
, and

∆ =
k1(n− k1)

m
− d2

1 + (d2 + n(n− 1) + 3)2

4m2

+
(d1 + k1(n− 1) + 3)2 + (d2 + (n− k1)(n− 1))2

4m2
.

We simplify expression of ∆ as follows:

4m2∆ = 4mk1(n− k1) + (2k2
1 − 2nk1)(n− 1)2 − 6(n− k1)(n− 1)

+2(d1 − d2)(k1(n− 1) + 3)

≥ 4mk1(n− k1)− 2k1(n− k1)(n− 1)2 − 6(n− k1)(n− 1))

Recall 1 ≤ k1 ≤ n− 1, and filling in the value of m, we obtain

4mk1 − 2k1(n− 1)2 − 6(n− 1) = 2k1(n
2(n− 1)− (n− 1)2) + 6nk1 − 6(n− 1) > 0 ,

which holds for all k1 ≥ 1 and n ≥ 4. Also in this case, modularity strictly improves if all
nodes are moved from cliq(v) to C2.

The final lemma before defining the appropriate input parameter K for the 2-Modularity
and thus proving the correspondence between the two problem shows that the clusters in
the optimum clusterings have the same size.

Lemma 9. In C∗, each cluster contains exactly n/2 complete node cliques.

Proof. Suppose for contradiction that one cluster C1 has l1 < n/2 cliques. For complete-
ness of presentation we use m′ to denote the unknown (and irrelevant) number of edges
covered by the clusters. For the modularity of the clustering is given in Equation (4).

q (C∗) =
m′

m
− l21(n(n− 1) + 3)2 + (n− l1)

2(n(n− 1) + 3)2

4m2
(4)

We create a new clustering C ′ by transferring a complete node clique from cluster C2 to
cluster C1. As the graph G is 3-regular, we lose at most 3 edges in the coverage part of
modularity:

q (C ′) ≥ m′ − 3

m
− (l1 + 1)2(n(n− 1) + 3)2 + (n− l1 − 1)2(n(n− 1) + 3)2

4m2
. (5)

We can bound the difference in the following way:

q (C ′)− q (C)≥− 3

m
+

(l21 + (n− l1)
2 − (l1 + 1)2 − (n− l1 − 1)2)(n(n− 1) + 3)2

4m2

= − 3

m
+

(2n− 4l1 − 2)

n2

≥− 3

m
+

2

n2
=

2

n2
− 6

n3 − n2 + 3n
> 0 ,

14

for all n ≥ 4. The analysis uses the fact that we can assume n to be an even number, so
l1 ≤ n

2
− 1 and thus 4l1 ≤ 2n− 4.

This shows that we can improve every clustering by balancing the number of complete
node cliques in the clusters – independent of the loss in edge coverage.

Finally, we can state theorem about the complexity of 2-Modularity:

Theorem 6. 2-Modularity is NP-complete (in the strong sense).

Proof. Let (G, c) be an instance of Minimum Bisection for Cubic Graphs, then we
construct a new graph G′ as stated above and define K := 1/2− c/m.

As we have shown in Lemma 9 that each cluster of C∗ that is an optimum clustering
of G′ with respect to 2-Modularity has exactly n/2 complete node cliques, the sum of
degrees in the clusters is exactly m. Thus, it is easy to see that if the clustering C∗ meets
the following inequality

q (C∗) ≥ 1− c

m
− 2m2

4m2
=

1

2
− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus the clustering C∗ induces
a balanced cut in G with at most c cut edges.

This proof is particularly interesting as it highlights that maximizing modularity in
general is hard due to the hardness of minimizing the squared degree sums on the one
hand, whereas in the case of two clusters this is due to the hardness of minimizing the
edge cut.

4 The Greedy Algorithm

Modularity was originally introduced as a selection criterion for a divisive hierarchical
clustering algorithm [1] and later used to define a greedy, agglomerative clustering algo-
rithm [8]. The greedy algorithm starts with the singleton clustering and iteratively merges

Algorithm 1: Greedy Algorithm for Maximizing Modularity
Input: graph G = (V, E)
Output: clustering C of G
C ← singletons
initialize matrix ∆
while |C| > 1 do

find {i, j} with ∆i,j is the maximum entry in the matrix ∆
merge clusters i and j
update ∆

return clustering with highest modularity

those two clusters that yield a clustering with the best modularity, i. e., the largest in-
crease or the smallest decrease is chosen. After n− 1 merges the clustering that achieved
the highest modularity is returned. The algorithm maintains a symmetric matrix ∆ with
entries ∆i,j := q (Ci,j)−q (C), where C is the current clustering and Ci,j is obtained from C
by merging clusters Ci and Cj. Note that there can be several pairs i and j such that ∆i,j

15

is the maximum, in these cases the algorithm selects an arbitrary pair. The pseudo-code
for the greedy algorithm is given in Algorithm 1. An efficient implementation using so-
phisticated data-structures requires O (n2 log n) runtime. Note that, n − 1 iterations is
an upper bound and one can terminate the algorithms when the matrix ∆ contains only
non-positive entries. We call this property single-peakedness, it is proven in [8]. Since it
is NP-hard to maximize modularity in general graphs, it is unlikely that this greedy
algorithm is optimal. In fact, we sketch a graph family, where the above greedy algorithm
has an approximation factor of 2, asymptotically. In order to prove this statement, we
introduce a general construction scheme given in Definition 1. Furthermore, we point
out instances where a specific way of breaking ties of merges yield a clustering with
modularity of 0, while the optimum clustering has a strictly positive score.

Modularity is defined such that it takes values in the interval [−1/2, 1] for any graph
and any clustering. In particular the modularity of a trivial clustering placing all vertices
into a single cluster has a value of 0. We use this technical peculiarity to show that the
greedy algorithm has an unbounded approximation ratio.

Theorem 7. There is no finite approximation factor for the greedy algorithm for finding
clusterings with maximum modularity.

Proof. We present a class of graphs, on which the algorithm obtains a clustering of value
0, but for which the optimum clustering has value close to 1/2. A graph G of this class
is given by two cliques (V1, E1) and (V2, E2) of size |V1| = |V2| = n/2, and n/2 matching
edges Em connecting each vertex from V1 to exactly one vertex in V2 and vice versa. See
Figure 3 for an example with n = 14. Note that we can define modularity by associating
weights w(u, v) with every existing and non-existing edge in G as follows:

w(u, v) =
Euv

2m
− deg(u) deg(v)

4m2
,

where Euv = 1 if (u, v) ∈ E and 0 otherwise. The modularity of a clustering C is then
derived by the summing the weights of the edges covered by C

q (C) =
∑
C∈C

∑
u,v∈C

w(u, v)

Note that in this formula we have to count twice the weight for each edge between different
vertices u and v (once for every ordering) and once the weight for a non-existing self-loop
for every vertex u. Thus, the change of modularity by merging two clusters is given by
twice the sum of weights between the clusters.

Now consider a run of the greedy algorithm on the graph of Figure 3. Note that the
graph is n/2-regular, and thus has m = n2/4 edges. Each existing edge gets a weight of
2/n2−1/n2 = 1/n2, while every non-existing edge receives a weight of −1/n2. As the self-
loop is counted by every clustering, the initial trivial singleton clustering has modularity
value of −1/n. In the first step each cluster merge along any existing edge results in an
increase of 2/n2. Of all these equivalent possibilities we suppose the algorithm chooses to
merge along an edge from Em to create a cluster C ′. In the second step merging a vertex
with C ′ results in change of 0, because one existing and one non-existing edge would be
included. Every other merge along an existing edge still has value 2/n2. We suppose the

16

algorithm again chooses to merge two singleton clusters along an edge from Em creating
a cluster C ′′. Afterwards observe that merging clusters C ′ and C ′′ yields a change of 0,
because two existing and two non-existing edges would be included. Thus, it is again
optimal to merge two singleton clusters along an existing edge. If the algorithm continues
to merge singleton clusters along the edges from Em, it will in each iteration make an
optimal merge resulting in strictly positive increase in modularity. After n/2 steps it has
constructed a clustering C of the type depicted in Figure 3(a). C consists of one cluster

(a) (b)

Fig. 3. (a) Clustering with modularity 0; (b) Clustering with modularity close to 1
2

for the vertices of each edge of Em and has a modularity value of

q (C) =
2

n
− n

2
· 4n2

n4
= 0.

Due to the single-peakedness of the problem [8] all following cluster merges can never
increase this value, hence the algorithm will return a clustering of value 0.

On the other hand consider a clustering C∗ = {C1, C2} with two clusters, one for each
clique C1 = V1 and C2 = V2 (see Figure 3(b)). This clustering has a modularity of

q (C∗) =
n(n− 2)

n2
− 2

4n2

16n2
=

1

2
− 2

n
.

This shows that the approximation ratio of the greedy algorithm can be infinitely large,
because no finite approximation factor can outweigh a value of 0 with one strictly greater
than 0.

The key observation is, that the proof considers a worst-case scenario in the sense that
greedy is in each iteration supposed to pick exactly the ”worst” merge choice of several
equivalently attractive alternatives. If greedy chooses in an early iteration to merge along
an edge from E1 or E2, the resulting clustering will be significantly better. As mentioned
earlier, this negative result is due to formulation of modularity, which yields values from

17

the interval [−1/2, 1]. For instance, a linear remapping of the range of modularity to the
interval [0, 1], the greedy algorithm yields a value of 1/3 compared to the new optimum
score of 2/3. In this case the approximation factor would be 2.

Next, we provide a decreased lower bound for a different class of graphs and no
assumptions on the random choices of the algorithm.

Definition 1. Let G = (V, E) and H = (V ′, E ′) be two non-empty, simple, undirected,
and unweighted graphs and let u ∈ V ′ be a node. The product G ?u H is defined as the
graph (V ′′, E ′′) with the nodeset V ′′ := V ∪ V × V ′ and the edgeset E ′′ := E ∪ E ′′

c ∪ E ′′
H

where

E ′′
c := { {v, (v, u)} | v ∈ V } and

E ′′
H := { {(v, v′), (v, w′)} | v ∈ V, v′, w′ ∈ V ′′, {v′, w′} ∈ E} .

Fig. 4. The graph K4?uP1.

An example is given in Figure 4. The product G ?u H is
a graph that contains G and for each node v of G a copy
Hv of H. For each copy the node in Hv corresponding to
u ∈ H is connected to v. We use the notation (v, w′) to
refer to the copy of node w′ of H, which is located in Hv.
In the following we consider only a special case: Let n ≥ 2
be an integer, H = (V ′, E ′) be an undirected and connected
graph with at least two nodes, and u ∈ V ′ an arbitrary but
fixed node. We denote by Cg

k the clustering obtained with the
greedy algorithm applied to Kn ?u H starting from singletons and performing at most k
steps that all have a positive increase in modularity. Furthermore, let m be the number of
edges in Kn?uH. Based on the merging policy of the greedy algorithm we can characterize
the final clustering Cg

n. It has n clusters, each of which includes a vertex v of G and his
copy of H. More precisely, Lemma 10 and 11 describe the first occurring merges. In
contrast, Lemma 12 states that after a certain number of specific merge-operations, no
coarsening of the clustering yields a higher score of modularity.

Lemma 10. If 2 · |E ′| < n and Cg
k has two clusters Ci and Cj such that both belong to

the same copy of H and E(Ci, Cj) 6= ∅, then merging Ci and Cj increases the modularity.

Proof. The difference of modularity after and before the merge is

∆q (Ci, Cj) :=
|E(Ci, Cj)|

m
−
∑

u∈Ci
deg u ·

∑
u′∈Cj

deg u′

2m2
.

Since |E(Ci, Cj)| ≥ 1 and
∑

u∈Ci∪Cj
deg u ≤ 2|E ′|+1, we obtain the following inequalities:

∆q (Ci, Cj)≥
1

m
−
∑

u∈Ci
deg u ·

∑
u′∈Cj

deg u′

2m2

≥ 1

m
− (2|E ′|+ 1)2

2m2
.

Due to the fact that 2|E ′| < n, m =
(

n
2

)
+ n + n · |E ′|, and |E ′| > 1, we can conclude

m ·∆q (Ci, Cj) ≥ 1− n2 + 2n + 1

2n + 2
(

n
2

)
+ 2n

≥ 0 .

18

Lemma 11. If 2 · |E ′| + 1 < n and Cg
k has the cluster C := {v} and a cluster Ci

containing only nodes of the v-copy of H and u ∈ Ci, then merging Ci and C increases
the modularity. Furthermore such a merge increases the modularity by more than a merge
of two clusters {w} , {w′} for w,w′ ∈ V would.

Proof. First note that
∑

w∈Ci
deg w ≤ 2|E ′|+ 1 ≤ n− 1. Thus the increase in modularity

is

m ·∆q (Ci, C) ≥ 1− n · (n− 1)

2m
≥ 1− n · (n− 1)

n(n− 1) + 4n
= 1− n · (n− 1)

n2 + 3n
≥ 0

Analogous we obtain

m ·∆q ({v} , {w}) = 1− n2

2m
≥ 0

Since n(n− 1)/(2m) < n2/(2m), we conclude ∆q (Ci, C) ≥ ∆q ({v} , {w}) ≥ 0.

Lemma 12. If 2 · |E ′| + 1 < n and Cg
k has two clusters Ci and Cj each containing at

least two nodes where (exactly) one belongs to V , then the merge of Ci and Cj is never
executed.

Proof. This proof consists of two parts. The first part shows that the merge of Ci and
Cj yields a lower increase in modularity than merging H completely into one cluster,
including the connecting node v ∈ V . The second part shows that two such clusters
cannot be merged.

First, let v ∈ V be the node of Ci. If {v} × V ′ is not completely contained in Ci,
then let C be a cluster of Cg

k such that C ∩ {v} × V ′ 6= ∅ and C 6= Ci. Since the greedy
algorithm only merges connected clusters, we get that C ⊂ {v} × V ′. Then merging Ci

and C increases the modularity more than the merge of Ci and Cj:

m ·∆q (Ci, C)≥ 1− (n + d) · d′

2m

m ·∆q (Ci, Cj) = 1− (n + d) · (n + d̃)

2m
,

where d is the sum of degrees of nodes in Ci without v, d′ is the sum of degrees of
nodes in C, and d̃ is the sum of degrees of nodes in Cj without those belonging to V .

Since d′ ≤ 2|E ′| ≤ n and d̃ ≥ 1 the merge of Ci and C is performed before the merge
of Ci and Cj.

Second, if Ci = {v} ∪ {v} × V ′ and Ci = {w} ∪ {w} × V ′, then the merge of the two
clusters decreases the modularity:

m ·∆q (Ci, Cj) = 1− (n + 2|E ′|+ 1)2

n2 + (1 + 2|E ′|)n

= 1− n2 + 4n|E ′|+ 2n + (2|E ′|+ 1)2

n2 + 2|E ′|n + n

= 1− 1− 2n|E ′|+ n + (2|E ′|+ 1)2

n2 + 2|E ′|n + n
.

Since |E ′| ≥ 1, the change in modularity ∆q is negative. Thus the merge will not be
executed.

19

Theorem 8. Let n ≥ 2 be an integer and H = (V ′, E ′) be a undirected and connected
graph with at least two nodes. If 2|E ′| + 1 < n then the greedy algorithm returns the
clustering Cg := {{v} ∪ {v} × V ′ | v ∈ V } for Kn ?u H (for any fixed u ∈ H). This
clustering has a modularity score of

4m2 · q (Cg) = 4m ((|E ′|+ 1) · n)− n (2|E ′|+ 1 + n)
2

.

Proof. Since the greedy algorithm only merges two clusters if they are connected, Lem-
mas 10, 11 and 12 ensure that Cg = Cg

k for some sufficient large k. According to Lemma 12,
no further merge can occur. Thus, Theorem 8 is proven.

The next corollary reveals that the clustering, in which G and each copy of H form
individual clusters, has a greater modularity score. We first observe an explicit expression
for modularity.

Corollary 3. The clustering Cs is defined as Cs := {V } ∪ {{v} × V ′ | v ∈ V } and, ac-
cording to Equation (2), its modularity is

4m2 · q (Cs) = 4m

(
|E ′|n +

(
n

2

))
− n (2|E ′|+ 1)

2 − (n · (n− 1 + 1))2 .

If n ≥ 2 and 2|E ′|+ 1 < n, then clustering Cs has higher modularity than Cg.

Theorem 9. The approximation factor of the greedy algorithm for finding clusterings
with maximum modularity is at least 2.

Proof. We prove this statement by showing that the quotient q (Cs) /q (Cg) is asymptot-
ically 2 for a certain graph family. Therefore, we simplify the modularity scores with
respect to their dominant terms. Note that 4m = 2n2 + 4n |E ′| + o (n2). By Theorem 8
clustering Cg yields

4m ((|E ′|+ 1) · n)− n (2|E ′|+ 1 + n)
2

= 4m · n · |E ′|+ o
(
n4
)

(6)

and by Corollary 3 Cs yields

4m

(
|E ′|n +

(
n

2

))
−n (2|E ′|+ 1)

2 − (n · (n− 1 + 1))2

= 4m · n · |E ′|+ 2mn2 − n4 + o
(
n4
)

= 4m · n · |E ′|+ 2n3 |E ′|+ o
(
n4
) (7)

Thus, we obtain the following equation:

Rg :=
q (Cs)

q (Cg)
= 1 +

2n3 |E ′|+ o (n4)

4mn |E ′|+ o (n4)

and for sufficiently large n we can omit the additional terms which are contained in o (n4):

2n2

2n2 + 4n |E ′|+ o (n2)
=

1

1 + 2|E′|
n

+ o (1)

By selecting paths with 1/2
√

n edges as graphs H, we obtain that Rg ≥ 2− ε for every
positive ε.

The quotient q (Cs) /q (Cg) asymptotically approaches 2 for n going to infinity on
Kn ?u H with H a path of length 1/2

√
n.

20

5 Optimality Results

5.1 Formulation as Integer Linear Program

The problem of maximizing modularity can be cast into a very simple and intuitive integer
linear program (ILP). Given a graph G = (V, E) with n := |V | nodes, we define n2

decision variables Xuv ∈ {0, 1}, one for every pair of nodes u, v ∈ V . The key idea is
that these variables can be interpreted as an equivalence relation (over V) and thus form
a clustering. In order to ensure consistency, we need the following constraints, which
guarantee

reflexivity ∀ u : Xuu = 1 ,

symmetry ∀ u, v : Xuv = Xvu , and

transitivity ∀ u, v, w :

Xuv + Xvw − 2 ·Xuw ≤ 1
Xuw + Xuv − 2 ·Xvw ≤ 1
Xvw + Xuw − 2 ·Xuv ≤ 1

.

The objective function of modularity then becomes

1

2m

∑
(u,v)∈V 2

(
Euv −

deg(u) deg(v)

2m

)
Xuv ,

with Euv =

{
1 , if (u, v) ∈ E

0 , otherwise
.

Note that this ILP can be simplified by pruning redundant variables and constraints,
leaving only

(
n
2

)
variables and

(
n
3

)
constraints.

5.2 Characterization of Cliques and Cycles

In this section, we provide several results on the structure of clusterings with maximum
modularity for cliques and cycles. This extends previous work, in particular [2], in which
in which cycles and cycles of cliques were used to reason about global properties of
modularity.

A first observation is that modularity can be simplified for general d-regular graphs
as follows.

Corollary 4. Let G = (V, E) be an unweighted d-regular graph and C = {C1, . . . , Ck} ∈
A (G). Then the following equality holds:

q (C) =
|E(C)|
dn/2

− 1

n2

k∑
i=1

|Ci|2 . (8)

The correctness of the corollary can be read off the definition given in Equation (2) and
the fact that |E| = d|V |/2. Thus, for regular graphs modularity only depends on cluster
sizes and coverage.

21

Cliques We first deal with the case of complete graphs. Corollary 5 provides a simplified
formulation for modularity. From this rewriting, the clustering with maximum modularity
can directly be obtained.

Corollary 5. Let Kn be a complete graph on n nodes and C := {C1, . . . , Ck} ∈ A (Kn).
Then the following equality holds:

q (C) = − 1

n− 1
+

1

n2(n− 1)

k∑
i=1

|Ci|2 . (9)

Proof. Coverage of C can be expressed in terms of cluster sizes as follows:

|E(C)| =
(

n

2

)
−

k∑
i=1

∏
j>i

|Ci| · |Cj| =
(

n

2

)
− 1

2

k∑
i=1

∏
j 6=i

|Ci| · |Cj|

=

(
n

2

)
− 1

2

k∑
i=1

|Ci| ·
∑
j 6=i

|Cj| =
(

n

2

)
− 1

2

k∑
i=1

|Ci| · (n− |Ci|)

=

(
n

2

)
− 1

2

(
n2 −

k∑
i=1

|Ci|2
)

= −n

2
+

1

2

k∑
i=1

|Ci|2 .

Thus, we obtain

q (C) =− 1

n− 1
+

1

n(n− 1)

k∑
i=1

|Ci|2 −
1

n2

k∑
i=1

|Ci|2

=− 1

n− 1
+

1

n2 · (n− 1)

k∑
i=1

|Ci|2 ,

which proves the equation.

Thus, maximizing modularity is equivalent to maximizing the squares of cluster sizes.
Using the general inequality (a+b)2 ≥ a2+b2 for non-negative real numbers, the clustering
with maximum modularity is the 1–clustering. More precisely:

Theorem 10. Let k and n be integers, Kkn be the complete graph on k ·n nodes and C a
clustering such that each cluster contains exactly n elements. Then the following equality
holds:

q (C) =

(
−1 +

1

k

)
· 1

kn− 1
.

For fixed k > 1 and as n tends to infinity, modularity is always strictly negative, but tends
to zero. Only for k = 1 modularity is zero and thus is the global maximum.

As Theorem 10 deals with one clique, the following corollary provides the optimal result
for k disjoint cliques.

Corollary 6. The maximum modularity of a graph consisting of k disjoint cliques of size
n is 1− 1/k.

The corollary follows from the definition of modularity in Equation (2). Corollary 6 gives
a glimpse on how previous approaches have succeeded to upper bound modularity as it
was pointed out in the context of Lemma 1.

22

Cycles Next, we focus on simple cycles, i. e., connected 2-regular graphs. According to
Equation (8), modularity can be expressed as given in Equation (10), if each cluster is
connected which may safely be assumed (see Corollary 2).

q (C) =
n− k

n
− 1

n2

k∑
i=1

|Ci|2 . (10)

In the following, we prove that clusterings with maximum modularity are balanced with
respect to the number and the sizes of clusters. First we characterize the distribution of
cluster sizes for clusterings with maximum modularity, fixing the number k of clusters.
For convenience, we minimize F := 1−q (C), where the argument of F is the distribution
of the cluster sizes.

Proposition 1. Let k and n be integers, the set D(k) :=
{

x ∈ Nk
∣∣∣∑k

i=1 xi = n
}
, and

the function F : D(k) → R defined as

F (x) :=
k

n
+

1

n2

k∑
i=1

x2
i for x ∈ D(k) .

Then, F has a global minimum at x∗ with x∗i =
⌊

n
k

⌋
for i = 1, . . . , k− r and x∗i =

⌈
n
k

⌉
for

i = k − r + 1, . . . , k, where 0 ≤ r < k and r ≡ n mod k.

Proof. Since k and n are given, minimizing F is equivalent to minimizing
∑

i x
2
i . Thus

let us rewrite this term:

k∑
i=1

(
xi −

n

k

)2

=
k∑

i=1

x2
i − 2

n

k

k∑
i=1

xi + k ·
(n

k

)2

=
k∑

i=1

x2
i − 2

n2

k
+

n2

k

⇐⇒
k∑

i=1

x2
i =

k∑
i=1

(
xi −

n

k

)2

︸ ︷︷ ︸
=:h(x)

+
n2

k

Thus minimizing F is equivalent to minimizing h. If r is 0, then h(x∗) = 0. For every
other vector y the function h is strictly positive, since at least one summand is positive.
Thus x∗ is a global optimum.

Let r > 0. First, we show that every vector x ∈ D(k) that is close to (n
k
, . . . , n

k
) has

(in principle) the form of x∗. Let x ∈ D ∩ [
⌊

n
k

⌋
,
⌈

n
k

⌉
]k, then it is easy to verify that there

are k−r entries that have value
⌊

n
k

⌋
and the remaining r entries have value

⌈
n
k

⌉
. Any ‘shift

of one unit’ between two variables having the same value, increases the corresponding
cost: Let ε :=

⌈
n
k

⌉
− n

k
and xi = xj =

⌈
n
k

⌉
. Replacing xi with

⌊
n
k

⌋
and xj with

⌈
n
k

⌉
+ 1,

causes an increase of h by 5 + 2ε > 0. Similarly, in the case of xi = xj =
⌊

n
k

⌋
and the

reassignment xi =
⌈

n
k

⌉
and xj =

⌊
n
k

⌋
− 1, causes an increase of h by 2 > 0.

Finally, we show that any vector of D(k) can be reach from x∗ by ‘shifting one unit’
between variables. Let x ∈ D(k) and with loss of generality, we assume that xi ≤ xi+1 for
all i. We define a sequence of elements in D(k) as follows:

23

1. x(0) := x∗

2. if x(i) 6= x, define x(i+1) as follows

x
(i+1)
j :=

x

(i)
j − 1 , if j = min

{
` | x(i)

` > x`

}
=: L

x
(i)
j + 1 , if j = max

{
` | x(i)

` < x`

}
=: L′

x
(i)
j , otherwise

Note that all obtained vectors x(i) are elements of D(k) and meet the condition of x
(i)
j ≤

x
(i)
j+1. Furthermore, we gain the following formula for the cost:∑

j

(
x

(i+1)
j

)2

=
∑

j

(
x

(i)
j

)2

+ 2
(
x

(i)
L′ − x

(i)
L + 1

)
.

Since L < L′, one obtains x
(i)
L′ ≥ x

(i)
L . Thus x∗ is a global optimum in D(k).

Due to the special structure of simple cycles, we can swap neighboring clusters without
changing the modularity. Thus, we can safely assume that clusters are sorted according to
their sizes, starting with the smallest element. Then x∗ is the only optimum. Evaluating F
at x∗ leads to a term that only depends on k and n. Hence, we can characterize the
clusterings with maximum modularity only with respect to the number of clusters. The
function to be minimized is given in Lemma 13:

Lemma 13. Let Cn be a simple cycle with n nodes, h : [1, . . . , n] → R a function defined
as

h(x) := x · n + n +
⌊n

x

⌋(
2n− x ·

(
1 +

⌊n

x

⌋))
,

and k∗ be the argument of the global minimum of h. Then every clustering of Cn with
maximum modularity has k∗ clusters.

Proof. Note, that h(k) = F (x∗), where F is the function of Proposition 1 with the given k.
Consider first the following equations:

k∑
i=1

(x∗i)
2 = (k − r) ·

⌊n

k

⌋2

+ r ·
⌈n

k

⌉2

= (k − r)
(n− r)2

k2
+ r

(
(n− r)

k
+ 1

)2

=
n− r

k
((n− r) + 2r) + r =

n2 − r2

k
+ r

=
1

k

(
n2 −

(
n−

⌊n

k

⌋
k
)2
)

+ n−
⌊n

k

⌋
k

= 2n
⌊n

k

⌋
− k

⌊n

k

⌋2

+ n−
⌊n

k

⌋
k

= n +
⌊n

k

⌋(
2n− k

(⌊n

k

⌋
+ 1
))

Since maximizing modularity is equivalent to minimize the expression k/n + 1/n2
∑

i x
2
i

for (xi) ∈
⋃n

j=1 D(j). Note that every vector (xi) can be realized as clustering with con-
nected clusters. Since we have characterized the global minima for fixed k, it is sufficient
to find the global minima by varying k.

24

Finally we obtain the characterization for clusterings with maximum modularity for sim-
ple cycles.

Theorem 11. Let n be an integer and Cn a simple cycle with n nodes. Then every
clustering C with maximum modularityhas k cluster of almost equal size, where

k ∈

[
n√

n +
√

n
− 1,

1

2
+

√
1

4
+ n

]
.

Furthermore, there are only 3 possible values for k for sufficiently large n.

Proof. First, we show that the function h can be bounded by the inequalities given in (11)
and is monotonically increasing (decreasing) for certain choices of k.

kn +
n2

k
≤ h(k) ≤ kn +

n2

k
+

k

4
. (11)

In order to verify the Inequalities (11), let εk be defined as n/k − bn/kc (≥ 0). Then the
definition of h can be rewritten as follows:

h(k) = kn + n +
⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= kn + n +
(n

k
− εk

)(
2n−

(
1 +

n

k
− εk

)
k
)

= kn + n +
2n2

k
− (1− εk)n−

n2

k
− 2nεk + (1− εk)kεk + nεk

= kn +
n2

k
+ (1− εk)εkk .

Replacing the term (1 − εk)εkk by a lower (upper) bound of 0 (k/4) proves the given
statements.

Second, the function h is monotonically increasing for k ≥ 1/2 +
√

1/4 + n and

monotonically decreasing for k ≤ n/
√

n +
√

n − 1. In order to prove the first part, it is
sufficient to show that h(k) ≤ h(k + 1) for every suitable k.

h(k + 1)− h(k) = (k + 1)n + n +

⌊
n

k + 1

⌋(
2n−

(
1 +

⌊
n

k + 1

⌋)
(k + 1)

)
−kn− n−

⌊n

k

⌋(
2n−

(
1 +

⌊n

k

⌋)
k
)

= n + 2n

(⌊
n

k + 1

⌋
−
⌊n

k

⌋)
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋
+k

((
1 +

⌊n

k

⌋) ⌊n

k

⌋
−
(

1 +

⌊
n

k + 1

⌋)⌊
n

k + 1

⌋)
Since b·c is discrete and |bxc − bx− 1c| ≤ 1, one obtains:

h(k + 1)− h(k) =

n−

⌊n

k

⌋2

−
⌊n

k

⌋
, if

⌊
n
k

⌋
=
⌊

n
k−1

⌋
3n−

⌊n

k

⌋2

−
⌊n

k

⌋
+ 2k

⌊n

k

⌋
, otherwise

(12)

25

Since 3n − bn/kc2 − bn/kc + 2k bn/kc > n − bn/kc2 − bn/kc, it is sufficient to show
that n− bn/kc2 − bn/kc ≥ 0. This inequality is fulfilled if n− (n/k)2 − n/k ≥ 0. Solving
the quadratic equations leads to k ≥ 1/2 +

√
1/4 + n.

Using the above bound, for the second part, it is sufficient to show that

kn +
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
≥ 0 , (13)

since this implies that the upper bound of h(k + 1) is smaller than (the lower bound of)
h(k). One can rewrite the left side of Inequality (13) as:

kn +
n2

k
− (k + 1)n− n2

k + 1
− k + 1

4
= −n +

n2

k(k + 1)
− k + 1

4
.

Since h(k)− h(k + 1) is monotonically decreasing for 0 ≤ k ≤
√

n, it is sufficient to show
that h(k)−h(k +1) is non-negative for the maximum value of k. We show that the lower
bound h−(k) := −n + n2/(k + 1)2 − (k + 1)/4 is non-negative.

h−

(
n√

n +
√

n
− 1

)
=−n− n

4
√

n +
√

n
+

n2(n +
√

n)

n2

=
√

n− n

4
√

n +
√

n︸ ︷︷ ︸
≤ 1

4

√
n

≥ 0

Summarizing, the number of clusters k (of an optimum clustering) can only be contained
in the given interval, since outside the function h is either monotonically increasing or
decreasing.The length of the interval is less than

1

2
+

√
1

4
+ n− n√

n +
√

n︸ ︷︷ ︸
=:`(n)

+1 .

The function `(n) can be rewritten as follows:

`(n) =

√(
1
4

+ n
) (√

n +
√

n
)
− n√

n +
√

n

≤
(
n + 1+ε

2

√
n
)
− n√

n +
√

n
(14)

≤ 1 + ε

2

√
n

n +
√

n
,

for every positive ε. Inequality (14) is due to the fact that(
1

4
+ n

)(√
n +

√
n

)
≤ n2 + n

√
n +

1

4

(
n +

√
n
)

≤ n2 + 2
1 + ε

2
n
√

n +
(1 + ε)2

4
n

=

(
n +

1 + ε

2

√
n

)2

,

26

for sufficiently large n.

5.3 Characterization of Special Trees

We show that computing the clustering with maximum modularity is possible in poly-
nomial time for two special families of trees: trees with O(log n) internal nodes and
caterpillar trees.

Trees with O(log n) internal nodes. We safely assume that the clusters are connected
subgraphs, and that there are no clusters consisting only of leaf nodes (see Section 2).
This significantly reduces the search space for a clustering with maximum modularity.
For each edge we specify, whether it is an inter-cluster edge or not. The clustering then
results directly from the given properties. Adapting Equation (2) we obtain:

Corollary 7. Modularity on trees is given by the function qT : 2E → R as

qT (S) =
n− |S|
n− 1

− 1

4(n− 1)2

∑
C∈GS

(∑
v∈C

deg(v)

)2

,

where C ∈ GS is a component in the tree G after removing the edge set S.

If there are ni internal nodes in G, we have at most ni − 1 edges, for which we must
make the decision of being an inter-cluster edge. This leaves 2ni−1 candidate clusterings
for maximum modularity. For tree structures with ni ∈ O(log n) the number of candidate
clusterings reduces to polynomial in n. The argument also applies for forests.

Corollary 8. For forests with O(log n) internal nodes there is a polynomial time algo-
rithm to find the clustering with maximum modularity.

As an interesting special case we consider the star.

Lemma 14. For a star there is no clustering with positive modularity. The star is the
only tree network with this property.

Proof. In any clustering the center node can be located in only one cluster. If there is
more than one cluster, the others must either consist of single leaf nodes or of more than
one connected component. Hence, by Lemmas 2 and 3 we see that the clustering with
maximum modularity consists of one cluster encompassing the complete star. This yields
an optimum modularity of 0. This proves the property for the star.
Consider a tree T with more than one internal node. We consider a clustering C of two
clusters. As T is connected, there must be at least two adjacent internal nodes u and v.
The two clusters Cu and Cv consist of the two components in T − (u, v) with u ∈ Cu and
v ∈ Cv. Suppose there are k edges internal edges between nodes of Cu. Then

q(C) =
n− 2

n− 1
− (2k + 1)2 + (2(n− k)− 3)2

4(n− 1)2
,

and we see that

27

k

2
(n− 1)2 · q(C) = n− k − 2− 1

4k
> n− k − 3

≥ 0

For the last two inequalities we note that k ≥ 1, because u is an internal node.
Furthermore, k ≤ n− 3, because (u, v) is an edge connecting two clusters and there must
be at least one edge between nodes of Cv.

Caterpillar Trees. A caterpillar consists of a path of P = (Vp, Ep) of np nodes. For
each node v ∈ Vp there are tv additional nodes of degree 1, which are adjacent only to
v. Hence, each path node v has degree deg(v) = tv + 1 if it is one end of the path and
deg(v) = tv + 2 if it is inside the path. In total the caterpillar has n = np +

∑
v∈Vp

tv
nodes and n− 1 edges.

Theorem 12. There is an algorithm to find the clustering of maximum modularity on
caterpillars in time O(n4

p).

Proof. Note that due to Lemma 2, only edges between path nodes must be considered as
cluster borders. For each node v ∈ Vp we construct a weight

w(v) =

{
2tv + 1 , if v is an end node of the path

2(tv + 1) otherwise
,

and extend this function to node sets as w(C) =
∑

v∈C∩Vp
w(v). The modularity of a

clustering represented by S ⊆ E is then given as

qT (S) = 1− k

n− 1
+

1

(n− 1)2

∑
C∈GS

w(C)2.

Hence, for the rest of this proof we will disregard outer star nodes and consider only the
weighted star centres on the path P . We present an algorithm to find the optimum clus-
tering for a given number of k clusters that runs in O(n2

pk) time. This directly translates
into a algorithm to find the optimum clustering in O(n4

p) time.
To minimise the modularity for a clustering with k clusters one needs to minimise the
function h(C) =

∑
C∈GS

w(C)2. In the optimum case it is possible to divide the weight
equally, and assign each cluster a weight of µ = w(Vp)/k. Thus, h(C) ≥ kµ2. Minimiz-
ing h is equivalent to minimizing the extension over the lower bound captured by the
following function f :

f(S) :=

(∑
C∈GS

w(C)2

)
− kµ2 =

∑
C∈GS

(w(C)2 − µ2)

=
∑

C∈GS

(µ− (µ− w(C))2 − µ2 =
∑

C∈GS

(µ− w(C))2 − 2(µ− w(C))

=
∑

C∈GS

(µ− w(C))2

28

The last equality follows, because
∑

C∈GS
w(C) = w(Vp) = kµ. The function f measures

the deviation between cluster weights and the optimum cluster weight in l2-norm. Thus,
our task reduces to find an equilibrated partition of a path that optimizes f . This problem
has been considered before in the area of graph partitioning [20]. For any k = 1, . . . , np−1
Algorithm 2 uses a dynamic programming approach and runs in O(n2

pk) time. It outputs
the set S of inter-cluster edges of the best clustering under all clusterings with exactly
k clusters. The problem is reduced to solving a shortest path problem in an adjusted
network Gc. Let the nodes of P be labeled from left to right as v1, . . . vnp . Furthermore,
number the clusters from left to right increasingly. For each edge ei = (vi, vi+1), there

Algorithm 2: Finding the clustering of k clusters with maximum modularity
Input: A caterpillar tree G and an integer k
Output: Set S of inter-cluster edges
Initialize Gc = ({u00}, Ec)

Set µ =
w(Vp)

k
for i = 1, . . . , np do

for j = max(1, i + 1 + k − np) to min(i, k − 1) do
add uij to Vc

for each ul,j−1 with 1 ≤ l < i do
Add e′ = (ul,j−1, uij) to E
Let w(e′) = (w({vl+1, . . . , vi})− µ)2

Solve shortest path problem on Gc between u00 and unp,k

return S = {ei ∈ Ep | ∃uij on the shortest path}

is a node uij in Gc, if ei can feasibly be the border between clusters Cj and Cj+1. For
example, for e1 there is only node u11, for e2 there are u21 and u22, and for enp−1 there
is only unp−1,k−1. In addition there is a starting node u00 and an end node unp,k. The
algorithm creates directed edges between nodes (ul,j−1, uij) if l < i. This edge indicates
that there is a cluster Cj = {vl+1, . . . , vi}. The weight of this edge is the difference under
l2-norm between the cluster weight and µ. It is easy to observe that any path between u00

and unp,k corresponds to a set of edges specifying k−1 cluster borders. The value for f of
this clustering, i.e. the L2-norm distance between cluster weights and average weight µ, is
correctly captured by the edge weights on the path. Hence, the shortest path represents
a clustering, which yields the minimal value for f and thus maximum modularity. The
most time consuming part is the construction of the network Gc. The three loops yield a
complexity of O(n2

pk). In the end we can use the algorithm to compute the best clustering
with k clusters for any k = 1, . . . , np. The best of these clusterings is the desired clustering
with maximum modularity. As k ≤ np, the running time of O(n4

p) follows. This proves
the theorem.

Our analysis reveals that by dropping leaf nodes and introducing suitable node weights
based on degrees, the optimal clustering can be found with a dynamic programming
algorithm [20]. In general, optimizing modularity on trees for a fixed number of clusters
is a special case of the tree equipartition problem, in which partitions are measured with
the l2-norm. While this problem is NP-complete in general [21], the modularity case is
special as node weights depend on degrees. Finally, note that for the special case of a
simple path it is possible to adapt ideas of the proof of Theorem 11 to derive a similar
characterization of the optimal clustering.

29

6 Examples Revisited

In the following, we discuss two selected networks that were, among others, frequently
considered in related work.

The first instance is the karate club network of Zachary originally introduced in [22]
and used for demonstration in [23]. The network models social interactions between mem-
bers of a karate club. More precisely, friendship between the members is presented before
the club split up due to an internal dispute. A representation of the network is given
in Figure 5. The partition that has resulted from the split is given by the shape of the
nodes, while the colors indicate the clustering calculated by the greedy algorithm and
blocks refer to a optimum clustering maximizing modularity, that has been obtained by
solving the above ILP. The corresponding scores of modularity are 0.431 for the optimum

Fig. 5. Karate club network of Zachary [22]. The different clusterings are coded as follows: blocks represent the
optimum clustering (with respect to modularity), colors correspond to the greedy clustering, and shapes code the
split that occurred in reality.

clustering, 0.397 for the greedy clustering, and 0.383 for the clustering given by the split.
Even though this is another example in which the greedy algorithm does not perform
optimally, its score is comparatively good. Furthermore, the example shows one of the
potential pitfalls the greedy algorithm can encounter: Due to the attempt to balance the
squared sum of degrees (over the clusters), a node with large degree (white square) and
one with small degree (white circle) are merged at an early stage. However, using the
same argument, such a cluster will unlikely be merged with another one. Thus, small
clusters with skewed degree distributions occur.

The second instance is a network of books on politics, compiled by V. Krebs and
used for demonstration in [9]. The nodes represent books on American politics bought
from Amazon.com and edges join pairs of books that are frequently purchased together.
A representation of the network is given in Figure 6. The optimum clustering maximiz-
ing modularity is give by the shapes of nodes, the colors of nodes indicate a clustering

30

calculated by the greedy algorithm and the blocks show a clustering calculated by Geo-
metric MST Clustering (GMC) which is introduced in [24] using the geometric mean of
coverage and performance, both of which are quality indices discussed in the same paper.
The corresponding scores of modularity are 0.527 for the optimum clustering, 0.502 for

Fig. 6. The networks of books on politics compiled by V. Krebs. The different clusterings are coded as follows:
blocks represent the clustering calculated with GMC, colors correspond to the greedy clustering, and shapes code
the optimum clustering (with respect to modularity).

the greedy clustering, and 0.510 for the GMC clustering. Similar to the first example,
the greedy algorithm is suboptimal, but relatively close to the optimum. Interestingly,
GMC outperforms the greedy algorithm although it does not consider modularity in its
calculations. This illustrates the fact that there probably are many intuitive clusterings
close to the optimum clustering that all have relatively similar values of modularity. In
analogy to the first example, we observe the same merge-artifact, namely the two nodes
represented as dark-grey triangles.

Summarizing, the two examples illustrated several interesting facts. First of all, an
artifical pattern in the optimization process of the greedy algorithm is revealed: The early
merge of two nodes, one with a high and one with a low degree, results in a cluster which
will not be merged with another one later on. In general, this can prevent finding the
optimum clustering. Nevertheless, it performs relatively well on the given instances and is
at most 10% off the optimum. However, applying other algorithms that do not optimize
modularity, we observe that the obtained clusterings have similar scores. Thus, achieving
good scores of modularity does not seem to be too hard on these instances. On the one
hand, these clusterings roughly agree in terms of the overall structure, on the other hand,
they differ in numbers of clusters and even feature artifacts such as small clusters of
size one or two. Considering that both examples exhibit significant community structure,
we thus predict that there are many intuitive clusterings being structurally close (with

31

respect to lattice structure) and that most suitable clustering algorithms probably identify
one of them.

7 Conclusion

This paper represents the first approach to characterize the popular clustering index mod-
ularity with respect to optimality results and computational hardness. We have settled
the open question about the complexity status of modularity maximization by proving its
NP-completeness in the strong sense. On the one hand, this justifies the use of approxi-
mation algorithms and heuristics, such as the widespread greedy approach. For the latter
we prove a first lower bound on the approximation factor. Currently we are investigating
the impact of scaling in order to improve this bound. On the other hand, by character-
izing the structure of a clustering with maximum modularity, we established optimality
results for certain graph families. Our analysis of the greedy algorithm also includes a
brief comparison with the optimum clustering which is calculated via ILP on several
real-world instances. For the future we plan an extended analysis and the development of
a clustering algorithm with provable performance guarantees. The special properties of
the measure, its popularity in application domains and the absence of fundamental theo-
retical insights hitherto, render further mathematically rigorous treatment of modularity
necessary.

References

1. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E
69 (2004)

2. Fortunato, S., Barthelemy, M.: Resolution Limit in Community Detection. In: Proceedings of the National
Academy of Sciences. (2007) 36–41

3. Ziv, E., Middendorf, M., Wiggins, C.: Information-Theoretic Approach to Network Modularity. Physical
Review E 71 (2005)

4. Muff, S., Rao, F., Caflisch, A.: Local Modularity Measure for Network Clusterizations. Physical Review E
72 (2005)

5. Fine, P., Paolo, E.D., Philippides, A.: Spatially Constrained Networks and the Evolution of Modular Control
Systems. In: 9th Intl. Conference on the Simulation of Adaptive Behavior (SAB). (2006)

6. Gaertler, M., Görke, R., Wagner, D.: Significance-Driven Graph Clustering. In: Proceedings of the 3rd
International Conference on Algorithmic Aspects in Information and Management (AAIM’07). Lecture Notes
in Computer Science, Springer-Verlag (2007) to appear; accepted for publication.

7. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Physical Review E 69
(2004)

8. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical
Review E 70 (2004)

9. Newman, M.: Modularity and Community Structure in Networks. In: Proceedings of the National Academy
of Sciences. (2005) 8577–8582

10. White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graph. In: SIAM Data
Mining Conference. (2005)

11. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from Fluctuations in Random Graphs and
Complex Networks. Physical Review E 70 (2004)

12. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection. Physical Review E 74 (2006)
13. Duch, J., Arenas, A.: Community Detection in Complex Networks using Extremal Optimization. Physical

Review E 72 (2005)
14. Gaertler, M.: Clustering. In Brandes, U., Erlebach, T., eds.: Network Analysis: Methodological Foundations.

Volume 3418 of Lecture Notes in Computer Science. Springer-Verlag (2005) 178–215
15. Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal

of Statistical Mechanics (2005)

32

16. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company (1979)

17. Newman, M.: Analysis of Weighted Networks. Technical report, Cornell University, Santa Fe Institute,
University of Michigan (2004)

18. Giotis, I., Guruswami, V.: Correlation Clustering with a Fixed Number of Clusters. In: Proceedings of
the 17th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’06), New York, NY, USA (2006)
1167–1176

19. Bui, T., Chaudhuri, S., Leighton, F., Sipser, M.: Graph bisection algorithms with good average case behavior.
Combinatorica 7 (1987) 171–191

20. Simeone, B.: Optimal connected partitions of graphs. DIMACS Tutorial (1999)
http://rutcor.rutgers.edu/∼boros/LSDO/BrunoSimeone.html.

21. Schröder, M.: Gebiete optimal aufteilen. PhD thesis, School of Economics and Business Engineering, Uni-
versität Karlsruhe (2001)

22. Zachary, W.W.: An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthro-
pological Research 33 (1977) 452–473

23. Newman, M.E.J., Girvan, M.: Mixing Patterns and Community Structure in Networks. In Pastor-Satorras,
R., Rubi, M., Diaz-Guilera, A., eds.: Statistical Mechanics of Complex Networks. Volume 625 of Lecture
Notes in Physics. Springer-Verlag (2003) 66–87

24. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Proceedings of
the 11th Annual European Symposium on Algorithms (ESA’03). Volume 2832 of Lecture Notes in Computer
Science. (2003) 568–579

33

