Many-to-One Boundary Labeling
with Backbones

M. A. Bekos', S. Cornelsen?, M. Fink?, S. Hong*, M. Kaufmann®,
M. Nollenburg®, 1. Rutter®, and A. Symvonis®

! Institute for Informatics, University of Tiibingen, Germany
{bekos,mk}@informatik.uni-tuebingen.de
Department of Computer and Information Science, University of Konstanz
sabine.cornelsen@uni-konstanz.de
3 Lehrstuhl fiir Informatik I, Universitiat Wiirzburg, Germany
martin.a.finkQuni-wuerzburg.de
4 School of Information Technologies, University of Sydney
shhong@it .usyd.edu.au
5 Karlsruhe Institute of Technology, Germany
noelle@ira.uka.de, rutter@kit.edu
5 School of Applied Mathematics and Physical Sciences, NTUA, Greece
symvonis@math.ntua.gr

Abstract. In this paper we study many-to-one boundary labeling with
backbone leaders. In this model, a horizontal backbone reaches out of
each label into the feature-enclosing rectangle. Feature points associated
with this label are linked via vertical line segments to the backbone. We
present algorithms for label number and leader-length minimization. If
crossings are allowed, we aim to minimize their number. This can be
achieved efficiently in the case of fixed label order. We show that the
corresponding problem in the case of flexible label order is NP-hard.

1 Introduction

Boundary labeling was developed by Bekos et al. [2] as a framework and an algo-
rithmic response to the poor quality (feature occlusion, label overlap) of specific
labeling applications. In boundary labeling, labels are placed at the boundary
of a rectangle and are connected to their associated features via arcs referred
to as leaders. Leaders attach to labels at label ports. A survey by Kaufmann [4]
presents different boundary labeling models that have been studied so far.

In many-to-one boundary labeling each label is associated to more than one
feature point. This model was formally introduced by Lin et al. [7], who assumed
that each label has one port for each connecting feature point (see Fig.
and showed that several crossing minimization problems are NP-complete and,
subsequently, developed approximation and heuristic algorithms. In a variant of
this model, referred to as boundary labeling with hyperleaders, Lin [6] resolved
the multiple port issue by joining together all leaders attached to a common
label with a vertical line segment in the track-routing area (see Fig. . At the
cost of label duplications, leader crossings could be eliminated.

track routing arca—l track routing area—]

Py pe—— R T e |
A— H— E—
: T — .
g — =1 ==
(a) Individual leaders [7] (b) Hyperleaders [6] (c) Backbones

Fig. 1. Different types of many-to-one labelings.

We study many-to-one boundary labeling with backbone leaders (for short,
backbone labeling). In this model, a horizontal backbone reaches out of each label
into the feature-enclosing rectangle. Feature points that need to be connected
to a label are linked via vertical line segments to the label’s backbone (backbone
leaders; see Fig. . Formally, we are given a set P = {p1,...,p,} of n points in
an axis-aligned rectangle R, where each point p € P is assigned a color ¢(p) from
a color set C. We also assume that the points are in general position and sorted
in decreasing order of y-coordinates, with p; being the topmost. Our goal is to
place colored labels to the left or right side of R and assign each point p € P to
a label [(p) of color ¢(p). A backbone labeling for a set of colored points P is a
set L of colored labels and a mapping of each point p € P to some ¢(p)-colored
label in £, so that (i) each point is connected to a label of the same color, and
(ii) there are no backbone leader overlaps. A crossing-free backbone labeling is
one without leader crossings.

The number of labels of a specific color may be unlimited or bounded by
K > |C|. If K = |C], all points of the same color are associated with a common
label. One may restrict the maximum number of allowed labels for each color in
C separately by specifying a color vector k = (ki,...,k|¢c|). A backbone labeling
that satisfies all of the restrictions on the number of labels is called feasible.

Our goal is to find feasible backbone labelings that optimize different qual-
ity criteria. We study three different quality criteria, label number minimization
(Section7 total leader length minimization (Section, and crossing minimiza-
tion (Section . The first two require crossing-free leaders. We consider both
finite backbones and infinite backbones. Finite backbones extend horizontally
from the label to the furthest point connected to the backbone, whereas infinite
backbones span the whole width of the rectangle (thus one could use duplicate
labels on both sides). Our algorithms also vary depending on whether the order
of the labels is fixed or flexible and whether more than one label per color class
can be used. Note that, due to space constraints some of our proofs are only
sketched. Detailed proofs can be found in the technical report [1].

2 Minimizing the Total Number of Labels

In this section we minimize the total number of labels in a crossing-free solution,
i.e., we set K = n so that there is effectively no upper bound on the number of

labels. We first consider the case of infinite backbones and present an important
observation on the structure of crossing-free labelings.

Lemma 1. Let p;, pit1 be two vertically consecutive points. Let p; (j < i) be
the first point above p; with c(p;) # c(p;), and let pjr (j' > i + 1) be the first
point below p;11 with c(p;r) # c(pit1), if such points exist. In any crossing-free
backbone labeling with infinite backbones, p; and p;+1 are vertically separated by
at most 2 backbones and any separating backbone has color c¢(p;), c(pi+1), ¢(p;),

or c(py).

Sketch of Proof. In a crossing-free solution any infinite backbone splits the draw-
ing into two independent subinstances above and below the backbone. Clearly, a
backbone traversing a point has to be of the same color. On the other hand, we
can check that a backbone lying between two points p; and p;y; can only have
color ¢(p;), c(pit1), or the color of the next point of distinct color above p; or of
the one below p;4. O

Clearly, if all points have the same color, one label always suffices. Even in
an instance with two colors, one label per color is enough. However, if a third
color is involved, then many labels may be required. We sketch how to find an
optimum solution in O(n) time. First, we replace any maximal set of identically
colored consecutive points by the topmost point in the set. One can show that
an optimum solution of the original instance can be easily obtained from an
optimum solution of the reduced instance, in which no two consecutive points
have the same color. We solve the reduced instance using dynamic programming.

Theorem 1. Let P = {pi1,ps,...,pn} be an input point set consisting of n
points sorted from top to bottom. Then, a crossing-free labeling of P with the
minimum number of infinite backbones can be computed in O(n) time.

Sketch of Proof. We store a table nl of values nl(i,cur, chak, Ctree) representing
the minimum number of backbones needed above or at point p; such that the
lowest backbone is ¢pai-colored, the lowest backbone goes through p; if the flag
cur = true and lies above p; otherwise, and the (single) point between p; and
the lowest backbone (if cur = false) has color cgee. By careful case analysis, we
can see that any entry of the table can be computed in constant time. ad

We now consider finite backbones. First, note that we can slightly shift the
backbones in a given solution so that backbones are placed only in gaps between
points. We number the gaps from 0 to n where gap 0 is above and gap n is
below all points. Suppose a point p; lies between a backbone of color ¢ in gap
g and a backbone of color ¢’ in gap ¢’ with 0 < g < < ¢’ < n such that both
backbones horizontally extend to at least the x-coordinate of p;. Let R(g, ¢’,1) be
the rectangle bounded by these two backbones, the vertical line through p; and
the right side of R. Suppose all points except the ones in R(g,¢’,[) are already
labeled. An optimum solution for connecting the points in R cannot reuse any
backbone except for the two backbones in gaps g and ¢’; hence, it is independent
of the rest of the solution. We use this observation for solving the problem by
dynamic programming.

Theorem 2. Given a set P of n colored points and a color set C, we can com-
pute a feasible labeling of P with the minimum number of finite backbones in

O(n*|C|?) time.

Sketch of Proof. For 0 < g<g¢g <mn,l€{g,...,q'} U{0}, and two colors ¢ and
c let Tg,c,g’,c,1] be the minimum number of additional labels that are needed
for labeling all points in the rectangle R(g, ¢’,!) under the assumption that there
is a backbone of color ¢ in gap g, a backbone of color ¢’ in gap ¢’, between these
two backbones there is no backbone placed yet, and they both extend to the left
of p;. Note that for [= () the rectangle is empty and T'[g, ¢, ¢, ¢, 0] = 0. Finally,
let ¢ ¢ C be a dummy color, and let p; be the leftmost point. Then, the value
T[0,¢,n,¢,1] is the minimum number of labels needed for labeling all points. By
careful case analysis, we can compute each of the (n+1)x|C|x (n+1)x|C|x (n+1)
entries of table T' in O(n) time. O

3 Length Minimization

In this section we minimize the total length of all leaders in a crossing-free
solution, either including or excluding the horizontal lengths of the backbones.
We distinguish between a global bound K on the number of labels or a color
vector k of individual bounds per color. We first consider the case of infinite
backbones and use a parameter A to distinguish the two minimization goals, i.e.,
we set A = 0, if we want to minimize only the sum of the length of all vertical
segments and we set A to be the width of the rectangle R if we also take the
length of the backbones into account. We further assume that p; > --- > p,, are
the y-coordinates of the input points.

Single Color. If all points have the same color, we seek for a set of at most K y-
coordinates where we draw the backbones and connect each point to its nearest
one, i.e., we must solve the following problem: Given n points with y-coordinates
p1 > ...> Dy, find a set S of at most K y-coordinates that minimizes

A-1S|+ 3 minly —pil. &
i=1"

Note that we can optimize the value in Eq. by choosing S C {p1,...,pn}
Hence, the problem can be solved in O(Kn) time if the points are sorted ac-
cording to their y-coordinates using the algorithm of Hassin and Tamir [3]. Note
that the problem corresponds to the K-median problem if A = 0.

Multiple Colors. If the input points have different colors, we can no longer
assume that all backbones go through one of the given n points. However, by
Lemma [1} it suffices to add between any pair of vertically consecutive points
two additional candidates for backbone positions, plus one additional candidate

above all points and one below all points. Hence, we have a set of 3n candidate
lines at y-coordinates

Py >p1>pl >py >pa>py > >p, > pa > (2)

where for each ¢ the values p;” and p;r are as close to p; as the label heights allow.
Clearly, a backbone through p; can only be connected to points with color ¢(p;).
If we use a backbone through p; (or pif, respectively), it will have the same color
as the first point below p; (or above p;, respectively) that has a different color
than p;. Hence, the colors of all candidates are fixed or the candidate will never
be used as a backbone. For an easier notation, we denote the ith point in Eq.
by y; and its color by ¢(y;). We solve the problem using dynamic programming.

Theorem 3. A minimum length backbone labeling with infinite backbones for n
points with |C| colors can be computed in O(nQH‘lgll ki) time if at most k; labels
are allowed for color i, i = 1,...,|C| and in O(n? - K) time if in total at most
K labels are allowed.

Sketch of Proof. For each i = 1,...,3n, and for each vector k' = (k1,..., k\lc\)
with k] < ky,..., k|/c\ < kjc|, let L(i, k') denote the minimum length of a feasible
backbone labeling of pq,... (P using k. infinite backbones of color ¢ for
¢ =1,...,|C| such that the bottommost backbone is at position y;, if such a
labeling exists. Otherwise L(i, k') = oco. One can show that the values L(i, k')
can be computed recursively in O(n? ng‘l k;) time in total. Let S be the set of
candidates y; such that all points below y; have the same color as y;. Then, we
can compute the minimum total length of a backbone labeling of pq, ..., p, with
at most k., c=1,...,|C] labels per color ¢ by the following formula:

. - / !/
L, min L(i,ky,..., |C\)+ E (yi — pz)
inSU{pn}7k1Sk1y~~~7k‘c|Sk|C\ Héz <z<n

If we bound the total number of labels by K, we obtain a similar dynamic
program with the corresponding values L(i, k), i =1,...,3n, k < K. a

We now turn our attention to the case of finite backbones and sketch how
to modify the dynamic program for minimizing the total number of labels (see
Theorem [I)) to minimize the total leader length.

Theorem 4. Given a set P of n colored points, a color set C, and a label
bound K (or color vector k), we can compute a feasible labeling of P with fi-
nite backbones that minimizes the total leader length in time O(n"|C|?K?) (or

On"ICP([eec ke)?))-

Sketch of Proof. We change the meaning of an entry in the table T' to denote the
additional length of segments and backbones needed for labeling the points of
the subinstance. Moreover, the precise positions of backbones matter for length

pi pi i
J By e ——— e .. —
A A
b* Ai
b* }ntimcs
A
A
— L e -
Pit+1 Pi+1

Fig. 2. (a) Longest backbone b* splitting the backbones between p; and p;+1. (b) Back-
bones placed with the minimum leader length. (¢) Candidate positions for backbones
inside the gap.

minimization. A clear candidate set is the set of the y-coordinates of input points
which may be used by a backbone of the same color. We can also identify can-
didates for backbones inside a gap between points p; and p; 1. We observe that
the longest backbone b* inside the gap splits all other backbones lying between
pi and p;i41; see Fig. 2al The backbones above b* connect only to points above
and, hence, must be placed as close to p; as possible for length minimization.
Symmetrically, the backbones below b* connect only to the bottom and must be
placed as close to p;41 as possible.

For avoiding overlaps and to accommodate labels with fixed heights, we en-
force a minimum distance A > 0 between pairs of backbones, as well as back-
bones and differently colored points. Then, for the labels close to p;, we get a
sequence of consecutive candidate positions with distance A below p;; see Fig.
and Symmetrically, there is such a sequence above p;11. Any such sequence
contains up to n points (less if the gap is too small). Note that the two sequences
might overlap; we can, however, easily ensure that no two backbones with dis-
tance less than A are used in the dynamic program. To address entries in T we
use the O(n?) candidate positions (input points and positions in gaps) instead
of the gaps; no position can be used twice.

As a final step, we integrate the global value K or the color vector k as a
bound on the allowed numbers of labels. To this end, we add additional dimen-
sions for K or for k.,c € C to the table that specify the remaining available
numbers of labels in the subinstance. O

4 Crossing Minimization

In this section we allow crossings between backbone leaders, which generally
allows us to use fewer labels. We concentrate on minimizing the number of
crossings for the case K = |C|, i.e., one label per color, and distinguish fixed
and flexible label orders.

4.1 Fixed y-Order of Labels

In this part, we assume that the color set C is ordered and we require that for
each pair of colors ¢ < j, the i-colored label is above the j-colored label.

Infinite Backbones. Observe that it is possible to slightly shift the backbones
of a solution without increasing the number of crossings so that no backbone
contains a point. So, the backbones can be assumed to be in the gaps between
vertically consecutive points; we number the gaps from 0 to n, as in Section [2}

Theorem 5. Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given color order, infinite
backbones, and minimum number of crossings can be computed in O(n|C|) time.

Proof. Suppose that we fix the position of the i-th backbone to gap g. For 1 <
i <|C| and 0 < g < n, let cross(i, g) be the number of crossings of the vertical
segments of the non-i-colored points when the color-i backbone is placed at gap
g. Note that this number depends only on the y-ordering of the backbones, which
is fixed, and not on their actual positions. So, we can precompute the table cross,
using dynamic programming, as follows. All table entries of the form cross(-,0)
can be clearly computed in O(n) time. Then, cross(i, g) = cross(i, g—1)+1, if the
point between gaps g —1 and g has color 5 and j > 4. In the case where the point
between gaps g — 1 and ¢ has color j and j < i, cross(i, g) = cross(i,g — 1) — 1.
If it has color 7, then cross(i, g) = cross(i, g — 1). From the above, it follows that
the computation of table cross takes O(n|C|) time.

Now, we use another dynamic program to compute the minimum number
of crossings. Let T'[i, g] denote the minimum number of crossings on the back-

bones 1,...,% in any solution subject to the condition that the backbones are
placed in the given ordering and backbone i is positioned in gap g. Clearly T'[0, g] =
0 for g = 0,...,n. Moreover, we have T'[i, g] = ming <, T[i — 1, ¢'] + cross(s, g).

Having pre-computed table cross and assuming that for each entry TV[i, g], we
also store the smallest entry of row T, -] to the left of g, each entry of table T
can by computed in constant time. Hence, table T' can be filled in time O(n|C]).
Then, the minimum crossing number is min, T[|C|, g]. A corresponding solution
can be found by backtracking in the dynamic program. a

Finite Backbones. We can easily modify the approach used for infinite back-
bones to minimize the number of crossings for finite backbones, if the y-order of
labels is fixed, as the following theorem shows.

Theorem 6. Given a set P of n colored points and an ordered color set C, a
backbone labeling with one label per color, labels in the given order, finite back-
bones, and minimum number of crossings can be computed in O(n|C|) time.

Proof. We present a dynamic program similar to the one presented in the proof
of Theorem [] Recall that all points of the same color are routed to the same
label and the order of the labels is fixed, i.e., the label of the i-colored points
is above the label of the j-colored points, when i < j. Here, the computation
of the number of crossings when fixing a backbone at a certain position should
take into consideration that the backbones are not of infinite length. Recall
that the dynamic program could precompute these crossings, by maintaining an
n x |C] table cross, in which each entry cross(i, g) corresponds to the number of
crossings of the non-i-colored points when the color-i-backbone is placed at gap
g, for 1 < i < |C] and 0 < g < n. In our case, cross(i,g) = cross(i,g — 1) + 1,
if the point between gaps g — 1 and g is right of the leftmost of the i-colored
points and has color j s.t. j > i. In the case, where the point between gaps g — 1
and g is right of the leftmost of the i-colored points and has color 5 and j < 1,
cross(i, g) = cross(i, g — 1) — 1. Otherwise, cross(i, g) = cross(i,g — 1). Again, all
table entries of the form cross(-, 0) can be clearly computed in O(n) time. O

4.2 Flexible y-Order of Labels

In this part the order of labels is no longer given and we need to minimize the
number of crossings over all label orders. While there is an efficient algorithm
for infinite backbones, the problem is NP-complete for finite backbones.

Infinite Backbones. We give an efficient algorithm for the case that there
are K = |C] fixed label positions yi,...,yx on the right boundary of R, e.g.,
uniformly distributed.

Theorem 7. Given a set P of n colored points, a color set C, and a set of |C)|
fized label positions, we can compute in O(n + |C’\3) time a feasible backbone
labeling with infinite backbones that minimizes the number of crossings.

Proof. First observe that if the backbone of color k,1 < k < |C] is placed at
position y;,1 < i < |C], then the number of crossings created by the vertical
segments leading to this backbone is fixed, since all label positions will be occu-
pied by an infinite backbone. This crossing number cr(k,?) can be determined
in O(ny + |C|) time, where ny, is the number of points of color k. In fact, by a
sweep from top to bottom, we can even determine all crossing numbers cr(k,)
for backbone k,1 < k < |C] in time O(ny + |C|). Now, we construct an instance
of a weighted bipartite matching problem, where for each position y;,1 < k < |C|
and each backbone k,1 < k < |C], we establish an edge (k, 7) of weight cr(k, 7). In
total, this takes O(n +|C|?) time. The minimum-cost weighted bipartite match-
ing problem can be solved in time O(|C|*) with the Hungarian method [5] and
yields a backbone labeling with the minimal number of crossings. a

Finite Backbones. Next, we consider the variant with finite backbones and
prove that it is NP-hard to minimize the number of crossings. For simplicity, we

M guards
upper guards ———

S~
M points
range points

m points

range
restrictor

middle backbone

—
lower guards U—L P —
(a) (b) (c)
Fig. 3. (a) The range restrictor gadget, (b) a blocker gadget, (c) crossings caused by a

pair of an upper and a lower guard that are positioned on the same side outside range
R.

Fm—ﬁ

allow points that share the same x- or y-coordinates. This can be remedied by a
slight perturbation. Our arguments do not make use of this special situation, and
hence carry over to the perturbed constructions. We first introduce a number of
gadgets that are required for our proof and sketch their properties.

The first one is the range restrictor gadget. Its construction consists of the
middle backbone, whose position will be restricted to a given range R, and an
upper and a lower guard gadget that ensure that positioning the middle backbone
outside range R creates many crossings. We assume that the middle backbone
is connected to at least one point further to the left such that it extends beyond
all points of the guard gadgets. The middle backbone is connected to two range
points whose y-coordinates are the upper and lower boundary of the range R.
Their x-coordinates are such that they are on the right of the points of the
guard gadgets. A guard consists of a backbone that connects to a set of M
points, where M > 1 is an arbitrary number. The M points of a guard lie left of
the range points. The upper guard points are horizontally aligned and lie slightly
below the upper bound of range R. The lower guard points are placed such that
they are slightly above the lower bound of range R. We place M upper and M
lower guards such that the guards form pairs for which the guard points overlap
horizontally. The upper (resp. lower) guard gadget is formed by the set of upper
(resp. lower) guards. We call M the size of the guard gadgets. The next lemma
shows properties of the range restrictor.

Lemma 2. The backbones of the range restrictor can be positioned such that
there are no crossings. If the middle backbone is positioned outside the range R,
there are at least M — 1 crossings.

Proof. The first statement is illustrated in Fig. Bal To prove the second state-
ment, assume to the contrary that the middle backbone is positioned outside
range R, say w.l.o.g. below range R, and that there are fewer than M — 1 cross-
ings. Observe that all guards must be positioned above the middle backbone, as
a guard below the middle backbone would create M crossings, namely between

the middle backbone and the segments connecting the points of the guard to its
backbone. So, the middle backbone is the lowest. Now observe that any guard
that is positioned below the upper range point crosses the segment that connects
this range point to the middle backbone. To avoid having M — 1 crossings, at
least M + 1 guards (both upper and lower) must be positioned above range R.
Hence, there is at least one pair consisting of an upper and a lower guard that
are both positioned above range R. This, independent of their ordering, creates
at least M — 1 crossings, a contradiction; see Fig. where the two alternatives
for the lower guard are drawn in black and bold gray, respectively. a

Let B be an axis-aligned rectangular box and R a small interval that is
contained in the range of y-coordinates spanned by B. A blocker gadget of width
m consists of a backbone that connects to 2m points, half of which are on the
top and bottom side of B, respectively. A range restrictor gadget is used to
restrict the backbone of the blocker to the range R; see Fig. Note that, due
to the range restrictor, this drawing is essentially fixed. We say that a backbone
crosses the blocker gadget if its backbone crosses box B. It is easy to see that
any backbone that crosses a blocker gadget creates m crossings, where m is the
width of the blocker. We are now ready to present the NP-hardness reduction.

Theorem 8. Given a set of n input points in k different colors and an integer
Y it is NP-complete to decide whether a backbone labeling with one label per
color and flexible y-order of the labels that has at most 'Y leader crossings exists.

Proof. The proof is by reduction from the NP-complete Fixed Linear Crossing
Number problem [§]: Given a graph G = (V, E), a bijective function f: V —
{1,...,|V|}, and an integer Z, is there a drawing of G with the vertices placed on
a horizontal line (spine) in the order specified by f and the edges drawn as semi-
circles above or below the spine so that there are at most Z crossings? Masuda
et al. [§] showed that the problem is NP-complete, even if G is a matching.

Let G be a matching. Then, the number of vertices is even and we can assume
that the vertices V' = {v1,...,v9,} are indexed in the order specified by f, i.e.,
f(v;) = i for all i. We also direct each edge {v;,v;} with ¢ < j from v; to
vj. Let {u1,...,u,} be the ordered source vertices and let {wy, ..., wy,} be the
ordered sink vertices; see Fig. [dal In our reduction we will create an edge gadget
for every edge of G. The gadget consists of five blocker gadgets and one side
selector gadget. Each of the six sub-gadgets uses its own color and thus defines
one backbone. The edge gadgets are ordered from left to right according to the
sequence of source vertices (ug,...,u,); see Fig.

The edge gadgets are placed symmetrically with respect to the x-axis. We
create 2n + 1 special rows above the x-axis and 2n + 1 special rows below,
indexed by —(2n+1),—2n,...,0,...,2n,2n+ 1. The gadget for an edge (v;, v;)
uses five blocker gadgets (denoted as central, upper, lower, upper gap, and lower
gap blockers) in two different columns to create two small gaps in rows j and
—J, see the hatched blocks in the same color in Fig. [db] The upper and lower
blockers extend vertically to rows 2n + 1 and —2n — 1. The gaps are intended
to create two alternatives for routing the backbone of the side selector. Every

|
I

i

{i

|

X
o

(6)
upper 1
gap
=2

|7}

MR

A

(3)

{
%r

o

Y

N

—5 lower
gap

R\\\\\\\Wh\\\\\\\i gy gy

k
W

\

\

NN

—~
[
Na2
—~
=3
=

Fig. 4. (a) An input instance with four edges, (b) Sketch of the reduction for the graph
of Fig. Hatched rectangles correspond to blockers, thick segments to side selectors,
and filled shapes to guard gadgets or range restrictor gadgets.

backbone that starts left of the two gap blockers is forced to cross at least one of
these five blocker gadgets as long as it is vertically placed between rows 2n + 1
and —2n — 1. The blockers have width m = 8n?. Their backbones are fixed to
lie between rows 0 and —1 for the central blocker, between rows 2n and 2n + 1
(—2n and —2n — 1) for the upper (resp. lower) blocker, and between rows j and
j+1(—jand —j — 1) for the upper (resp. lower) gap blocker.

The side selector consists of two horizontally spaced selector points s(lz) and
sg) in rows ¢ and —i located between the left and right blocker columns. They
have the same color and thus define one joint backbone that is supposed to pass
through one of the two gaps in an optimal solution. The n edge gadgets are placed
from left to right in the order of their source vertices; see Fig. The backbone
of every selector gadget is vertically restricted to the range between rows 2n + 1
and —2n — 1 in any optimal solution by augmenting each selector gadget with
a range restrictor gadget. So, we add two more points for each selector to the
right of all edge gadgets, one in row 2n + 1 and one in row —2n — 1. They are
connected to the selector backbone. In combination with a corresponding upper
and lower guard gadget of size M = 2(n*) between the two selector points ng)
and sgi) this achieves the range restriction according to Lemma

We now claim that in a crossing-minimal labeling the backbone of the selector
gadget for every edge (v;, v;) passes through one of its two gaps in rows j or —j.
The proof of this claim is based on three different options for placing a selector
backbone: (a) outside its range restriction, i.e., above row 2n + 1 or below row

—2n — 1, (b) between rows 2n + 1 and —2n — 1, but outside one of the two
gaps, and (c¢) in rows j or —j, i.e., inside one of the gaps. By this claim and the
fact that violating any range restriction immediately causes M crossings, we can
assume that every backbone adheres to the rules, i.e., stays within its range as
defined by the range restriction gadgets or passes through one of its two gaps.
One can show that an optimal solution of the backbone labeling instance
I created for a matching G with n edges has X + 2Z crossings, where X is a
constant depending on GG, and Z is the minimum number of crossings of G in the
Fixed Linear Crossing Number problem. The detailed proof is based on carefully
counting crossings in four different cases, depending on which types of backbones
and vertical segments intersect. It turns out that almost all crossings are fixed
(yielding the number X)), except for those of selector backbones with vertical
selector segments for which the two underlying edges (v;,v;) and (vg,v;) with
i < k are interlaced, i.e., 1 < k < j < [holds (yielding the number 27). Note
that we can guess an order of the backbones and apply Theorem [f] to compute
the minimum crossing number, which concludes the NP-completeness proof. 0O

Acknowledgements. This work was started at the Bertinoro Workshop on Graph
Drawing 2013. M. Nollenburg received financial support by the Concept for the
Future of KIT. The work of M. A. Bekos and A. Symvonis is implemented
within the framework of the Action “Supporting Postdoctoral Researchers” of
the Operational Program “Education and Lifelong Learning” (Action’s Benefi-
ciary: General Secretariat for Research and Technology), and is co-financed by
the European Social Fund (ESF) and the Greek State. We also acknowledge
partial support by GRADR — EUROGIGA project no. 10-EuroGIGA-OP-003.

References

1. M. A. Bekos, S. Cornelsen, M. Fink, S. Hong, M. Kaufmann, M. Néllenburg, 1. Rut-
ter, and A. Symvonis. Many-to-one boundary labeling with backbones. CoRR, 2013.
arXiv:1308.6801.

2. M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary labeling: Models
and efficient algorithms for rectangular maps. Computational Geometry, 36(3):215—
236, 2007.

3. R. Hassin and A. Tamir. Improved complexity bounds for location problems on the
real line. Operations Research Letters, 10(7):395-402, 1991.

4. M. Kaufmann. On map labeling with leaders. In S. Albers, H. Alt, and S. N&her, ed-
itors, Festschrift Mehlhorn, volume 5760 of LNCS, pages 290-304. Springer-Verlag,
2009.

5. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83-97, 1955.

6. C.-C. Lin. Crossing-free many-to-one boundary labeling with hyperleaders. In Proc.
IEEE Pacific Visualization Symp. (PacificVis’10), pages 185-192. IEEE, 2010.

7. C.-C. Lin, H.-J. Kao, and H.-C. Yen. Many-to-one boundary labeling. Journal of
Graph Algorithms and Applications, 12(3):319-356, 2008.

8. S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization
in linear embeddings of graphs. IEEE Trans. Computers, 39(1):124-127, 1990.

	Many-to-One Boundary Labeling with Backbones

