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Abstract. During the last years, speed-up techniques for DIJKSTRA’s algorithm
have been developed that make the computation of shortest paths a matter of mi-
croseconds even on huge road networks. The most sophisticated methods enhance
the graph by inserting shortcuts, i.e. additional edges, that represent shortest paths
in the graph. Until now, all existing shortcut-insertion strategies are heuristics
and no theoretical results on the topic are known. In this work, we formalize the
problem of adding shortcuts as a graph augmentation problem, study the algorith-
mic complexity of the problem, give approximation algorithms and show how to
stochastically evaluate a given shortcut assignment on graphs that are too big to
evaluate it exactly.

1 Introduction

Computing shortest paths in graphs is used in many real-world applications like route-
planning in road networks or for finding good connections in railway timetable infor-
mation systems. In general, DITKSTRA’s algorithm computes a shortest path between a
given source and a given target. Unfortunately, the algorithm is slow on huge datasets.
Therefore, it cannot be directly used for applications like car navigation systems or
online working route-planners that require an instant answer of a source-target query.

Often, this problem is coped with by dividing the computation of the shortest paths
into two stages. In the offline stage, some data is precomputed that is used in the online
stage to answer a query heuristically faster than DIJKSTRA’s algorithm. Such an algo-
rithm is called a speed-up technique. During the last years, speed-up techniques have
been developed for road networks (see [[14/18]] for an overview), that make the shortest
path computation a matter of microseconds [4]] even on huge road networks consisting
of millions of nodes and edges. One core part of many of these speed-up techniques is
the insertion of shorzcuts [3I5I7U8I9UTTIT3IT5IT16I17], i.e. additional edges (u,v) whose
length is the distance from u to v and that represent shortest u-v-paths in the graph. The
strategies of assigning the shortcuts and of exploiting them during the query differ de-
pending on the speed-up technique. Until now, all existing shortcut insertion strategies
are heuristics and no theoretical worst-case or average case results are known.
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All speed-up techniques that use shortcuts have one point in common. The shortcuts
reduce the search space which corresponds to reducing the number of edges in a short-
est path in the graph. Therefore, it seems reasonable to insert shortcuts in a manner that
minimizes the average number of edges of a shortest path in the graph but keeps the
space occupancy low. In this work we formalize this idea by defining the SHORTCUT
PROBLEM (SP) and give a theoretical study of the complexity of the problem. In partic-
ular, the arc-flag method [[12] can easily be enriched by externally computed shortcuts.
Therefore, considering SP independent from a specific speed-up technique can lead to
a reversed process: first compute shortcuts according to SP and then apply a speed-up
technique on the resulting graph. SHARC-Routing, a sophisticated variant of arc-flags,
already uses externally computed shortcuts. Therefore, we consider it as a strong candi-
date to benefit from that approach (details in [3]]). Finally, besides its relevance as a first
step at all towards theoretical results on speed-up techniques, we consider the problem
to be interesting on its own.

To the best of our knowledge, the problem of finding shortcuts as stated in this work
has never been treated before. Speed-up techniques that incorporate the usage of short-
cuts are the following. Given a graph G = (V, E) the multi-level overlay graph technique
[SIT1U15016117] uses some centrality measures or separation strategies to choose a set
of important nodes V' on the graph and sets the shortcuts S such that the graph (V',S) is
edge minimal among all graphs (V', E’) for which the distances between nodes in V' are
the same in (V,E) and (V',E’). Highway hierarchies [13]] and reach based pruning [8l9]
iteratively sparsificate the graph according to the importance of the nodes. After each
sparsification step, nodes v with small in- and out-degree are deleted and for (nearly)
each pair of edges (u,v), (v,w) a shortcut (u,w) is inserted. SHARC-Routing [3] and
Contraction Hierarchies [[7] use a similar strategy.

This paper is organized as follows. Section 2 introduces basic definitions. The SHORT-
CUT PROBLEM and the REVERSE SHORTCUT PROBLEM are stated in Section 3. Fur-
thermore results concerning complexity and non-approximability of the problems are
given. Two approximation algorithms of SP that work on a special graph class and the
corresponding worst-case bounds are reported in Section 4. A stochastical approach to
evaluate a given solution of SP is introduced in Chapter 5. Our work is concluded by a
summary and possible future work in Section 6.

Some proofs in the paper have been omitted due to space restrictions. The full version
containing all proofs can be found here [2].

2 Preliminaries

Throughout the work G = (V, E, len) denotes a directed, weighted, graph with n nodes,
m edges and positive length function len : E — R™. Given anode v, N(v) denotes the set
of neighbors of v, that is the set of nodes u € V such that (u,v) € E or (v,u) € E. Given
a set S of nodes, the neighborhood of S is the set SUJ,,cgN(«). A path P from x; to x,
in G is a finite sequence x1,x,...,x, of nodes such that (x;,x;1) €E,i=1,...,n—1.
The length of a path P in G is the sum of the length of all edges in P. A shortest path
between nodes s and ¢ is a path from s to ¢ with minimum length. By P(s,7) we denote
the set of all shortest s-z-paths. The hop-length |P| of a path P in G is the number of
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edges in P. Given two nodes s, the distance dist(s,?) from s to ¢ is the length of a
shortest path between s and ¢, while the hop-distance A(s,7) from s to 7 is the hop-length
of a hop-minimal shortest path between s and ¢. The diameter of a graph is the length
of the longest distance in G. The reverse graph G = (V,E, len) is the one obtained from
G by substituting each (u,v) € E by (v,u) and by defining len(v,u) = len(u,v). The
eccentricity £6(v) of a node v is the maximum distance between v and any other node u
of G.

A shortcut is an edge (u,v) such that len(u,v) = dist (u,v). The notation G’ = (V,EU
E',len’) indicates a supergraph of G with shortcuts E’ whereas len’ : EUE’ — R™ is
such that len’(u,v) equals dist (u,v) if (u,v) € E’ and equals len(u,v) otherwise. Further,
' (s,1) denotes the hop-distance from s to 7 in G'.

3 Problem Complexity

In this section, we introduce the SHORTCUT PROBLEM and the REVERSE SHORT-
CUT PROBLEM. We show that both problems are NP-hard. Moreover, there exists no
polynomial time constant factor approximation algorithm for the REVERSE SHORTCUT
PROBLEM and no polynomial time algorithm that approximates the SHORTCUT PROB-
LEM up to an additive constant unless P = NP. Finally, we identify a critical parameter
of the SHORTCUT PROBLEM and discuss some monotonicity properties of the problem.

The SHORTCUT PROBLEM consists of adding a number c¢ of shortcuts to a graph,
such that the sum of the hop lengths of hop-minimal shortest paths on the graph be-
comes minimal.

Definition 1 (SHORTCUT PROBLEM (SP)). Given a graph G = (V,E,len), a positive
integer ¢ € N, find a graph G' = (V,EUE',len’) such that |[E'| < ¢ and

w(E') ==Y h(s,t)— Y h(s,1)

stev steVv

is maximal, whereas len' : EUE' — R equals dist(u,v) if (u,v) € E’, equals len(u,v)
otherwise, h(s,t) denotes the hop distance in (V,E) and I/ (s,t) denotes the hop distance
in (V,EUE").

We call w(E') the decrease in overall hop length. The REVERSE SHORTCUT PROBLEM
(RSP) is the variant of Definition[T] for which the decrease in overall hop length w(E’)
must be at least a given value k and the objective is to minimize |E’|.

Definition 2 (REVERSE SHORTCUT PROBLEM (RSP)). Given a graph G = (V,E,
len), a positive integer k € N, find a graph G' = (V,EUE',len’) such that

w(E") ==Y h(s,t)— Y h(s,t) >k

stev stev

and |E'| is minimal, whereas len' : EUE' — R equals dist(u,v) if (u,v) € E', equals
len(u,v) otherwise, h(s,t) denotes the hop distance in (V,E) and W (s,t) denotes the
hop distance in (V,EUE’).
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In order to show the complexity of the problems we make a transformation from MIN
SET COVER.

Definition 3 (MIN SET COVER). Given a collection C of subsets of a finite set U find
a minimum cardinality set cover of U, i.e. a subset C' of C such that every element in U
belongs to at least one member of C' and that |C'| is minimal.

Given an instance I = (C,U) of MIN SET COVER we construct an instance I’ = (G, k)
of RSP the following way (see Figure [l for a visualization): we denote by A the value
2|C |+1. We introduce a node s to G. For each u; € U, we introduce a set of nodes U; =
{u’,...,uy} to G. For each C; in C, we introduce nodes C; , C;"” and edges (C; ,C;"),
(Ci*,s) to G. The graph furthermore contains, for each u; € U and each C; € C with u; €
C;, the edges (u‘r,C]-’),r =1,...,A. All edges are directed and have length 1. Finally
we set k to be A - |U|. The transformation is polynomial.

u} u? ul ul!l

00000 00000 00000 - 00000

Fig. 1. Instance I’ after the transformation from MIN SET COVER (edges of the form (u’, C;) are
not drawn as they depend on the instance /)

Lemma 1. Let C' be a solution of 1, then there exists a solution E' of I' with |E'| = |C'|.
It directly follows that an optimal solution E’ of the instance I’ satisfies |[E’| < |C|.

Lemma 2. There is an optimal solution E' of I' that only consists of shortcuts of the
form (C;”,s) for some i € N.

Proof. Let E be an optimal solution of I’. We decompose E = E4UEg such that E4 only
contains shortcuts of the form (C; ,s) for some i and E contains all other shortcuts. If

Eg is not empty there exists an £ € N such that for every j,r € IN for which (uf, C;) cE
the shortcut (C;,s) is not contained in E4. Otherwise E4 would be a feasible solution
and |E4| < |E| in contradiction to the optimality of E.

We fix such an ¢. Let i € IN be such that there is an edge (uf ,C;) € E. Further, let

pe denote the number of nodes in Uy = {ul € V | r = 1... A} such that a shortcut (uf, s)
or (uf,Cj*) is in Ep for some j € IN. Assume that py > 1. Then, we could delete all

shortcuts outgoing from a node in U, from Ej (this increases the overall hop length by
at maximum 2|C|) and introduce the shortcut (C;,s) in Ey (this decreases the overall
hop length by at least A + 1 = 2|C| +2). This solution would be better than the old one
in contradiction to the optimality of E4WEp. Hence, p; is at most 1.
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We now state a polynomial time algorithm that computes a desired solution out of
the given solution E. We repeatedly proceed as follows until Ep is empty. First, we find
an / as defined above and a j such that (u1 G ) € E.If no such £ exists, E, is the desired
solution. In case py = 1 we delete the shortcut with source node in Uy. In case py =0
we delete an arbitrary shortcut with source node in an Uj,i = 1,....,|U|. If w(E) still is
high enough we do nothing. Otherwise we insert the shortcut (C]-’,s). Obviously, the
algorithm runs in polynomial time and computes a desired solution. ]

Lemma 3. Let E' be an optimal solution of I'. Then, there exists a solution C' of I with
E'| =|C|.

Proof. Let E' be an optimal solution of I’. By Lemma[2] we know that there exists an
optimal solution E” with |E”| = |E’| and shortcuts of the form (C;,s) for some i € N.
We denote by U” the collection of sets U; for which there is a shortcut (C} ,s) in E”
and edges (u;,C; ) in E. As E” is a feasible solution, we know that w(E”) |E"| +
A|U"| > k= AJU|. Because of |E"| < |C| < A we know that |[U”| = |U| which means
that for every node in u!, there is a shortcut on a path to s. Therefore, the set {C; |
(C;,s) € E"} is a solution of /. ]

4

Theorem 1. Unless P = NP, no polynomial-time constant factor approximation algo-
rithm exists for RSP.

The SHORTCUT DECISION PROBLEM (SDP) is the variant of Definition [Tl where the
aim is to decide for a given ¢ € N and a given k € IN whether there exists a shortcut
assignment E’ with |E’| = ¢ and w(E') > k. The proof of the non-approximability of
RSP directly transfers to a proof for the NP-completeness of SDP.

Corollary 1. SP and RSP are NP-hard, SDP is NP-complete.

Theorem 2. Unless P = NP, no polynomial-time algorithm exists that approximates
SP up to an additive constant.

Proof. Assume there exists a polynomial-time algorithm .o that approximates SP within
a fixed bound of A. Then we can solve SDP in polynomial time as follows. B

Let (G = (V,E,len),c,k) be an instance of SDP. We create a new instance (G =
(V.E len) c) of SP by adding, for each node v in G,  := A + 1 +n? nodes vi,...,vy
and directed edges (v;,v) such that l/;a(v,-,v) =1,i=1... ). This can be done in poly-
nomial time. B

We will first prove, that the endpoints of all shortcuts inserted in G by ./ will be
in V: Let E’ be the set of all shortcuts inserted by .«7 in G. Assume there is a shortcut
(it,v) € (V\ V) x V in E. This shortcut only decreases the overall hop length on shortest
paths by at most n2. W.l.o.g we assume that it is possible to insert ¢ shortcuts into
G. Therefore there must be a shortcut (x,y) € V x V that is not contained in E’. This
shortcut will result in a decrease of overall hop length of at least y. Therefore, deleting
(#,v) and inserting (x,y) would decrease the overall hop length on shortest path by more
than A which is a contradiction to the approximation bound of <.

With A := 0 it directly follows that an optimal solution of I’ only consists of shortcuts
in V x V. Given a set of shortcuts E’ C V x V we denote the overall decrease of hop
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length in G with w(E’) and in G with w(E'). It is w(E’) = (1 + x)w(E'). Given an
optimal solution E* for I and 7', it follows (1+ x) (W(E*) —w(E)) = w(E*) —w(E) <
A. Hence, w(E*) —w(E) < lﬁx < 1 which implies w(E*) = w(E’) as both w(E*) and
w(E') are integer values. Therefore, we have a polynomial time, exact algorithm for

solving SP. We can use this algorithm to decide SDP in polynomial time. ]

Bounded number of shortcuts. If the number of shortcuts we are allowed to insert is
bounded by a constant k,,,, the number of possible solutions of SP is polynomial in
the size of the graph:

( n’ ) _ (n)! < pPomax
Kmax <n2 - kmax) Yomax!

Evaluating a given solution means solving the APSP, hence this can be done in time
O(n(nlogn+m)). For this reason, the whole problem can be solved in polynomial time
by a brute-force algorithm.

Monotonicity. In order to show the hardness of working with the problem beyond the
complexity results, Figure Pl gives an example that, given a shortcut assignment S and a
shortcut s, s ¢ S, the following two inequalities do not hold in general:

w(SU{s})
w(SU{s})

It is easy to verify that in Figure [2] the inequalities w({s1,s2}) > w(s1) + w(s2) and
w({s1,52,83}) < w({s1,52}) +w(s3) hold.

Note that Inequality 2l holds if for any pair of nodes (s,#) of graph G, there is at most
one, unique shortest s-f-path in G. We prove that in the following lemma and corollary.

(8) +w(s) (1)

>w
< w(S) +w(s). 2)

Lemma 4. Given a graph G = (V,E) having unique shortest paths, a set of shortcuts
S and a shortcut s. Then, w(SU{s}) < w(S) 4+ w(s).

Corollary 2. Given a graph G = (V,E) having unique shortest paths and a set of short-
cuts S = {s1,52,...,51}. Then, w(S) < 35 w(s;).

In the next section we use these results to present approximation algorithms which work
in the case of graphs where shortest paths are unique for each pair of nodes.

\ ~ -_ _ =
~ — - "89

S1

Fig. 2. Example Graph G with shortcuts sy, 52, 53, all edges for which no weight is given in the
picture have weight 1
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4 Approximation Algorithms

In this section, we propose two polynomial time algorithms for approximatively solv-
ing SP in the special case that, for each pair s,f of nodes on the underlying graph, the
shortest s-z-path is unique. It turns out that this class is highly relevant as in road net-
works, most shortest paths are unique and only little modifications have to be made to
obtain a graph having unique shortest paths. The first algorithm is a greedy strategy that
consists of iteratively solving the problem where the number of shortcuts allowed is
one. This algorithm finds a c-approximation of the optimal solution. The second algo-
rithm works for graphs with bounded degree and is based on a partition of the nodes. It
finds an O (A -max{1,n*/(A%c)}) approximation of the optimal solution, where A is
the number of subsets of the underlying partition.

4.1 The Greedy Strategy

Given a weighted directed graph G = (V, E,len), the GREEDY approximation scheme
consists of iteratively constructing a sequence G = Gy, G, ..., G, of graphs where G,
is the graph that results from solving SP on G; for which the number of shortcuts al-
lowed to insert is one. GREEDY is a polynomial time c-approximation of SP. The ap-
proximation bound follows directly from Lemma [ In detail, our scheme works as
follows.

The value of w(s) in G; can be computed by performing an all pairs shortest paths
computation in G;. Hence, each iteration step of GREEDY can be solved by evaluating
every of the O(n?) possible shortcuts. This gives an overall time complexity of O(cn? -
n(nlogn+m)). The following theorem shows the approximation ratio for GREEDY.

Theorem 3. Given is a weighted directed graph G = (V,E,len) with unique shortest
paths and a positive integer ¢ € N. If S* is the set of shortcuts in an optimal solution
Jfor SP instance (G,c¢), then the solution G' = (V,EUE’ len’) computed by GREEDY is
a factor c-approximation.

Proof. Letus consider sy, that is the shortcut computed by the first iteration of GREEDY.
Then, w(s) < w(sy) for each s € V x V. Moreover, for any S C V x V and for each s € S,
w(s) < w(S) and, by Corollary 2] w(S) < T csw(s). If we write S* = {s7,s3,...55}, it
follows that

Mn

w(S*) <Y w(sf) < Zc‘iw(sl) =cw(sy) < cw(E').

=1
/w(E") < c holds.

~— o~

Hence, the inequality w(S*

4.2 Approximation via Partitioning

Given a weighted, directed graph G = (V,E,len) with bounded degree B, our approxi-
mation scheme works as follows. It partitions V into small subsets, solves SP restricted
to each subset and then chooses the best solution among all subsets as an approximated
solution. If the subsets are small enough, then SP restricted to each set can be solved
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in polynomial time. Furthermore, the approximation ratio depends on the number of
subsets. In fact, if each optimal shortcut has both of its endpoints contained in one of
the subsets, then the worst case approximation ratio is given by the number of subsets.
Otherwise, we use the following lemma to bound the decrease in overall hop length on
shortest paths of the shortcuts which cross more than one subset.

Lemma 5. Let G = (V,E,len) be a weighted directed graph with unique shortest paths
and s = (v1,vy) be a shortcut in G. Let p = (vi,v2,...,v;) be the shortest path shortcut
by s. If we divide s into a set of shortcuts s1,52,...,S such that sy = (vj, =v1,v},), S2 =
Vi Vi) oSk = (Ve sV ) Ji— Jim1 =2, foreachi=1,2,... ;kand { — 1 < jp < ¢
then, w(s) < 23K, w(s;).

Corollary 3. Let G= (V,E,len) be a weighted directed graph where the shortest paths
are unique and let S = {s1,s2,...,5} be a set of shortcuts in G. For each s; € S, let S;
be a set of shortcuts that fullfills the condition of Lemma 3 with respect to s;. Then,
w(S) <235 w(S)).

In detail, our scheme works as follows. First, we partition the set V into sets & =
{Py,...,P,}, where each P; has size size = v/nf/B (i.e. A = [n/size]) for an arbi-
trary € > 0. Then, for each cell P, € &2, we compute the neighborhood C; := P,U{u €
N(v) | v € P} of P, and solve the shortcut problem on G restricted to shortcuts in C;. That
is, we compute S; = argmax{w(S) | S C C; x C; and |S| < ¢}. Finally, we determine the
set C;, for which the shortcuts gain the most overall decrease in hop length and set the
solution to be the according shortcuts. More formally, we compute G' = (V,EUS, len’)
where § = argmax{w(S;) | i=1,2,...,A} and len’ : EUS — R is defined such that
len' (u,v) equals dist(u,v) if (u,v) € S and equals len(u,v) otherwise.

Since size = /nf /B and G has bounded degree B, |C;| < /n€ holds. Hence, each
solution S; can be computed by performing at most (v/n€)% = n?¢ all pairs shortest
paths computations in G. As there are A = [n/size] = [nB/+/n€] partitions, the overall
computation time is O(f(n) - n%€ -n/v/n¥) = O(f(n) - (n/A)* - 1), where f(n) is the
time needed for computing all pairs shortest paths in G.

The following theorem shows the approximation ratio for PARTITION.

Theorem 4. Given a weighted directed graph G = (V,Elen) with bounded degree and
unique shortest paths and a positive integer ¢ € IN, then, the solution computed by

PARTITION is an O (k 'max{l, /{'—226}) approximation for the optimal solution of the
SP instance (G,c) where A denotes the number of cells used by PARTITION.

5 Approximative Evaluation of the Measure Function

To evaluate the overall decrease in hop length for a given shortcut assignment, we re-
quire computing all pairs shortest paths in a graph. Since this computation requires
O(n(nlogn + m)) time, we provide a stochastical method to quickly evaluate the over-
all decrease in hop length in this section. This approach can be used for big networks,
where APSP is prohibitive. Such networks often arise in the context of timetabling or
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Algorithm 1. PARTITION

input : graph G = (V, E,len), number of shortcuts c, parameter £ > 0
output: graph G’ = (V,EUS, len’) with shortcuts added

1 Partition the set V into sets &2 = {Py,..., P, } each of size size = v/nf /B.

2 forall P, € & do
3 Ci:=PU{ueNW)|vePr}
4 S; := argmax{w(S) | S C C; x C; and |S| < ¢}

5 §:=argmax{w(S;) |i=1,2,...,A}
6 len' : EUS — R is such that as len' (u,v) = dist(u,v) if (u,v) € S, otherwise
len' (u,v) = len(u,v).

7 Output G' = (V,EUS, len’)

shortest-paths computation on road networks (see [6] for a prominent example). For the
sake of simplicity we state the approach for the evaluation of p := Yoy Y,cy 1 (s,1),
the adaption to SP is straightforward.

More precisely, we apply the sampling technique to evaluate the measure function t
in an approximative way. We exploit Hoeffding’s Bound [10] to get a confidence inter-
vall of the following unbiased estimation: If X;,X>, ..., Xk are real valued independent
random variables with a; < X; < b; and expected mean p = E[Y X;/K], then for & > 0

K
P{'M _u’ > é} < 28*21(252/2,1(:1(171'*01')2 )
% > <

Let X1,X>,...,Xkx be a family of random variables. For i = 1,2,...,K, X; equals
[V]->cy ' (si,t) where s; is a node which is chosen uniformly at random. We estimate
by =YK, X;/K. Because of IE (1) = u we can apply Hoeffding’s Bound if we
know an upper bound for the X;. The value |V |? is a trivial upper bound.

Definition 4. The shortest path diameter spDiam(G) of a graph G = (V,E,len) is the
maximal hop length of a shortest path (shortest with respect to len) on G.

If we know the shortest path diameter of a graph we obtain |V |>spDiam(G) as upper
bound for X;. If we insert this into Hoeffdings Bound, we gain

P{|fi— | > &) < 2¢2KE/(V[*spDiam(G)?)

and R
u—-u

oy
for a parameter /,.;. In [10] it is stated that Hoeffdings Bound stays correct if, when
sampling from a finite population, the samples are being chosen without replacement.
Algorithm 2] is an approximation algorithm that exploits the above inequality and that
samples without replacement.

To compute the exact shortest path diameter of a graph we have to compute APSP.
We obtain an upper bound for the shortest path diameter the following way: first we

> lmz} < 22Kt/ (VI spDiam(G)?)
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Algorithm 2. STOCH. EVALUATE OVERALL HOP LENGTH

input : graph G = (V,E,len), size of confidence intervall /,,;, significance level o
output: approximation for the overall hop length on shortest paths

1 compute random order vy, vy, ..., v, of V
2 compute upper bound spDiam for shortest path diameter

3i:=1;5um:=0; fl =—o0

4 while not (i = |V| or 2-exp(=2i(f1 - Lo /(|V [*spDiam(G)?)) < ) do
5 T := grow hop minimal SP-Tree rooted at v;

6 sum := sum~+ V|- Yscy b (vi,1)
7

Q0 :=sum/i
8 i=i+1
9 output {I

compute an upper bound diam(G) for the diameter of G. To do that we choose a set of
nodes s1,52,...,s; uniformly at random. For each node s; the value £5(s;) + £5(s;) is an
upper bound for the diameter of G. We set diam(G) to be the minimum of these values
over all s;. Afterwards, we grow, for every node s on G, a shortest paths tree whose
construction is stopped as soon as one vertex with distance of more than diam(G) /7 is
visited where 1 is a tuning parameter. We denote by 7 the maximum hop-length of the
shortest paths on any of the trees grown. Then spDiam = 7- 1 is an upper bound for the
shortest path diameter of G. The pseudocode of that algorithm is given in Algorithm[3]

Algorithm 3. COMPUTE UPPER BOUND FOR SP-DIAMETER

input : graph G = (V,E, len), tuning parameter /, tuning parameter 7
output: upper bound spDiam for shortest path diameter
diam(G) := 03 T:=0;
foralli=1,...,/do

s := choose node uniformly at random

grow shortest paths tree rooted at s

grow shortest paths tree rooted at s on the reverted graph

diam(G) := min{diam(G), max,cy {dist(s,v) } + max,cy {dist(v,s) }}
forall s € V do

T := grow partial shortest paths tree rooted at s.

stop growing when first node with dist(s,v) > diam(G) /1 is visited.

8 T := max{7, maximal number of edges of a path in T }

-

N QB W

9 output 7-M

Obviously, the whole proceeding only makes sense for graphs for which the shortest
path diameter is much smaller than the number of nodes. This holds for a wide range of
real-world graphs, in particular for road networks. For example, the street network of
Luxembourg provided by the PTV AG [1] consists of 30733 nodes and has a shortest
path diameter of only 429.



The Shortcut Problem — Complexity and Approximation 115
6 Conclusion

In this work we studied two problems. The SHORTCUT PROBLEM (SP) is the problem
of how to add a given number of edges to a weighted graph, such that distances do not
change and the average number of hops on hop minimal shortest paths in the graph
becomes minimal. The REVERSE SHORTCUT PROBLEM (RSP) is the variant of SP
where the desired decrease in the average number of hops is fixed and the number of
inserted edges has to be minimized. We want to stress out, that this is the first approach
towards a theoretical foundation for inserting shortcuts, which is heuristically used by
many speed-up techniques for DITJKSTRA’s algorithm.

We proved that both problems are NP-hard and that there is no polynomial time con-
stant factor approximation algorithm for RSP, unless P = NP. Furthermore, no poly-
nomial time algorithm exists that approximates SP up to an additive constant, unless
P = NP and that problem is solvable in polynomial time if the number of shortcuts to
insert is bounded.

Moreover, we gave two polynomial time approximation algorithms for SP that work
for the case that shortest paths on the underlying graph are unique. Finally, we proposed
a stochastical method to evaluate the measure function of SP very fast. This can be used
for large input networks where an exact evaluation is prohibitive.

There exists a wide range of possible future work on the problem. From the theo-
retical point of view the probably most interesting open question is that of the approx-
imability of SP. It is still not known if it is in APX. Furthermore, it would be helpful to
identify graph-classes for which SP or RSP become tractable.

From the practical point of view, it is important to develop heuristics that find good
shortcuts for real-world input. In particular, evolutionary algorithms and local search
algorithms (similar to the greedy strategy) seem to be promising. The output of these
algorithms should be experimentally tested on their benefit for different speed-up tech-
niques. Further, it is interesting to evaluate the output of the currently used shortcut
insertion strategies in the problem’s measure function.
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