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Abstract
During the last years, impressive speed-up techniques for
Dijkstra’s algorithm have been developed. Unfortunately,
the most advanced techniques use bidirectional search which
makes it hard to use them in scenarios where a back-
ward search is prohibited. Even worse, such scenarios are
widely spread, e.g., timetable-information systems or time-
dependent networks.

In this work, we present a unidirectional speed-up tech-

nique which competes with bidirectional approaches. More-

over, we show how to exploit the advantage of unidirectional

routing for fast exact queries in timetable information sys-

tems and for fast approximative queries in time-dependent

scenarios. By running experiments on several inputs other

than road networks, we show that our approach is very ro-

bust to the input.

1 Introduction

Computing shortest paths in graphs is used in many
real-world applications like route planning in road net-
works, timetable information for railways, or schedul-
ing for airplanes. In general, Dijkstra’s algorithm [10]
finds a shortest path between a given source s and tar-
get t. Unfortunately, the algorithm is far too slow to
be used on huge datasets. Thus, several speed-up tech-
niques have been developed (see [33, 29] for an overview)
yielding faster query times for typical instances, e.g.,
road or railway networks. Due to the availability of huge
road networks, recent research on shortest paths speed-
up techniques solely concentrated on those networks [9].
The fastest known techniques [5, 1] were developed for
road networks and use specific properties of those net-
works in order to gain their enormous speed-ups.

However, these techniques perform a bidirectional
query or at least need to know the exact target node of a
query. In general, these hierarchical techniques step up
a hierarchy—built during preprocessing—starting both
from source and target and perform a fast query on a
very small graph. Unfortunately, in certain scenarios a
backward search is prohibited, e.g. in timetable infor-
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mation systems and time-dependent graphs the time of
arrival is unknown. One option would be to guess the
arrival time and then to adjust the arrival time after for-
ward and backward search have met. Another option is
to develop a fast unidirectional algorithm.

In this work, we introduce SHARC-Routing, a fast
and robust approach for unidirectional routing in large
networks. The central idea of SHARC (Shortcuts +
Arc-Flags) is the adaptation of techniques developed for
Highway Hierarchies [28] to Arc-Flags [21, 22, 23, 18].
In general, SHARC-Routing iteratively constructs a
contraction-based hierarchy during preprocessing and
automatically sets arc-flags for edges removed during
contraction. More precisely, arc-flags are set in such a
way that a unidirectional query considers these removed
component-edges only at the beginning and the end of a
query. As a result, we are able to route very efficiently
in scenarios where other techniques fail due to their
bidirectional nature. By using approximative arc-flags
we are able to route very efficiently in time-dependent
networks, increasing performance by one order of mag-
nitude over previous time-dependent approaches. Fur-
thermore, SHARC allows to perform very fast queries—
without updating the preprocessing—in scenarios where
metrics are changed frequently, e.g. different speed pro-
files for fast and slow cars. In case a user needs even
faster query times, our approach can also be used as
a bidirectional algorithm that outperforms the most
prominent techniques (see Figure 1 for an example on a
typical search space of uni- and bidirectional SHARC).
Only Transit-Node Routing is faster than this variant of
SHARC, but SHARC needs considerably less space. A
side-effect of SHARC is that preprocessing takes much
less time than for pure Arc-Flags.

Related Work. To our best knowledge, three ap-
proaches exist that iteratively contract and prune the
graph during preprocessing. This idea was introduced
in [27]. First, the graph is contracted and afterwards
partial trees are built in order to determine highway
edges. Non-highway edges are removed from the graph.
The contraction was significantly enhanced in [28] re-
ducing preprocessing and query times drastically. The
RE algorithm, introduced in [14, 15], also uses the con-
traction from [28] but pruning is based on reach values



Figure 1: Search space of a typical uni-(left) and bidirectional(right) SHARC-query. The source of the query is
the upper flag, the target the lower one. Relaxed edges are drawn in black. The shortest path is drawn thicker.
Note that the bidirectional query only relaxes shortest-path edges.

for edges. A technique relying on contraction as well
is Highway-Node Routing [31], which combines several
ideas from other speed-up techniques. All those tech-
niques build a hierarchy during the preprocessing and
the query exploits this hierarchy. Moreover, these tech-
niques gain their impressive speed-ups from using a bidi-
rectional query, which—among other problems—makes
it hard to use them in time-dependent graphs. Up to
now, solely pure ALT [13] has been proven to work in
such graphs [7]. Moreover, REAL [14, 15]—a combina-
tion of RE and ALT—can be used in a unidirectional
sense but still, the exact target node has to be known
for ALT, which is unknown in timetable information
systems (cf. [26] for details).

Similar to Arc-Flags [21, 22, 23, 18], Geometric
Containers [34] attaches a label to each edge indicating
whether this edge is important for the current query.
However, Geometric Containers has a worse perfor-
mance than Arc-Flags and preprocessing is based on
computing a full shortest path tree from every node
within the graph. For more details on classic Arc-Flags,
see Section 2.

Overview. This paper is organized as follows. Sec-
tion 2 introduces basic definitions and reviews the clas-
sic Arc-Flag approach. Preprocessing and the query al-

gorithm of our SHARC approach are presented in Sec-
tion 3, while Section 4 shows how SHARC can be used
in time-dependent scenarios. Our experimental study
on real-world and synthetic datasets is located in Sec-
tion 5 showing the excellent performance of SHARC on
various instances. Our work is concluded by a summary
and possible future work in Section 6.

2 Preliminaries

Throughout the whole work we restrict ourselves to
simple, directed graphs G = (V,E) with positive length
function len : E → R

+. The reverse graph G = (V,E)
is the graph obtained from G by substituting each
(u, v) ∈ E by (v, u). Given a set of edges H, source(H)
/ target(H) denotes the set of all source / target nodes
of edges in H. With degin(v) / degout(v) we denote the
number of edges whose target / source node is v. The 2-
core of an undirected graph is the maximal node induced
subgraph of minimum node degree 2. The 2-core of a
directed graph is the 2-core of the corresponding simple,
unweighted, undirected graph. A tree on a graph for
which exactly the root lies in the 2-core is called an
attached tree.

A partition of V is a family C = {C0, C1, . . . , Ck} of
sets Ci ⊆ V such that each node v ∈ V is contained
in exactly one set Ci. An element of a partition is



called a cell. A multilevel partition of V is a family of
partitions {C0, C1, . . . , Cl} such that for each i < l and
each Ci

n ∈ Ci a cell Ci+1
m ∈ Ci+1 exists with Ci

n ⊆ Ci+1
m .

In that case the cell Ci+1
m is called the supercell of Ci

n.
The supercell of a level-l cell is V . The boundary nodes
BC of a cell C are all nodes u ∈ C for which at least one
node v ∈ V \C exists such that (v, u) ∈ E or (u, v) ∈ E.
The distance according to len between two nodes u and
v we denote by d(u, v).

Classic Arc-Flags. The classic Arc-Flag approach,
introduced in [21, 22], first computes a partition C of
the graph and then attaches a label to each edge e.
A label contains, for each cell Ci ∈ C, a flag AFCi

(e)
which is true iff a shortest path to a node in Ci starts
with e. A modified Dijkstra then only considers those
edges for which the flag of the target node’s cell is true.
The big advantage of this approach is its easy query
algorithm. Furthermore an Arc-Flags Dijkstra often
is optimal in the sense that it only visits those edges
that are on the shortest path. However, preprocessing
is very extensive, either regarding preprocessing time or
memory consumption. The original approach grows a
full shortest path tree from each boundary node yielding
preprocessing times of several weeks for instances like
the Western European road network. Recently, a new
centralized approach has been introduced [17]. It grows
a centralized tree from each cell keeping the distances
to all boundary nodes of this cell in memory. This
approach allows to preprocess the Western European
road network within one day but for the price of high
memory consumption during preprocessing.

Note that AFCi(e) is true for almost all edges
e ∈ Ci (we call this flags the own-cell -flag). Due to these
own-cell-flags an Arc-Flags Dijkstra yields no speed-
up for queries within the same cell. Even worse, using
a unidirectional query, more and more edges become
important when approaching the target cell (the coning
effect) and finally, all edges are considered as soon as the
search enters the target cell. While the coning effect
can be weakened by a bidirectional query, the former
also holds for such queries. Thus, a two-level approach
is introduced in [23] which weakens these drawbacks
as cells become quite small on the lower level. It is
obvious that this approach can be extended to a multi-
level approach.

3 Static SHARC

In this section, we explain SHARC-Routing in static sce-
narios, i.e., the graph remains untouched between two
queries. In general, the SHARC query is a standard
multi-level Arc-Flags Dijkstra, while the preprocess-
ing incorporates ideas from hierarchical approaches.

3.1 Preprocessing of SHARC is similar to Highway
Hierarchies and REAL. During the initialization phase,
we extract the 2-core of the graph and perform a multi-
level partition of G according to an input parameter P .
The number of levels L is an input parameter as well.
Then, an iterative process starts. At each step i we
first contract the graph by bypassing unimportant nodes
and set the arc-flags automatically for each removed
edge. On the contracted graph we compute the arc-
flags of level i by growing a partial centralized shortest-
path tree from each cell Ci

j . At the end of each
step we prune the input by detecting those edges
that already have their final arc-flags assigned. In
the finalization phase, we assemble the output-graph,
refine arc-flags of edges removed during contraction
and finally reattach the 1-shell nodes removed at the
beginning. Figure 2 shows a scheme of the SHARC-
preprocessing. In the following we explain each phase
separately. We hereby restrict ourselves to arc-flags
for the unidirectional variant of SHARC. However,
the extension to computing bidirectional arc-flags is
straight-forward.

3.1.1 1-Shell Nodes. First of all, we extract the
2-core of the graph as we can directly assign correct
arc-flags to attached trees that are fully contained in a
cell: Each edge targeting the core gets all flags assigned
true while those directing away from the core only
get their own-cell flag set true. By removing 1-shell
nodes before computing the partition we ensure the
“fully contained” property by assigning all nodes in an
attached tree to the cell of its root. After the last step
of our preprocessing we simply reattach the nodes and
edges of the 1-shell to the output graph.

3.1.2 Multi-Level Partition. As shown in [23], the
classic Arc-Flag method heavily depends on the par-
tition used. The same holds for SHARC. In order to
achieve good speed-ups, several requirements have to
be fulfilled: cells should be connected, the size of cells
should be balanced, and the number of boundary nodes
has to be low. In this work, we use a locally optimized
partition obtained from SCOTCH [25]. For details, see
Section 5. The number of levels L and the number of
cells per level are tuning-parameters.

3.1.3 Contraction. The graph is contracted by it-
eratively bypassing nodes until no node is bypassable
any more. To bypass a node n we first remove n, its
incoming edges I and its outgoing edges O from the
graph. Then, for each u ∈ source(I) and for each
v ∈ target(I) \ {u} we introduce a new edge of the
length len(u, n) + len(n, v). If there already is an edge
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Figure 2: Schematic representation of the preprocess-
ing. Input parameters are the partition parameters P ,
the number of levels L, and the contraction parame-
ter c. During initialization, we remove the 1-shell nodes
and partition the graph. Afterwards, an iterative pro-
cess starts which contracts the graph, sets arc-flags, and
prunes the graph. Moreover, during the last iteration
step, boundary shortcuts are added to the graph. Dur-
ing the finalization, we construct the output-graph, re-
fine arc-flags and reattach the 1-shell nodes to the graph.

connecting u and v in the graph, we only keep the one
with smaller length. We call the number of edges of
the path that a shortcut represents on the graph at the
beginning of the current iteration step the hop number
of the shortcut. To check whether a node is bypassable
we first determine the number #shortcut of new edges
that would be inserted into the graph if n is bypassed,
i.e., existing edges connecting nodes in source(I) with
nodes in target(O) do not contribute to #shortcut.
Then we say a node is bypassable iff the bypass criterion
#shortcut ≤ c · (degin(n)+degout(n)) is fulfilled, where
c is a tunable contraction parameter.

A node being bypassed influences the degree of their
neighbors and thus, their bypassability. Therefore, the
order in which nodes are bypassed changes the resulting
contracted graph. We use a heap to determine the next
bypassable node. The key of a node n within the heap
is h · #shortcut/(degin(n) + degout(n)) where h is the
hop number of the hop-maximal shortcut that would
be added if n was bypassed, smaller keys have higher
priority. To keep the length of shortcuts limited we do
not bypass a node if that results in adding a shortcut
with hop number greater than 10. We say that the nodes
that have been bypassed belong to the component, while
the remaining nodes are called core-nodes. In order
to guarantee correctness, we use cell-aware contraction,
i.e., a node n is never marked bypassable if any of its
neighboring nodes is not in the same cell as n.

Our contraction routine mainly follows the ideas
introduced in [28]. The idea to control the order, in
which the nodes are bypassed using a heap is due to
[14]. In addition, we slightly altered the bypassing
criterion, leading to significantely better results, e.g.
on the road network of Western Europe, our routine
bypasses twice the number of nodes with the same
contraction parameter. The main difference to [28] is
that we do not count existing edges for determining
#shortcut. Finally, the idea to bound the hop number
of a shortcut is due to [6].

3.1.4 Boundary-Shortcuts. During our study, we
observed that—at least for long-range queries on road
networks—a classic bidirected Arc-Flags Dijkstra of-
ten is optimal in the sense that it visits only the edges
on the shortest path between two nodes. However, such
shortest paths may become quite long in road networks.
One advantage of SHARC over classic Arc-Flags is that
the contraction routine reduces the number of hops of
shortest paths in the network yielding smaller search
spaces. In order to further reduce this hop number we
enrich the graph by additional shortcuts. In general
we could try any shortcuts as our preprocessing favors
paths with less hops over those with more hops, and



thus, added shortcuts are used for long range queries.
However, adding shortcuts crossing cell-borders can in-
crease the number of boundary nodes, and hence, in-
crease preprocessing time. Therefore, we use the fol-
lowing heuristic to determine good shortcuts: we add
boundary shortcuts between some boundary nodes be-
longing to the same cell C at level L − 1. In order
to keep the number of added edges small we compute
the betweenness [4] values cB of the boundary nodes on
the remaining core-graph. Each boundary node with a
betweenness value higher than half the maximum gets
3 ·

√
|BC | additional outgoing edges. The targets are

those boundary nodes with highest cB · h values, where
h is the number of hops of the added shortcut.

3.1.5 Arc-Flags. Our query algorithm is executed
on the original graph enhanced by shortcuts added
during the contraction phase. Thus, we have to assign
arc-flags to each edge we remove during the contraction
phase. One option would be to set every flag to true.
However, we can do better. First of all, we keep all arc-
flags that already have been computed for lower levels.
We set the arc-flags of the current and all higher levels
depending on the source node s of the deleted edge. If
s is a core node, we only set the own-cell flag to true
(and others to false) because this edge can only be
relevant for a query targeting a node in this cell. If s
belongs to the component, all arc-flags are set to true as
a query has to leave the component in order to reach a
node outside this cell. Finally, shortcuts get their own-
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Figure 3: Example for assigning arc-flags during con-
traction for a partition having four cells. All nodes are
in cell 3. The red nodes (4 and 5) are removed, the
dashed shortcuts are added by the contraction. Arc-
flags are indicated by a 1 for true and 0 for false. The
edges directing into the component get only their own-
cell flag set true. All edges in and out of the component
get full flags. The added shortcuts get their own-cell
flags fixed to false.

cell flag fixed to false as relaxing shortcuts when the
target cell is reached yields no speed-up. See Figure 3
for an example. As a result, an Arc-Flags query only
considers components at the beginning and the end of
a query. Moreover, we reduce the search space.

Assigning Arc-Flags to Core-Edges. After the
contraction phase and assigning arc-flags to removed
edges, we compute the arc-flags of the core-edges of
the current level i. As described in [17], we grow,
for each cell C, one centralized shortest path tree on
the reverse graph starting from every boundary node
n ∈ BC of C. We stop growing the tree as soon as all
nodes of C’s supercell have a distance to each b ∈ BC

greater than the smallest key in the priority queue used
by the centralized shortest path tree algorithm (see [17]
for details). For any edge e that is in the supercell of C
and that lies on a shortest path to at least one b ∈ BC ,
we set AF i

C(e) = true.
Note that the centralized approach sets arc-flags to

true for all possible shortest paths between two nodes.
In order to favor boundary shortcuts, we extend the
centralized approach by introducing a second matrix
that stores the number of hops to every boundary
node. With the help of this second matrix we are able
to assign true arc-flags only to hop-minimal shortest
paths. However, using a second matrix increases the
high memory consumption of the centralized approach
even further. Thus, we use this extension only during
the last iteration step where the core is small.

3.1.6 Pruning. After computing arc-flags at the cur-
rent level, we prune the input. We remove unimportant
edges from the graph by running two steps. First, we
identify prunable cells. A cell C is called prunable if
all neighboring cells are assigned to the same supercell.
Then we remove all edges from a prunable cell that have
at most their own-cell bit set. For those edges no flag
can be assigned true in higher levels as then at least
one flag for the surrounding cells must have been set
before.

3.1.7 Refinement of Arc-Flags. Our contraction
routine described above sets all flags to true for almost
all edges removed by our contraction routine. However,
we can do better: we are able to refine arc-flags by
propagation of arc-flags from higher to lower levels.
Before explaining our propagation routine we need the
notion of level. The level l(u) of a node u is determined
by the iteration step it is removed in from the graph. All
nodes removed during iteration step i belong to level i.
Those nodes which are part of the core-graph after the
last iteration step belong to level L. In the following,
we explain our propagation routine for a given node u.
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Figure 4: Example for refining the arc-flags of outgoing edges from node 4. The figure in the left shows the graph
from Figure 3 after the last iteration step. The figure on the right shows the result of our refinement routine
starting at node 4.

First, we build a partial shortest-path tree T start-
ing at u, not relaxing edges that target nodes on a level
smaller than l(u). We stop the growth as soon as all
nodes in the priority queue are covered. A node v is
called covered as soon as a node between u and v—with
respect to T—belongs to a level > l(u). After the termi-
nation of the growth we remove all covered nodes from
T resulting in a tree rooted at u and with leaves either
in l(u) or in a level higher than l(u). Those leaves of
the built tree belonging to a level higher than l(u) we
call entry nodes ~N(u) of u.

With this information we refine the arc-flags of all
edges outgoing from u. First, we set all flags—except
the own-cell flags—of all levels ≥ l(u) for all outgoing
edges from u to false. Next, we assign entry nodes to
outgoing edges from u. Starting at an entry node nE

we follow the predecessor in T until we finally end up in
a node x whose predecessor is u. The edge (u, x) now
inherits the flags from nE . Every edge outgoing from
nE whose target t is not an entry node of u and not in a
level < l(u) propagates all true flags of all levels ≥ l(u)
to (u, x).

In order to propagate flags from higher to lower
levels we perform our propagation-routine in L − 1 re-
finement steps, starting at level L−1 and in descending
order. Figure 4 gives an example. Note that during re-
finement step i we only refine arc-flags of edges outgoing
from nodes belonging to level i.

3.1.8 Output Graph. The output graph of the pre-
processing consists of the original graph enhanced by all
shortcuts that are in the contracted graph at the end of
at least one iteration step. Note that an edge (u, v)
may be contained in no shortest path because a shorter
path from u to v already exists. This especially holds
for the shortcuts we added to the graph. As a conse-
quence, such edges have no flag set true after the last

step. Thus, we can remove all edges from the output
graph with no flag set true. Furthermore the multi-
level partition and the computed arc-flags are given.

3.2 Query. Basically, our query is a multi-level Arc-
Flags Dijkstra adapted from the two-level Arc-Flags
Dijkstra presented in [23]. The query is a modified
Dijkstra that operates on the output graph. The
modifications are as follows: When settling a node n,
we compute the lowest level i on which n and the target
node t are in the same supercell. When relaxing the
edges outgoing from n, we consider only those edges
having a set arc-flag on level i for the corresponding
cell of t. It is proven that Arc-Flags performs correct
queries. However, as our preprocessing is different, we
have to prove Theorem 3.1.

Theorem 3.1. The distances computed by SHARC are
correct with respect to the original graph.

The proof can be found in Appendix A. We want
to point out that the SHARC query, compared to
plain Dijkstra, only needs to additionally compute the
common level of the current node and the target. Thus,
our query is very efficient with a much smaller overhead
compared to other hierarchical approaches. Note that
SHARC uses shortcuts which have to be unpacked for
determining the shortest path (if not only the distance
is queried). However, we can directly use the methods
from [6], as our contraction works similar to Highway
Hierarchies.

Multi-Metric Query. In [3], we observed that the
shortest path structure of a graph—as long as edge
weights somehow correspond to travel times—hardly
changes when we switch from one metric to another.
Thus, one might expect that arc-flags are similar to each
other for these metrics. We exploit this observation for
our multi-metric variant of SHARC. During preprocess-



ing, we compute arc-flags for all metrics and at the end
we store only one arc-flag per edge by setting a flag
true as soon as the flag is true for at least one metric.
An important precondition for multi-metric SHARC is
that we use the same partition for each metric. Note
that the structure of the core computed by our contrac-
tion routine is independent of the applied metric.

Optimizations. In order to improve both perfor-
mance and space efficiency, we use three optimizations.
Firstly, we increase locality by reordering nodes accord-
ing to the level they have been removed at from the
graph. As a consequence, the number of cache misses is
reduced yielding lower query times. Secondly, we check
before running a query, whether the target is in the
1-shell of the graph. If this check holds we do not re-
lax edges that target 1-shell nodes whenever we settle
a node being part of the 2-core. Finally, we store each
different arc-flag only once in a separate array. We as-
sign an additional pointer to each edge indicating the
correct arc-flags. This yields a lower space overhead.

4 Time-Dependent SHARC

Up to this point, we have shown how preprocessing
works in a static scenario. As our query is unidirectional
it seems promising to use SHARC in a time-dependent
scenario. The fastest known technique for such a
scenario is ALT yielding only mild speed-ups of factor
3-5. In this section we present how to perform queries
in time-dependent graphs with SHARC. In general, we
assume that a time-dependent network −→

G = (V,
−→
E )

derives from an independent network G = (V,E) by
increasing edge weights at certain times of the day. For
road networks these increases represent rush hours.

The idea is to compute approximative arc-flags
in G and to use these flags for routing in −→

G . In
order to compute approximative arc-flags, we relax our
criterion for setting arc-flags. Recall that for exact flags,
AFC((u, v)) is set true if d(u, b) + len(u, v) = d(v, b)
holds for at least one b ∈ BC . For γ-approximate
flags (indicated by AF ), we set AFC((u, v)) = true if
equation d(u, b)+ len(u, v) ≤ γ ·d(v, b) holds for at least
one b ∈ BC . Note that we only have to change this
criterion in order to compute approximative arc-flags
instead of exact ones by our preprocessing. However, we
do not add boundary shortcuts as this relaxed criterion
does not favor those shortcuts.

It is easy to see that there exists a trade-off between
performance and quality. Low γ-values yield low query
times but the error-rate may increase, while a large γ
reduces the error rate of γ-SHARC but yields worse
query performance, as much more edges are relaxed
during the query than necessary.

5 Experiments

In this section, we present an extensive experimental
evaluation of our SHARC-Routing approach. To this
end, we evaluate the performance of SHARC in various
scenarios and inputs. Our tests were executed on one
core of an AMD Opteron 2218 running SUSE Linux
10.1. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4.1, using optimization level 3.

Implementation Details. Our implementation is
written in C++ using solely the STL. As priority queue
we use a binary heap. Our graph is represented as
forward star implementation. As described in [30], we
have to store each edge twice if we want to iterate
efficiently over incoming and outgoing edges. Thus, the
authors propose to compress edges if target and length
of incoming and outgoing edges are equal. However,
SHARC allows an even simpler implementation. During
preprocessing we only operate on the reverse graph and
thus do not iterate over outgoing edges while during
the query we only iterate over outgoing edges. As
a consequence, we only have to store each edge once
(for preprocessing at its target, for the query at its
source). Thus, another advantage of our unidirectional
SHARC approach is that we can reduce the memory
consumption of the graph. Note that this does not
hold for our bidirectional SHARC variant which needs
considerably more space (cf. Tab. 1).

Multi-Level Partition. As already mentioned,
the performance of SHARC highly depends on the par-
tition of the graph. Up to now [2], we used METIS [20]
for partitioning a given graph. However, in our experi-
mental study we observed two downsides of METIS: On
the one hand, cells are sometimes disconnected and the
number of boundary nodes is quite high. Thus, we also
tested PARTY [24] and SCOTCH [25] for partitioning.
The former produces connected cells but for the price of
an even higher number of boundary nodes. SCOTCH
has the lowest number of boundary cells, but connec-
tivity of cells cannot be guaranteed. Due to this low
number of boundary nodes, we used SCOTCH and im-
prove the obtained partitioning by adding smaller pieces
of disconnected cells to neighbor cells. As a result, con-
structing and optimizing a partition can be done in less
than 3 minutes for all inputs used.

Default Setting. Unless otherwise stated, we use
a unidirectional variant of SHARC with a 3-level parti-
tion with 16 cells per supercell on level 0 and 1 and 96
cells on level 2. Moreover, we use a value of c = 2.5 as
contraction parameter. When performing random s-t
queries, the source s and target t are picked uniformly
at random and results are based on 10 000 queries.



Table 1: Performance of SHARC and the most prominent speed-up techniques on the European and US road
network with travel times. Prepro shows the computation time of the preprocessing in hours and minutes and
the eventual additional bytes per node needed for the preprocessed data. For queries, the search space is given
in the number of settled nodes, execution times are given in milliseconds. Note that other techniques have been
evaluated on slightly different computers. The results for Highway Hierarchies and Highway-Node Routing derive
from [30]. Results for Arc-Flags are based on 200 PARTY cells and are taken from [17].

Europe USA
Prepro Query Prepro Query

[h:m] [B/n] #settled [ms] [h:m] [B/n] #settled [ms]
SHARC 2:17 13 1 114 0.39 1:57 16 1 770 0.68
bidirectional SHARC 3:12 20 145 0.091 2:38 21 350 0.18
Highway Hierarchies 0:19 48 709 0.61 0:17 34 925 0.67
Highway-Node 0:15 8 1 017 0.88 0:16 8 760 0.50
REAL-(64,16) 2:21 32 679 1.10 2:01 43 540 1.05
Arc-Flags 17:08 19 2 369 1.60 10:10 10 8 180 4.30
Grid-based Transit-Node – – – – 20:00 21 NA 0.063
HH-based Transit-Node 2:44 251 NA 0.006 3:25 244 NA 0.005

5.1 Static Environment. We start our experimen-
tal evaluation with various tests for the static scenario.
We hereby focus on road networks but also evaluate
graphs derived from timetable information systems and
synthetic datasets that have been evaluated in [2].

5.1.1 Road Networks. As inputs we use the largest
strongly connected component of the road networks of
Western Europe, provided by PTV AG for scientific use,
and of the US which is taken from the DIMACS home-
page [9]. The former graph has approximately 18 mil-
lion nodes and 42.6 million edges and edge lengths cor-
respond to travel times. The corresponding figures for
the USA are 23.9 million and 58.3 million, respectively.

Random Queries. Tab. 1 reports the results of
SHARC with default settings compared to the most
prominent speed-up techniques. In addition, we report
the results of a variant of SHARC which uses bidirec-
tional search in connection with a 2-level partition (16
cells per supercell at level 0, 112 at level 1).

We observe excellent query times for SHARC in
general. Interestingly, SHARC has a lower preprocess-
ing time for the US than for Europe but for the price
of worse query performance. On the one hand, this is
due to the bigger size of the input yielding bigger cell
sizes and on the other hand, the average hop number of
shortest paths are bigger for the US than for Europe.
However, the number of boundary nodes is smaller for
the US yielding lower preprocessing effort. The bidirec-
tional variant of SHARC has a more extensive prepro-
cessing: both time and additional space increase, which
is due to computing and storing forward and backward
arc-flags. However, preprocessing does not take twice
the time than for default SHARC as we use a 2-level

setup for the bidirectional variant and preprocessing the
third level for default SHARC is quite expensive (around
40% of the total preprocessing time). Comparing query
performance, bidirectional SHARC is clearly superior
to the unidirectional variant. This is due to the known
disadvantages of uni-directional classic Arc-Flags: the
coning effect and no arc-flag information as soon as the
search enters the target cell (cf. Section 2 for details).

Comparing SHARC with other techniques, we ob-
serve that SHARC can compete with any other tech-
nique except HH-based Transit Node Routing, which
requires much more space than SHARC. Stunningly, for
Europe, SHARC settles more nodes than Highway Node
Routing or REAL, but query times are smaller. This is
due to the very low computational overhead of SHARC.
Regarding preprocessing, SHARC uses less space than
REAL or Highway Hierarchies. The computation time
of the preprocessing is similar to REAL but longer than
for Highway-Node Routing. The bidirectional variant
uses more space and has longer preprocessing times,
but the performance of the query is very good. The
number of nodes settled is smaller than for any other
technique and due to the low computational overhead
query times are clearly lower than for Highway Hier-
archies, Highway-Node Routing or REAL. Compared
to the classic Arc-Flags, SHARC significantely reduces
preprocessing time and query performance is better.

Local Queries. Figure 5 reports the query times
of uni- and bidirectional SHARC with respect to the
Dijkstra rank. For an s-t query, the Dijkstra rank of
node v is the number of nodes inserted in the priority
queue before v is reached. Thus, it is a kind of distance
measure. As input we again use the European road
network instance.
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Figure 5: Comparison of uni- and bidirectional SHARC using the Dijkstra rank methodology [27]. The results are
represented as box-and-whisker plot [32]: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extend to the minimum and maximum value omitting outliers, which are plotted individually.

Note that we use a logarithmic scale due to outliers.
Unidirectional SHARC gets slower with increasing rank
but the median stays below 0.6 ms while for bidirec-
tional SHARC the median of the queries stays below
0.2 ms. However, for the latter, query times increase up
to ranks of 213 which is roughly the size of cells at the
lowest level. Above this rank query times decrease and
increase again till the size of cells at level 1 is reached.
Interestingly, this effect deriving from the partition can-
not be observed for the unidirectional variant. Com-
paring uni- and bidirectional SHARC we observe more
outliers for the latter which is mainly due to less levels.
Still, all outliers are below 3 ms.

Table 2: Performance of SHARC on different metrics
using the European road instance. Multi-metric refers
to the variant with one arc-flag and three edge weights
(one weight per metric) per edge, while single refers to
running SHARC on the applied metric.

Prepro Query
profile metric [h:m] [B/n] #settled [ms]

linear single 2:17 13 1 114 0.39
multi 6:51 16 1 392 0.51

slow car single 1:56 14 1 146 0.41
multi 6:51 16 1 372 0.50

fast car single 2:24 13 1 063 0.37
multi 6:51 16 1 348 0.49

Multi-Metric Queries. The original dataset of
Western Europe contains 13 different road categories.
By applying different speed profiles to the categories
we obtain different metrics. Tab. 2 gives an overview
of the performance of SHARC when applied to metrics
representing typical average speeds of slow/fast cars.
Moreover, we report results for the linear profile which
is most often used in other publications and is obtained
by assigning average speeds of 10, 20, . . . , 130 to the
13 categories. Finally, results are given for multi-metric
SHARC, which stores only one arc-flag for each edge.

As expected, SHARC performs very well on other
metrics based on travel times. Stunningly, the loss in
performance is only very little when storing only one
arc-flag for all three metrics. However, the overhead
increases due to storing more edge weights for shortcuts
and the size of the arc-flags vector increases slightly.
Due to the fact that we have to compute arc-flags for all
metrics during preprocessing, the computational effort
increases.

5.1.2 Timetable Information Networks. Unlike
bidirectional approaches, SHARC-Routing can be used
for timetable information. In general, two approaches
exist to model timetable information as graphs: time-
dependent and time-expanded networks (cf. [26] for
details). In such networks timetable information can be
obtained by running a shortest path query. However, in



Table 3: Performance of plain Dijkstra and SHARC
on a local and long-distance time-expanded timetable
networks, unit disk graphs (udg) with average degree
5 and 7, and grid graphs with 2 and 3 number of
dimensions. Due to the smaller size of the input, we
use a 2-level partition with 16,112 cells.

Prepro Query
graph tech. [h:m] [B/n] #sett [ms]
rail Dijkstra 0:00 0 1 299 830 406.2
local SHARC 10:02 9 11 006 3.8
rail Dijkstra 0:00 0 609 352 221.2
long SHARC 3:29 15 7 519 2.2
udg Dijkstra 0:00 0 487 818 257.3
deg.5 SHARC 0:01 16 568 0.3
udg Dijkstra 0:00 0 521 874 330.1
deg.7 SHARC 0:10 42 1 835 1.0
grid Dijkstra 0:00 0 125 675 36.7
2–dim SHARC 0:32 60 1 089 0.4
grid Dijkstra 0:00 0 125 398 78.6
3–dim SHARC 1:02 97 5 839 1.9

both models a backward search is prohibited as the time
of arrival is unknown in advance. Tab. 3 reports the
results of SHARC on 2 time-expanded networks: The
first represents the local traffic of Berlin/Brandenburg,
has 2 599 953 nodes and 3 899 807 edges, the other graph
depicts long distance connections of Europe (1 192 736
nodes, 1 789 088 edges). For comparison, we also report
results for plain Dijkstra.

For time-expanded railway graphs we observe an in-
crease in performance of factor 100 over plain Dijkstra
but preprocessing is still quite high which is mainly due
to the partition. The number of boundary nodes is very
high yielding high preprocessing times. However, com-
pared to other techniques (see [2]) SHARC (clearly) out-
performs any other technique when applied to timetable
information system.

5.1.3 Other inputs. In order to show the robustness
of SHARC-Routing we also present results on synthetic
data. On the one hand, 2- and 3-dimensional grids
are evaluated. The number of nodes is set to 250 000,
and thus, the number of edges is 1 and 1.5 million,
respectively. Edge weights are picked uniformly at
random from 1 to 1000. On the other hand, we evaluate
random geometric graphs—so called unit disk graphs—
which are widely used for experimental evaluations in
the field of sensor networks (see e.g. [19]). Such graphs
are obtained by arranging nodes uniformly at random
on the plane and connecting nodes with a distance
below a given threshold. By applying different threshold

values we vary the density of the graph. In our setup, we
use graphs with about 1 000 000 nodes and an average
degree of 5 and 7, respectively. As metric, we use the
distance between nodes according to their embedding.
The results can be found in Tab. 3.

We observe that SHARC provides very good results
for all inputs. For unit disk graphs, performance gets
worse with increasing degree as the graph gets denser.
The same holds for grid graphs when increasing the
number of dimensions.

5.2 Time-Dependency. Our final testset is per-
formed on a time-dependent variant of the European
road network instance. We interpret the initial values
as empty roads and add transit times according to rush
hours. Due to the lack of data we increase all motor-
ways by a factor of two and all national roads by a
factor of 1.5 during rush hours. Our model is inspired
by [11]. Our time-dependent implementation assigns 24
different weights to edges, each representing the edge
weight at one hour of the day. Between two full hours,
we interpolate the real edge weight linearly. An easy
approach would be to store 24 edge weights separately.
As this consumes a lot of memory, we reduce this over-
head by storing factors for each hour between 5:00 and
22:00 of the day and the edge weight representing the
empty road. Then we compute the travel time of the
day by multiplying the initial edge weight with the fac-
tor (afterwards, we still have to interpolate). For each
factor at the day, we store 7 bits resulting in 128 addi-
tional bits for each time-dependent edge. Note that we
assume that roads are empty between 23:00 and 4:00.

Another problem for time-dependency is shortcut-
ting time-dependent edges. We avoid this problem
by not bypassing nodes which are incident to a time-
dependent edge which has the advantage that the space-
overhead for additional shortcuts stay small. Tab. 4
shows the performance of γ-SHARC for different ap-
proximation values. Like in the static scenario we use
our default settings. For comparison, the values of time-
dependent Dijkstra and ALT are also given. As we
perform approximative SHARC-queries, we report three
types of errors: By error-rate we denote the percentage
of inaccurate queries. Besides the number of inaccurate
queries it is also important to know the quality of a
found path. Thus, we report the maximum and average
relative error of all queries, computed by 1 − µs/µD,
where µs and µD depict the lengths of the paths found
by SHARC and plain Dijkstra, respectively.

We observe that using γ values higher than 1.0
drastically reduces query performance. While error-
rates are quite high for low γ values, the relative error is
still quite low. Thus, the quality of the computed paths



Table 4: Performance of the time-dependent versions of Dijkstra, ALT, and SHARC on the Western European
road network with time-dependent edge weights. For ALT, we use 16 avoid landmarks [16].

error Prepro Query
γ rate rel. avg. rel. max [h:m] [B/n] #settled [ms]

Dijkstra - 0.0% 0.000% 0.00% 0:00 0 9 016 965 8 890.1
ALT - 0.0% 0.000% 0.00% 0:16 128 2 763 861 2 270.7
SHARC 1.000 61.5% 0.242% 15.90% 2:51 13 9 804 3.8

1.005 39.9% 0.096% 15.90% 2:53 13 113 993 61.2
1.010 32.9% 0.046% 15.90% 2:51 13 221 074 131.3
1.020 29.5% 0.024% 14.37% 2:50 13 285 971 182.7
1.050 27.4% 0.013% 2.19% 2:51 13 312 593 210.9
1.100 26.5% 0.009% 0.56% 2:52 12 321 501 220.8

is good, although in the worst-case the found path is
15.9% longer than the shortest. However, by increasing
γ we are able to reduce the error-rate and the relative
error significantely: The error-rate drops below 27%,
the average error is below 0.01%, and in worst case the
found path is only 0.56% longer than optimal. Generally
speaking, SHARC routing allows a trade-off between
quality and performance. Allowing moderate errors, we
are able to perform queries 2 000 times faster than plain
Dijkstra, while queries are still 40 times faster when
allowing only very small errors.

Comparing SHARC (with γ = 1.1) and ALT, we
observe that SHARC queries are one order of magnitude
faster but for the price of correctness. In addition,
the overhead is much smaller than for ALT. Note that
we do not have to store time-dependent edge weights
for shortcuts due to our weaker bypassing criterion.
Summarizing, SHARC allows to perform fast queries
in time-dependent networks with moderate error-rates
and small average relative errors.

6 Conclusion

In this work, we introduced SHARC-Routing which
combines several ideas from Highway Hierarchies, Arc-
Flags, and the REAL-algorithm. More precisely, our ap-
proach can be interpreted as a unidirectional hierarchi-
cal approach: SHARC steps up the hierarchy at the be-
ginning of the query, runs a strongly goal-directed query
on the highest level and automatically steps down the
hierarchy as soon as the search is approaching the target
cell. As a result we are able to perform queries as fast
as bidirectional approaches but SHARC can be used in
scenarios where former techniques fail due to their bidi-
rectional nature. Moreover, a bidirectional variant of
SHARC clearly outperforms existing techniques except
Transit Node Routing which needs much more space
than SHARC.

Regarding future work, we are very optimistic that
SHARC is very helpful when running multi-criteria
queries due to the performance in multi-metric scenar-
ios. In [15], an algorithm is introduced for computing
exact reach values which is based on partitioning the
graph. As our pruning rule would also hold for reach
values, we are optimistic that we can compute exact
reach values for our output graph with our SHARC pre-
processing. For the time-dependent scenario one could
think of other ways to determine good approximation
values. Moreover, it would be interesting how to per-
form correct time-dependent SHARC queries.

SHARC-Routing itself also leaves room for improve-
ment. The pruning rule could be enhanced in such a
way that we can prune all cells. Moreover, it would be
interesting to find better additional shortcuts, maybe
by adapting the algorithms from [12] to approximate
betweenness better. Another interesting question aris-
ing is whether we can further improve the contraction
routine. And finally, finding partitions optimized for
SHARC is an interesting question as well.

Summarizing, SHARC-Routing is a powerful, easy,
fast and robust unidirectional technique for performing
shortest-path queries in large networks.
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[23] R. Möhring, H. Schilling, B. Schütz, D. Wagner,
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A Proof of Correctness

We here present a proof of correctness for SHARC-
Routing. SHARC directly adapts the query from classic
Arc-Flags, which is proved to be correct. Hence, we only
have to show the correctness for all techniques that are
used for SHARC-Routing but not for classic Arc-Flags.

The proof is logically split into two parts. First,
we prove the correctness of the preprocessing without
the refinement phase. Afterwards, we show that the
refinement phase is correct as well.

A.1 Initialization and Main Phase. We denote by
Gi the graph after iteration step i, i = 1, . . . , L− 1. By
G0 we denote the graph directly before iteration step 1
starts. The level l(u) of a node u is defined to be the
integer i such that u is contained in Gi−1 but not in Gi.
We further define the level of a node contained in GL−1

to be L.
The correctness of the multi-level arc-flag approach

is known. The correctness of the handling of the 1-
shell nodes is due to the fact that a shortest path
starting from or ending at a 1-shell node u is either
completely included in the attached tree T in which
also u is contained, or has to leave or enter T via the
corresponding core-node.

We want to stress that, when computing arc-flags,
shortest paths do not have to be unique. We remember
how SHARC handles that: In each level l < L − 1
all shortest paths are considered, i.e., a shortest path
directed acyclic graph is grown instead of a shortest
paths tree and a flag for a cell C and an edge (u, v) is set
true, if at least one shortest path to C containing (u, v)
exists. In level L− 1, all shortest paths are considered,
that are hop minimal for given source and target, i.e., a
flag for a cell C and an edge (u, v) is set true, if at least
one shortest path to C containing (u, v) exists that is
hop minimal among all shortest paths with same source
and target.

We observe that the distances between two arbi-
trary nodes u and v are the same in the graph G0 and⋃i

k=0 Gk for any i = 1, . . . , L− 1.
Hence, to proof the correctness of unidirectional

SHARC-Routing without the refinement phase and

without 1-shell nodes we additionally have to proof the
following lemma:

Lemma A.1. Given arbitrary nodes s and t in G0, for
which there is a path from s to t in G0. At each
step i of the SHARC-preprocessing there exists a short-
est s-t-path P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3),
j1, j2, j3 ∈ N0, in

⋃i
k=0 Gk, such that

• the nodes v1, . . . , vj1 and w1, . . . , wj3 have level of
at most i,

• the nodes u1, . . . , uj2 have level of at least i + 1

• uj2 and t are in the same cell at level i

• for each edge e of P , the arc-flags assigned to e
until step i allow the path P to t.

We use the convention that jk = 0, k ∈ {1, 2, 3} means
that the according subpath is void.

The lemma guarantees that, at each iteration step,
arc-flags are set properly. The correctness of the
bidirectional variant follows from the observation that
a hop-minimal shortest path on a graph is also a hop-
minimal shortest path on the reverse graph.

Proof. We show the claim by induction on the iteration
steps. The claim holds trivially for i = 0. The
inductive step works as follows: Assume the claim holds
for step i. Given arbitrary nodes s and t, for which
there is a path from s to t in G0. We denote by
P = (v1, . . . , vj1 ;u1, . . . , uj2 ;w1, . . . , wj3) the s-t-path
according to the lemma for step i.

The iteration step i + 1 consists of the contraction
phase, the insertion of boundary shortcuts in case i+1 =
L− 1, the arc-flag computation and the pruning phase.
We consider the phases one after another:

After the Contraction Phase. There exists a maxi-
mal path (u`1 , u`2 , . . . , u`d

) with 1 ≤ `1,≤ . . . ≤ `d ≤ k
for which

• for each f = 1, . . . , d−1 either `f +1 = `f+1 or the
subpaths (u`f

, u`f +1, . . . u`f+1) have been replaced
by a shortcut,

• the nodes u1, . . . , u`1−1 have been deleted, if `1 6= 1
and

• the nodes u`d+1, . . . , uk have been deleted, if `d 6=
k.

By the construction of the contraction routine we know

• (u`1 , u`2 , . . . , u`d
) is also a shortest path



• u`d
is in the same component as uk in all levels

greater than i (because of cell aware contraction)

• the deleted edges in (u1, . . . , u`1−1) either already
have their arc-flags for the path P assigned. Then
the arc-flags are correct because of the inductive
hypothesis. Otherwise, We know that the nodes
u1, . . . , u`1−1 are in the component. Hence, all arc-
flags for all higher levels are assigned true.

• the deleted edges in (u`d+1, . . . , uk) either already
have their arc-flags for the path P assigned, then
arc-flags are correct because of the inductive hy-
pothesis. Otherwise, by cell-aware contraction we
know that u`d+1, . . . , uk are in the same component
as t for all levels at least i. As the own-cell flag al-
ways is set true for deleted edges the path stays
valid.

As distances do not change during preprocessing
we know that, for arbitrary i, 0 ≤ i ≤ L − 1 a
shortest path in Gi is also a shortest path in

⋃L−1
k=0 Gk.

Concluding, the path P̂ = (v1, . . . , vj1 , u1, . . . , u`1−1;
u`1 , u`2 , . . . , u`d

; u`d+1, . . . , uk, w1, . . . , wj3) fullfills all
claims of the lemma for iteration step i + 1.

After Insertion of Boundary Shortcuts. Here, the
claim holds trivially.

After Arc-Flags Computation. Here, the claim also
holds trivially.

After Pruning. We consider the path P̂ obtained from
the contraction step. Let (ulr , ulr+1) be an edge of P̂
deleted in the pruning step, for which ulr is not in the
same cell as uld at level i+1. As there exists a shortest
path to uld not only the own-cell flag of (ulr , ulr+1) is
set, which is a contradiction to the assumption that
(ulr , ulr+1) has been deleted in the pruning step.

Furthermore, let (ulz , ulz+1) be an edge of P deleted
in the pruning step. Then, all edges on P after
(ulz , ulz+1) are also deleted in that step. Summariz-
ing, if no edge on P̂ is deleted in the pruning step,
then P̂ fullfills all claims of the lemma for iteration step
i + 1. Otherwise, the path (v1, . . . , vj1 , u1, . . . , u`1−1;
u`1 , u`2 , . . . ;ulk , . . . , u`d

, u`d+1, . . . , uk, w1, . . . , wj3) full-
fills all claims of the lemma for iteration step i+1 where
ulk , ulk+1 is the first edge on P that has been deleted in
the pruning step.

Summarizing, Lemma A.1 holds during all phases
of all iteration steps of SHARC-preprocessing. So, the
preprocessing algorithm (without the refinement phase)
is correct. �

A.2 Refinement phase. Recall that the own-cell
flag does not get altered by the refinement routine.
Hence, we only have to consider flags for other cells.
Assume we perform the propagation routine at a level l
to a level l node s.

A path P from s to a node t in another cell on
level ≥ l needs to contain a level > l node that is in
the same cell as u because of the cell-aware contraction.
Moreover, with iterated application of Lemma A.1 we
know that there must be an (arc-flag valid) shortest s-t-
path P for which the sequence of the levels of the nodes
first is monotonically ascending and then monotonically
descending. In fact, to cross a border of the current cell
at level l, at least two level > l nodes are on P . We
consider the first level > l node u1 on P . This must
be an entry node of s. The node u2 after u1 on P is
covered and therefore no entry node. Furthermore it
is of level > l. Hence, the flags of the edge (u1, u2)
are propagated to the first edge on P and the claim
holds which proves that the refinement phase is correct.
Together with Lemma A.1 and the correctness of the
multi-level Arc-Flags query, SHARC-Routing is correct.


