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Abstract A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-to-
one correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in
phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges
have as few crossings as possible. It is known that finding a tanglegram with the minimum number of
crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no constant-factor approximation for binary
trees. We show that the problem is NP-hard even if both trees are complete binary trees. For this case
we give an O(n3)-time 2-approximation and a new, simple fixed-parameter algorithm. We show that the
maximization version of the dual problem for binary trees can be reduced to a version of MAXCUT for
which the algorithm of Goemans and Williamson yields a 0.878-approximation.

Keywords Binary tanglegram · crossing minimization · NP-hardness · approximation algorithm ·
fixed-parameter tractability

1 Introduction

In this paper we are interested in drawing so-called tanglegrams [23], that is, comparative drawings of pairs
of rooted trees whose leaf sets are in one-to-one correspondence. The need to visually compare pairs of
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(a) arbitrary layout (b) layout by our 2-approximation algorithm

Fig. 1: A binary tanglegram showing two evolutionary trees for lice of pocket gophers [16].

trees arises in applications such as the analysis of software projects, phylogenetics, or clustering. In the
first application, trees may represent package-class-method hierarchies or the decomposition of a project
into layers, units, and modules [17]. The aim is to analyze changes in hierarchy over time or to compare
human-made decompositions with automatically generated ones. Whereas trees in software analysis can
have nodes of arbitrary degree, trees from our second application, that is, (rooted) phylogenetic trees,
are binary trees. This makes binary tanglegrams an interesting special case, see Fig. 1. Tanglegrams in
phylogenetics are used, for example, to study cospeciation [23] or to compare evolutionary trees for the
speciation of a single lineage but from different tree building methods. Hierarchical clusterings, our third
application, are usually visualized by a binary tree-like structure called dendrogram, where elements are
represented by the leaves and each internal node of the tree represents the cluster containing the leaves
in its subtree. Pairs of dendrograms stemming from different clustering processes of the same data can be
compared visually using tanglegrams. Note that we are interested in minimizing the number of crossings for
visualization purposes. The minimum, as a number, is not primarily intended to be a tree-distance measure
(since, for example, a crossing number of zero does not mean that two trees are equal). Examples of such
measures are nearest-neighbor interchange and subtree transfer [8].

Let S and T be two rooted, unordered, n-leaf trees with node sets V (S) and V (T ), edge sets E(S) and
E(T ), and leaf sets L(S) ⊆ V (S) and L(T ) ⊆ V (T ), respectively. In the remainder of the paper, unless
explicitly stated otherwise, trees are considered to be rooted and unordered. We say that the pair of trees
〈S,T 〉 is uniquely leaf-labeled if there are two bijective labeling functions λS : L(S)→Λ and λT : L(T )→
Λ , where Λ = {1, . . . ,n} is a set of labels. For a uniquely leaf-labeled pair of trees 〈S,T 〉 we define the
set E(S,T ) = {uv | u ∈ L(S), v ∈ L(T ), λS(u) = λT (v)} of inter-tree edges, where each edge in E(S,T )
connects two leaves with the same label.

Tanglegram Layout Problem1 (TL) Given a uniquely leaf-labeled pair of trees 〈S,T 〉, find a tanglegram
of 〈S,T 〉, that is, a drawing of the graph G = (V (S)∪V (T ),E(S)∪E(T )∪E(S,T )) in the plane, with the
following properties:

1. The subdrawing of S is a plane, leftward drawing of S with the leaves L(S) on the line x = 0 and each
parent node strictly to the left of all its children;

2. the subdrawing of T is a plane, rightward drawing of T with the leaves L(T ) on the line x = 1 and each
parent node strictly to the right of all its children;

3. the inter-tree edges E(S,T ) are drawn as straight-line segments;
4. the number of crossings (between inter-tree edges) in the drawing is minimum.

In this paper we consider binary tanglegrams, that is, tanglegrams that consist of two rooted binary
trees. We call the restriction of TL to binary trees the binary TL problem. We say that a rooted binary tree is
complete (or perfect) if all its leaves have the same distance to the root. Accordingly, we call the restriction

1 The name follows the common terminology in the biology literature [20, 23, 26]. Note that the problem has also been called the
two-tree crossing minimization problem [12] or the stratified tree ordering problem [10].
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of the binary TL problem to complete binary trees the complete binary TL problem. Figure 1 shows two
binary tanglegrams for the same pair of trees, an arbitrary tanglegram and one with a minimum number of
crossings.

The TL problem is purely combinatorial: Given a tree T , we say that a linear order of L(T ) is compatible
with T if for each node v of T the nodes in the subtree of v form an interval in the order. For a binary
tree T the linear orders of L(T ) that are compatible with T are exactly those orders that can be obtained
from an initial plane leftward (or rightward) drawing of T by performing a sequence of subtree swaps
that flip the order of the two child subtrees at an internal node. Given a permutation π of {1, . . . ,n}, we
call (i, j) an inversion in π if i < j and π(i) > π( j). For fixed orders σ of L(S) and τ of L(T ) we define
the permutation πτ,σ , which for a given position in τ returns the position in σ of the leaf having the same
label. Now the TL problem consists in finding an order σ of L(S) compatible with S and an order τ of L(T )
compatible with T such that the number of inversions in πτ,σ is minimum.

Related problems. In graph drawing the so-called two-sided crossing minimization problem (2SCM) is an
important problem that occurs when computing layered graph layouts. Such layouts were introduced by
Sugiyama et al. [25] and are widely used for drawing hierarchical graphs. In 2SCM, vertices of a bipartite
graph are to be placed on two parallel lines (called layers) such that vertices on one line are adjacent only
to vertices on the other line. As in TL the objective is to minimize the number of edge crossings provided
that edges are drawn as straight-line segments. In one-sided crossing minimization (1SCM) the order of the
vertices on one of the layers is fixed. Even 1SCM is NP-hard [11]. In contrast to TL, a vertex in an instance
of 1SCM or 2SCM can have several incident edges and the linear order of the vertices in the non-fixed layer
is not required to be compatible with a tree. The following is known about 1SCM. The median heuristic of
Eades and Wormald [11] yields a 3-approximation and a randomized algorithm of Nagamochi [21] yields
an expected 1.4664-approximation. Dujmovič et al. [9] give an FPT algorithm that runs in O?(1.4664k)
time, where k is the minimum number of crossings in any 2-layer drawing of the given graph that respects
the vertex order of the fixed layer. The O?(·)-notation ignores polynomial factors.

Previous work. Dwyer and Schreiber [10] draw series of related tanglegrams in 2.5 dimensions. Each tree
is drawn on a plane, and the planes are stacked on top of each other. They consider a one-sided version of
binary TL by fixing the layout of the first tree in the stack, and then, plane-by-plane, computing the leaf
order of the next tree in O(n2 logn) time each. Binary TL is also studied by Fernau et al. [12], although
they refer to it as the two-tree crossing minimization problem. They show that binary TL is NP-hard and
give a fixed-parameter algorithm that runs in O?(ck) time, where c is a constant estimated to be 1024 and
k is the minimum number of crossings in any drawing of the given tanglegram. In addition, they show that
the one-sided version of binary TL can be solved in O(n log2 n) time. This improves on the result of Dwyer
and Schreiber [10]. Fernau et al. also make the simple observation that the edges of the tanglegram can
be directed from one root to the other. Thus the existence of a crossing-free tanglegram can be verified
using a linear-time upward-planarity test for single-source directed acyclic graphs [3]. Later, apparently
not being aware of the above mentioned results, Lozano et al. [20] give a quadratic-time algorithm for the
same special case, to which they refer as planar tanglegram layout. Holten and van Wijk [17] present a
visualization tool for general tanglegrams that heuristically reduces crossings (using the barycenter method
for 1SCM on a per-level base) and draws inter-tree edges in bundles (using Bézier curves).

Our results. We first analyze the complexity of binary TL, see Section 2. We show that binary TL is
essentially as hard as the MINUNCUT problem. If the (widely accepted) Unique Games Conjecture holds,
it is NP-hard to approximate MINUNCUT—and thus binary TL—within any constant factor [19]. This
motivates us to consider complete binary TL. It turns out that this special case has a rich structure. We start
our investigation by giving a new reduction from MAX2SAT that establishes the NP-hardness of complete
binary TL.

The main result of this paper is a simple recursive factor-2 approximation algorithm for complete binary
TL, see Section 3. It runs in O(n3) time and extends to d-ary trees. Our algorithm can also process non-
complete binary tanglegrams—without guaranteeing any approximation ratio. It works well in practice and
is quite fast when combined with branch-and-bound [22].
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Next we consider a dual problem: maximize the number of edge pairs that do not cross. We show
that this problem (for binary trees) can be reduced to a version of MAXCUT for which the algorithm of
Goemans and Williamson [15] yields a 0.878-approximation.

Finally, we investigate the parameterized complexity of complete binary TL. Our parameter is the
number k of crossings in an optimal drawing. We give a new FPT algorithm for complete binary TL that is
much simpler and faster than the FPT algorithm for binary TL by Fernau et al. [12]. The running time of
our algorithm is O(4kn2), see Section 4. An interesting feature of the algorithm is that the parameter does
not drop in each level of the recursion.

Subsequent work. Since the presentation of the preliminary version [5] of this work, the TL problem has
received a lot of attention. We briefly summarize these recent developments. Böcker et al. [4] present a
fixed-parameter algorithm for binary TL that runs in O(2kn4) time. They further give a kernel-like bound
for complete binary TL. Baumann et al. [2] study a generalized version of TL, in which the leaves no longer
have to be in one-to-one correspondence; instead, the inter-tree edges may form any bipartite graph. They
show how to formulate the problem as a quadratic linear-ordering problem with additional side constraints.
Bansal et al. [1] study the same generalization, but restricted to binary TL. For the one-sided case (where the
leaf order of one tree is fixed), they give a polynomial-time algorithm. On instances of (non-generalized)
one-sided binary TL, their algorithm runs in O(n log2 n/ log logn) time, improving on the algorithm of
Fernau et al. Finally, Venkatachalam et al. [26] give an O(n logn)-time solution for the same problem.

2 Complexity

In this section we consider the complexity of binary TL, which Fernau et al. [12] have shown to be NP-
complete. We strengthen their findings in two ways. First, we show that it is unlikely that an efficient
constant-factor approximation for binary TL exists. Second, we show that TL remains hard even when
restricted to complete binary tanglegrams.

We start by showing that binary TL is essentially as hard as MINUNCUT, the dual formulation of the
classic MAXCUT problem [14]. This result relates the existence of a constant-factor approximation for
binary TL to the Unique Games Conjecture (UGC). The UGC was introduced by Khot [18] in the context
of interactive proofs. It concerns a scenario with two provers and a single round of answers to a question
of the verifier. The word “unique” refers to the strategy of the verifier, who for any fixed answer of one of
the provers will accept the proof only if the other prover gives the unique second part of the proof. The
provers cannot communicate with each other. Still they want to maximize the probability of the proof being
accepted given that questions of the verifier are drawn randomly from a given distribution. The UGC states
that it is NP-hard to decide whether the optimal strategy of the provers gives them a high probability of
success.

The UGC became famous when it was discovered that it implies optimal hardness-of-approximation
results for problems such as MAXCUT and VERTEXCOVER, and forbids constant factor-approximation
algorithms for problems such as MINUNCUT and SPARSESTCUT [19]. We reduce the MINUNCUT problem
to the binary TL problem, which, by the result of Khot and Vishnoi [19], makes it unlikely that an efficient
constant-factor approximation for binary TL exists.

The MINUNCUT problem is defined as follows. Given an undirected graph G = (V,E), find a partition
(V1,V2) of the vertex set V that minimizes the number of edges that are not cut by the partition, that is,
min(V1,V2) |{uv ∈ E : {u,v} ⊆V1 or {u,v} ⊆V2}|. Note that an optimal solution for MINUNCUT of a graph
G is at the same time an optimal solution for MAXCUT of G. Nevertheless, the MINUNCUT problem is
more difficult to approximate.

Theorem 2.1 Under the Unique Games Conjecture it is NP-hard to approximate the TL problem for binary
trees within any constant factor.

Proof As mentioned above, we reduce from the MINUNCUT problem. Our reduction is similar to the
reduction in the NP-hardness proof by Fernau et al. [12].

Consider an instance G = (V,E) of the MINUNCUT problem. We construct a binary TL instance 〈S,T 〉
as follows. The two trees S and T are isomorphic and there are three groups of edges connecting leaves
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Fig. 2: Binary TL instance corresponding to the graph K3 and the cut ({v1},{v2,v3}). The crossings of the inter-tree edges are marked
by gray ellipses.

of S to leaves of T . For simplicity of exposition, we permit multiple inter-tree edges between a pair of
leaves and also an inter-tree connection of a leaf to many other leafs in the other tree. In the actual trees,
we replace each such meta-leaf by a binary tree with the appropriate number of regular leaves.

Let V = {v1,v2, . . . ,vn} be the vertex set of the graph G that constitutes our MINUNCUT instance.
Then we construct both S and T as follows. We start with a backbone path 〈v11,v12,v21,v22, . . . ,vn1,vn2,a〉
from the root node v11 to a central leaf a. Additionally, for i ∈ {1, . . . ,n} and j ∈ {1,2}, we attach
each node vi j to a leaf `i j. (The construction of S and T is illustrated, for the complete graph K3 =
({v1,v2,v3},{v1v2,v2v3,v3v1}), in Fig. 2.) In the remainder of this proof, where needed, we use a super-
script to denote the tree to which a leaf belongs. The inter-tree edges between S and T form the following
three groups.

– Group A contains n11 edges connecting the central leaves of the two trees.
– Group B contains, for each vi ∈ V , n7 edges connecting `S

i1 with `T
i2 and n7 edges connecting `S

i2 with
`T

i1.
– Group C contains, for each viv j ∈ E, a single edge from `S

i1 to `T
j1.

Note that group C contains possibly more than one inter-tree edge attached to a single leaf in the described
tree. The actual, final tree is then obtained by replacing each leaf of the tree described above by a tree with
O(n) new leaves such that no two inter-tree edges share a leaf. This replacement may cause new crossings,
but no more than O(n2). Hence, these crossings can be neglected in the analysis, where only terms of
order n11 will matter.

Next, we show how to transform any partition in G into a solution of the corresponding binary TL
instance 〈S,T 〉. For our reduction we will apply this transformation to the partition of an optimal solution
to the given MINUNCUT instance. Let (V ∗1 ,V

∗
2 ) be the given partition of G and suppose that k is the number

of edges that are not cut. We now construct a drawing of 〈S,T 〉 such that at most k ·n11 +O(n10) pairs of
edges cross. (In the example of Fig. 2 we consider the cut ({v1},{v2,v3}) with the uncut edge v2v3.) We
simply draw, for each vertex vi ∈V ∗1 , the leaves `S

i1 and `T
i2 above the backbones, and the leaves `S

i2 and `T
i1

below the backbones. Symmetrically, for each vertex vi ∈ V ∗2 , we draw the leaves `S
i1 and `T

i2 below the
backbones, and the leaves `S

i2 and `T
i1 above the backbones. Let us check the resulting number of crossings.

There are k · n11 A–C crossings, no A–B crossings, at most |E| · n8 ∈ O(n10) B–C crossings, and at most
|E|2 ∈ O(n4) C–C crossings. (In Fig. 2, we have k = 1, |E|= 3, and n11 +2n7 +1 crossings in total.)

Now, suppose there exists, for some constant α , an α-approximation algorithm for the binary TL prob-
lem. Applying this algorithm to the instance 〈S,T 〉 defined above yields a drawing D(S,T ) with at most
α · k · n11 +O(n10) crossings. Let us assume that n is much larger than α and than any of the constants
hidden in the O(·)-notation. We show that from such a drawing D(S,T ) we would be able to reconstruct a
cut (V1,V2) in G with at most α · k uncut edges. First, observe that nodes `S

i1 and `T
i2 must be drawn either

both above or both below the backbones, otherwise there would be n18 A–B crossings. Similarly, `S
i2 must
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be on the same side as `T
i1. Next, observe that nodes `S

i1 and `S
i2 must be drawn on different sides of the

backbones, otherwise there would be O(n14) B–B crossings. Finally, observe that if we interpret the set of
vertices vi for which `S

i1 is drawn above the backbone as the set V1 of a partition of G and its complement
as the set V2, then this partition leaves at most α · k edges from E uncut.

Hence, an α-approximation for the binary TL problem would provide an α-approximation for the
MINUNCUT problem, which would contradict the UGC. ut

The above negative result for binary TL is our motivation to investigate the complexity of complete
binary TL. It turns out that even this special case is hard. Unlike Fernau et al. [12], who showed hardness
of binary TL by a reduction from MAXCUT using extremely unbalanced trees, we use a quite different
reduction from a variant of MAX2SAT.

Theorem 2.2 The TL problem is NP-complete even for complete binary trees.

Proof Recall the MAX2SAT problem which is defined as follows. Given a set U = {x1, . . . ,xn} of Boolean
variables, a set C = {c1, . . . ,cm} of disjunctive clauses containing two literals each, and an integer K, the
question is whether there is a truth assignment of the variables such that at least K clauses are satisfied.
We consider a restricted version of MAX2SAT, where each variable appears in at most three clauses. This
version remains NP-complete [24].

Our reduction constructs two complete binary trees S and T , in which certain aligned subtrees serve
as variable gadgets and others as clause gadgets. We further determine an integer K′ such that the in-
stance 〈S,T 〉 has less than K′ crossings if and only if the corresponding MAX2SAT instance has a truth
assignment that satisfies at least K clauses.

The high-level structure of the two trees is depicted in Fig. 3. From top to bottom, the four subtrees at
level 2 on both sides are a clause subtree, a variable subtree, another clause subtree, and finally a dummy
subtree. The subtrees are connected to each other by inter-tree edges such that in any optimal solution
they must be aligned in the depicted (or mirrored) order. Each clause gadget appears twice, once in each
clause subtree, and is connected to the variable gadgets belonging to its two literals. Pairs of corresponding
gadgets in S and T are connected to each other. Finally, non-crossing dummy edges connect unused leaves
in order to make S and T complete. In the following, we describe the gadgets in more detail.

Variable gadgets. The basic structure of a variable gadget consists of two complete binary trees with 32
leaves each as shown in Fig. 4. Each tree has three highlighted subtrees of size 2 labeled a,b,c and a′,b′,c′,

...
...

x1

xn

c1

cm

...

x1

xn

c1

cm

...

c1

cm

...

c1
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...

...

...

...




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



variables





clauses

S T

red
green
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Edge color legend

Fig. 3: High-level structure of the two trees S and T . Red edges connect clause and variable gadgets, green edges connect correspond-
ing gadget halves, and gray edges are dummy edges to complete the trees.
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(a) A single gray edge.

(b) Two pairs of connector edges for
a variable used in three clauses.

Fig. 4: The variable gadget in its two optimal configurations with 184 crossings.
Red edges are drawn solid, whereas dash-dot style is used for gray edges.

Fig. 5: Replacing each edge by four edges.

respectively. From each of these subtrees there is one red connector edge leaving the gadget at the top and
one leaving it at the bottom. As long as two connector edges from the same tree do not cross each other,
they transfer the vertical order of the labeled subtrees towards a clause gadget. We define the configuration
in Fig. 4a as true and the configuration in Fig. 4b as false. If the configuration is in its true state, the induced
vertical order of the connector edges is a < b < c, otherwise the order is inverse: c < b < a. It can easily
be verified that both states have the same number of crossings. To see that it is optimal observe that each
pair of connector edges from the same subtree (for example, subtree a) always crosses all 26 gray edges
in the gadget. Furthermore, all 24 crossings of two connector edges in the figure are mandatory. Finally,
the four crossings among the gray edges between subtrees 1 and 2′ and subtrees 2 and 1′ are also optimal.
(Otherwise, if subtree 1 is aligned with subtree 2′, there are 12 edges from the upper subtree on the left to
the lower subtree on the right and 10 edges from the lower subtree on the left to the upper subtree on the
right that yield in total at least 120 gray–gray crossings in addition to the 24 red–red crossings and the 156
red–gray crossings as opposed to a total of 184 crossings in either configuration of Fig. 4.) Note that some
internal swaps within the subtrees 1, 2, 1′, 2′ are possible that do not affect the number of crossings; none
of them, however, changes the order of the connector edges since in any optimal solution the subtrees of
the four crossing gray edges must always stay in the center of the gadget.

Note that so far the gadget in the figure is designed for a single appearance of the variable since the
four connector-edge triplets are required for a single clause. For the MAX2SAT reduction, however, each
variable can appear up to three times in different clauses. By appending a complete binary tree with four
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leaves as in Fig. 5 to each leaf of the gadget in Fig. 4 and copying each edge accordingly the above argu-
ments still hold for the enlarged trees with 128 leaves each. Unused connector edges in opposite subtrees
are linked to each other (a to a′, b to b′, c to c′) as in Fig. 4b such that the number of crossings in the gadget
remains balanced for both states.

Clause gadgets. For each clause ci = li1∨ li2, where li1 and li2 denote the two literals, we create two clause
gadgets: one in the upper clause subtrees and one in the lower clause subtrees (recall Fig. 3). Each gadget
itself consists of two parts: one part that uses the connectors from the first variable in the left tree and those
from the second variable in the right tree and vice versa. Figure 6 shows one such part of the gadget in the
lower clause subtrees, where the connector edges lead upwards. The gadget in the upper clause subtree is
simply a mirrored version.

The basic structure consists of two aligned subtrees with eight leaves as depicted in Fig. 6. Three of the
leaves on each side serve as the missing endpoints for the triplets of connector edges from the corresponding
variables. Recall that for a positive literal with value true the order of the connector edges is a < b < c,
and for a positive literal with value false it is c < b < a. (For negative literals the meaning of the orders
is inverted.) The two connector leaves for the edges labeled a and b are in the same four-leaf subtree, the
connector leaf for c is in the other subtree. Three cases need to be distinguished. If (1) both literals are
true, then the configuration in Fig. 6a is optimal with 21 crossings. If (2) only one literal is true, then
Fig. 6b shows again an optimal configuration with 21 crossings. Here the tree on the right side swapped the
subtrees of the root node. Finally, if (3) both literals are false, there are at least 22 crossings in the gadget
as shown in Fig. 6c. Since this substructure is repeated four times for each clause we have 84 induced
crossings for satisfied clauses and 88 induced crossings for unsatisfied clauses.

Reduction. We construct the gadgets for all variables and clauses and link them together as two trees S
and T , which are filled up with dummy leaves and edges such that they become complete binary trees. The
general layout is as depicted in Fig. 3, where each dummy leaf in S is connected to the opposite dummy leaf
in T such that there are no crossings among dummy edges. In each of the four main subtrees all dummy
edges are consecutive. Thus of all dummy edges only those in the variable subtree have crossings with
exactly half the connector edges.

It remains to compute the minimum number M of crossings that are always necessary, even if all
clauses are satisfied. Then the MAX2SAT instance has a solution with at least K satisfied clauses if and
only if the constructed TL instance has a solution with at most K′ = M+4(|C|−K) crossings. We get the
corresponding variable assignment directly from the layout of the variable gadgets.

The first step for computing M is to fix an (arbitrary) order for the variable gadgets in the variable
subtree. Let this order be x1 < x2 < .. . < xn. We want to achieve that any other order would increase the
number of crossings by a number that is too large for it to be part of an optimum solution. We first establish
neighbor links between adjacent variable gadgets. For these neighbor links we need eight of the 128 leaves
in each half of each variable gadget as shown in Fig. 7. Since both subtrees below the root of xi in S and
both subtrees below the root of xi+1 in T are connected to each other, the minimum number of crossings of
those edges is independent of the truth state of each gadget. The next step is to enlarge the variable gadgets
even further by repeatedly doubling all leaves until each variable gadget has at least cm2 gray edges for
some constant c. (Note that in subtrees containing red connector edges, we do not duplicate any red edges
but rather create new gray edges, similarly to Fig. 4b.) Now changing the variable order causes at least
8cm2 additional crossings since at least eight neighbor links would cross at least one variable gadget. We
explain how to choose c later.

Once the order of the variables is fixed, we sort all clauses lexicographically (a clause with variables
xi < x j is smaller than a clause with variables xk < xl if xi < xk or if xi = xk and x j < xl) and place smaller
clauses towards the top of the clause subtrees. Consider two clause gadgets in the same clause subtree.
Then, in the given clause order, there are crossings between their connector-edge triplets if and only if
the intervals between their respective variables intersect in the variable order. Since these crossings are
unavoidable for the given variable order, the number of connector-triplet crossings in the lexicographic
order of the clauses is optimal. There are at most 36 crossings between the connector-edge triples of any
pair of clause gadgets in each of the two clause subtrees. So for all clause pairs in both clause subtrees we
get at most γ = 2 ·36 ·m(m−1)/2 crossings. If we choose the constant c so that 8cm2 > γ , it never pays off
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Fig. 6: Gadget for the clause ci = li1 ∨ li2. Fig. 7: Linking adjacent variable gadgets for xi and xi+1.

to change the given variable order. So we can finally compute all necessary crossings between connector
edges, dummy edges and intra-gadget edges which yields the number M.

Since each gadget has polynomial size, the two trees and the number M can be computed in polynomial
time. It is obvious that the complete binary TL problem is in N P . ut

3 Approximation Algorithm

We start with a basic observation about binary tanglegrams. As we have noted in the introduction, TL is a
purely combinatorial problem, that is, it suffices to determine two leaf orders σ and τ that are compatible
with the input trees S and T , respectively. These orders are completely determined by fixing an order of
the two subtrees of each inner node v ∈ S◦∪T ◦, where S◦ and T ◦ denote the set of inner nodes of S and T .
The algorithm will recursively split the two trees S and T at their roots into two equally sized subinstances
and determine leaf orders of S and T by choosing a locally optimal order of the subtrees below the left and
right root of the current subinstance.

Let 〈S0,T0〉 be an input instance for complete binary TL. We assume that an initial layout of S0 and T0 is
given, that is, the subtrees of each v∈ S◦0∪T ◦0 are ordered (otherwise choose an arbitrary initial layout). The
root of a tree T is denoted as vT . For a binary tree T with the two ordered subtrees T1 and T2 of vT , we use the
notation T = (T1,T2). For each subinstance 〈S,T 〉 with S = (S1,S2) and T = (T1,T2), we need to consider
the four configurations (S1,S2)× (T1,T2) (initial layout), (S2,S1)× (T1,T2) (swap at vS), (S1,S2)× (T2,T1)
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Fig. 8: The context of an instance 〈S,T 〉 that is split into the subinstances 〈S1,T2〉 and 〈S2,T1〉 since T1 and T2 are swapped at vT . The
swap history is indicated by binary swap variables along the paths to the roots vS0 and vT0 .

(swap at vT ), and (S2,S1)× (T2,T1) (swap at vS and vT ). For each configuration, we recursively solve two
subinstances and then choose the configuration with the minimum number of crossings.

We always split the instance 〈S,T 〉 into an upper and a lower half, that is, the subinstances depend on
the swap decision. If we swap both vS and vT or none, the two subinstances are 〈S1,T1〉 and 〈S2,T2〉; if only
one side is swapped, the subinstances are 〈S1,T2〉 and 〈S2,T1〉. We solve both subinstances independently.
In order to achieve the desired approximation ratio, however, we cannot ignore the swap history of the
predecessor nodes of vT and vS. This history can be regarded as two bit strings hS and hT that represent the
swap and no-swap decisions made at the previous steps of the recursion. Figure 8 shows an instance 〈S,T 〉
and its swap history.

The history is used to compute the number of current-level crossings of 〈S,T 〉, that is, the number of
crossings that are caused by the swap decisions made for the current subinstance. The number of current-
level crossings and the recursively computed numbers of crossings of the subinstances determine which of
the four configurations of the current instance is the best one. Let lca(a,b) be the lowest common ancestor
of two nodes a and b of the same tree. An important observation that is necessary to compute the number
of current-level crossings is the following.

Observation For each pair of inter-tree edges ab and cd, a,c ∈ L(S) and b,d ∈ L(T ), the swap decisions
at the lowest common ancestors lca(a,c) and lca(b,d) completely determine whether ab and cd cross or
not. Given the order of the subtrees of lca(a,c), swapping or not swapping the subtrees of lca(b,d) (and
vice versa) causes or removes the crossing of ab and cd.

When considering the current-level crossings of a subinstance 〈S,T 〉 we know from the swap history
which of the nodes on the paths PS and PT from vS and vT to the roots vS0 and vT0 of the full trees,
respectively, have swapped their subtrees. Hence, for vS we can compute the current-level crossings of all
pairs of edges ab and cd with a ∈ L(S1), c ∈ L(S2), and lca(b,d) ∈ PT ; analogously, we can compute the
crossings of all pairs of edges ab and cd with b ∈ L(T1), d ∈ L(T2), and lca(a,c) ∈ PS. Note that if lca(b,d)
or lca(a,c) is not one of the predecessor nodes of vT or vS, but it is a node in the subtree T or S, then the
crossing of the edges ab and cd will be considered in a subsequent step. Otherwise, our algorithm cannot
account for the crossing and we may underestimate the number of crossings. Yet, we are able to bound this
error later in Theorem 3.2.

Algorithm 1 defines the recursive routine RecSplit that computes our tanglegram layout. It is initially
called with the parameters RecSplit (S0,T0,ε,ε), where ε is the empty string.

In order to quickly calculate the number of current-level crossings we use a preprocessing step. To that
end, we compute two tables C= and C× of size O(n2). For each pair (v,w) of inner nodes in S◦×T ◦, the
entry C=[v,w] stores the number of crossings of edge pairs ab and cd with lca(a,c) = v and lca(b,d) = w
if either both or none of v and w swap their subtrees. An entry C×[v,w] stores the analogous number of
crossings if only one of v and w swap their subtrees.

Lemma 3.1 The tables C= and C× can be computed in O(n2) time.
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Algorithm 1: RecSplit (S,T,hS,hT )
Input: n-leaf trees S = (S1,S2) and T = (T1,T2), swap histories hS and hT
Output: lower bound crST on the number of crossings created by the algorithm;

orders σ and τ for the leaves of S and T , respectively
if n = 1 then

return (crST ,σ ,τ) = (0,vS,vT )
else

crST = ∞

foreach (swpS,swpT ) ∈ {0,1}2 do
loop through all four cases to swap subtrees of S and T
cl← current level crossings induced by (swpS,swpT )
(cr1,σ1+swpS ,τ1+swpT )← RecSplit(S1+swpS ,T1+swpT ,(hS,swpS),(hT ,swpT ))
(cr2,σ2−swpS ,τ2−swpT )← RecSplit(S2−swpS ,T2−swpT ,(hS,swpS),(hT ,swpT ))
if cl+cr1+cr2 < crST then

crST ← cl+cr1+cr2
if swpS = 0 then

σ ← (σ1,σ2)
else σ ← (σ2,σ1)
if swpT = 0 then

τ ← (τ1,τ2)
else τ ← (τ2,τ1)

return (crST ,σ ,τ)

Proof We initialize all entries as 0 and preprocess S0 and T0 in linear time to support lowest-common-
ancestor queries in O(1) time [13]. Then we determine for each pair of inter-tree edges their lowest common
ancestors in S0 and T0 and increment the corresponding table entry depending on which two configurations
yield the crossing. This takes O(n2) time for all edge pairs. ut

Once we have computed C= and C×, we can determine the number of current-level crossings for any
subinstance 〈S,T 〉 in O(logn) time by summing up the appropriate table entries depending on the swap
history along the paths PT and PS, which are of length O(logn).

The running time Algorithm 1 satisfies the recurrence T (n) ≤ 8T (n/2) +O(logn), which solves to
T (n) = O(n3) by the master method [7]. We now prove that the algorithm yields a 2-approximation.

Theorem 3.2 Given a complete binary TL instance 〈S0,T0〉 with n leaves in each tree, Algorithm 1 com-
putes in O(n3) time a drawing of 〈S0,T0〉 that has at most twice as many crossings as an optimal drawing.

Proof Fix any drawing δ of 〈S0,T0〉. Algorithm 1 tries, for each subinstance 〈S,T 〉 of 〈S0,T0〉, all four
possible configurations of S = (S1,S2) and T = (T1,T2)—among them the configuration in δ . Assume that
the configuration in δ is 〈(S1,S2),(T1,T2)〉. We determine an upper bound on the number of crossings that
the algorithm fails to count for the drawing δ . In each of the trees S0 and T0 we distinguish four different
areas for the endpoints of the edges: above S1, in S1, in S2, below S2 and similarly above T1, in T1, in T2,
below T2. We number these regions from 0 to 3, see Fig. 9. This allows us to classify the edges into 16
groups (two of which, 0–0 and 3–3, are not relevant). We denote the number of i– j edges, that is, edges
from area i to area j, by ni j(S,T ) (for i, j ∈ {0,1,2,3}). Figure 9a shows the four groups of i– j edges for
i = 1.

The only crossings that the algorithm does not take into account are crossings between edges whose
lowest common ancestors lie in parts of S0 and T0 that are split apart into different branches of the recursion.
For the subinstance 〈S,T 〉, which is split into 〈S1,T1〉 and 〈S2,T2〉, this means that for all n12(S,T ) edges
that run between S1 and T2, we fail to consider all crossings between pairs of two such edges. Similarly, we
do not consider any pair of the n21(S,T ) edges between S2 and T1.
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and L(T2).

Fig. 9: Areas of the endpoints and types of edges incident to L(S) and L(T ). Cardinalities ni j(S,T ) are abbreviated as ni j .

Let’s return to the drawing δ and consider the set I of subinstances that correspond to δ , that is,
all pairs of opposing subtrees in δ . For each subinstance 〈S,T 〉 ∈ I we do not account for crossings of
pairs of 1–2 edges and pairs of 2–1 edges since these edges run between two subinstances that are solved
independently. In the worst case all these edge pairs cross and the algorithm misses

(n12(S,T )
2

)
+
(n21(S,T )

2

)

crossings. Let cδ be the number of crossings of δ counted by the algorithm, and let |δ | be the actual number
of crossings of δ . Clearly, we have cδ ≤ |δ |. We can bound |δ | from above by

|δ | ≤ cδ + ∑
〈S,T 〉∈I

[(
n12(S,T )

2

)
+

(
n21(S,T )

2

)]
≤ cδ + ∑

〈S,T 〉∈I

n2
12(S,T )+n2

21(S,T )
2

. (1)

We now show that ∑〈S,T 〉∈I (n2
12(S,T )+ n2

21(S,T )) ≤ 2cδ . For the sake of convenience, we abbrevi-
ate ni j(S,T ) by ni j in the following. We will bound n2

12 by the number of crossings of the 1–2 edges in δ

that are counted by the algorithm. This number is at least

c12 = n12 · (n03 +n20 +n21 +n30 +n31) (2)

as can be seen in Fig. 9b. All these crossings are current-level crossings at this or some earlier point in the
algorithm. Since our (sub)trees are complete and thus S1 and T1 have the same number of leaves, we obtain

n10 +n12 +n13 = n01 +n21 +n31. (3)

Furthermore, we have the following equality for the edges from areas 0 on both sides

n01 +n02 +n03 = n10 +n20 +n30. (4)

From (3) we obtain n12 ≤ n01− n10 + n21 + n31 and from (4) we obtain n01− n10 ≤ n20 + n30. Hence, we
have n12 ≤ n20 +n30 +n21 +n31. With (2) this yields

n2
12 ≤ n12 · (n20 +n30 +n21 +n31)≤ c12, (5)

that is, n2
12 is bounded by the number of crossings that involve a 1–2 edge in δ and that are counted by the

algorithm. Analogously, we obtain

n2
21 ≤ n21 · (n02 +n03 +n12 +n13)≤ c21, (6)

that is, n2
21 is bounded by the number of crossings counted by the algorithm that involve a 2–1 edge in δ .
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Fig. 10: Example of a tanglegram for which our algorithm may output a drawing (left) that has roughly twice as many crossings as
the optimal drawing (right).

So from (5) and (6) we have n2
12 ≤ c12 and n2

21 ≤ c21. Applying this argument to all subinstances
〈S,T 〉 ∈I we get

∑
〈S,T 〉∈I

(n2
12(S,T )+n2

21(S,T ))≤ ∑
〈S,T 〉∈I

c12(S,T )+ ∑
〈S,T 〉∈I

c21(S,T )≤ 2 · cδ . (7)

The fact that ∑〈S,T 〉∈I c12(S,T ) ≤ cδ holds is due to each edge crossing δ appearing in at most one
term c12(S,T ). This can be seen as follows. Let ab be a 1–2 edge in the subinstance 〈S,T 〉. Then in all
parent instances of the recursion, ab was still a 1–1 edge or a 2–2 edge; such edges do not appear in any
previous c12-term. In a subsequent instance 〈S′,T ′〉 below 〈S,T 〉 in the recursion the edge ab might in fact
reappear, for example as a 0–3 edge. At that point, however, it is considered as an edge that crosses one
of the 1–2 edges of 〈S′,T ′〉, say cd. But then cd was considered as a 1–1 or 2–2 edge in all previous in-
stances. Hence, the crossing between ab and cd does not appear in any other c12-term. Analogous reasoning
yields ∑〈S,T 〉∈I c21(S,T )≤ cδ

Plugging (7) into (1) yields |δ | ≤ 2cδ . Now let A? be the solution computed by Algorithm 1 and let S?

be an optimal solution. We denote their actual numbers of crossings by |A?| and |S?|, respectively. By cA?

and cS? we denote the number of crossings counted by our algorithm for the drawings A? and S?, respec-
tively. Since |δ | ≤ 2cδ for any drawing δ we get

|A?| ≤ 2cA? ≤ 2cS? ≤ 2|S?|,

that is, the algorithm is indeed a factor-2 approximation. ut

We note that the approximation factor of 2 is tight: let n = 4m, let S have leaves ordered 1, . . . ,4m, and
let T have leaves ordered 1, . . . ,m,3m, . . . ,2m+ 1, m+ 1, . . . ,2m,3m+ 1, . . . ,4m (see Fig. 10). Then our
algorithm may construct a drawing with m2 + 2

(m
2

)
= 2m2−m crossings, while the optimal drawing has

only m2 crossings.

Non-complete binary trees. Algorithm 1 can also be applied to non-complete tanglegrams with minor mod-
ifications. The only essential difference is that during the algorithm we can encounter the situation that a
single leaf v of one tree is paired with a larger subtree T ′ of the other tree. In that case we continue the recur-
sion for those subtrees of T ′ that contain an edge to v in order to find their locally optimal swap decisions.
For non-complete tanglegrams, however, the approximation factor does not hold any more. Nöllenburg et
al. [22] have evaluated several heuristics for binary TL, among them the modified version of Algorithm 1.

Generalization to d-ary trees. The algorithm can be generalized to complete d-ary trees. The recurrence
relation of the running time changes to T (n) ≤ d · (d!)2 · T (n/d) +O(logn) since we need to consider
all d! subtree orderings of both trees, each triggering d subinstances of size n/d. This resolves to T (n) =
O(n1+2logd(d!)). For d ≥ 3 the running time is upper-bounded by O(n2d−1.7). At the same time the approx-
imation factor increases to 1+

(d
2

)
. This is because for any pair (i, j) with 1≤ i < j ≤ d the algorithm fails

to account for potential crossings between the trees Si and Tj as well as between S j and Ti. This number can
be bounded for each of the

(d
2

)
pairs by the number of crossings in the optimal solution using our arguments

for binary trees.
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Maximization version. Instead of the original TL problem, which minimizes the number of pairs of edges
that cross each other, we now consider the dual problem TL? of maximizing the number of pairs of edges
that do not cross. The sets of optimal solutions for the two problems are the same, but from the perspective
of approximation the problems differ a lot, at least in the binary case: in contrast to binary TL, which is
hard to approximate as we have shown in Theorem 2.1, binary TL? has a constant-factor approximation
algorithm. We show this by reducing binary TL? to a constrained version of the MAXCUT problem, which
can be solved approximately with the semidefinite programming (SDP) rounding algorithm of Goemans
and Williamson [15]. Their algorithm runs in polynomial time; solving the underlying SDP relaxation of
the problem is the most time-consuming step. Still, SDP relaxations of MAXCUT instances of up to 7000
variables can be solved in practice [6].

Theorem 3.3 There exists a polynomial-time algorithm with approximation factor 0.878 for binary TL?.

Proof Let 〈S,T 〉 be an instance of binary TL?. Fix any initial drawing of 〈S,T 〉. As before, we associate
a decision variable with each inner node of the two trees. The variable decides whether we do or do not
swap the children at the corresponding node. We model this situation by a weighted graph G = (V,E); a
swap decision corresponds to deciding to which side of a cut the corresponding vertex is assigned. More
precisely, for each inner node u of 〈S,T 〉, the graph G contains two vertices u and u′. We will also impose
a constraint that u and u′ must be separated by a cut we are looking for. As we will indicate later, we can
use the algorithm of Goemans and Williamson [15] to find large cuts among those separating all pairs of
type (u,u′).

For each pair ab and cd of inter-tree edges with a,c ∈ L(S) and b,d ∈ L(T ), the graph G contains a
weighted edge that we construct as follows. Let v = lca(a,c) and w = lca(b,d) be the lowest common
ancestors of the edge pair. If ab and cd cross in the initial drawing, we add the edge vw with weight 1 to G.
If the edge is already present, we increase its weight by one. If the two edges do not cross in the initial
drawing, then we analogously add the edge vw′ to G or increase its weight by one.

Consider a cut in G that for each inner node u of 〈S,T 〉 separates u and u′. We claim that any such
cut encodes a drawing of 〈S,T 〉. To see this, let (F,N = (V \F)) be such a cut. Starting from the initial
drawing we construct a new drawing as follows. Let u be an inner node of 〈S,T 〉. If u ∈ F and u′ ∈ N, we
swap the children of the inner node u of the current drawing. If u ∈ N and u′ ∈ F , we do nothing. (Note that
exchanging the roles of the sets F and N yields the mirrored drawing with the same number of crossings.)

For a moment, think of G as of a multigraph that is obtained by replacing each edge of weight k by k
edges of weight one. Let us argue that the above described procedure to decode drawings from cuts has
the property that in the resulting drawing of 〈S,T 〉, pairs of inter-tree edges that do not cross correspond
one-to-one to edges in G that are cut by (F,N). Consider first the cut corresponding to the initial drawing,
namely the cut with u ∈ N for each inner node u of 〈S,T 〉 and observe that the claim holds for this cut.
Now consider a single swap operation at an inner node u of 〈S,T 〉 and the corresponding change in the
cut. Note that it changes the “cut status” of exactly those pairs of edges that have u as the lowest common
ancestor of two of their endpoints; at the same time it also changes the cut status of exactly the edges in G
corresponding to these pairs of edges in the drawing. Since any cut in G may be reached by a finite sequence
of such swap operations from the initial one, the property holds for any cut. Therefore, the number of pairs
of non-crossing inter-tree edges in the obtained drawing equals the total weight of the cut (in the original,
weighted version of G).

The resulting optimization problem is the MAXRESCUT problem, that is, MAXCUT with additional
constraints forcing certain pairs of vertices to be separated by the cut. Goemans and Williamson [15], when
describing their famous algorithm for the MAXCUT problem, observed that adding constraints to separate
certain pairs of vertices does not make the problem harder to approximate. It is sufficient to encode these
constraints as additional linear constraints in the SDP relaxation and to observe that random hyperplanes
used to separate vertices always separate such constrained pairs.

We use their SDP rounding algorithm for MAXRESCUT to compute a 0.878-approximation of the
largest cut in G. This cut determines which of the subtrees in the initial drawing must be swapped to obtain
a drawing that is a 0.878-approximation to binary TL?. ut

Note that our proof also works in a slightly more general case, namely for pairs of (not necessarily
binary) trees where for each inner node the only choice for arranging the children is between a given
permutation and the reverse permutation obtained by swapping the whole block of children.
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Fig. 11: Edge types and crossings of the instance 〈S,T 〉. Only non-empty classes of edge types are shown.

4 Fixed-Parameter Tractability

We consider the following parameterized variant of the complete binary TL problem. Given a complete
binary TL instance 〈S,T 〉 and a non-negative integer k, decide whether there exists a layout of S and T
with at most k induced inter-tree edge crossings. Our algorithm makes use of the same technique to count
current-level crossings as the 2-approximation algorithm. Hence, we precompute the crossing tables C=

and C× in O(n2) time as before, see Lemma 3.1. The algorithm traverses the inner nodes of S in breadth-
first order. It starts at the root of S and its corresponding node in T (in this case the root of T ), branches
into all four possible subtree configurations (at the root it actually suffices to consider two of them), and
subtracts from k the number of current-level crossings in each branch. Then we proceed recursively with the
next node v in S, its corresponding opposite node w in T , and the reduced parameter k′ of allowed crossings.
In each node of the search tree we count the current-level crossings for each of the subtree orders of v and w
by summing up in linear time the appropriate entries in C= and C× for v (or w) and all of the O(n) subtree
orders that are already fixed in T (or S). Once we reach a leaf of the search tree we know the exact number
of crossings since each pair of edges ab and cd is counted as soon as the subtree orders of both lca(a,c)
and lca(b,d) are fixed. Obviously, we stop following a branch of the search tree when the parameter value
drops below 0.

For the search tree to have bounded height, we need to ensure that whenever we move to the next subin-
stance, the parameter value decreases at least by one. At first sight this seems problematic: if a subinstance
does not incur any current-level crossings, the parameter will not drop. The following key lemma—which
does not hold for non-complete binary trees—shows that there is a way out. It says that if there is an order
of the subtrees in a subinstance that does not incur any current-level crossings, then we can ignore the other
three subtree orders and do not have to branch.

Lemma 4.1 Let 〈S,T 〉 be a complete binary TL instance, and let vS be a node of S and vT a node of T
such that vS and vT have the same distance to their respective root. Further, let (S1,S2) be the subtrees
incident to vS and let (T1,T2) be the subtrees incident to vT . If the subinstance 〈(S1,S2),(T1,T2)〉 does not
incur any current-level crossings, then each of the subinstances 〈(S1,S2),(T2,T1)〉, 〈(S2,S1),(T1,T2)〉, and
〈(S2,S1),(T2,T1)〉 has at least as many crossings as 〈(S1,S2),(T1,T2)〉, for any fixed ordering of the leaves
of S1, S2, T1 and T2.

Proof If the subinstance 〈(S1,S2),(T1,T2)〉 does not incur any current-level crossings, this excludes certain
types of edges. We categorize the inter-tree edges originating from the four subtrees according to their
destinations as before, and use the notation ni j for the number of edges between area i on the left and
area j on the right—see Fig. 11a. First of all, there are no edges between S1 and T2 or between S2 and T1.
We consider only the first case, that is, n12 = 0; the second case n21 = 0 is symmetric. In both cases, we
have n13 = n31 = n20 = n02 = 0. Since we consider complete binary trees, we obtain the three equalities
n10 = n01 +n21, n32 = n23 +n21, and n01 +n11 = n23 +n22.
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Fig. 12: Example of a binary TL instance with an optimal layout that has one crossing (a). The same order of the leaves in the subtrees
S2 and T2 yields four crossings for a configuration without current-level crossings (b). The best layout that avoids the current-level
crossing still has two crossings (c).

We fix an ordering σ of the leaves of the four subtrees S1,S2,T1, and T2. We first compare the num-
ber of crossings in the subinstance 〈(S1,S2),(T1,T2)〉 with the number of crossings in the subinstance
〈(S2,S1),(T2,T1)〉, see Figures 11a and 11b. The subinstance 〈(S1,S2),(T1,T2)〉 can have at most n21(n11 +
n22) crossings that do not occur in 〈(S2,S1),(T2,T1)〉. However, 〈(S2,S1),(T2,T1)〉 has at least n10(n23 +
n21+n22)+n23n11+n32(n01+n21+n11)+n01n22 crossings that do not appear in 〈(S1,S2),(T1,T2)〉. Plug-
ging in the above equalities for n10 and n32, we get (n01+n21)(n23+n21+n22)+n23n11+(n23+n21)(n01+
n21+n11)+n01n22≥ n21(n11+n22). Thus, the subinstance 〈(S2,S1),(T2,T1)〉 has at least as many crossings
with respect to the fixed leaf order σ as 〈(S1,S2),(T1,T2)〉 has.

Next, we compare the number of crossings in the subinstance 〈(S1,S2),(T1,T2)〉 with the number of
crossings in the subinstance 〈(S1,S2),(T2,T1)〉, see Figures 11a and 11c. Now the number of additional
crossings of 〈(S1,S2),(T1,T2)〉 is at most n21n22, and the subinstance 〈(S1,S2),(T2,T1)〉 introduces at least
(n01 + n11)(n32 + n22)+ n32n21 additional crossings. With the equality n01 + n11 = n23 + n22 and the in-
equality n32 +n22 ≥ n21 we get (n01 +n11)(n32 +n22)+n32n21 ≥ (n23 +n22 +n32)n21 ≥ n22n21. Thus, the
subinstance 〈(S1,S2),(T2,T1)〉 has at least as many crossings with respect to σ as 〈(S1,S2),(T1,T2)〉 has.

By symmetry, the same holds for the last case 〈(S2,S1),(T1,T2)〉, which incurs at least as many crossings
as n11n21, the number of crossings that can be present in 〈(S1,S2),(T1,T2)〉 but not in 〈(S2,S1),(T1,T2)〉.

ut

Counting the current-level crossings takes O(n) time for each node that fixes its subtree order. If an
order does not incur any current-level crossings we might need to fix in total up to O(n) subtree orders
and count the incurred crossings until we reach a new node of the search tree. Thus we spend O(n2) time
for each of the O(4k) search-tree nodes. Including the preprocessing this yields a total running time of
O(n2 + 4kn2). If the algorithm reaches a leaf of the search tree it has fixed all subtree orders in S and T
and thus found a layout of the input instance that has at most k inter-tree edge crossings. If the search stops
without reaching a leaf there is no layout of 〈S,T 〉 with at most k inter-tree edge crossings.

Theorem 4.2 Given a complete binary TL instance 〈S,T 〉 with n leaves in each tree and an integer k,
in O(4kn2) time we can either determine a layout of 〈S,T 〉 with at most k inter-tree edge crossings or
report that no such layout exists.

Finally, the fact that Lemma 4.1 relies on the completeness of the two trees is illustrated in Fig. 12. Here
we have an example of an instance whose optimal layout requires a current-level crossing (Fig. 12a). At
the same time, the configuration 〈(S1,S2),(T2,T1)〉 has no current-level crossing. According to Lemma 4.1
the leaf order of the optimal layout copied into the layout without current-level crossings would produce at
most as many crossings as in the other layout. Figure 12b shows that this is not true in our example. The
best solution of the configuration 〈(S1,S2),(T2,T1)〉 still has two crossings and is not optimal (Fig. 12c).
Hence, we do have to consider all subtree orders even if one of them incurs no current-level crossings. This
means that we cannot bound the size of the search tree in terms of the parameter k as we have done for
complete binary trees.
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5 Open Problems

We have shown that one cannot expect to find a constant-factor approximation for binary TL. Would it help
if one of the two given trees was complete? We have given a factor-2 approximation for complete binary
TL. It is natural to ask whether we can do better.

An alternative optimization goal is to remove a minimum number of inter-tree edges in order to obtain
a planar tanglegram.
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5. K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, Y. Okamoto, R. I. Silveira, and A. Wolff. Drawing (complete) binary tan-
glegrams: Hardness, approximation, fixed-parameter tractability. In I. G. Tollis and M. Patrignani, editors, Proc. 16th Internat.
Symp. Graph Drawing (GD’08), volume 5417 of Lecture Notes Comput. Sci., pages 324–335. Springer-Verlag, 2009.

6. S. Burer and R. D. Monteiro. A projected gradient algorithm for solving the Maxcut SDP relaxation. Optimization Methods and
Software, 15:175–200, 2001.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.
8. B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances between phylogenetic trees. In Proc. 18th Annu.

ACM-SIAM Sympos. Discrete Algorithms (SODA’97), pages 427–436, 1997.
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