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Abstract. We propose a layout algorithm for micro/macro graphs, i.e. relational structures
with two levels of detail. While the micro-level graph is given, the macro-level graph is
induced by a given partition of the micro-level vertices. A typical example is a social network
of employees organized into different departments. We do not impose restrictions on the
macro-level layout other than sufficient thickness of edges and vertices, so that the micro-
level graph can be placed on top of the macro-level graph. For the micro-level graph we define
a combinatorial multi-circular embedding and present corresponding layout algorithms based
on edge crossing reduction strategies.

1 Introduction

An important aspect in the visualization of many types of networks is the interplay between fine-
and coarse-grained structures. Think, for instance, of low-level interaction giving rise to emergent
features at a larger scale, or people implementing organizational relations. Assuming that the
structure on the micro level is a graph, a macro-level graph may originate from a group-level
network analysis such as clustering or role analysis (e.g., [5]), from an attribute-based partitioning
of the vertices, or may just be given in advance.

Depending on the particular application domain and other contexts, different layout methods
will be appropriate for the macro graph. Since we only require large nodes and thick edges, we
assume it is given. Either the macro-level layout algorithm can handle varying vertex size (e.g.,
[12,21]) and edge thickness (e.g., [7]), or some post-processing is applied (e.g., [11]).

Given a drawing of the macro-level graph with large nodes and thick edges, each vertex of the
micro-level graph is drawn in the area defined by the macro vertex it belongs to, and each micro
edge is routed through its corresponding macro edge. We propose a multi-circular layout model
for the micro graph. Each micro vertex is placed on a circle inside of the area of its corresponding
macro vertex and micro edges whose end vertices belong to the same macro vertex are drawn inside
of these circles. All other micro edges are then drawn inside of their corresponding macro edges
and at constant but different distances from the border of the macro edge, i. e. in straight-line
macro edges they are drawn as parallel lines. These edges must also be routed inside the area of
macro vertices to connect to their endpoints, but are not allowed to cross the circles. In principle,
an arbitrary layout strategy can be used as long as it complies with these requirements. Figure 1
shows a concrete example of this model. Micro edges connecting vertices in the same macro vertex
are drawn as straight lines. Inside of macro vertices, the other edges spiral around the circle of
micro vertices until they reach the area of the macro edge. We give a combinatorial description of
the above model and then focus on the algorithmically most challenging aspect of these layouts,
namely crossing reduction by cyclic ordering of micro vertices and choosing edge winding within
macro vertices. Finally, we apply the multi-circular layout to an email communication network to
exemplify its use case.

While the drawing convention consists of proven components (geometric grouping is used, e.g.,
in [15,20], and edge routing to indicate coarse-grained structure is proposed in, e.g., [13,3]), our
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(a) geometric grouping and straight-line (b) multi-circular layout
edges

Fig.1l. (a) Example organizational network with geometric grouping and straight-line edges
(redrawn from [15]). In our multi-circular layout (b), all details are still present and the macro
structure induced by the grouping becomes visible. The height and width of the vertices reflects
the number of connections within and between groups.

approach is novel in the way we organize micro vertices to let the macro structure dominate the
visual impression without cluttering the micro-level details too much. Note also that the setting is
very different from layout algorithms operating on structure-induced clusterings (e.g., [14,1]), since
we cannot make any assumptions on the structure of clusters (they may even consist of isolates).
Therefore, we neither want to utilize the clustering for better layout, nor do we want to display
the segregation into dense subregions or small cuts. Our aim is to represent the interplay between
a (micro-level) graph and a (most likely extrinsic) grouping of its vertices.

After defining some basic terminology in Sect. 2, we state required properties for macro-graph
layout in Sect. 3. Multi-circular micro-graph layout is discussed in more detail in Sect. 4 and
crossing reduction algorithms for it are given in Sect. 5. We conclude with an application in
Sect. 6.

2 Preliminaries

Throughout this paper, let G = (V, E) be a simple undirected graph with n = |V| vertices and
m = |E| edges. Furthermore, let E(v) = {{u,v} € E : v € V} denote the incident edges of a
vertex v € V, let N(v) = {u € V : {u,v} € E} denote its neighbors, and let sgn : R — {—1,0,1}
be the signum function.

Since each micro-vertex is required to belong to exactly one macro-vertex, the macro structure
defines a clustering, or partitioning, of the micro-vertices. Contrary to this top-down approach, we
can also start from the bottom. A partition assignment ¢ : V. — {0,...,k — 1} for G subdivides
the (micro-)vertex set V into k pairwise disjoint subsets V = VoU...UVi_1, where V; = {v € V :
d(v) = i} = ¢71(i). An edge e = {u,v} € V;x € V; is called an intra-partition edge iff i = j,
otherwise it is called an inter-partition edge. The set of intra-partition edges of a partition V; is
denoted by E;, the set of inter-partition edges of two partitions V;, V; by E; ;. We use G = (V, E, ¢)
to denote a graph G = (V, E) and a related partition assignment ¢.

A circular order m = {m, ..., m;—1} defines for each partition V; a vertex order 7; as a bijective
function m; : V; — {0,...,|V;| — 1} with v < v & m;(u) < m(v) for any two vertices u,v €
V;. An order m; can be interpreted as a counter-clockwise sequence of distinct positions on the
circumference of a circle.



(a) some incident edges (b) node 4 is at posi- (c) node 4 rotated to (d) without parting
tion 0 position 2

Fig. 2. Radial layouts. Edges are labeled with their winding value

3 Macro Layout

A prototypical macro graph, the quotient graph, is defined by a partition assignment. Given a
partition assignment ¢ : V' — {0,...,k—1}, the corresponding quotient graph Q(G, ¢) = (V, Eg)
contains a vertex for each partition of G and two vertices V;, V; € V5 are connected iff I/ contains
at least one edge between a vertex in V; and a vertex in Vj.

We do not require a specific layout strategy for the macro graph as long as its elements are
rendered with sufficient thickness to draw the underlying micro graph on top of them. To achieve
this, post-processing can be applied to any given layout [11] or methods which consider vertex size
(e.g., [12,21]) and edge thickness (e.g., [7]) have to be used.

From a macro layout we get partition orders II; : Vo \ V; — {0,..,deg(V;) — 1} for each
partition V;, defined by the sequence of its incident edges in Q(G, ¢), and a partition order II =
{Iy,...,x_1} for G. For each macro vertex this can be seen as a counter-clockwise sequence of
distinct docking positions for its incident (macro) edges on its border.

4 Micro Layout

Before we discuss the multi-circular layout model for the micro graph, let us recall the related
concepts of (single) circular and radial embeddings. In (single) circular layouts all vertices are
placed on a single circle and edges are drawn as straight lines. Therefore, a (single) circular
embedding ¢ of a graph G = (V, E) is fully defined by a vertex order 7, i.e. ¢ = 7 [4]. Two edges
e1,es € E cross in ¢ iff the end vertices of ey, e are encountered alternately in a cyclic traversal.

4.1 Radial Layout

In radial layouts the partitions are placed on nested concentric circles (levels) and edges are drawn
as curves between consecutive partitions. Therefore, only graphs G = (V, E') with a proper partition
assignment ¢ : V — {0,...,k — 1} are allowed, i.e. |¢p(u) — ¢(v)| = 1 for all edges {u,v} € E. For
technical reasons, edges are considered to be directed from lower to higher levels.

Recently, Bachmaier [2] investigated such layouts. They introduced a ray from the center to
infinity to mark the start and end of the circular vertex orders. Using this ray it is also possible
to count how often and in which direction an edge is wound around the common center of the
circles. We call this the winding ¢ : E — Z of an edge (offset in [2]). |¢(e)| counts the number of
crossings of the edge with the ray and the sign reflects the mathematical direction of rotation. See
Figure 2 for some illustrations. Finally, a radial embedding € of a graph G = (V, E, ¢) is defined
to consist of a vertex order m and an edge winding v, i.e. ¢ = (m,1). Note that the rotation of
a partition without permuting the vertices changes the positions and winding values but not the
number of crossings.

Crossings between edges in radial embeddings depend on their winding and on the order of
the end vertices. There can be more than one crossing between two edges if they have very
different winding. We denote the number of crossings between two edges e;,es € E in an radial



embedding ¢ by (e, e2). The (radial) crossing number of an embedding ¢ and a level graph G =
(V,E, ¢) is then naturally defined as x(€) = > (., c,1em,e, e, Xe(€1,€2) and x(G) = min{x(e) :
¢ is a radial embedding of G} is called the radial crossing number of G.

Theorem 1 ([2]). Let e = (m, 1) be a radial embedding of a 2-level graph G = (ViUVa, E, ¢). The
number of crossings x.(e1,ez2) between two edges ey = (u1,v1) € E and e3 = (ug,v2) € E is

1/)(62)7w(el)+b;a +|a‘—2‘r|b|71}’

where a =sgn(m1(uz) — 71 (u1)) and b = sgn(ma(ve) — ma(v1)) .

Xe(e1,e2) = max{O,

Bachmaier also states that in crossing minimal radial embeddings every pair of edges crosses
at most once and incident edges do not cross at all. As a consequence, only embeddings need to
be considered where there is a clear parting between all edges incident to the same vertex u. The
parting is the position of the edge list of u that separates the two subsequences with different
winding values. See Figure 2 for layouts with and without proper parting.

4.2 Multi-Circular Layouts

Unless otherwise noted, vertices and edges belong to the micro-level in the following. In the micro
layout model each vertex is placed on a circle inside of its corresponding macro vertex. Intra-
partition edges are drawn within these circles as straight lines. Inter-partition edges are drawn
inside their corresponding macro edges and at constant but different distances from the border
of the macro edge. To connect to their incident vertices, this edges must also be routed inside of
macro vertices. Since they are not allowed to cross the circles, they are drawn as curves around
them. We call such a drawing a (multi-)circular layout.

Since intra- and inter-partition edges can not cross, all crossings of intra-partition edges are
completely defined by the vertex order 7; of each partition V;. Intuitively speaking, a vertex order
defines a circular layout for the intra-partition edges. In the following we thus concentrate on
inter-partition edges.

The layout inside each macro vertex V; can be seen as a 2-level radial layout. The orders can be
derived from the vertex order 7; and the partition order II;. Similar to radial layouts we introduce
a ray for each partition and define the beginning of the orders and the edge winding according to
these rays. Note that for each edge e = {u,v} € E, u € V;, v € V}, two winding values are needed,
one for the winding around partition V; denoted by 1;(e) = 1, (e), and one for the winding around
partition V; denoted by v;(e) = 1, (e). If the context implies an implicit direction of the edges
we call windings either source or target windings respectively. Since radial layouts can be rotated
without changing the embedding, rays of different partitions are independent and can be arbitrary
directed. Finally, a multi-circular embedding € is defined by a vertex order m, a partition order 11,
and the winding of the edges v, i.e. € = (m, I1, 7).

Observation 2 For each partition V; in a multi-circular embedding e = (7, I1,v) a 2-level radial
embedding e; = ((m;, '), ;) is defined by the vertex order 7;, the partition order II;, and the edge
winding ¥;, where ' (v) = II;(¢(v)),v € V\ V;.

There is another connection between radial and multi-circular layouts. A 2-level radial layout
can easily be transformed in a 2-partition circular layout and vice versa. Given a graph G =
(V1UVs, B, ¢) and a radial embedding € = (m,1) of G, the 2-partition circular embedding £* =
(m*, IT*,¢*) defined by 7} = 71, 75 = —ma, [I7 = 0, IT; = 0, and ¥5(e) = 1(e), ¥;(e) = 0 realizes
exactly the same crossings. See Figure 3 for an example. Intuitively speaking, the topology of the
given radial embedding is not changed if we drag the two circles apart and reverse one of the vertex
orders. If a 2-partition circular embedding * = (7*, IT*, ¢*) is given, a related radial embedding
e = (m, 1) is defined by m = 7}, me = —m3, and ¢¥(e) = 11(e) — a(e).

Observation 3 There is a one-to-one correspondence between a 2-level radial embedding and a
2-circular embedding.



Fig. 3. A 2-level radial layout and its corresponding 2-circular layout

Crossings in the micro layout are due to either the circular embedding or crossing macro edges.
Since crossings of the second type can not be avoided by changing the micro layout, we do not
consider them in the micro layout model. Obviously, pairs of edges which are not incident to a
common macro vertex can only cause crossings of this type. For pairs of edges which are incident
to at least one common macro vertex we can define corresponding 2-level radial layouts using
Observations 2 and 3 and compute the number of crossings by modifications of Theorem 1.

Theorem 4. Let ¢ = (w,I1,4) be a multi-circular embedding of a graph G = (V, E,¢) and let
e1 = {u1,v1}, ea = {ug,v2} € E be two inter-partition edges.

If e1 and ey share exactly one common incident macro vertex, e.g., V; = ¢(u1) = ¢(ua),
d(v1) # P(v2), then the number of crossings of e; and eq is

b—a al+1b
Xe(e1,e2) :max{o, ‘%’(62) —Pi(er) + 5|+ o > L 1} )
where a =sgn(m;(uz) — m;i(uy)) and b = sgn(Il(Pp(ve)) — H(PH(v1))) -
If e1 and ey belong to the same macro edge, e.g., Vi = ¢(u1) = ¢(u2), V; = ¢(v1) = ¢(v2),
then the number of crossings of e; and es is

Xelerea) =max {0, [0/ (e2) —w/(en) + 252 4 141

where a =sgn(m;(u2) — m;(u1)) , b =sgn(m;(v1) — mj(v2)) , and
P'(e) =vi(e) +Pjle) -

Similar to radial layouts, in a crossing minimal multi-circular embedding incident edges do
not cross and there is at most one crossing between every pair of edges. Therefore, only em-
beddings need to be considered where there is a clear parting between all edges incident to the
same vertex u € V;. Since in multi-circular layouts winding in different macro vertices can be
defined independently, we split the edge list E(u) of u by target partitions and get edge lists
E(u); = {{u,v} € E(u) : v € V;}. For each list E(u);, we get a position ¢; that separates the
two subsequences with different values of winding v; and defines the parting for this partition.
Furthermore, there is also a parting for V; defined on the edge list E(u). The order of E(u) for this
parting depends on the partings ¢; in the target partitions V;. Edges are sorted by the partition
order, and for edges to the same partition V}, ties are broken by the reverse vertex order started
not at the ray but at the parting position £;. Then, the parting for V; is the position ¢; which
separates different values of winding v; in the so ordered list. See Figure 4 for a layout with parting
and a layout where the edge {u, v} violates the parting.

Corollary 1. Multi-circular crossing minimization is N'P-hard.

Proof Single circular and radial crossing minimization [2,17] are N'P-hard. As we have already
seen, these two crossing minimization problems are subproblems of the multi-circular crossing
minimization problem, proofing the corollary. O



(a) parting (b) edge {u, v} violates parting

Fig. 4. Not all winding combinations for the incident edges of u result in a good layout

As a consequence, we do not present exact algorithms for crossing minimization in multi-
circular layouts. Instead, we propose extensions of some well known crossing reduction heuristics
for horizontal and radial crossing reduction.

5 Layout Algorithms

Since the drawing of inter-partition edges inside a macro vertex can be seen as a radial drawing, a
multi-circular layout can be composed of separate radial layouts for each macro vertex (for instance
using the techniques of [20,10,2]. Such a decomposition approach, however, is inappropriate since
intra-partition edges are not considered at all and inter-partition edges are not handled adequately
due to the lack of information about the layout at the other macro vertices. E.g., choosing a path
with more crossings in one macro vertex can allow a routing with much less crossings on the other
side.

Nevertheless, we initially present in this section adaptations of radial layout techniques because
they are quite intuitive, fast, and simple, and can be used for the evaluation of more advanced
algorithms.

5.1 Barycenter and Median Layouts

The basic idea of both the barycenter and the median layout heuristic is the following: each
vertex is placed in a central location computed from the positions of its neighbors - in either the
barycenter or the median position - to reduce edge lengths and hence the number of crossings. For
a 2-level radial layout, the Cartesian Barycenter heuristic gets the two levels and a fixed order
for one of them. All vertices of the fixed level are set to equidistant positions on a circle and
the component-wise barycenter for all vertices of the second level is computed. The cyclic order
around the center defines the order of the vertices and the edges are routed along the geometrically
shortest-path. The Cartesian Median heuristic is defined similar. Running time for both heuristics
is in O(|E| + |V]1log|V]).

Both heuristics are easily extended for multi-circular layouts. The layout in each macro vertex
V; is regarded as a separate 2-level radial layout as described in Observation 3 and the partition
orders II; are used to define the orders of the fixed levels. Because of the shortest-path routing,
no two edges cross more than once and incident edges do not cross at all in the final layout. On
the other hand are crossings avoided by the used placement and winding strategies only indirectly
by edge length reduction.

5.2 Multi-Circular Sifting

To overcome the drawbacks of the radial layout algorithms described before, we propose an exten-
sion of the sifting heuristic which computes a complete multi-circular layout and considers edge
crossings for optimizing both vertex order and edge winding, and thus is expected to generate
better layouts.

Sifting was originally introduced as a heuristic for vertex minimization in ordered binary deci-
sion diagrams [19] and later adapted for the layered one-sided, the circular, and the radial crossing



minimization problems [18,4,2]. The idea is to keep track of the objective function while moving
a vertex along a fixed order of all other vertices. The vertex is then placed in its (locally) optimal
position. The method is thus an extension of the greedy-switch heuristic [8]. For crossing reduc-
tion the objective function is the number of crossings between the edges incident to the vertex
under consideration and all other edges. In multi-circular layouts this function depends on both
the vertex order and the edge winding. Therefore, we have to find for each position of a vertex the
winding values for its incident edges which result in the minimal crossing number.

The efficient computation of crossing numbers in sifting for layered and single circular layouts
is based on the locality of crossing changes, i.e. swapping consecutive vertices u — v only affects
crossings between edges incident to u with edges incident to v. In multi-circular layouts this
property clearly holds for intra-partition edges since they form (single-)circular layouts. For inter-
partition edges the best routing path may require an update of the windings. Such a change can
affect crossings with all edges incident to the involved partitions.

Since swapping the positions of two consecutive vertices (and keeping the winding values) only
affects incident edges, the resulting change in the number of crossings can be efficiently computed.
Therefore, we need an efficient update strategy for edge windings while v € V; moves along the
circle. We do not consider each possible combination of windings for each position of u. but keep
track of the parting of the edges. Note that we have to alter simultaneously the parting for the
source partition and all the partings for the target partitions because for an edge, a changed
winding in the source partition may allow a better routing with changed winding in the target
partition. Intuitively speaking, the parting in the source partition should move around the circle
in the same direction as u, but on the opposite side of the circle, while the parting in the target
partitions should move in the opposite direction. Otherwise, edge lengths increase and with it
the likelihood of crossings. Thus, we start with winding values ¢, (e) = 1 and ,(e) = 1 for all
e = {u,v} € E(v) and iteratively move parting counters around the circles and mostly decrease
this values in the following way:

1. First try to improve the parting at V;, i.e. the value of v, for the current parting edge is
decreased and the parting moved counter-clockwise to the next edge, until this parting can no
longer be improved.

2. For edges whose source winding were changed in step one, there may be better target windings
which can not be found in step three, because the value of ¢; has to be increased, i.e. for each
affected edge, the value of v; for the edge is increased until no improvement is made.

3. Finally try to improve the parting for each target partition V; separately, i.e. for each V; the
value of 1, for the current parting edge is decreased and the parting moved clockwise to the
next edge, until this parting can no longer be improved.

After each update, we ensure that all counters are valid and that winding values are never increased
above 1 and below —1.

Based on the above, the locally optimal position of a single vertex can be found by iteratively
swapping the vertex with its neighbor and updating the edge winding while keeping track of
the change in crossing number. After the vertex has past each position, it is placed where the
intermediary crossing counts reached their minimum. Repositioning each vertex once in this way
is called a round of sifting.

Theorem 5. The running time of multi-circular sifting is in O(|V| - |E|?).

Proof  Computing the difference in cross count after swapping two vertices requires O(|E|?)
running time for one round of sifting. For each edge the winding changes only a constant number
of times because values are bounded, source winding and target winding are decreased in steps
one and three resp., and the target winding is only increased for edges whose source winding
decreased before. Counting the crossings of an edge after changing its winding takes time O(|E|).
For each vertex u € V the windings are updated O(|V| - deg(u)) times, once per position and
once per shifted parting. For one round, this results in O(|V||E|) winding changes taking time
o(v|-|E[?). O
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Fig.5. Drawings of the email network generated by a force-directed method (left) and by multi-
dimensional scaling (MDS, right).

6 Application: Email Communication Network

The strength of a multi-circular layout is the coherent drawing of vertices and edges at the two
levels of detail. It reveals structural properties of the macro graph and allows identification of
micro level connections at the same time. The showcase for the benefits of our micro/macro layout
is a email communication network of a department of the Universitat Karlsruhe. The micro graph
consists of 442 anonymized department members and 2,201 edges representing at least one email
communication in the considered time frame of five weeks. At the macro level, a grouping into 16
institutes is given, resulting in 66 macro edges.

We start by inspecting drawings generated by a general force-directed approach similar to [9]
and by multi-dimensional scaling (MDS) [6], see Figure 5. Both methods tend to place adjacent
vertices near each other but ignore the additional grouping information. Therefore, it is not sur-
prising that the drawings do not show a geometric clustering and the macro structure can not be
identified. Moreover, it is difficult or even impossible to follow edges since they overlap each other.

More tailored for the drawing of graphs with additional vertex grouping are the layout used
by Krebs [15], and the force-directed attempts to assign vertex positions by Six and Tollis [20]
and Krempel [16]. All three methods place the vertices of each group on circles inside of separated
geometric areas. While some efforts are made to find good vertex positions on the circles, edges
are simply drawn as straight lines. Figure 6 (a) gives a prototypical example of this layout style.
Although these methods feature a substantial progress compared to general layouts and macro
vertices are clearly visible, there is no representation of macro edges and so the overall macro
structure is still not identifiable.

Finally, we layouted the email network according to the micro/macro drawing convention. Its
combinatorial descriptions allows for an enrichment with an analytical visualization of the vertices.
In the Figures 1 and 6 the length of the circular arc a vertex covers is proportional to its share of
the total inter-partition edges of this group. The height from its chord to the center of the circle
reflects the fraction of present to possible intra-edges.

To investigate the effect of improved vertex orders and appropriate edge windings, we compare
two variations of multi-circular layouts: shortest-path edge winding combined with random vertex
placement and with barycenter vertex placement, see Figure 6. The macro structure of the graph is
apparent at first sight. Since the placement of the vertex circles is the same as in Figure 6 (a), this
improvement clearly follows from the grouping of micro edges. A closer look reveals the drawback
of random placement: edges between different groups have to cover a long distance around the
vertex circles and are hard to follow. Also a lot of edge crossings are generated both inside of the
groups and in the area around the vertex placement circles. Assigning vertex positions according
to the barycenter heuristic results in a clearly visible improvement and allows the differentiation of
some of the micro edges. Using sifting improves the layout even further, resulting from a decrease



(c) barycenter (68.300 crossings) (d) sifting (57.400 crossings)

Fig. 6. Multi-circular layouts of the email network

of the number of crossings from more than 75.000 to 57.400 in the considered email network. The
time for computing the layout of this quiet large graph is below half a minute.

Conclusion

We proposed a drawing convention for micro/macro graphs where micro-level elements are drawn
on top of the elements of the coarse macro graph, so that the contribution of micro-level elements
to macro-level structure becomes apparent. Since there is no need to place restrictions on the
layout of the macro graph, we assumed it is given and focused on layouts of the micro graph.
We presented a multi-circular layout model and investigated layout strategies based on crossing
reduction techniques for it.

Backed by the visualizations of the email communication network computed by an initial
implementation of our algorithms we claim that the grouping of micro-edges into macro-edges
according to the micro/macro drawing convention exhibits benefits over layouts which group the
vertices. Furthermore, since vertex orders and edge windings have a large effect on the readability
of multi-circular layouts, it is justified to spend a larger effort to improve them.

A major benefit of the multi-circular layout is it combinatorial description since it allows
the combination with other visualization techniques to highlight some graph properties or to



further improve the visual appearance. A very interesting aspect would be the combination with
Holten’s [13] edge bundling technique.
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