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During the last years, impressive speed-up techniques for Dijkstra’s algorithm have been devel-
oped. Unfortunately, the most advanced techniques use bidirectional search which makes it hard

to use them in scenarios where a backward search is prohibited. Even worse, such scenarios are

widely spread, e.g., timetable-information systems or time-dependent networks.
In this work, we present a unidirectional speed-up technique which competes with bidirectional

approaches. Moreover, we show how to exploit the advantage of unidirectional routing for fast ex-

act queries in timetable information systems and for fast approximative queries in time-dependent
scenarios. By running experiments on several inputs other than road networks, we show that our

approach is very robust to the input.
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1. INTRODUCTION

Computing shortest paths in graphs is used in many real-world applications like
route planning in road networks, timetable information for railways, or scheduling
for airplanes. In general, Dijkstra’s algorithm [Dijkstra 1959] finds a shortest path
between a given source s and target t. Unfortunately, the algorithm is far too slow
to be used on huge datasets. Thus, several speed-up techniques have been developed
yielding faster query times for typical instances, e.g., road or railway networks. Due
to the availability of huge road networks, recent research on shortest paths speed-
up techniques solely concentrated on those networks [Demetrescu et al. 2006]. The
fastest known techniques [Bauer et al. 2008] were developed for road networks and
use specific properties of those networks in order to gain their enormous speed-ups.
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However, these techniques perform a bidirectional query or at least need to know
the exact target node of a query. In general, these hierarchical techniques step up
a hierarchy—built during a preprocessing phase—starting both from source and
target and perform a fast query on a very small graph. Unfortunately, in certain
scenarios a backward search is prohibited, e.g. in timetable information systems
and time-dependent graphs the time of arrival is unknown. One option would be to
guess the arrival time and then to adjust the arrival time after forward and backward
search have met. Another option is to develop a fast unidirectional algorithm.

In this work, we introduce SHARC-Routing, a fast and robust approach for unidi-
rectional routing in large networks. The central idea of SHARC (Shortcuts + Arc-
Flags) is the adaptation of techniques developed for Highway Hierarchies [Sanders
and Schultes 2006] to Arc-Flags [Lauther 2004; Möhring et al. 2006; Hilger et al.
2006]. In general, SHARC-Routing iteratively constructs a contraction-based hi-
erarchy during preprocessing and automatically sets arc-flags for edges removed
during contraction. More precisely, arc-flags are set in such a way that a unidirec-
tional query considers these removed component-edges only at the beginning and
the end of a query. As a result, we are able to route very efficiently in scenarios
where other techniques fail due to their bidirectional nature. It turned out that
SHARC was a promising candidate for routing in time-dependent networks [Delling
2008]. Furthermore, SHARC allows to perform very fast queries—without updating
the preprocessing—in scenarios where metrics are changed frequently, e.g. different
speed profiles for fast and slow cars. We also introduce an interesting variant of
SHARC by removing all shortcuts from the graph after preprocessing. This variant
may be very helpful in scenarios with very limited memory, e.g., portable navigation
systems. In case a user needs even faster query times, our approach can also be used
as a bidirectional algorithm that outperforms the most prominent techniques. See
Figure 1 for an example of a typical search space of uni- and bidirectional SHARC.

Related Work. Many speed-up techniques have been developed during the last
years (see [Delling et al. 2009a] for an overview). Hence, we here focus on work that
is directly connected to SHARC. To our best knowledge, two approaches exist that
iteratively contract and prune the graph during preprocessing. This idea was intro-
duced in [Sanders and Schultes 2005]. First, the graph is contracted and afterwards
partial trees are built in order to determine highway edges. Non-highway edges are
removed from the graph. The contraction was significantly enhanced in [Sanders
and Schultes 2006] reducing preprocessing and query times drastically. The RE
algorithm, introduced in [Goldberg et al. 2006; 2007], also uses the contraction
from [Sanders and Schultes 2006] but pruning is based on reach values for edges. A
technique relying solely on contraction is Contraction Hierarchies [Geisberger et al.
2008]. All those techniques build a hierarchy during the preprocessing and the query
exploits this hierarchy. Moreover, these techniques gain their impressive speed-ups
from using a bidirectional query, which—among other problems—makes it hard
to use them in time-dependent graphs. Moreover, REAL [Goldberg et al. 2006;
2007]—a combination of RE and ALT—can be used in a unidirectional sense but
still, the exact target node has to be known for ALT, which is unknown in timetable
information systems (cf. [Pyrga et al. 2007] for details). Similar to Arc-Flags [Lau-
ther 2004; Möhring et al. 2006; Hilger et al. 2006], Geometric Containers [Wagner
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 1. Search space of a typical uni-(left) and bidirectional(right) SHARC-query. The source of
the query is the upper flag, the target the lower one. Relaxed edges are drawn in black. The

shortest path is drawn thicker. Note that the bidirectional query only relaxes shortest-path edges.

et al. 2005] attaches a label to each edge indicating whether this edge is important
for the current query. However, Geometric Containers has a worse performance
than Arc-Flags and preprocessing is based on computing a full shortest path tree
from every node within the graph. For more details on Arc-Flags, see Section 2.

An extended abstract of SHARC has been published in [Bauer and Delling 2008].
Since its publication we were able to improve preprocessing, both with respect to
running times and space consumption. We achieve these improvements by intro-
ducing additional preprocessing routines. Furthermore, we present a variant of
SHARC which can be adapted to existing (commercial) systems easily and has
a very low space consumption. Finally, we provide extensive parameter tests for
SHARC yielding a better insight in the impact of parameter choice on the perfor-
mance of SHARC.

Meanwhile [Delling 2008], we managed to augment SHARC to time-dependent
networks. Note that this extension is not included in this work. We here focus on
the time-independent variant of SHARC. However, we include first ideas how to use
SHARC in time-dependent networks in a straightforward and approximate man-
ner. We include these results for historical reasons since they were also published
in [Bauer and Delling 2008].

Overview. This paper is organized as follows. Section 2 introduces basic defini-
tions and reviews the Arc-Flag approach. Preprocessing and the query algorithm
of our SHARC approach are presented in Section 3, while Section 4 presents initial
ideas how SHARC can be used in an approximate time-dependent scenario. Our
experimental study on real-world and synthetic datasets is located in Section 5
showing the excellent performance of SHARC on various instances. Our work is
concluded by a summary and possible future work in Section 6.
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2. PRELIMINARIES

Throughout the whole work we restrict ourselves to simple, directed graphs G =
(V,E, len) with positive length function len : E → R

+. The transpose graph←−
G = (V,←−E ) is the graph obtained from G by substituting each (u, v) ∈ E by (v, u).
Given a set of edges H, tail(H) / head(H) denotes the set of all tails / heads
of edges in H. With degin(v) / degout(v) we denote the number of edges whose
head / tail is v. The 2-core of an undirected graph is the maximal node induced
subgraph of minimum node degree 2. The 2-core of a directed graph is the 2-core
of the corresponding simple, unweighted, undirected graph. All nodes not being
part of the 2-core are called 1-shell nodes. Note that connected components within
the 1-shell are trees. Since each tree is attached to the 2-core, we call these trees
attached trees.

A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V such that each
node v ∈ V is contained in exactly one set Ci. An element of a partition is called
a cell. A multilevel partition of V is a family of partitions {C0, C1, . . . , CL−1} such
that for each l < L− 1 and each Cl

i ∈ Cl a cell Cl+1
j ∈ Cl+1 exists with Cl

i ⊆ Cl+1
j .

In that case the cell Cl+1
j is called the supercell of Cl

i . The supercell of a level-L−1
cell is V . Note that the number of levels is denoted by L. The boundary nodes BC

of a cell C are all nodes u ∈ C for which at least one node v ∈ V \ C exists such
that (v, u) ∈ E or (u, v) ∈ E. We denote by d(u, v) the distance according to len
between two nodes u and v.

Arc-Flags

The original Arc-Flag approach, introduced in [Lauther 2004; Köhler et al. 2005],
first computes a partition C of the graph and then attaches a label to each edge
e. A label contains, for each cell C ∈ C, a flag AF C(e) which is true if a shortest
path to at least one node in C starts with e. A modified Dijkstra—from now on
called Arc-Flags Dijkstra—then only considers those edges for which the flag of
the target node’s cell is true. The big advantage of this approach is its easy query
algorithm. Furthermore, we observed that for long-range queries in road networks,
an Arc-Flags Dijkstra often is optimal in the sense that it only visits those edges
that are on the shortest path. However, preprocessing is very extensive, either
regarding preprocessing time or memory consumption.

Preprocessing. of Arc-Flags is divided into two parts. First, the graph is parti-
tioned into k several cells. The second step then computes k flags for each edge. The
first approach for obtaining a partition based on a grid partition [Lauther 2004].
It turns out that the performance of an Arc-Flags query heavily depends on the
partition used. In order to achieve good speed-ups, several requirements have to be
fulfilled: cells should be connected, the size of the cells should be balanced, and the
number of boundary nodes has to be low. A systematical experimental study of
the impact of partitions on Arc-Flags has been published in [Möhring et al. 2006].
According to their work, the best results have been achieved if a METIS [Karypis
2007] partition is applied.

The second step of preprocessing is the computation of arc-flags. Throughout the
years, several approaches have been introduced (see e.g. [Lauther 2004; Köhler et al.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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2005; Möhring et al. 2005; Hilger et al. 2009; Lauther 2009]). We here concentrate
on two approaches which turned out to be the most efficient. For both approaches,
own-cell flags of all edges not crossing borders have to be set to true. The own-cell
flag of an edge (u, v) is the flag for the region of u and v. If u and v are in different
cells, the edge does not have an own-cell flag.

Boundary Shortest Path Trees. A true arc-flag AF C(e) denotes whether e has
to be considered for a shortest-path query targeting a node within C. This can
be computed as follows: Grow a shortest path tree in ←−G from all boundary nodes
b ∈ BC of all cells C. Then set AF C(u, v) = true if (u, v) is a tree edge for at least
one tree grown from all boundary nodes b ∈ BC .

Centralized Approach. The drawback of the first approach is that we have to grow
|B| shortest path trees yielding long preprocessing times for large transportation
networks. [Hilger et al. 2009] introduces a new approach to computing flags. A
label-correcting algorithm (also called centralized tree) is performed for each cell
C. The algorithm propergates labels of size |BC | through the network depicting the
distances to all boundary nodes of the cell. The algorithm terminates if no label can
be improved any more. Then, AF C((u, v)) is set to true if len(u, v)+d(v, b) = d(u, b)
holds for at least one b ∈ BC .

Query. A unidirectional Arc-Flags query is a modified Dijkstra operating on
the input graph. For a random s–t query, it first determines the target cell T , and
then relaxes only those edges with set flag for cell T . Note that compared to plain
Dijkstra, an Arc-Flags query performs only one additional check.

Note that AF Ci(e) is true for almost all edges e ∈ Ci. Due to these own-cell-
flags an Arc-Flags Dijkstra yields no speed-up for queries within the same cell.
Even worse, using a unidirectional query, more and more edges become important
when approaching the target cell (called the coning effect) and finally, all edges are
considered as soon as the search enters the target cell. While the coning effect can
be weakened by a bidirectional query, the former also holds for such queries. Thus,
a two-level approach is introduced in [Möhring et al. 2006] which weakens these
drawbacks as cells become quite small on the lower level. It is obvious that this
approach can be extended to a multi-level approach.

3. STATIC SHARC

In this section, we explain SHARC-Routing in static scenarios, i.e., the graph re-
mains untouched between two queries. In general, the SHARC query is a standard
multi-level Arc-Flags Dijkstra, while the preprocessing incorporates ideas from
hierarchical approaches.

3.1 Preprocessing

Preprocessing of SHARC adopts ideas from hierarchical approaches like Highway
Hierarchies and REAL. During the initialization phase, we extract the 2-core of the
graph and perform a multi-level partition of G according to an input parameter P .
The number of levels L is an input parameter as well. Then, an iterative process
starts. At each step i we first contract the graph by bypassing unimportant nodes
and set the arc-flags automatically for each removed edge. On the contracted graph

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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we compute the arc-flags of level i by growing a partial centralized shortest-path
tree from each cell Cj

i . At the end of each step we prune the input by detecting those
edges that already have their final arc-flags assigned. In the finalization phase, we
assemble the output-graph, refine arc-flags of edges removed during contraction and
finally reattach the 1-shell nodes removed at the beginning. Figure 2 shows a scheme
of the SHARC-preprocessing. In the following we explain each phase separately.
We hereby restrict ourselves to arc-flags for the unidirectional variant of SHARC.
However, the extension to computing bidirectional arc-flags is straight-forward.

multi-level
partitioning

contraction

component arc-flags

core arc-flags

pruning

++i==L?

construct
output-graph

remove 1-shell nodes

refinement

reattach 1-shell nodes

if(i==L− 1):
boundary-shortcuts

i=0

G,P,L,c

YES

NO
in

it
ia

liz
at

io
n

it
er

at
io

n
fin

al
iz

at
io

n

edge-reduction

shortcut-removal

Fig. 2. Schematic representation of the
preprocessing. Input parameters are the
partition parameters P , the number of
levels L, and the contraction parame-
ter c.

3.1.1 1-Shell Nodes. First of all, we ex-
tract the 2-core of the graph as we can di-
rectly assign correct arc-flags to attached
trees that are fully contained in a cell: Each
edge whose head is a core node gets all flags
assigned true while those directing away
from the core only get their own-cell flag
set true. By removing 1-shell nodes before
computing the partition we ensure that an
attached tree is fully contained in a cell by
assigning all nodes in an to the cell of its 2-
core root. After the last step of our prepro-
cessing we simply reattach the nodes and
edges of the 1-shell to the output graph.

3.1.2 Multi-Level Partition. According
to [Möhring et al. 2006], the Arc-Flag
method heavily depends on the partition
used. The same holds for SHARC. In or-
der to achieve good speed-ups, several re-
quirements have to be fulfilled: cells should
be connected, the size of the cells should
be balanced, and the number of boundary
nodes has to be low. In this work, we use
a locally optimized partition obtained from
SCOTCH [Pellegrini 2007]. For further de-
tails, see Section 5. The number of levels L
and the number of cells per level are tuning-
parameters.

3.1.3 Contraction. The graph is con-
tracted by iteratively bypassing nodes until
no node is bypassable any more. To bypass
a node n we first remove n, its incoming
edges I and its outgoing edges O from the
graph. Then, for each u ∈ tail(I) and for
each v ∈ head(O) \ {u} we introduce a new
edge of the length len(u, n) + len(n, v). If
there already is an edge connecting u and
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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v in the graph, we only keep the one with smaller length. We call the number of
edges of the path that a shortcut represents on the graph at the beginning of the
current iteration step the hop number of the shortcut. To check whether a node
is bypassable we first determine the number #shortcut of new edges that would
be inserted into the graph if n is bypassed, i.e., existing edges connecting nodes
in tail(I) with nodes in head(O) do not contribute to #shortcut. Then we say a
node is bypassable iff the bypass criterion #shortcut ≤ c · (degin(n) + degout(n))
is fulfilled, where c is a tunable contraction parameter.

A node being bypassed influences the degree of their neighbors and thus, their by-
passability. Therefore, the order in which nodes are bypassed changes the resulting
contracted graph. We use a heap to determine the next bypassable node. The key
of a node n within the heap is h ·#shortcut/(degin(n) + degout(n)) where h is the
hop number of the hop-maximal shortcut that would be added if n was bypassed,
smaller keys have higher priority. To keep the length of shortcuts limited we do not
bypass a node if that results in adding a shortcut with hop number greater than
10. We say that the nodes that have been bypassed belong to the component, while
the remaining nodes are called core-nodes. In order to guarantee correctness, we
use cell-aware contraction, i.e., a node n is never marked bypassable if any of its
neighboring nodes is not in the same cell as n.

Our contraction routine mainly follows the ideas introduced in [Sanders and
Schultes 2006]. The idea to control the order, in which the nodes are bypassed
using a heap is due to [Goldberg et al. 2006]. Finally, the idea to bound the hop
number of a shortcut is due to [Delling et al. 2009b].

3.1.4 Edge-Reduction. Note that our contraction routine potentially adds short-
cuts not needed for keeping the distances in the core correct. See Figure 3 for an
example. Hence, we perform an edge reduction directly after contraction, similar
to [Schultes and Sanders 2007]. We grow a shortest-path tree from each node u of
the core. We stop the growth as soon as all neighbors v of u have been settled.
Then we check for all neighbors whether d(v) < len(u, v) holds. If it holds, we can
remove (u, v) from the graph because the shortest path from u to v does not include
(u, v). Note that if (u, v) is a very long edge, this routine explores almost the full
graph since v is settled at a very late point. In order to solve this problem, we
restrict the number of priority-queue removals to a fixed value k. In road networks,
experiments indicate that k = 10 000 is a reasonable choice. Note that we then may
leave some unneeded edges in the graph.

1 42

3

5 4

2 2

1 4

3
2 2

9 1 4

3
2 2

Fig. 3. Example for edge-reduction. The figure on the left depicts the input, edge labels indicate
the weight of the edge. We contract, i.e., remove, node 2 and add an shortcut from node 1 to 4

with weight 9 (middle). However, the shortest path from 1 to 4 is via node 3 with length 4. Hence,

we can safely remove the shortcut (1,4) from the core in order to preserve distances between core
nodes. The resulting graph is shown on the right.
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3.1.5 Boundary-Shortcuts. During our experimental study, we observed that—
at least for long-range queries in road networks—a plain bidirectional Arc-Flags
Dijkstra often is optimal in the sense that it visits only the edges on the shortest
path between two nodes. However, such shortest paths may become quite long in
road networks. One advantage of SHARC over Arc-Flags is that the contraction
routine reduces the number of hops of shortest paths in the network yielding smaller
search spaces. In order to further reduce this hop number we enrich the graph by
additional shortcuts. In general we could try any shortcuts as our preprocessing
favors paths with less hops over those with more hops and thus, added shortcuts are
used for long range queries. However, adding shortcuts crossing cell-borders can
increase the number of boundary nodes and hence, increase preprocessing time.
Therefore, we use the following heuristic to determine good shortcuts: we add
boundary shortcuts between some boundary nodes belonging to the same cell C
at level L − 1. In order to keep the number of added edges small we compute the
betweenness [Brandes 2001] values cB of the boundary nodes on the remaining core-
graph. Recall that betweenness is a centrality measure: nodes that occur on many
shortest paths between other nodes have higher betweenness than those that do
not. Each boundary node with a betweenness value higher than half the maximum
gets 3 ·√|BC | additional outgoing edges. The heads are those boundary nodes with
highest cB · h values, where h is the number of hops of the added shortcut.

3.1.6 Arc-Flags. Our query algorithm is executed on the original graph en-
hanced by shortcuts added during the contraction phase. Thus, we have to assign
arc-flags to each edge we remove during the contraction phase. One option would
be to set every flag to true. However, we can do better. First of all, we keep all
arc-flags that already have been computed for lower levels. We set the arc-flags of
the current and all higher levels depending on the tail u of the deleted edge. If u is
a core node, we only set the own-cell flag to true (and others to false) because this
edge can only be relevant for a query targeting a node in this cell. If u belongs to
the component, all arc-flags are set to true as a query has to leave the component
in order to reach a node outside this cell. Finally, shortcuts get their own-cell flag
fixed to false as relaxing shortcuts when the target cell is reached yields no speed-

--0-

--0---0-

1111

1111
0010

111100101 2

3

4 5

Fig. 4. Example for assigning arc-flags during contraction for a partition having four cells. All
nodes are in cell 3. The red nodes (4 and 5) are removed, the dashed shortcuts are added by

the contraction. Arc-flags (edge labels) are indicated by a 1 for true and 0 for false. The edges

directing into the component get only their own-cell flag set true. All edges in and out of the
component get full flags. The added shortcuts get their own-cell flags fixed to false.
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up. See Figure 4 for an example. As a result, an Arc-Flags query only considers
components at the beginning and the end of a query. Moreover, we reduce the
search space.

Assigning Arc-Flags to Core-Edges. After the contraction phase and assigning
arc-flags to removed edges, we compute the arc-flags of the core-edges of the current
level i. As described in Section 2, we grow for each cell C one centralized shortest
path tree on the transpose graph starting from every boundary node n ∈ BC of C.
We stop growing the tree as soon as all nodes of C’s supercell have a distance
to each b ∈ BC greater than the smallest key in the priority queue used by the
centralized shortest path tree algorithm. For any edge e that is in the supercell of
C and that lies on a shortest path to at least one b ∈ BC , we set AF i

C(e) = true.
Note that the centralized approach sets arc-flags to true for all possible shortest

paths between two nodes. In order to favor boundary shortcuts, we extend the
centralized approach by introducing a second matrix that stores the number of
hops to every boundary node. With the help of this second matrix we are able to
assign true arc-flags only to hop-minimal shortest paths. However, using a second
matrix increases the high memory consumption of the centralized approach even
further. Thus, we use this extension only during the last iteration step where the
core is small.

3.1.7 Pruning. After computing arc-flags at the current level, we prune the
input. We remove unimportant edges from the graph by running two steps. First,
we identify prunable cells. A cell C is called prunable if all neighboring cells are
assigned to the same supercell. Then we remove all edges from a prunable cell that
have at most their own-cell bit set. For those edges no flag can be assigned true in
higher levels as then at least one flag for the surrounding cells must have been set
before.

3.1.8 Refinement of Arc-Flags. Our contraction routine described above sets all
flags to true for almost all edges removed by our contraction routine. However, we
can do better: we are able to refine arc-flags by propagation of arc-flags from higher
to lower levels. Before explaining our propagation routine we need the notion of
level. The level l(u) of a node u is determined by the iteration step it is removed
from the graph. All nodes removed during iteration step i belong to level i. Those
nodes which are part of the core-graph after the last iteration step belong to level
L. In the following, we explain our propagation routine for a given node u.

First, we build a partial shortest-path tree T starting at u, not relaxing edges
with heads on a level smaller than l(u). We stop the growth as soon as all nodes in
the priority queue are covered. A node v is called covered as soon as a node between
u and v—with respect to T—belongs to a level > l(u). After the termination of
the growth we remove all covered nodes from T resulting in a tree rooted at u and
with leaves either in l(u) or in a level higher than l(u). Those leaves of the built
tree belonging to a level higher than l(u) we call exit nodes ~N(u) of u.

With this information we refine the arc-flags of all edges outgoing from u. First,
we set all flags—except the own-cell flags—of all levels ≥ l(u) for all outgoing edges
from u to false. Next, we assign exit nodes to outgoing edges from u. Starting at
an exit node nE we follow the predecessor in T until we finally end up in a node x

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 5. Example for refining the arc-flags of outgoing edges from node 4. The figure in the left

shows the graph from Figure 4 after the last iteration step. The figure on the right shows the
result of our refinement routine starting at node 4.

whose predecessor is u. The edge (u, x) now inherits the flags from nE . Every edge
outgoing from nE whose head v is not an exit node of u and not in a level < l(u)
propagates all true flags of all levels ≥ l(u) to (u, x).

In order to propagate flags from higher to lower levels we perform our propagation
routine in L− 1 refinement steps, starting at level L− 1 and in descending order.
Figure 5 gives an example. Note that during refinement step i we only refine arc-
flags of edges outgoing from nodes belonging to level i.

3.1.9 Output Graph. The output graph of the preprocessing consists of the orig-
inal graph enhanced by all shortcuts that are in the contracted graph at the end of
at least one iteration step. Note that an edge (u, v) may be contained in no shortest
path because a shorter path from u to v already exists. This especially holds for
the shortcuts we added to the graph. As a consequence, such edges have no flag
set true after the last step. Thus, we can remove all edges from the output graph
with no flag set true.

3.1.10 Shortcut-Removal. Note that the insertion of shortcuts is one of the main
reasons why the output graph is larger than the input. Hence, we try to remove
shortcuts as the very last step of preprocessing. The routine works as follows. For
each added shortcut (u, v) we analyze the shortest paths it represents. If all nodes
on these shortest paths have less than 3 outgoing edges, we remove (u, v) from
the graph and all edges being part of the shortest paths additionally inherit the
arc-flags from (u, v). An example is given in Figure 6.

0001

11011100

1111

0010 0010

111100101 2

3

4 5

1100

0011

00100010

0010

11011100

1111

0010 0010

111100111 2

3

4 5

1100

0011

00100010

0010

Fig. 6. Example for removing a shortcut from the output graph. The graph on the left shows the

output graph after refinement of arc-flags (cf. Figure 5). The shortcut from 1 to 2 is removed and
the edges representing the shortcut inherit the flags from it.
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3.1.11 Optimizations. In order to improve both performance and space effi-
ciency, we use two optimizations. Firstly, similar to [Goldberg et al. 2007], we
increase cache efficiency of the output graph by reordering nodes according to the
level they have been removed at from the graph. As a consequence, the number
of cache misses is reduced yielding lower query times. Secondly, we compress the
arc-flag information. During our studies, we observed that the number of different
arc-flags is much less than the number of edges. Thus, instead of storing arc-flags for
each edge, we use a separate array containing all possible unique arc-flags. In order
to access the flags efficiently, we assign an additional pointer to each edge indexing
the correct arc-flags. This yields a lower space consumption of our preprocessed
data.

Stripped SHARC. Note that we could use our shortcut-removal routine to remove
all shortcuts we added during preprocessing. Our output graph then equals the
original input, with additional region information and arc-flags for each edge. As a
result, such a variant of SHARC can be interpreted as a faster preprocessing routine
for multi-level arc-flags. However, we might set more flags to true than necessary.

The advantage of this variant is its easy adaptability to existing (commercial)
systems. The existing core system may stay untouched; we simply add an arc-flag
pointer to each edge, a region information to each node, and store the arc-flag
array. Furthermore, the space consumption is very low, as shortcuts are one of the
main reasons of space overhead. Finally, this variant needs no shortcut-unpacking
routine if the complete path description is required. Summarizing, the variant may
be very helpful for PDA-implementations where space is limited and users need the
complete path. However, the disadvantage of this approach is its worse performance
than SHARC with shortcuts (cf. Section 5).

3.2 Query

Basically, our query is a multi-level Arc-Flags Dijkstra adapted from the two-level
Arc-Flags Dijkstra presented in [Möhring et al. 2006]. The query is a modified
Dijkstra that operates on the output graph. The modifications are as follows:
When settling a node u, we compute the lowest level i on which u and the target
node t are in the same supercell. When relaxing the edges outgoing from n, we
consider only those edges having an arc-flag set on level i for the corresponding
cell of t. It is proven [Möhring et al. 2006] that Arc-Flags performs correct queries.
However, as our preprocessing is different, we have to prove Theorem 3.1.

Theorem 3.1. The distances computed by SHARC are correct with respect to
the original graph.

The proof can be found in Appendix A. We want to point out that the SHARC
query, compared to plain Dijkstra, only needs to perform two additional oper-
ation: computing the common level of the current node and the target and the
arc-flags evaluation. Thus, our query is very efficient with a much smaller overhead
compared to other hierarchical approaches. Note that SHARC uses shortcuts which
have to be unpacked for determining the shortest path (if not only the distance is
queried). However, we can directly use the methods from [Delling et al. 2009b], as
our contraction works similar to Highway Hierarchies.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Path-Expansion. During our experimental evaluation, we observed that many
nodes have only one outgoing edge for which the arc-flag of the corresponding
target is set to true for the current query (cf. Figure 1). We call this property
the no-choice property and the specific edge with the flag set to true the no-choice
edge. With this observation at hand, we can use the following optimization to
speedup the query. Whenever we insert a node u into the priority queue fulfilling
the no-choice property, we skip this node and insert the head v of the no-choice
edge into the queue. If the no-choice property also holds for v, we also skip v. We
skip nodes until we either insert t, the target of the query, or insert a node for
which the no-choice property does not hold. Note that path-expansion is especially
helpful for our stripped variant of SHARC. Here, path-expansion partly remedies
the drawback of lacking shortcuts.

Multi-Metric Query. In [Bauer et al. 2007b], we observed that the shortest path
structure of a graph—as long as edge weights somehow correspond to travel times—
hardly changes when we switch from one metric to another. Thus, one might expect
that arc-flags are similar to each other for these metrics. We exploit this observation
for our multi-metric variant of SHARC. During preprocessing, we compute arc-flags
for all metrics and at the end we store only one arc-flag per edge by setting a flag
true as soon as the flag is true for at least one metric. An important precondition
for multi-metric SHARC is that we use the same partition for each metric. Note
that the structure of the core computed by our contraction routine is independent
of the applied metric.

4. APPROXIMATE TIME-DEPENDENT SHARC

Up to this point, we have shown how preprocessing works in a static scenario. As
our query is unidirectional it seems promising to use SHARC in a time-dependent
scenario. In this section we present how to perform approximate queries in time-
dependent graphs with SHARC. In general, we assume that a time-dependent net-
work −→G = (V,−→E ) derives from an independent network G = (V,E) by increasing
edge weights at certain times of the day. For road networks these increases rep-
resent rush hours. The idea is to compute approximative arc-flags in G and to
use these flags for routing in −→G . In order to compute approximative arc-flags, we
relax our criterion for setting arc-flags. Recall that for exact flags, AF C((u, v))
is set true if d(u, b) + len(u, v) = d(v, b) holds for at least one b ∈ BC . For
γ-approximate flags (indicated by AF ), we set AF C((u, v)) = true if equation
d(u, b)+ len(u, v) ≤ γ ·d(v, b) holds for at least one b ∈ BC . Note that we only have
to change this criterion in order to compute approximative arc-flags instead of ex-
act ones by our preprocessing. However, we do not add boundary shortcuts as this
relaxed criterion does not favor those shortcuts. In order to perform queries in −→G ,
we apply our modifications from Section 3.2 to a time-dependent Dijkstra [Cooke
and Halsey 1966] in a straight-forward manner. Note that by computing arc-flags
in G instead of −→G we loose correctness for time-dependent queries. It is easy to
see that there exists a trade-off between performance and quality. Low γ-values
yield low query times but the error-rate may increase, while a large γ reduces the
error rate of γ-SHARC but yields worse query performance, as much more edges
are relaxed during the query than necessary.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Exact Time-Dependent SHARC. Note that we include the above results for his-
torical reasons. Meanwhile [Delling 2008], we presented an exact variant of time-
dependent SHARC. Recall that in a static, i.e., time-independent, setup a set arc-
flag denotes that the edge is important for the corresponding cell. The key idea for
exact time-dependent routing is to set an arc-flag to true as soon as it is impor-
tant for at least one departure time. For details how to incorporate this intuition
correctly, we refer the interested reader to [Delling 2008; 2009].

5. EXPERIMENTS

In this section, we present an extensive experimental evaluation of our SHARC-
Routing approach. To this end, we evaluate the performance of SHARC in various
scenarios and inputs. Our tests were executed on one core of an AMD Opteron
2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2.1,
using optimization level 3.

Implementation Details. Our implementation is written in C++ using solely the
STL. As priority queue we use a binary heap. Our graph is represented as adjacency
array implementation. As described in [Schultes 2008], we have to store each edge
twice if we want to iterate efficiently over incoming and outgoing edges. However,
especially in road networks, many edges are undirected. Thus, the authors propose
to compress edges if head and length of incoming and outgoing edges are equal.
However, SHARC allows an even simpler implementation. During preprocessing we
only operate on the transpose graph and thus do not iterate over outgoing edges
while during the query we only iterate over outgoing edges. As a consequence, we
only have to store each edge once (for preprocessing at its head, for the query at
its tail). Thus, another advantage of our unidirectional SHARC approach is that
we can reduce the memory consumption of the graph. Note that this does not
hold for our bidirectional SHARC variant which needs considerably more space (cf.
Table V).

Setup. Unless otherwise stated, we use a unidirectional variant of SHARC. We
use c = 2.5 as contraction parameter and h = 10 as hop-bound. We use our path-
expansion optimization only for our stripped variant of SHARC. In the following
we report preprocessing effort and query performance of all speed-up techniques.
For the former we report the preprocessing time, the increase in number of edges
of the output graph compared to the input, and the resulting additional space per
node. For query performance, we report the average number of settled nodes, i.e.,
the number of nodes taken from the priority queues, and resulting query times. At
certain points, we also report the number of edges our algorithm relaxes. All figures
in this paper refer to the scenario that only the lengths of the shortest paths have to
be determined, without outputting a complete description of the paths. However,
our efficient implementation for unpacking shortcuts due to [Delling et al. 2009b]
needs about 4 additional bytes per node of preprocessed data. Then it takes less
than 0.5 ms to unpack a shortest path. This value can be reduced to less than 0.2
ms for the price of a slight increase in preprocessed data. For details, see [Delling
et al. 2009b].
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We report two types of queries. For random queries, 10 000 random pairs of
source and target are selected, while for local queries [Sanders and Schultes 2005],
1 000 (s, t) pairs are chosen for each Dijkstra rank: Starting a query from s, the
rank of t is denoted by the number of settled nodes before t is settled. It is given
for 20, 21, . . . , 2log |V |. This setup is applied to some speed-up techniques in order
to gain further insights into their performance on a particular graph depending on
the length of a query. The results are presented in the form of a box-and-whisker
plot.

5.1 Parameter Tests

We start our experimental evaluation with various parameter tests. As input we use
the largest strongly connected component of the road network of Western Europe,
provided by PTV AG for scientific use. It has approximately 18 million nodes and
42.6 million edges and edge lengths correspond to travel times. On this input, a
plain Dijkstra settles ≈ 9 millions nodes and relaxes ≈ 21 million edges in 5.1
secondes on average when running random queries.

Multi-Level Partition. In [Möhring et al. 2005; 2006], the best results for Arc-
Flags were achieved by applying a graph partitioning obtained by METIS [Karypis
and Kumar 1998]. However, in our experimental study we observed two downsides
of METIS: On the one hand, cells are sometimes disconnected and the number of
boundary nodes is quite high. Thus, we also tested PARTY [Monien and Scham-
berger 2004] and SCOTCH [Pellegrini 2007] for partitioning. The former produces
connected cells but for the price of an even higher number of boundary nodes.
SCOTCH has the lowest number of boundary cells, but connectivity of cells cannot
be guaranteed. Due to this low number of boundary nodes, we use SCOTCH and
improve the obtained partitioning by adding smaller pieces of disconnected cells to
neighbor cells. As a result, constructing and optimizing a partition can be done in
less than 5 minutes for all inputs used. Table I reports the performance of SHARC
if different types of SCOTCH-partitions are applied.

We observe that the performance of SHARC highly depends on the partition of
the graph. A classic 1-level setup yields query times of 23.6 ms. By increasing
the number of levels, we achieve query times of down to 0.29 ms. Interestingly, the
preprocessing time is almost the same for all applied partitions: We need roughly 1.5
hours for preprocessing. However, using more than 6 levels does not pay off: query
times stay the same but the overhead increases, mainly due to more shortcuts added
to the graph. In general, it seems as if the best trade-off between preprocessing
effort and query performance is achieved if the average number of nodes per cell is
roughly 80. This value is achieved in a 6-level setup with 4,4,4,4,8,104 cells. Hence,
we use this partition for our continental-size road networks for the rest of this work.

Contraction Rate. Next, we check whether our choice of contraction parameter
is useful. Table II shows the performance of SHARC with various contraction
rates if our default 6-level partition with 4,4,4,4,8,104 cells is given. We observe
a contraction rate other than 2.5 increases preprocessing space. While c = 3.0
increases query performance marginally, a lower contraction rate also yields worse
query times. Hence, our choice of c = 2.5 is reasonable in this setup.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Table I. Performance of SHARC with different partitions. Column prepro shows the computation
time of the preprocessing in hours and minutes and the eventual additional bytes per node needed

for the preprocessed data. In addition, the increase in number of edges over the input is given.

For queries, the search space is given in the number of settled nodes and the number of relaxed
edges, execution times are given in milliseconds.

partition Prepro Query

#cells per level �nodes time space edge #sett. #rel. time

l0 l1 l2 l3 l4 l5 l6 l7 #cells per cell [h:m] [B/n] inc. nodes edges [µs]

128 - - - - - - - 128 140 705 1:52 6.0 4.2% 78 429 178 103 23 306

8 120 - - - - - - 960 18 761 1:14 9.8 14.7% 11 362 26 323 3 049

4 4 120 - - - - - 1 920 9 380 1:24 10.6 17.8% 5 982 14 128 1 637

4 8 116 - - - - - 3 712 4 852 1:25 10.8 17.9% 3 459 8 372 983
8 8 112 - - - - - 7 168 2 513 1:36 11.5 18.0% 2 182 5 389 667

16 16 96 - - - - - 24 576 733 2:12 13.1 18.4% 1 217 3 169 428

4 4 4 116 - - - - 7 424 2 426 1:20 11.2 19.4% 2 025 5 219 625

4 4 8 112 - - - - 14 336 1 256 1:14 11.6 19.9% 1 320 3 544 441
4 8 8 108 - - - - 27 648 651 1:15 12.4 20.4% 984 2 755 358

4 8 16 100 - - - - 51 200 352 1:17 13.1 21.2% 819 2 357 319

4 4 4 4 112 - - - 28 672 628 1:12 12.0 21.2% 957 2 827 360

4 4 4 8 108 - - - 55 296 326 1:13 13.0 22.3% 774 2 337 309
4 4 8 8 104 - - - 106 496 169 1:18 13.7 23.7% 700 2 153 294

4 4 4 16 100 - - - 102 400 176 1:16 13.7 23.6% 703 2 162 295

4 4 8 16 96 - - - 196 608 92 1:24 15.0 25.5% 671 2 066 287
4 8 8 16 92 - - - 376 832 48 1:30 16.0 27.7% 663 2 046 288

4 4 4 4 4 108 - - 110 592 163 1:15 13.6 24.3% 695 2 263 299

4 4 4 4 8 104 - - 212 992 85 1:21 14.5 26.5% 654 2 116 290

4 4 4 8 8 100 - - 409 600 44 1:28 16.1 29.5% 645 2 087 290
4 4 4 8 16 92 - - 753 664 24 1:31 17.7 33.9% 646 2 028 289

4 4 8 8 16 88 - - 1 441 792 13 1:50 19.8 41.7% 663 2 085 296

4 4 4 4 4 4 104 - 425 984 42 1:27 15.6 30.3% 649 2 209 299

4 4 4 4 4 8 100 - 819 200 22 1:31 17.6 35.3% 628 2 094 289
4 4 4 4 8 8 96 - 1 572 864 12 1:46 19.3 40.1% 637 2 092 294

4 4 4 4 8 16 88 - 2 883 584 6 1:54 20.7 41.7% 663 2 100 303

4 4 4 8 8 16 84 - 5 505 024 3 2:00 21.5 41.7% 655 2 035 294

4 4 4 4 4 4 4 100 1 638 400 11 1:43 19.2 40.7% 650 2 247 308
4 4 4 4 4 4 8 96 3 145 728 6 1:56 20.0 42.4% 627 2 113 293

4 4 4 4 4 8 8 92 6 029 312 3 1:51 21.1 43.1% 649 2 121 300

4 4 4 4 4 8 16 84 11 010 048 2 2:03 21.5 42.6% 648 2 035 296

Table II. Performance of SHARC with varying contraction parameter.
prepro query

time space edge #settled #relaxed time

c [h:m] [B/n] inc. nodes edges [µs]

1.0 1:40 15.1 21.3% 1 572 3 705 578
1.5 1:20 14.8 23.8% 886 2 464 348
2.0 1:20 14.7 25.5% 714 2 171 301

2.5 1:21 14.5 26.5% 654 2 116 290

3.0 1:23 14.6 27.2% 622 2 109 286
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Table III. Performance of SHARC for varying effort computing arc-flags. Core levels indicates

during which iteration steps, core flags are computed. Refinement levels depict the levels on which

arc-flags are refined.
arc-flags prepro query

core refinement time space edge #settled #relaxed time

levels levels [h:m] [B/n] inc. nodes edges [µs]

- - 0:16 12.8 27.1% 204 518 960 653 76 640

5 5 0:24 13.2 26.9% 23 313 70 225 6 021

5 4-5 0:24 13.2 26.9% 6 583 23 038 1 843
5 3-5 0:25 13.3 26.9% 2 394 11 547 856

5 2-5 0:27 13.6 26.9% 1 350 8 721 611

5 1-5 0:29 13.7 26.9% 1 127 8 091 553

4-5 4-5 0:30 13.7 26.7% 6 186 18 170 1 626
4-5 3-5 0:30 13.7 26.7% 2 042 6 683 648

4-5 2-5 0:31 13.7 26.7% 993 3 883 405

4-5 1-5 0:34 13.7 26.7% 784 3 338 355

3-5 3-5 0:35 13.8 26.6% 1 974 5 962 615
3-5 2-5 0:37 14.2 26.5% 933 3 161 371

3-5 1-5 0:39 14.2 26.5% 729 2 629 323

2-5 2-5 0:44 14.3 26.5% 900 2 862 354

2-5 1-5 0:46 14.3 26.5% 696 2 335 305

1-5 1-5 0:54 14.5 26.5% 684 2 236 300

0-5 0-5 1:21 14.5 26.5% 654 2 116 290

Reduction of Preprocessing Duration. SHARC exploits two aspects of a network
in order to speed up the query: hierarchical properties by contraction, goal-direction
by arc-flags. Table III shows the performance of SHARC if we do not compute arc-
flags for all parts of the graph. This can be achieved by either not computing core
arc-flags on lower levels or not refining low-level arc-flags. If we skip core arc-flags
computation, we simply set all flags to true. Hence, we are able to reveal the main
reasons for the good performance of SHARC.

We observe that SHARC is already 65 times faster than pure Dijkstra if we do
not compute any arc-flags at all. Note that this speed-up is achieved with a prepro-
cessing lasting only 16 minutes. By computing arc-flags on different levels we can
vary the trade-off between preprocessing effort and query performance: 34 minutes
of preprocessing already yields query times of 355 µs. Hence, an additional pre-
processing of 18 minutes (over a pure hierarchical setup) accelerates SHARC by an
additional factor of 200. Computing arc-flags for the remaining levels costs another
47 minutes but query performance only increases by 20%. Summarizing, dropping
goal-direction on lower levels of the hierarchy reduces preprocessing significantly
without a dramatic decrease in query performance.

In the following, we call SHARC with arc-flags computation on all levels the gen-
erous variant. Our economical variant sets core arc-flags only on the two topmost
levels and refines flags for all levels except the lowest one.

Stripped SHARC. In Section 3 we discussed that we can remove all shortcuts
during the last step of preprocessing. Table IV reports the performance of stripped
SHARC with different contraction parameters during preprocessing. Note that in
contrast to the figures given in Table II, we do not add boundary shortcuts since
they are removed anyway at the end. Moreover, we do not use our locality opti-
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Table IV. Performance of stripped SHARC with varying contraction rate during preprocessing.
SHARC stripped SHARC

Prepro Query Prepro Query
time space #settled time time space #settled time

c [h:m] [B/n] nodes [ms] [h:m] [B/n] nodes [ms]

0.50 7:32 13.8 10 876 3.38 7:48 7.8 14 697 4.76

0.75 4:29 14.3 5 420 1.99 4:43 7.7 62 303 26.03

1.00 1:45 15.1 1 997 0.90 2:03 7.5 1 891 320 1 096.48

mization but turn on path-expansion. It turns out that stripped SHARC requires
a smaller contraction rate during preprocessing than normal SHARC. A contrac-
tion rate of 1.0 already yields very bad query performance for the stripped variant.
However, applying a contraction rate of 0.5, the gap between normal and stripped
SHARC almost closes. The disadvantage of such a low contraction rate is pre-
processing time: it increases to almost 8 hours. However, as already mentioned,
stripped SHARC should mainly be used in scenarios with limited memory, e.g.,
PDAs. Hence, preprocessing would be done once on a server and the preprocessed
data would then be transfered to a PDA.

5.2 Static Environment

We continue our experimental evaluation with various tests for the static scenario.
We hereby focus on road networks but also evaluate graphs derived from timetable
information systems and synthetic datasets that have been evaluated in [Bauer
et al. 2007a].

5.2.1 Road Networks. As inputs we again use the largest strongly connected
component of the road network of Western Europe. Moreover, we use the US road
network which is taken from the DIMACS homepage [Demetrescu et al. 2006].
It has approximately 23.9 million nodes and 58.3 million edges and edge lengths
correspond to travel times.

Random Queries. Table V reports the results of our different SHARC-variants
(cf. Section 5.1) compared to the most prominent speed-up techniques. More
precisely, we report the results of our economical, generous, and stripped version
of SHARC compared to Highway Hierarchies (results taken from [Schultes 2008]),
Contraction Hierarchies [Geisberger et al. 2008], REAL [Goldberg et al. 2007]. Arc-
Flags [Hilger 2007], CHASE [Bauer et al. 2008], and Transit Node Routing [Geis-
berger et al. 2008]. In addition, we report the results of bidirectional SHARC which
uses bidirectional search in connection with a 2-level partition (16 cells per supercell
at level 0, 112 at level 1).

We observe excellent query times for SHARC in general. Interestingly, SHARC
has a lower preprocessing time for the US than for Europe but for the price of worse
query performance. This is due to the fact that the average hop number of shortest
paths are bigger for the US than for Europe. However, the number of boundary
nodes is smaller for the US yielding lower preprocessing effort. The bidirectional
variant of SHARC has a more extensive preprocessing: both time and additional
space increase, which is due to computing and storing forward and backward arc-
flags. Comparing query performance, bidirectional SHARC is clearly superior to
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the unidirectional variant. This is due to the known disadvantages of uni-directional
Arc-Flags: the coning effect and no arc-flag information as soon as the search enters
the target cell (cf. Section 2 for details). The stripped variant is more than one
order of magnitude slower than SHARC with shortcuts, and preprocessing times are
higher. However, the strength of this approach is its easy adaptability to existing
routing implementation. Still, stripped SHARC is about three orders of magnitude
faster than plain Dijkstra.

Table V. Performance of different SHARC variants and the most prominent speed-up techniques
on the European and US road network with travel times. Prepro shows the computation time

of the preprocessing in hours and minutes and the eventual additional bytes per node needed

for the preprocessed data. For queries, the search space is given in the number of settled nodes,
execution times are given in microseconds. Note that other techniques have been evaluated on

slightly different computers.
Europe USA

Prepro Query Prepro Query

time space #settled time.0 time space #settled time.0

[h:m] [B/n] nodes [µs].0 [h:m] [B/n] nodes [µs].0

generous SHARC 1:21 14.5 654 290.0 0:58 18.1 865 376.0
economical SHARC 0:34 13.7 784 355.0 0:38 17.2 1 230 578.0

stripped SHARC 7:48 7.8 14 697 4 762.0 6:41 9.2 38 817 12 719.0

bidirectional SHARC 2:38 21.0 125 65.0 2:34 23.1 254 118.0

Highway Hierarchies 0:19 48.0 709 610.0 0:17 34.0 925 670.0
Contraction Hierarchies 0:32 -3.0 359 154.0 0:27 -2.3 278 132.0

REAL-(64,16) 2:21 32.0 679 1 110.0 2:01 43.0 540 1 050.0

Arc-Flags 17:08 18.9 2 369 1 600.0 10:10 9.9 8 180 4 300.0
CHASE (Arc-Flags+CH) 1:39 12.0 45 17.0 3:48 11.0 49 19.0

Transit Node 2:44 251.0 NA 3.4 1:30 220.0 NA 3.0

Comparing SHARC with other techniques, we observe that SHARC can compete
with almost all bidirectional approaches. Unidirectional SHARC is only surpassed
by Contraction Hierarchies(CH), CHASE (a combination of CH and Arc-Flags),
and Transit Node Routing. However, the latter requires much more space than
SHARC, and the other approaches cannot be used in a unidirectional manner eas-
ily. Bidirectional SHARC is faster than CH, but slower than CHASE. SHARC
and CHASE are similar to each other, both exploit hierarchical properties of the
network by contraction and goal-direction by arc-flags. However, CHASE focuses
on hierarchical properties, SHARC on goal-direction. It seems as if in this setup,
CHASE is superior due to its more sophisticated hierarchical properties.

Interestingly, for Europe, SHARC settles roughly the same number of nodes as
Highway Hierarchies or REAL, but query times are smaller. This is due to the
very low computational overhead of SHARC. Regarding preprocessing, SHARC
uses less space than REAL or Highway Hierarchies. The computation time of
the preprocessing is similar to REAL but longer than for Highway Hierarchies.
The bidirectional variant uses more space and has longer preprocessing times, but
the performance of the query is very good. Compared to the Arc-Flags, SHARC
significantely reduces preprocessing time and query performance is better.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 7. Comparison of generous, economical, and bidirectional SHARC using the Dijkstra rank

methodology. The results are represented as box-and-whisker plot: each box spreads from the
lower to the upper quartile and contains the median, the whiskers extend to the minimum and

maximum value omitting outliers, which are plotted individually.

Local Queries. Figure 7 reports the query times of generous, economical, and
bidirectional SHARC with respect to the Dijkstra rank. For an s-t query, the Di-
jkstra rank of node v is the number of nodes removed from the priority queue by
Dijkstra’s algorithm before v is removed. Thus, it is a kind of distance mea-
sure. As input we again use the European road network instance. Note that we
use a logarithmic scale. Both economical and generous SHARC get slower with
increasing rank but the median stays below 0.4 ms for the economical variant. The
corresponding figure for the generous variant is 0.23 ms. We observe that the gap
between both unidirectional variants is almost the same for all ranks. Comparing
uni- and bidirectional SHARC, we observe that the former is faster for low-range
queries while the latter wins for long-range queries. This is mainly due to the lower
number of levels of the bidirectional setup: query times increase up to ranks of 213

which is roughly the size of cells at the lowest level. Above this rank query times
decrease and increase again till the size of cells at level 1 is reached. As we use
more levels in a unidirectional setup, this effect deriving from the partition can-
not be observed for the unidirectional variant. Comparing uni- and bidirectional
SHARC we observe more outliers for the latter which is mainly due to less levels.
Still, all outliers are below 5.2 ms.

Multi-Metric Queries. The original dataset of Western Europe contains 13 differ-
ent road categories. By applying different speed profiles to the categories we obtain
different metrics. Table VI gives an overview of the performance of (economical)
SHARC when applied to metrics representing typical average speeds of slow/fast
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Table VI. Performance of SHARC on different metrics using the European road instance. Multi-

metric refers to the variant with one arc-flag and three edge weights (one weight per metric) per

edge, while single refers to running SHARC on the applied metric.
linear fast car slow car

Prepro Query Prepro Query Prepro Query

metric time space #sett. time time space #sett. time time space #sett. time
[h:m] [B/n] nodes [µs] [h:m] [B/n] nodes [µs] [h:m] [B/n] nodes [µs]

single 0:34 13 784 355 0:28 14 804 364 0:35 13 779 349
multi 1:38 16 976 469 1:38 16 964 464 1:38 16 948 455

cars. Moreover, we report results for the linear profile which is most often used in
other publications and is obtained by assigning average speeds of 10, 20, . . . , 130 to
the 13 categories. Finally, results are given for multi-metric SHARC, which stores
only one arc-flag for each edge.

As expected, SHARC performs very well on other metrics based on travel times.
Strikingly, the loss in performance is only very little when storing only one arc-flag
for all three metrics. However, the overhead increases due to storing more edge
weights for shortcuts and the size of the arc-flags vector increases slightly. Due to
the fact that we have to compute arc-flags for all metrics during preprocessing, the
computational effort increases.

5.2.2 Timetable Information Networks. Unlike former bidirectional approaches,
SHARC-Routing can be used for timetable information. In general, two approaches
exist to model timetable information as graphs: time-dependent and time-expanded
networks (cf. [Pyrga et al. 2007] for details). In such networks timetable information
can be obtained by running a shortest path query. However, in both models a back-
ward search is prohibited as the time of arrival is unknown in advance. Table VII
reports the results of SHARC on 2 time-expanded networks: The first represents
the local traffic of Berlin/Brandenburg, has 2 599 953 nodes and 3 899 807 edges, the
other graph depicts long distance connections of Europe (1 192 736 nodes, 1 789 088
edges). The networks are based on real-world data provided by HAFAS AG for
scientific use. For comparison, we also report results for plain Dijkstra.

Table VII. Performance of plain Dijkstra and SHARC on a local and long-distance time-expanded

timetable networks, unit disk graphs (udg) with average degree 5 and 7, and grid graphs with 2
and 3 number of dimensions. Due to the smaller size of the input, we use a 2-level partition with

16,112 cells.
Prepro Query Prepro Query

time space edge #settled time time space edge #settled time

[h:m] [B/n] inc. nodes [ms] [h:m] [B/n] inc. nodes [ms]

railways local traffic long distance

Dijkstra 0:00 0 0.0% 1 299 830 406.2 0:00 0 0.0% 609 352 221.2
SHARC 10:02 9 24.5% 11 006 3.8 3:29 15 18.5% 7 519 2.2

unit disk average deg. 5 average deg. 7

Dijkstra 0:00 0 0.0% 487 818 257.3 0:00 0 0.0% 521 874 330.1

SHARC 0:01 16 3.1% 568 0.3 0:10 42 16.7% 1 835 1.0

grids 2 dimensional 3 dimensional

Dijkstra 0:00 0 0.0% 125 675 36.7 0:00 0 0.0% 125 398 78.6
SHARC 0:32 60 55.9% 1 089 0.4 1:02 97 35.7% 5 839 1.9
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For time-expanded railway graphs we observe an increase in performance of fac-
tor 100 over plain Dijkstra but preprocessing is still quite high which is mainly
due to the partition. The number of boundary nodes is very high yielding high pre-
processing times. However, compared to other techniques (see [Bauer et al. 2007a])
SHARC (clearly) outperforms any other technique when applied to timetable in-
formation system.

5.2.3 Other inputs. In order to show the robustness of SHARC-Routing we
also present results on synthetic data. On the one hand, 2- and 3-dimensional
grids [Goldberg et al. 2006] are evaluated. The number of nodes is set to 250 000,
and thus, the number of edges is 1 and 1.5 million, respectively. Edge weights
are picked uniformly at random from 1 to 1000. On the other hand, we evaluate
random geometric graphs—so called unit disk graphs—which are widely used for
experimental evaluations in the field of sensor networks. Such graphs are obtained
by arranging nodes uniformly at random on the plane and connecting nodes with a
distance below a given threshold. By applying different threshold values we vary the
density of the graph. In our setup, we use graphs with about 1 000 000 nodes and
an average degree of 5 and 7, respectively. As metric, we use the distance between
nodes according to their embedding. The results can be found in Table VII.

We observe that SHARC provides very good results for all inputs. For unit disk
graphs, performance gets worse with increasing degree as the graph gets denser.
The same holds for grid graphs when increasing the number of dimensions.

5.3 Time-Dependency

Our final testset is performed on a time-dependent variant of the European road
network instance. Note that these tests were conducted before the publication
of [Delling 2008]. The implementation these results are based on is clearly inferior
to the one used in [Delling 2008]: we here cannot bypass nodes incident to time-
dependent edges and evaluating travel times is more time-consuming. However, the
variant presented here was the first efficient approach to time-dependent routing.
Hence, these results are interesting from a historical point of view.

Setup. We interpret the initial values as empty roads and add transit times ac-
cording to rush hours. Due to the lack of data we increase all motorways by a
factor of two and all national roads by a factor of 1.5 during rush hours. Our model
is inspired by [Flinsenberg 2004]. Our time-dependent implementation assigns 24
different weights to edges, each representing the edge weight at one hour of the
day. Between two full hours, we interpolate the real edge weight linearly. An easy
approach would be to store 24 edge weights separately. As this consumes a lot
of memory, we reduce this overhead by storing factors for each hour between 5:00
and 22:00 of the day and the edge weight representing the empty road. Then we
compute the travel time of the day by multiplying the initial edge weight with the
factor (afterwards, we still have to interpolate). For each factor at the day, we store
7 bits resulting in 128 additional bits for each time-dependent edge. Note that we
assume that roads are empty between 23:00 and 4:00.

Time-Dependent Contraction. Another problem for time-dependency is shortcut-
ting time-dependent edges. We avoid this problem by not bypassing nodes which
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are incident to a time-dependent edge which has the advantage that the space-
overhead for additional shortcuts stays small.

Random Queries. Table VIII shows the performance of γ-SHARC for different
approximation values. Like in the static scenario we use our default settings. For
comparison, the values of time-dependent Dijkstra and ALT are also given. As
we perform approximative SHARC-queries, we report three types of errors: By
error-rate we denote the percentage of inaccurate queries. Besides the number of
inaccurate queries it is also important to know the quality of a found path. Thus,
we report the maximum and average relative error of all queries, computed by
1−µs/µD, where µs and µD depict the lengths of the paths found by SHARC and
plain Dijkstra, respectively.

Table VIII. Performance of the time-dependent versions of Dijkstra, ALT, and SHARC on the
Western European road network with time-dependent edge weights. For ALT, we use 16 avoid

landmarks.
error Prepro Query

γ rate rel. avg. rel. max [h:m] [B/n] #settled [ms]

Dijkstra - 0.0% 0.000% 0.00% 0:00 0 9 016 965 8 890.1

SHARC 1.000 61.5% 0.242% 15.90% 2:51 13 9 804 3.8

1.005 39.9% 0.096% 15.90% 2:53 13 113 993 61.2
1.010 32.9% 0.046% 15.90% 2:51 13 221 074 131.3
1.020 29.5% 0.024% 14.37% 2:50 13 285 971 182.7

1.050 27.4% 0.013% 2.19% 2:51 13 312 593 210.9
1.100 26.5% 0.009% 0.56% 2:52 12 321 501 220.8

We observe that using γ values higher than 1.0 drastically reduces query per-
formance. While error-rates are quite high for low γ values, the relative error is
still quite low. Thus, the quality of the computed paths is good, although in the
worst-case the found path is 15.9% longer than the shortest. However, by increas-
ing γ we are able to reduce the error-rate and the relative error significantely: The
error-rate drops below 27%, the average error is below 0.01%, and in worst case the
found path is only 0.56% longer than optimal. Generally speaking, SHARC routing
allows a trade-off between quality and performance. Allowing moderate errors, we
are able to perform queries 2 000 times faster than plain Dijkstra, while queries
are still 40 times faster when allowing only very small errors.

Comparison. Comparing the figures from Tab. VIII to the values published for
the exact variant [Delling 2008], we notice that approximate SHARC is clearly
inferior to the new exact variant. Only for γ = 1.000, queries are faster but for the
price of correctness.

6. CONCLUSION

In this work, we introduced SHARC-Routing which combines several ideas from
Highway Hierarchies, Arc-Flags, and the REAL-algorithm. More precisely, our
approach can be interpreted as a unidirectional hierarchical approach: SHARC
steps up the hierarchy at the beginning of the query, runs a strongly goal-directed
query on the highest level and automatically steps down the hierarchy as soon as the
search is approaching the target cell. As a result we are able to perform queries as
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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fast as bidirectional approaches but SHARC can be used in scenarios where former
techniques fail due to their bidirectional nature. Due to the unidirectional nature
of SHARC, this technique was a promising starting point for the development of
an exact time-dependent speed-up technique [Delling 2008]. Besides [Batz et al.
2009], time-dependent SHARC is currently the best speed-up technique for time-
dependent route planning.

Regarding future work, it would be interesting to compute reach values [Gutman
2004] with SHARC. In [Goldberg et al. 2007], an algorithm is introduced for com-
puting exact reach values which is based on partitioning the graph. As our pruning
rule would also hold for reach values, we are optimistic that we can compute exact
reach values for our output graph with our SHARC preprocessing. SHARC-Routing
itself also leaves room for improvement. The pruning rule could be enhanced in
such a way that we can prune all cells. Moreover, it would be interesting to find
better additional shortcuts. Another interesting question arising is whether we can
adapt the contraction routine from [Geisberger et al. 2008] to SHARC. And finally,
finding partitions optimized for SHARC is an interesting question as well.

APPENDIX

A. PROOF OF CORRECTNESS

We here present a proof of correctness for SHARC-Routing. SHARC directly adapts
the query from Arc-Flags, which is proved to be correct. Hence, we only have to
show the correctness for all techniques that are used for SHARC-Routing but not
for Arc-Flags.

The proof is logically split into two parts. First, we prove the correctness of
the preprocessing without the refinement phase. Afterwards, we show that the
refinement phase is correct as well.

A.1 Initialization and Main Phase

We denote by Gi the graph after iteration step i, i = 1, . . . , L − 1. By G0 we
denote the graph directly before iteration step 1 starts. The level l(u) of a node u
is defined to be the integer i such that u is contained in Gi−1 but not in Gi. We
further define the level of a node contained in GL−1 to be L.

The correctness of the multi-level arc-flag approach is known. The correctness of
handling 1-shell nodes is due to the fact that a shortest path starting from or ending
at a 1-shell node u is either completely included in the attached tree T in which
also u is contained, or has to leave or enter T via the corresponding core-node.

We want to stress that, when computing arc-flags, shortest paths do not have to
be unique. Recall how SHARC handles that: In each level l < L − 1 all shortest
paths are considered, i.e., a shortest path directed acyclic graph is grown instead
of a shortest paths tree and a flag for a cell C and an edge (u, v) is set true, if
at least one shortest path to C containing (u, v) exists. In level L − 1, all hop
minimal shortest paths are considered, i.e., a flag for a cell C and an edge (u, v)
is set true, if at least one shortest path to C containing (u, v) exists that is hop
minimal among all shortest paths with same source and target. We observe that
the distances between two arbitrary nodes u and v are the same in the graph G0

and
⋃i

k=0Gk for any i = 1, . . . , L− 1.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Hence, in order to proof the correctness of unidirectional SHARC-Routing with-
out the refinement phase and without 1-shell nodes we additionally have to proof
the following lemma:

Lemma A.1. Given arbitrary nodes s and t in G0, for which there is a path from
s to t in G0. At each step i of the SHARC-preprocessing there exists a shortest s-
t-path P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3), j1, j2, j3 ∈ N0, in

⋃i
k=0Gk, such

that

—the nodes v1, . . . , vj1 and w1, . . . , wj3 have level of at most i,
—the nodes u1, . . . , uj2 have level of at least i+ 1
—uj2 and t are in the same cell at level i
—for each edge e of P , the arc-flags assigned to e until step i allow the path P to
t.

We use the convention that jk = 0, k ∈ {1, 2, 3} means that the according subpath
is void.

The lemma guarantees that, at each iteration step, arc-flags are set properly.
The correctness of the bidirectional variant follows from the observation that a
hop-minimal shortest path on a graph is also a hop-minimal shortest path on the
transpose graph.

Proof. We show the claim by induction on the iteration steps. The claim holds
trivially for i = 0. The inductive step works as follows: Assume the claim holds
for step i. Given arbitrary nodes s and t, for which there is a path from s to t in
G0. We denote by P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3) the s-t-path according
to the lemma for step i.

The iteration step i+1 consists of the contraction phase, the insertion of boundary
shortcuts in case i + 1 = L − 1, the arc-flag computation and the pruning phase.
We consider the phases one after another:

After the Contraction Phase. There exists a maximal path (u`1 , u`2 , . . . , u`d
) with

1 ≤ `1,≤ . . . ≤ `d ≤ k for which

—for each f = 1, . . . , d−1 either `f +1 = `f+1 or the subpaths (u`f
, u`f +1, . . . u`f+1)

have been replaced by a shortcut,
—the nodes u1, . . . , u`1−1 have been deleted, if `1 6= 1 and
—the nodes u`d+1, . . . , uk have been deleted, if `d 6= k.

By the construction of the contraction routine we know

—(u`1 , u`2 , . . . , u`d
) is also a shortest path

—u`d
is in the same component as uk in all levels greater than i (because of cell

aware contraction)
—the deleted edges in (u1, . . . , u`1−1) either already have their arc-flags for the path
P assigned. Then the arc-flags are correct because of the inductive hypothesis.
Otherwise, We know that the nodes u1, . . . , u`1−1 are in the component. Hence,
all arc-flags for all higher levels are assigned true.
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—the deleted edges in (u`d+1, . . . , uk) either already have their arc-flags for the
path P assigned, then arc-flags are correct because of the inductive hypothesis.
Otherwise, by cell-aware contraction we know that u`d+1, . . . , uk are in the same
component as t for all levels at least i. As the own-cell flag always is set true for
deleted edges the path stays valid.

As distances do not change during preprocessing we know that, for arbitrary i,
0 ≤ i ≤ L−1 a shortest path in Gi is also a shortest path in

⋃L−1
k=0 Gk. Concluding,

the path P̂ = (v1, . . . , vj1 , u1, . . . , u`1−1; u`1 , u`2 , . . . , u`d
; u`d+1, . . . , uk, w1, . . . , wj3)

fullfills all claims of the lemma for iteration step i+ 1.

After Insertion of Boundary Shortcuts. Here, the claim holds trivially.

After Arc-Flags Computation. Here, the claim also holds trivially.

After Pruning. We consider the path P̂ obtained from the contraction step. Let
(ulr , ulr+1) be an edge of P̂ deleted in the pruning step, for which ulr is not in the
same cell as uld at level i + 1. As there exists a shortest path to uld not only the
own-cell flag of (ulr , ulr+1) is set, which is a contradiction to the assumption that
(ulr , ulr+1) has been deleted in the pruning step.

Furthermore, let (ulz , ulz+1) be an edge of P deleted in the pruning step. Then,
all edges on P after (ulz , ulz+1) are also deleted in that step. Summarizing, if
no edge on P̂ is deleted in the pruning step, then P̂ fullfills all claims of the
lemma for iteration step i + 1. Otherwise, the path (v1, . . . , vj1 , u1, . . . , u`1−1;
u`1 , u`2 , . . . ;ulk , . . . , u`d

, u`d+1, . . . , uk, w1, . . . , wj3) fullfills all claims of the lemma
for iteration step i+ 1 where ulk , ulk+1 is the first edge on P that has been deleted
in the pruning step.

Summarizing, Lemma A.1 holds during all phases of all iteration steps of SHARC-
preprocessing. So, the preprocessing algorithm (without the refinement phase) is
correct.

A.2 Refinement Phase

Recall that the own-cell flag does not get altered by the refinement routine. Hence,
we only have to consider flags for other cells. Assume we perform the propagation
routine at a level l to a level l node s.

A path P from s to a node t in another cell on level ≥ l needs to contain a
level > l node that is in the same cell as u because of the cell-aware contraction.
Moreover, with iterated application of Lemma A.1 we know that there must be
an (arc-flag valid) shortest s-t-path P for which the sequence of the levels of the
nodes first is monotonically ascending and then monotonically descending. In fact,
to cross a border of the current cell at level l, at least two level > l nodes are on
P . We consider the first level > l node u1 on P . This must be an exit node of
s. The node u2 after u1 on P is covered and therefore no exit node. Furthermore,
it is of level > l. Hence, the flags of the edge (u1, u2) are propagated to the first
edge on P and the claim holds which proves that the refinement phase is correct.
Together with Lemma A.1 and the correctness of the multi-level Arc-Flags query,
SHARC-Routing is correct.
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