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Abstract. Recently, a new way of avoiding crossings in straight-line drawings
of non-planar graphs has been investigated. The idea of partial edge drawings
(PED) is to drop the middle part of edges and rely on the remaining edge parts
called stubs. We focus on a symmetric model (SPED) that requires the two stubs
of an edge to be of equal length. In this way, the stub at the other endpoint of an
edge assures the viewer of the edge’s existence. We also consider an additional
homogeneity constraint that forces the stub lengths to be a given fraction § of the
edge lengths (§-SHPED). Given length and direction of a stub, this model helps
to infer the position of the opposite stub.

We show that, for a fixed stub—edge length ratio 4, not all graphs have a §-SHPED.
Specifically, we show that K241 does not have a 1/4-SHPED, while bandwidth-
k graphs always have a ©(1/v/k)-SHPED. We also give bounds for complete
bipartite graphs. Further, we consider the problem MAXSPED where the task
is to compute the SPED of maximum total stub length that a given straight-line
drawing contains. We present an efficient solution for 2-planar drawings and a
2-approximation algorithm for the dual problem.

1 Introduction

In the layout of graphs, diagrams, or maps, one of the central problems is to avoid
the interference of elements such as crossing edges in graph drawings or overlapping
labels on maps. This is a form of visual clutter. Clutter avoidance is the objective of
a large body of work in graph drawing, information visualization, and cartography.
In this paper, we treat a specific aspect of clutter avoidance; we focus on completely
removing edge crossings in straight-line drawings of non-planar graphs. Clearly, this is
not possible in any of the traditional graph drawing styles that insist on connecting the
geometric representations of two adjacent vertices (e.g., small disks) by a closed Jordan
curve (e.g., segments of straight lines). In such drawings of non-planar graphs, some
pairs of edge representations must cross (or overlap). This is a serious problem when
displaying dense graphs.

Previous Work. Becker et al. [2]] have taken a rather radical approach to escape from
this dilemma. They wanted to visualize network overload between the 110 switches of
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the AT&T long distance telephone network in the U.S. on October 17, 1989, when the
San Francisco Bay area was hit by an earthquake. They used straight-line segments to
connect pairs of switches struck by overload; the width of the segments indicated the
severeness of the overload. Due to the sheer number of edges of a certain width, the
underlying map of the U.S. was barely visible. They solved this problem by drawing
only a certain fraction (roughly 10%) of each edge; the part(s) incident to the switch(es)
experiencing the overload. We call these parts the stubs of an edge. The resulting picture
is much clearer; it shows a distinct east—west trend among the edges with overload.

Peng et al. [[15] used splines to bundle edges, e.g., in the dense graph of all U.S.
airline connections. In order to reduce clutter, they increase the transparency of edges
towards the middle. They compared their method to other edge bundling techniques
[1210], concluding that their method, by emphasizing the stubs, is better in revealing
directional trends.

Burch et al. [6] recently investigated the usefulness of partial edge drawings of di-
rected graphs. They used a single stub at the source vertex of each edge. They did a
user study (with 42 subjects) which showed that, for one of the three tasks they investi-
gated (identifying the vertex with highest out-degree), shorter stubs resulted in shorter
completion times and smaller error rates. For the two other tasks (deciding whether a
highlighted pair of vertices is connected by a path of length one/two) the error rate went
up with decreasing stub length; there was just a small dip in the completion time for a
stub—edge length ratio of 75%.

A similar, but less radical approach, is the use of edge casing. Eppstein et al. [8]]
have investigated how to optimize several criteria that encode the above—below behavior
of edges in given graph drawings. They introduce three models (i.e., legal above—below
patterns) and several objective functions such as minimizing the total number of above—
below switches or the maximum number of switches per edge. For some combinations
of models and objectives, they give efficient algorithms, for one they show NP-hardness;
others are still open. Edge casings were re-invented by Rusu et al. [[17] with reference
to Gestalt principles.

Dickerson et al. [7]] proposed confluent drawings to avoid edge crossings. In their
approach, edges are drawn as locally monotone curves; edges may overlap but not cross.

‘We build on and extend the work of Bruckdorfer and Kaufmann [|5/] who formalized
the problem of partial edge drawings (PEDs) and suggested several variants. A PED is
a straight-line drawing of a graph in which each edge is divided into three segments: a
middle part that is not drawn and the two segments incident to the vertices, called stubs,
that remain in the drawing. In this paper, we require all PEDs to be crossing-free, i.e.,
that no two stubs intersect. We consider stubs relatively open sets, i.e., to not contain
their endpoints. In the symmetric case (SPED), both stubs of an edge must be the same
length; in the homogeneous case (HPED), the ratio of stub length over edge length is
the same over all edges. A 6-SHPED is a symmetric homogeneous PED with ratio §.

Bruckdorfer and Kaufmann showed, among others, that /,, (and thus, any n-vertex
graph) hasa 1/ \/W-SHPED. They also proved that the j-th power of any subgraph
of a triangular tiling is a 1/(25)-SHPED. They introduced the optimization problem
MAXSPED where the aim is to maximize the total stub length (or ink) in order to
turn a given geometric graph into a SPED. They presented an integer linear program
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Fig. 1: Various drawings of a 13-vertex graph.

for MAXSPED and conjectured that the problem is NP-hard. Indeed, there is a simple
reduction from PLANAR3SAT [[13]]. Figure [Tb|depicts a maxSPED of the straight-line
drawing in Fig. [Ta] i.e., a SPED that is a solution to MAXSPED. We have slightly
shrunken the stubs in the maxSPED so that they do not touch. For comparison, Fig.
depicts a SHPED with maximum ratio §.

Contribution. In this paper, we focus on the symmetric case. A pair of stubs of equal
length pointing towards each other at the opposite endpoints of an edge is, for the viewer
of a SPED, a valuable witness that the connection actually exists. If the drawing is
additionally homogeneous, finding the other endpoint of a stub is made easier since its
approximate distance can be estimated from the stub length.

— We show that not all graphs admit a 1/4-SHPED; see Sect. [2| Indeed, K, does not
have a 1/4-SHPED for any n > 240. If we restrict vertices to be mapped to points in
convex and one-sided convex position, the bound drops to 22 and 16, respectively.
Our proof technique carries over to other values of the stub—edge length ratio §.

— Recall that Bruckdorfer and Kaufmann [5]] showed that K, (and thus, any n-vertex
graph) has a 1/4/4n/m-SHPED. We improve their result for specific graph classes,
namely for complete bipartite graphs and for bandwidth-k graphs; see Sect. |3} The
latter we show to have O(1/v/k)-SHPEDs independently of their sizes.

— Then we turn to the optimization problem MAXSPED; see Sect. ] For the class of
2-planar graphs, we can solve the problem efficiently; given a 2-planar drawing of
a 2-planar graph with n vertices, our algorithm runs in O(nlogn) time. For gen-
eral graphs, we have a 2-approximation algorithm with respect to the dual problem
MINSPED: minimize the amount of ink that has to be erased in order to turn a
given drawing into a SPED.

Notation. In this paper, we always identify the vertices of the given graph with the
points in the plane to which we map the vertices. The graphs we consider are undirected;
we use uv as shorthand for the edge connecting » and v. If we refer to the stub uv then
we mean the piece of the edge uv incident to u; the stub vu is incident to v.
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Fig. 2: Sketch of the argument why no 17 points in one-sided convex position can be used to
embed K7 as a 1/4-SHPED.

2 Upper Bounds for Complete Graphs

In this section, we show that not any graph can be drawn as a 1/4-SHPED. Note that
1/4 is an interesting value since it balances the drawn and the erased parts of each edge.
Yet, our proof techniques generalize to §-SHPEDs for arbitrary but fixed 0 < § < 1/2.
We start with a simple proof for the scenario where we insist that vertices are mapped
to specific point sets, namely point sets in convex or one-sided convex position. We say
that a convex point set is one-sided if its convex hull contains an edge of a rectangle
enclosing the point set.

Theorem 1. There is no set of 17 points in one-sided convex position on which the
graph K17 can be embedded as 1/4-SHPEDs, respectively.

Proof. We assume, to the contrary of the above statement, that there is a set P of 17
points in one-sided convex position that admits an embedding of K7 as a 1/4-SHPED.
Consider the edge e = wwv that witnesses the one-sidedness of P. We can choose our
coordinate system such that v = (0,0), v = (1,0) and all other points lie above e.
We split the area above e into twelve interior-disjoint vertical strips of equal width, see
Fig.

We first show that the union of the six innermost strips contains at most six points
of P. Otherwise there would be a strip S that contains two points a and b of P. Let a
be the one closer to u. Since S is one of the six innermost strips, the stub av intersects
the right boundary of S (below the stub bv), and the stub bu intersects the left boundary
of S (below the stub au). Point a lies above stub bu and point b lies above stub av.
Hence, stubs av and bu intersect.

So at least eleven points of P must lie in the union of the three leftmost and the
three rightmost strips. We may assume that the union Sjes; of the three leftmost strips
contains at least six points. Let w be the rightmost point in P N Sje;. We subdivide the
edge ww into five pieces whose lengths are 1/4, 3/16, 1/8, 3/16, and 1/4 of the length
of uw. Each piece contains its endpoint that is closer to one of the endpoints of uw. The
innermost piece contains both of its endpoints. Now consider the cones with apex v
spanned by the five pieces of uw. We claim that no cone contains more than one point.
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Fig. 3: Partition of the enclosing rectangle A, into cells. We have labeled each cell or group of
cells with the maximum number of points that it can contain.

Our main tool is the following. Let ¢ be a point in (P N Siegy) \ {w, w}. Then the
stub tv intersects the right boundary of Sj.¢ and, hence, also the edge uw that separates
P N Siegr from P\ Siegr. It remains to note that in each cone, any point has a stub to «
or w (whichever is further away from the cone) that intersects the boundary of the cone.

O

Theorem|T|can be used to derive a first upper bound on general point sets as follows.

Corollary 1. For any n > (‘;’g), the graph K,, does not admit a 1/4-SHPED.

Proof. By aresult of ErdSs and Szekeres [9]], any set of more than (zkk__;) points in gen-

eral position contains a subset of &k points that form a one-sided convex set. Combining
this with Theorem [l|and plugging in £ = 17 yields the claimed bound. a

We now vastly improve upon the bound of Corollary (1| Let P be the point set in
the plane, and let [ and r be the two points on the convex hull that define the diameter
of P, which is the largest distance between any two points. We rotate P such that the
line [r is horizontal and [ is on the left-hand side. Now let A be the smallest enclosing
axis-aligned rectangle that contains P, and let ¢ and b be the top- and bottommost points
in A, respectively. Accordingly, let A; be the part of A above (and including) I and let
Ap = A\ A;. We consider the two rectangles separately and assume that the interior
of A; is not empty. (In our proof we argue, for any interior point, using only its stubs
towards the three boundary points [, , and ¢.)

We subdivide A, into 26 cells such that, for each point in a cell, the three stubs to [,
r, and ¢ intersect the boundary of that cell; see Fig. 3| For each cell, we prove, in the
full version of this paper [4], an upper bound on the maximum number of points it can
contain. Summing up these numbers (see again Fig. [3), we get a bound of 103 points
in total. Since we may have a symmetric subproblem below Ir, we double this number,
subtract 2 because of double-counting [ and r, and finally get the following theorem.

Theorem 2. For any n > 240, the graph K,, does not admit a 1/4-SHPED.
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Fig. 4: Two methods for drawing complete bipartite graphs as SHPEDs.

3 Improved Bounds for Specific Graph Classes

In this section, we improve, for specific graph classes, the result of Bruckdorfer and
Kaufmann [3] which says that K, (and thus, any n-vertex graph) has a 1/1/4n/m-
SHPED. In other words, K, has a 6-SHPED if n < 7/(46%). We give two constructions
for complete bipartite graphs and one for graphs of bounded bandwidth.

Complete Bipartite Graphs. Our first construction is especially suitable if both sides of
the bipartition have about the same size. The drawing is illustrated in Fig. #a] Note that
the figure scales x- and y-axis differently.

Theorem 3. The complete bipartite graph K,, ,, has a §-SHPED if

< 1 log1/2 7
|0 log(1 —0)

where | |r]] denotes the largest integer that is strictly less than r.
Proof. Letk = |1]| and ¢ = H%H. The latter implies that (1 — &) > 1.

Divide the plane at the vertical line x = 1/2 into two half planes, one for each
side of the bipartition, to which we will refer as the right-hand side and the left-hand
side. In each half plane draw the n vertices on a (perturbed) k x ¢ grid. More precisely,
for a horizontal line, let e > 0 such that (1 — §)* > 3 + €. Draw the vertices with
x-coordinates

(1—-6) —eand1— (1 —6)" +¢6i=0,...,0—1.

Draw the vertices on the left-hand side with y-coordinates O, . . ., & — 1 and the vertices
on the right-hand side with y-coordinates 0 + o,...,k — 1 + o where 0 < o < 1is
chosen such that no two vertices on the right-hand side are collinear with a vertex on
the left-hand side and vice versa. All edges are between a vertex on the left-hand side
and a vertex on the right-hand side.

Then for any two vertices the bounding boxes of their incident stubs are disjoint up
to their boundaries. Intersections of the stubs on the boundaries can be avoided by a
suitable choice of e. For details, see the full version of this paper [4]. ad
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Our second construction is especially suitable if one side of the bipartition is much
larger than the other. The drawing is illustrated in Fig. [4b]

Theorem 4. For any integers n > 0 and k < log § /log(1 — 0), the complete bipartite
graph Koy, , has a §-SHPED.

Proof. Draw the n vertices on the x-axis with x-coordinate z; = 1/(1 — §)""1,i =
1,...,n and the 2k vertices on the y-axis with y-coordinate y; = 1/(1 — §)i~1,i =
1,...,kand —y;,2 = 1,...,k. All edges are between a vertex on the y-axis and a
vertex on the x-axis. To show that no stubs intersect, we establish, in the full version of
this paper [4]], the following two properties on the regions that contain the stubs.

1. The stubs incident to (0, +y;),i = 2,...,k are in the horizontal strip bounded by
y=xy;andy = +y;_;.

2. The stubs incident to (0,z;),4 = 2,...,n are in the rectangle bounded by y =
+(1—-9), 2 =2;_1,and x = z; (where o = 1 — §).

Since the stubs incident to (0, =y ) lie in the horizontal strip bounded by y = +1 and
y = £(1 — ¢), it follows that any two stubs are disjoint. O

Graphs of Bounded Bandwidth. Recall that the k-circulant graph C* with n vertices
and 0 < k < n is the undirected simple graph whose vertex set is {vg,...,vn_1}
and whose edge set is {v;v;: |j — i| < k}. When we specify the index of a vertex,

we implicitly assume calculation modulo n. Note that C} = C,, and cr? — K,
We provide §-SHPED constructions for k-circulant and bandwidth-k graphs where § =
e (1 / VE ) For ease of presentation, we assume that v/k and n / V'k are integers.

First, let G be a graph of bandwidth £, i.e., the vertices of G can be ordered
v1,...,vy and for each edge v;v; it holds that |j — ¢| < k. We draw G as a 6-SHPED
as follows. We map the vertices of GG to the vertices of an integer grid of (n / VE x \/E)
points such that the sequence of vertices vy, . . . , v, traverses the grid column by column
in a snake-like fashion, see Fig. [3_5}

The distance from any vertex to its k-th successor is at most 4/ (\/E — 1)2 +k<

V/2k, see the two dashed line segments in Fig. Setting 6 = 1/ (2\/%) ensures
that each stub is contained in the radius-1/2 disks centered at the vertex to which it is
incident; see Fig.[5a] Since the disks are pairwise disjoint, so are the stubs.

For the k-circulant graph C*, we modify this approach such that start and end of the
snake coincide. In other words, we deform our rectangular section of the integer grid
into an annulus; see Fig. We additionally assume that n/ Vk is even.

The inner circle circumscribes a regular (n/v/k )-gon IT of edge length 1.

We place the vertices of C* on rays that go from the center of the annulus through
the vertices of II. On each ray, we place Vk vertices at distance 1 from one another,
starting from the inner circle and ending at the outer circle. The sequence again traverses
the stacks of vertices in a snake-like fashion.

A vertex v can be reached from its j-th (j < k) successor s, by traversing at most
3vk — 2 segments of length 1: at most vk — 1 segments from s to the inner circle,
at most vk segments on the inner circle, and at most VEk -1 segments from the inner
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Fig. 5: SHPEDs for bandwidth-£ and k-circulant graphs.

circle to v. Hence, the maximum distance of two adjacent vertices is less than 3v/k, and
we can choose § = 1/(6V/k).

Theorem 5. Let 2 < k < n and assume that \/k and n / Vk are integers. Then any
graph of bandwidth k has a 1 / (2\/ 2k )-SHPED. If additionally n / Vk is even, the
k-circulant graph C* has a 1/(6\/%)-SHPED.

4 Geometrically Embedded SPEDs

Bruckdorfer and Kaufmann [5] gave an integer-linear program for MAXSPED and con-
jectured that the problem is NP-hard. Indeed, there is a simple reduction from PLA-
NAR3SAT [13]]. In this section, we first show that the problem can be solved efficiently
for the special case of graphs that admit a 2-planar geometric embedding. Then we turn
to the dual problem MINSPED of minimizing the ink that has to be erased in order to
turn a given drawing into a SPED.

4.1 Maximizing Ink in Drawings of 2-Planar Graphs

In this section we prove that, given a 2-planar geometric embedding I" of a 2-planar
graph G with n vertices, we can compute a maxSPED, i.e., a SPED that maximizes the
total stub length, in O(nlogn) time. Recall that a graph G is 2-planar if it admits a
simple drawing on the plane where each edge is crossed at most twice.

Given G and I', we define a simple undirected graph C' as follows. C' has a vertex
ve for each edge e of G. Two vertices v, and v, of C' are connected by an edge if
and only if e and €’ form a crossing in I". Such a graph is in general non-connected.
Furthermore, since the maximum degree of C' is 2, a connected component of C' is
either a path (possibly formed by only one edge) or a cycle.

Let C; be a connected component of C'. We define a total ordering of the vertices of
C;. Namely, if C; is a path such an ordering is directly defined by the order of its vertices
along the path (rooted at an arbitrary end vertex). If C; is a cycle, we simply delete an
arbitrary edge of the cycle, obtaining again a path and the related order. That means, if
we consider the subdrawing I'; of I" induced by the vertices of C; (edges of G;), such
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a drawing is formed by an ordered sequence of edges (according to the ordering of the
vertices of ), €1, . .., €n,, such that e; Crosses €(; 1) mod n, forj =1,...,n; — 1in
case of a path, and j = 1,...,n; in case of a cycle.

We will use the following notation: /; is the total length of the edge e;; x; is the
length of the shortest stub of e; defined by the crossing between e;_; and e;, called
the backward stub; x;-/ is the length of the shortest stub of e; defined by the crossing
between ¢; and e; 11, called the forward stub. See also Fig. [6]

Consider now the subdrawing I, and assume

that eq,...,e,, form a path in C;. If n; = 2, €G-/ ej  \
the maximum total length of the stubs is kopy = ¢ 1\6j+1
max{l1 + 2$/2, lo + 21‘/1/ . ’ "

In the general case, we can process the path '-—1-4 l; p—Jﬂ
edge by edge, having at most three choices for

each edge: (i) we can draw it entirely, (ii) we Fig. 6: Notation used in the DP.
can draw only its backward stubs, or (iii) we can

draw only its forward stubs. The number of choices we have at any step is influenced
only by the previous step, while the best choice is determined only by the rest of the
path. Following this approach, let v; be a maxSPED for I; and consider the choice done
for the first edge ey of the path. The total length of the stubs in ~;, minus the length of
the stubs assigned to e, represents an optimal solution for I'; \ e;, under the initial
condition defined by the first step, otherwise, y; could be improved, a contradiction.
Le., the optimality principle holds for our problem. Thus, we can exploit the following
dynamic programming (DP) formulation, where O, (e;) describes the maximum total
length of the stubs of ¢, ..., e,, under the choice (i) for e;, O (e;) describes the

choice (i¢) and O, (e;) describes the choice (i3%).

I ’ ) " ) itz >,
Oin( j) _ { J +maX{Oout(ejJrl)?Oout(e]+1)} x4, 2 %54 (1a)

! H !/ 11
L+ 0. (ejt1) ifa,, <.

/ / 1 : / 1 / 1
20 + max{Opy(€j11), Ogye(€j+1)} if 2 > 27 and 2’ ) > 27,

out (€7) = § 22 + Ol (ej11) if o > o and 2, < 2ff,y,
22 + max{Oin(ej+1), Ogue(€j+1), OGue(€j+1)} ifz; < af.
(1b)
OGui(€5) = 227 + max{Oin(€j41), Ofur(€j41), OGui(€j41)} (lc)
In case of a path, we store in a table the values of Oin(e;), O} (e;) and O, (e;), for
j =1,...,n;, through a bottom-up visit of the path (from e, to e;). Since e; and e,
do not cross, we have z7 = ;/2 and z;,, = I,,, /2. Then, the maximal value of ink is

given by kopy = max{Oi,(e1), O, (1), 0% . (e1)}. See Fig. [7|for an example.

In case of a cycle, we have that e; and e,,, cross each other, thus, in order to compute
the table of values we must assume an initial condition for e,,,. Namely, we perform the
bottom-up visit from e,,, to e; three times. The first time we consider as initial condition
that e,,, is entirely drawn (choice O;y, (e, )), the second time we consider only the back-
ward stubs drawn (choice O! (e, )), and the third time we consider only the forward

out
stubs drawn (choice O/, (en,)). Every initial condition will lead to a table where, in
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Fig.7: (a) A 2-planar drawing I" and (b) a maxSPED of I" computed by the DP algorithm.

general, we do not have all the three possible choices for e; (i.e., some choices are for-
bidden due to the initial condition). Performing the algorithm for every possible initial
condition and choosing the best value yields the optimal solution kqp¢. The algorithm
described above leads to the following result.

Theorem 6. Let G be a graph with n vertices, and let I' be a 2-planar geometric
embedding of G. A maxSPED of I" can be computed in O(nlogn) time.

Proof. Consider the above described algorithm, based on the DP formulation defined by
the set of equations (I)). We already showed how this algorithm computes a maxSPED of
I'. The construction of the graph C' requires time O(m logm) with a standard sweep-
line algorithm for computing the O(m) line-segment intersections [3]. Once C has
been constructed, ordering its vertices requires O(n¢) time, where nc € O(m) is the
number of vertices of C'. Performing a bottom-up visit and up to three top-down visits of
every path or cycle takes O(m) time. Thus, the overall time complexity is O(nlogn),
since for 2-planar graphs m € O(n) [14]. ad

We finally observe that the restricted 0/1-MAXSPED problem for 2-planar draw-
ings, where each edge is either drawn or erased completely, may be solved through a
different approach. Indeed, we can exploit a maximum-weight SAT formulation in the
CNF+(<2) model, where each variable can appear at most twice and only with pos-
itive values [16]. Roughly speaking, we map each edge to a variable, with the weight
of the variable equal to the length of its edge, and define a clause for each crossing.
Applying an algorithm of Porschen and Speckenmeyer [16] for CNF+(<2) solves 0/1-
MAXSPED in O(n?) time. However, our algorithm solves a more general problem in
less time.

4.2 Erasing Ink in Arbitrary Graph Drawings

In this section, we consider the problem MINSPED, which is dual to MAXSPED. In
MINSPED, we are given a graph with a straight-line drawing (i.e., a geometric graph),
and the task is to erase as little of the edges as possible in order to make it a SPED.
We will exploit a connection between the NP-hard minimum-weight 2-SAT problem
(MINW2SAT) and MINSPED. Recall that MINW2SAT, given a 2-SAT formula, asks
for a satisfying variable assignment that minimizes the total weight of the true variables.
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There is a 2-approximation algorithm for MINW2SAT that runs in O(vc) time and uses
O(c) space, where v is the number of variables and c is the number of clauses of the
given 2-SAT formula [1]].

Theorem 7. MINSPED can be 2-approximated in time quadratic in the number of
crossings of the given geometric graph.

Proof. Given an instance G of MINSPED, we construct an instance ¢ of MINW2SAT
as follows. Let e be an edge of G with k crossings. Then e is split into k£ + 1 pairs
of edge segments e, . .., e; as shown in Fig. [§] If we order the edges that cross e in
increasing order of the distance of their crossing point to the closer endpoint of e, we
can assign each segment pair e; for i > 1 to the ith edge f crossing e, in this order.
We also say that edge f* induces segment pair e;. Any valid maximal (non-extensible)
partial edge drawing of e is the union ngo e; of all pairs of edge segments up to some
index 5 < k.

We model all pairs of (induced) edge segments as truth variables €1, . . . , é; with the
interpretation that the pair e; is not drawn if é; = true. The pair eg is always drawn.
Fori =1,...,k, we introduce the clause (—é;11 = —é;) = (é;41 V —é;). This models
that e;4; can only be drawn if e; is drawn. Moreover, for every crossing between two
edges e and f, we introduce the clause (e; V f;), where e; is the segment pair of e
induced by f and f; is the segment pair of f induced by e. This simply means that at
least one of the two induced segment pairs is not drawn and thus the crossing is avoided.

Now we assign a weight w, ; to each variable é;, which is either the absolute
length |e;| of e; if we are interested in ink, or the relative length |e;|/(2]e]) if we are in-
terested in relative stub lengths (6). Then minimizing the value &;evar(y) We €; OVer
all valid variable assignments minimizes the weight of the erased parts of the edges in
the given geometric graph

The 2-approximation algorithm for MINW2SAT yields a 2-approximation for the
problem to erase the minimum ink from the given straight-line drawing of G. It runs in
O(vc) = O(I%) C O(m*) time since our 2-SAT formula has O(I) C O(m?) variables
and clauses, where m is the number of edges of G and [ is the number of intersections
in the drawing of G. a

If we encode the primal problem (maximize ink) using 2SAT, we cannot hope for
a similar positive result. The reason is that the tool that we would need, namely an
algorithm for the problem MAXW2SAT dual to MINW2SAT would also solve maxi-
mum independent set (MIS). For MIS, however, no (n!~¢)-approximation exists unless
NP = ZPP [1).

To see that MAXW2SAT can be used to encode MIS, use a variable ¢ for each
vertex v of the given (graph) instance G of MIS and, for each edge {u,v} of G, the
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clause (4 V ). Let o be the conjunction of all such clauses. Then finding a satisfying
truth assignment for ¢ that maximizes the number of false variables (i.e., all variable
weights are 1) is equivalent to finding a maximum independent set in G. Note that this
does not mean that maximizing ink is as hard to approximate as MIS.
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