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Abstract. We propose a two-phase heuristic for crossing reduction in circular layouts.
While the first algorithm uses a greedy policy to build a good initial layout, an adaptation
of the sifting heuristic for crossing reduction in layered layouts is used for local optimization
in the second phase. Both phases are conceptually simpler than previous heuristics, and our
extensive experimental results indicate that they also yield fewer crossings. An interesting
feature is their straightforward generalization to the weighted case.

1 Introduction

In circular graph layout, the vertices of a graph are constrained to distinct positions along the
perimeter of a circle, and an important objective is to minimize the number of edge crossings in
such layouts. Since circular crossing minimization is NP-hard [8], several heuristics have been
devised [7,3,14]. Moreover there is a factor O(log2 |V |) approximation algorithm [13].

We propose a two-phase approach for obtaining circular layouts with few crossings. In the first
phase, vertices are iteratively added to either end of a linear layout. This leaves three degrees of
freedom: the start vertex, the insertion order, and the end at which to append the next vertex.
For the different strategies tried, empirical evidence suggests that a particular one outperforms
both the others and previous heuristics.

For the second phase, we adapt a local optimization procedure for layered layouts, sifting [9],
to the circular case. Note that, similar to 2-layer layouts, the number of crossing is completely
determined by the (cyclic) ordering of vertices. The thus related one-sided crossing minimization
problem in 2-layer drawings of bipartite graphs is NP-hard as well [5], but significantly better
understood. It turns out that circular sifting reduces the number of crossings both with respect
to our first phase and previous heuristics.

After defining some terminology in Section 2, we describe our greedy append and circular sifting
algorithms for the phases in Sections 3 and 4. Both are evaluated experimentally in Section 5.

2 Preliminaries

Throughout this paper, let G = (V,E) be a simple undirected graph with n = |V | vertices and
m = |E| edges. Furthermore, let N(v) = {u ∈ V : {u, v} ∈ E} denote the neighborhood of a vertex
v ∈ V . A circular layout of G is a bijection π : V → {0, . . . , n − 1}, interpreted as a clockwise
sequence of distinct positions on the circumference of a circle. By selecting a reference vertex s ∈ V
we obtain linear orders ≺π

s from π by defining

u ≺π
s v ⇐⇒ (π(u)− π(s) mod n) < (π(v)− π(s) mod n)

for all u, v ∈ V , i.e. u is encountered before v in a cyclic traversal starting from s. We say that
u, v ∈ V are consecutive, denoted by u yπ v, if π(v) − π(u) ≡ 1 mod n. A subset W ⊂ V is
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consecutive, if there is an ordering of the vertices of W so that w0 yπ w1 yπ . . . yπ w|W |−1,
wi ∈ W .

Let

χπ({u1, v1}, {u2, v2}) =

{
1 if u1 ≺π

u1
u2 ≺π

u1
v1 ≺π

u1
v2

0 otherwise .
(1)

for all {u1, v1}, {u2, v2} ∈ E and w.l.o.g. π(ui) < π(vi). We say that e1, e2 ∈ E cross in π, iff
χπ(e1, e2) = 1, i.e. the endvertices of e1, e2 are encountered alternately in a cyclic traversal. The
crossing number of a circular layout π is

χ(π) =
∑

e1,e2∈E

χπ(e1, e2)

and χ(G) = minπ χ(π) is called the circular crossing number of G. We will omit π from our
notation whenever the circular layout is clear from context.

Theorem 1 ([8]). Circular crossing minimization is NP-hard.

On the other hand, a graph has a circular layout with no crossings, if and only if it is outer-
planar. A linear time recognition algorithm for outerplanar graphs [11] is easily extended to yield
a crossing-free circular layout [14].

Since, in particular, trees have circular layouts with no crossings, it is possible to consider the
biconnected components of a graph separately, and insert their circular layouts into a crossing-
free layout of the block-cutpoint-tree without producing additional crossings. See Fig. 1 for an
illustration. Hence, only biconnected graphs are used in the experimental evaluation summarized
in Section 5.

Fig. 1. The circular crossing number of a graph is the sum of those of its biconnected components
(cutpoints shown in lighter color)

3 Initial Layout

Our approach for an initial layout is inspired by a heuristic algorithm for the minimum total edge
length problem in circular layouts [7]. This problem is somewhat related to crossing minimization,
since shorter edges tend to cross few other edges.

The basic idea is simple: start with a layout consisting of a single vertex and place the other
vertices, one at a time, at either end of the current (linear) layout (see Algorithm 1). After all
vertices are inserted, the final layout is considered to be circular. This method leaves us with three
parameters to choose:

– the start vertex s,



– the processing sequence, and
– the end to append the next vertex at.

Note that the processing sequence need not to be fixed in the beginning, but may be determined
while the algorithm proceeds. Since, in our experiments, the rules for choosing a start vertex had
little influence on the final result, it is chosen at random. In the following we describe instantiations
for the other two parameters.

Algorithm 1: Greedy-Append Heuristic

place start vertex s ∈ V arbitrarily;
V ← V \ {s};
while V 6= ∅ do

greedily choose v ∈ V ;
append v at either end of the current layout;
V ← V \ {v};

During the algorithm some vertices are already placed while others are not. An edge is called
open, if it connects a placed vertex with an unplaced one, and closed, if both its vertices have been
inserted.

Four rules for determining an insertion order are investigated. The rationale behind these
heuristics is to keep the number of open edges low, because they tend to result in crossings later
on.



1. Degree. Vertices are inserted in non-increasing order of their degree.
2. Inward Connectivity. At each step, a vertex with the largest number of already placed neigh-

bors is selected, i.e. a vertex which closes the most open edges.
3. Outward Connectivity. At each step, a vertex with the least number of unplaced neighbors is

selected, i.e. a vertex which opens the fewest new edges.
4. Connectivity. At each step, a vertex with the largest number of already placed neighbors is

selected, where ties are broken in favor of vertices with fewer unplaced neighbors.

The other degree of freedom left is the selection of an end of the current layout at which to
append the next vertex. Again, four rules of choice are investigated.

1. Random. Select the end at which to append randomly each time.
2. Fixed. Always append to the same end.
3. Length. Append each vertex to the end that yields the smaller increase in total edge length.
4. Crossings. Append each vertex to the end that yields fewer crossing of edges being closed

with open edges. In Fig. 2, there are eight such crossings for the left end and only six for the
right end. Note that crossings with closed edges not incident to the currently inserted vertex
need not be considered because they are the same for both sides. It should also be noted that
crossings with open edges are independent of the positions at which the unplaced vertex will
eventually be placed.

v v

Fig. 2. Incident edges of v cross open edges

The experiments outlined in Section 5 show that the combination of the Connectivity insertion
order with Crossings outperforms all other combinations, and it can be implemented efficiently.

Theorem 2. The Greedy-Append heuristic with Connectivity insertion order and end-to-append
selection based on Crossings can be implemented to run in O((n + m) log n) time.

Proof. The insertion sequence can be realized by storing all unplaced vertices in a two-dimensional
priority queue, in which the first key gives the number of already placed neighbors and the second
the number of unplaced neighbors. With an efficient implementation, update and extract opera-
tions require O(log n) time. Since each vertex is extracted once, and each edge triggers exactly
one update, the total running time for determining the insertion order is O((n + m) log n).

The number of crossings with open edges can be determined from prefix and suffix sums over
vertices already in the layout. These can be maintained efficiently using a balanced binary tree
storing in its leaves the number of open edges incident to a placed vertex, and in its inner nodes
the sum of the values of its two children. The prefix sum at a vertex is the sum of all values
in left children of nodes on the path from the corresponding leaf to the root. The suffix sum
is determined symmetrically. Insertion of a vertex thus requires O(log n) time to determine the
crossing numbers from prefix and suffix sums and O(d(v) log n) for updating the tree. The total
is again O((n + m) log n). ut

Note that the heuristic is easily generalized to weighted graphs. In the next section we show
how to further reduce the number of crossings, given an initial layout.



4 Improvement by Circular Sifting

Sifting was originally introduced as a heuristic for vertex minimization in ordered binary decision
diagrams [12] and later adapted for the one-sided crossing minimization problem [9]. The idea
is to keep track of the objective function while moving a vertex along a fixed ordering of all
other vertices. The vertex is then placed in its (locally) optimal position. The method is thus an
extension of the greedy-switch heuristic [4].

For crossing reduction the objective function is the number of crossings between the edges
incident to the vertex under consideration and all other edges. The efficient computation of crossing
numbers in sifting for layered layouts is based on the crossing matrix. Its entries correspond to the
number of crossings caused by pairs of vertices in a particular linear ordering and are computed
easily in advance. Whenever a vertex is placed in a new position only a smallish number of updates
is necessary.

It is not possible to adapt the crossing matrix to the circular case, since two vertices cannot
be said to be in a (linear) order generally. Thus we define the crossing number

cuv(π) =
∑

x∈N(u)

∑
y∈N(v)

χπ({u, x}, {v, y}) (2)

only for pairs of consecutive vertices u y v ∈ V and use the following exchange property, which
is the basis for sifting and holds nevertheless.

Lemma 1. Let u y v ∈ V be consecutive vertices in a circular layout π, and let π′ be the layout
with their positions swapped, then

χ(π′) = χ(π)− cuv(π) + cvu(π′)

= χ(π)−
∑

x∈N(u)

|{y ∈ N(v) : y ≺π
x u}|+

∑
y∈N(v)

∣∣∣{x ∈ N(u) : x ≺π′

y v}
∣∣∣

Proof. Since u and v are consecutive, edges incident to neither u nor v do not change their crossing
status. The first equality follows immediately. For the second equality, observe that the sums are
obtained from (2) by inserting (1). See Fig. 3 for an illustration. ut

u1v2
v1u2

u1v2
v1u2

Fig. 3. After swapping consecutive vertices u y v, exactly those pairs of edges cross that did not
before

Based on the above lemma, the locally optimal position of a single vertex can be found by
iteratively swapping the vertex with its neighbor and recording the change in crossing count,
which is computed by considering only edges incident to one of these two vertices. After the vertex
has been moved past every other vertex, it is placed where the intermediary crossing counts reached
their minimum. Repositioning each vertex once in this way is called a round of circular sifting.

If adjacency lists are ordered according to the current layout, the sums in Lemma 1 are over
suffix lengths in these lists. Updating the crossing count therefore corresponds to merging the
adjacency lists, where the length of the remaining suffix is added or subtracted.



Algorithm 2: Circular sifting
for (u ∈ V ) do

let v0 = u ≺u v1 ≺u . . . ≺u vn−1 denote the current layout;
for (v ∈ V ) do

sort adjacency list of v according to the current layout;

χ← 0; χ∗ ← 0; v∗ ← vn−1;
for (k ← 1, . . . , n− 1) do

let x0 ≺vk . . . ≺vk xr−1 denote the adjacency list of u without vk;
let y0 ≺vk . . . ≺vk ys−1 denote the adjacency list of vk without u;
c← 0; i← 0; j ← 0;
while (i < r and j < s) do

if (xi ≺vk yj) then
c← c− (s− j); i← i + 1;

else if (yj ≺vk xi) then
c← c + (r − i); j ← j + 1;

else
c← c− (s− j) + (r − i); i← i + 1; j ← j + 1;

χ← χ + c;
if (χ < χ∗) then χ∗ ← χ; v∗ ← vk;

move u so that v∗ y u;

Theorem 3. One round of circular sifting takes O(nm) time.

Proof. Sorting the adjacency lists according to the vertex order is easily done in O(m) time
(traverse the vertices in order, and add each to the adjacency lists of its neighbors). If adjacency
lists are stored cyclically, a head pointer yields ≺v for arbitrary v, i.e. the adjacency lists need not
be reordered before a swap. The final relocation of u takes time O(1).

When swapping u with neighbor vk the adjacency lists are traversed in time O(dG(u)+dG(vk)).
Since ∑

u∈V

∑
v∈V

(
dG(u) + dG(v)

)
=

∑
u∈V

∑
v∈V

dG(u) +
∑
u∈V

∑
v∈V

dG(v) = 2 · n · 2m

the total running time is in O(nm). ut

At the end of the outer loop each vertex is placed at its locally optimal position, so that circular
sifting can only decrease the number of crossings. Our experiments outlined in the next section
suggest that a few rounds of sifting suffice to reach a local minimum.

Note that in edge-weighted graphs we can define the weighted crossing number by counting
each crossing with the product of the two edge weights involved. If suffix cardinalities are replaced
by suffix sums of weights, Lemma 1 generalizes to the weighted case. Modifying the algorithm
accordingly is straightforward.

5 Experimental Evaluation

We performed extensive experiments to determine the relative behavior of the different variants of
our heuristics. As a base reference we use CIRCULAR [14], the currently most effective heuristic
for circular crossing minimization. CIRCULAR consists of two phases as well: an initial placement
(CIRCULAR 1) derived from a recognition algorithm for outerplanar graphs [11], and a subsequent
improvement phase (CIRCULAR 2) that probes alternative positions for each vertex and relocates
if the number of crossings is reduced. While the second phase appears to be similar to circular
sifting, it differs in that a vertex is moved to fewer candidate positions and may thus miss good
positions. Note also that CIRCULAR 2 actually counts crossings (rather than just changes) so that
its running time depends on the number of crossings. When restricting replacements to a subset



of positions, circular sifting simulates CIRCULAR 2 with an improved worst-case performance,
but in our experiments we rather implemented an improved method for counting crossings, since
realistic graphs have relatively few crossings anyway.

All algorithms have been implemented by the same person in C++ using LEDA [10]. Our
experiments were carried out on a standard desktop computer with 1.5 GHz and 512 MB running
Linux. Each data point is the average of 10 runs with different internal initializations (in particular,
permuted adjacency lists).

The experiments were run on three families of undirected, biconnected graphs (recall from
Section 2 that crossings between edges in different biconnected components can be avoided alto-
gether):

– Rome graphs. A set of 10 541 biconnected components with 10 to 80 vertices used in [2]. These
are sparse real-world graphs with m ≈ 1.3n.

– Fixed average degree. Three sets of random graphs with 10 to 200 vertices and variable edge
probability of 3

n−1 , 5
n−1 , and 10

n−1 , resulting in graphs with expected average degree of 3, 5,
and 10.

– Fixed density. Three sets of random graphs with 10 to 200 vertices and fixed edge probability
of 0.02, 0.05, and 0.1, resulting in graphs with expected density of 2, 5, and 10 percent.

A comprehensive selection of results is given in the appendix. We here summarize our conclusions
and show a layout computed by the combination of greedy-append and circular sifting for a sample
graph (see Fig. 4).

Fig. 4. Random circular layout and our result for a sample graph

5.1 Initialization using Greedy Append

The performance of various combinations of insertion orders for greedy append is shown in Fig. 5
relative to CIRCULAR 1. While for some rules of choice the results depend on number of edges in
the graph, the Connectivity variant consistently outperforms all others, including CIRCULAR 1.

The results in Fig. 6 indicate that appropriate placement is indeed important, but has a much
smaller effect than the insertion order. On random graphs, the combination of Connectivity inser-
tion with Length or Crossings perform almost equally well, with a slight advantage for Crossings.

The two best combinations, Connectivity with Length or Crossings, compare favorably with
CIRCULAR 1, both in terms of the resulting number of crossings and running time (see Figs. 8,
9, and 13). Note that the running time of the initialization methods is negligible when compared
to the improvement strategies.

5.2 Subsequent Improvement using Circular Sifting

Circular sifting reaches a local minimum in few rounds. As can be expected, the improvement is
larger in early rounds, and the number of rounds required depends on the initial configuration (see



Fig. 7). It can be concluded that the improvement algorithms (circular sifting and CIRCULAR 2)
should not be used by themselves, but only in combination with a good initialization method.

With any of the good initialization strategies identified in the previous subsection, circular
sifting is able to further reduce the number of crossings produced by CIRCULAR 2 as can be
seen in Figs. 8 and 11 and is also confirmed by an independent study of He and Sýkora [6]. This
suggests that the additional positions considered for relocation indeed pay off. However, there is
a slight runtime penalty if sifting is run until there is no further improvement (Fig. 12).

Conclusion

We have presented an approach for circular graph layout with few crossings. It consists of two
phases: in the first phase, we greedily append vertices to either end of a partial (linear) layout ac-
cording to some criteria, and in the second we further reduce the number of crossings by repeatedly
sifting each vertex to a locally optimal position.

Our experimental evaluation clearly shows that the method of choice is to initialize circular
sifting with a greedy-append approach using the Connectivity insertion order with the Crossings
placement rule and that this combination consistently outperforms previous heuristics. They also
shows that both phases are necessary. While circular sifting yields a substantial improvement over
the initial layouts, a good initialization significantly reduces the number of rounds required and
thus the overall running time at essentially no extra cost.
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6. H. He and O. Sýkora. New Circular Drawing Algorithms, 2004. Unpublished manuscript. 8
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(a) Sifting without initialization.
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(b) Sifting in combination with CIRCULAR 1.
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(c) Sifting in combination with greedy append.

Fig. 7. Circular sifting: improvement after various rounds
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Fig. 9. Initial layout: CIRCULAR 1, and Length and Crossings combined with Connectivity
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Fig. 10. Improvement phase: various combinations of initial and improvement algorithms
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Fig. 11. Results on random graphs relative to CIRCULAR
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Fig. 12. Running time: combinations of initial and improvement algorithms
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