
Theory and Engineering
for

Shortest Paths and Delay Management

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakult�at f�ur Informatik
des Karlsruher Instituts f�ur Technologie (KIT)

genehmigte

Dissertation

von

Reinhard Bauer

aus Feuchtwangen

Tag der m�undlichen Pr�ufung: 08. Dezember 2010

Erster Gutachter: Frau Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Frau Prof. Dr. Anita Sch�obel

ii

Acknowledgments

First of all, I would like to thank my supervisor Dorothea Wagner for her constant support,
the opportunity to work in her great group and for always being available for her employees'
concerns. I am deeply grateful to Anita Sch�obel for her sel
ess e�ort, the delightful
working-atmosphere she creates and the willingness to review this thesis.

Many thanks go to my colleagues in Dorothea Wagner's group for providing support
as well as distraction and a friendly, stimulating environment. Special thanks go to all
the people who helped proofreading this thesis. Very special thanks go to Marcus Krug
for uncomplainingly reading Chapter 3 twice. A big thank-you goes to my co-authors for
nice discussions and good collaboration.

Besides that, I would like to thank all the people that supported this thesis outside
the o�ce: Most of all, Elena, for her neverending support, patience and understanding.
Further, the KAP-guys for the distraction from work and Daniel Gentner, Martin K�uster
and Max Stengel for always having an open ear. Last but not least, I would like to express
my deep gratitude to my parents Curt and Gertrud Bauer who supported me in countless
ways.

iv

Contents

Nomenclature vii

1 Introduction and Outline 1

2 Fundamentals 5
2.1 Graphs . 5
2.2 Dijkstra's Algorithm . 7
2.3 Computational Problems and Complexity 10
2.4 Mixed-Integer Linear Programs . 12

3 Preprocessing Speedup-Techniques is Hard 15
3.1 Motivation . 15
3.2 Problem Statement . 17
3.3 Reach-Based Pruning . 20
3.4 Multilevel Overlay Graph . 26
3.5 ALT . 30
3.6 Arc-Flags . 39
3.7 Contraction Hierarchies . 51
3.8 Lower Bounds for Search-Space Guarantees 59
3.9 Conclusion . 64

4 The Shortcut Problem 67
4.1 Introduction . 67
4.2 Speci�c Notation . 68
4.3 Problem Statement and Complexity . 69
4.4 ILP-Approaches . 75
4.5 Approximation using the Greedy-Strategy 82
4.6 Evaluation of the Measure Function . 86
4.7 Conclusion . 89

5 Batch-Dynamic Single-Source Shortest-Paths Algorithms 91
5.1 Motivation . 91
5.2 Problem Statement . 93
5.3 Description of Algorithms . 94
5.4 Tuning SWSF-FP . 100
5.5 Experiments . 106
5.6 Conclusion . 114

6 Practical Online Algorithms for Delay Management 117
6.1 Introduction . 117
6.2 Problem Statement . 119
6.3 Delay Management Strategies . 123
6.4 Experiments . 127
6.5 Conclusion . 132

7 Conclusion 133

A Extended Tables 135

vi Contents

B Review on Complexity Results 139

Deutsche Zusammenfassung (German Summary) 141

Curriculum Vit� 145

List of Publications 147

Bibliography 149

Nomenclature

N set of non-negative integers 5

Z set of integers 5

R set of real numbers 5

1A(x) indicator function of set A 5

P(A) power set of set A 5

dist(s; t) distance from node s to node t 7

N(v) neighborhood of node v 6
 �
G reverse graph of G 6

�G(v) eccentricity of node v 7

V�(s; t;G) search space of an unidirectional speedup technique 18

V +
� (s) forward search space of a bidir. speedup technique 18

V �� (t) backward search space of a bidir. speedup technique 18

G[S] graph G augmented by shortcut assignment S 19

SP(G) set of all shortest paths in G 20

R(v) reach of node v 20

P�(x; y) set of start nodes of shortest paths through x and y 68

P+(x; y) set of end nodes of shortest paths through x and y 68

P (x; y) set of pairs of nodes s; t, for which there is a a shortest s-t-path
containing �rst x and then y

68

P ./(x; y) set of all nodes that lie on a shortest x-y-path 68

hG(s; t) hop-distance from s to t 69

!sb(t) o�set of node t 83

gs(a; b) gain of a shortcut from a to b with respect to s 83

spDiam(G) shortest-paths diameter of graph G 87

con(v) consistent value of node v 94

viii Nomenclature

Chapter 1

Introduction and Outline

Algorithms

implement

design

experim
ent

an
al

yz
e

Emblem of the DFG Priority Pro-
gramme 1307 - Algorithm Engi-
neering

Algorithm Engineering is a modern method for al-
gorithm design. The core of this approach is a cycle
consisting of the design, theoretical analysis, implemen-
tation and experimental evaluation of practicable algo-
rithms. The aim of the experimental evaluation is to gain
new insights, guiding both design and theory. Ideally,
this leads to an altered point of view on the applied al-
gorithms or even on the underlying problem and revives
the algorithm-engineering cycle. On the other hand, the-
oretical considerations are meant to stimulate the devel-
opment, improvement and understanding of practically
e�cient algorithms. Often, a special focus lies on algo-
rithms for real-world data and real-world applications.

Throughout this thesis we are guided by the idea
of algorithm engineering. For each considered problem
�eld, a reasonable next step in the spirit of algorithm engineering is determined and carried
out. We address problems in the area of shortest-paths computation and algorithms for
infrastructure networks. The work can logically be separated into four problem �elds
which are sketched in the following outline.

Chapter 2 - Fundamentals. This chapter recapitulates concepts and algorithms used
later. Fundamental terminology is established. The treated background ranges from basic
graph theory over Dijkstra's algorithm and basic complexity theory to mixed-integer linear
programs.

Chapter 3 - Preprocessing Speedup-Techniques is Hard. In 1999, Schulz, Wagner
and Weihe published the �rst work on the fast computation of shortest paths between
arbitrary pairs of points in a (railway-)network exploiting a preprocessing phase [SWW99].
This paper was followed by a remarkable `horse-race' for the fastest technique for the
computation of point-to-point shortest paths in large networks. The resulting techniques
are called speedup techniques as they usually speed up Dijkstra's algorithm. Mostly, these
approaches are custom-tailored for road networks and are up to 3.000.000 times faster
than Dijkstra's algorithm. A special feature of the problem is the availability of large
and meaningful real-world data: Graphs representing the road networks of the USA and
Europe are available for scienti�c use. Besides the vast amount of work on the core
problem `computation of point-to-point shortest-paths in static graphs' there are also
results on extended problems like multi-modal routing, shortest-paths computation in
time-dependent graphs or many-to-many shortest path computation.

The results achieved in this �eld are widely considered to be a showpiece of algorithm

2 Chapter 1: Introduction and Outline

engineering. Up to now, the impressive experimental results in the area are not backed up
by a theoretical foundation (which very well is part of the idea of algorithm engineering).
Recently some �rst theoretical insights were made that improved the understanding of the
huge speedups that had been achieved [AFGW10].

The Problem. The preprocessing phases of most speedup-techniques leave open some
degree of freedom like the choice of how to partition a graph or how to insert additional
edges into a network. In practice, this degree of freedom is �lled in a heuristical fashion.
Thus, for a given speedup technique, the question arises how to �ll the according degree
of freedom optimally.

Our Contribution. We model all according techniques in a common framework and
show NP-hardness for �lling the respective degree of freedom optimally. The applied
objective function is the expected size of the search space of a shortest-path query. Part
of this chapter has been published in [BCK+10a, BCK+10b] and is joint work with Tobias
Columbus, Bastian Katz, Marcus Krug and Dorothea Wagner.

Chapter 4 - The Shortcut Problem. In this chapter, we study a graph-augmentation
problem arising from an approach used in many speedup techniques. Many of those
enhance the graph by inserting shortcuts, i.e., additional edges (u; v) such that the length
of (u; v) equals the distance from u to v in the original graph.

Chapter 3 treated, amongst others, the question of how to insert shortcuts to minimize
the expected size of the search space of the applied technique. In this chapter, we study
the even more fundamental question of how to minimize the number of edges on edge-
minimal shortest paths. This analyzes an aspect of shortcuts that is independent of the
applied speedup-technique.

While the idea for the problem formulation clearly stems from algorithm engineer-
ing considerations, our motivation for working on that problem deviates a bit from the
algorithm engineering idea: We primarily consider the problem to be a straightforward,
beautiful theoretical problem on its own right. Accordingly, we work in a mostly theoretical
manner and do not infer from our results on the shortcut problem to speedup-techniques.

The Problem. Given a weighted, directed graph G and a number c 2 Z+, the shortcut
problem asks how to insert c shortcuts in G such that the expected number of edges that
are contained in an edge-minimal shortest path from a random node s to a random node
t is minimal.

Our Contribution: We state two variants of the problem and study their algorithmic
complexity. We further develop ILP-based exact approaches and consider a greedy strat-
egy. We show an approximation guarantee of the greedy-strategy on a special graph class
and give a fast algorithm for performing a greedy step. Finally, we show how to stochas-
tically evaluate a given set of shortcuts on graphs that are too large to do so exactly.
Part of this chapter has been published in [BDDW09, BDD+10] and is joint work with
Gianlorenzo D'Angelo, Daniel Delling, Andrea Schumm and Dorothea Wagner.

Chapter 5 - Batch-Dynamic Single-Source Shortest-Paths Algorithms. Real-
world applications like routing in road networks, data harvesting in sensor networks or
routing in the internet require computing and storing shortest-paths trees. Whenever the
underlying graph changes, the given shortest-paths tree (or a distance vector implicitly
determining it) has to be updated.

Algorithms that update the tree without a full recomputation from scratch are called
dynamic single-source shortest-path algorithms. Some of the algorithms known in the
literature are only able to cope with the update of one edge at a time, while others can
perform batch updates, i.e., update the shortest-path information after multiple edges have
simultaneously changed their weight.

3

One can consider edge insertions and deletions as special cases of weight changes: Dele-
tions correspond to weight increments to in�nity, while insertions are weight decrements
from in�nity. An algorithm is called fully dynamic if both weight increases and decreases
are supported, and semi-dynamic if only weight decreases or only increases are supported.

The Problem. We study experimental aspects of fully-dynamic single-source shortest-
path algorithms for graphs with positive edge weights. We pay special attention to the
batch case. Up to now, the experimental knowledge on the topic is quite sparse. The
existing experimental work focuses on very speci�c datasets and there is no systematic
comparison of the di�erent approaches. We are not aware of any experimental evaluation
of the batch case. Hence, for batch updates it is not even known if it is useful to process
a set of updates as a batch.

Our Contribution: We give an extensive experimental study for the single-edge and
for the batch case. We further work on an already existing algorithm. This algorithm
has been stated with regard to mainly theoretical considerations. We state and test an
e�cient implementation of this algorithm as well as combinations with other approaches.
Furthermore, we propose a simple method to decide if one should handle updates in a
batch or iteratively. Finally, the outcomes of our experiments allow some new insights in
both the algorithms and the problem itself. Part of this chapter has been published in
[BW09a, BW09b] and is joint work with Dorothea Wagner.

Chapter 6 - Practical Online Algorithms for Delay Management. The delay
management problem asks how to react to exogenous delays in public railway tra�c such
that the overall passenger delay is minimized. These source delays occur in the operational
business of public transit and can make the scheduled timetable infeasible.

The two main aspects treated in the literature are as follows: Firstly, passenger trips
often require changing from one train to another. Given a delayed feeder train, a wait-
depart decision settles the question if a follow-up train should wait in order to enable
changing activities. Secondly, the limited capacity of the track system complicates the
creation of a good disposition timetable. Headway constraints model this limited capacity.
Every time two trains simultaneously compete for the same part at the train system, it
has to be decided which train may go �rst. Typically, an additional obstacle is the online
nature of the problem. Source delays are often unknown in advance and decisions have to
be taken without exactly knowing the future.

The Problem. In this chapter we search for practical algorithms for online delay man-
agement. Our main focus lies on wait-depart decisions but we also brie
y consider headway
constraints. We aim at �nding algorithms that are simple, robust and of good solution
quality.

Our Contribution: We enhance an existing o�ine model and gain a generic model that
is able to cover complex realistic memory-less delay scenarios as well as standard academic
delay scenarios that require knowing the past. We further introduce and experimentally
evaluate online strategies for delay management. While we also test ILP-approaches, our
primary aim are strategies that are practical in the sense that they are simple and robust.
Hence, we propose strategies that do not need complete information on the state of the
entire system. We compare our results to tight a-posteriori bounds given by an optimal
o�ine solution. Finally, by analyzing the solutions found, we gain interesting new insights
into the structure of good delay-management strategies. This chapter is based on joint
work with Anita Sch�obel.

Chapter 7 - Conclusion. The thesis ends with a conlusion. We summarize the most
important lessons learned, point out some interesting open questions and give an outlook.

4 Chapter 1: Introduction and Outline

Chapter 2

Fundamentals

This chapter recapitulates concepts that are needed later. We establish basic termi-
nology and state Dijkstra's algorithm. We further sketch the foundations of complexity
theory and approximability and outline mixed-integer linear programming. We assume
the reader to be already familiar with basic mathematical concepts and algorithmics.
Hence, this chapter is not intended to give an introduction to the beginner but to clarify
terminology and notation in case of ambiguity.

Further information on graph theory and algorithmics can be found in [Jun99] and
[CLRS01], more on complexity theory in [GJ79, HMU07], more on approximation algo-
rithms in [ACG+02] and more on mixed-integer linear programming in [NW88].

Sets. We denote by Z and R the set of integers and reals, respectively. We use the
notation Z�0 := fx 2 Z j x � 0g, the symbols Z>0, R�0 and R>0 are de�ned accordingly.
The symbol N is a synonym for Z�0. Given a set A, the powerset P(A) of A is the set of
all subsets of A including the empty set and A itself. Let A � X be a subset of a set X.
The indicator function of A and X is the function 1A : X ! f0; 1g de�ned as 1A(x) = 1
if x 2 A and 1A(x) = 0 otherwise.

Dependencies. In this work, we often face the situation that, while a mathematical
object is depending on many other objects, most of these dependencies are clear from the
context. In order to improve readability, we drop these dependencies in the notation in
this case. For instance, we use the notation dist(s; t) for the distance from node s to node
t if the choice of the underlying graph G is clear.

2.1 Graphs

Basic De�nitions. A directed graph G is an ordered pair G = (V;E) consisting of a �nite
set V and a set E of ordered pairs (u; v) of elements u and v in V . Elements of V are
called nodes (or vertices), elements of E are called edges (or arcs). Given an edge (u; v)
we call u the source node and v the target node of (u; v). Further, (u; v) is an incoming
edge of v and an outgoing edge of u. Whenever we have a function f : E ! M from the
set of edges E to an arbitrary other set M we abbreviate f((u; v)) by f(u; v).

An undirected graph G is an ordered pair G = (V;E) consisting of a �nite set V and
a set E of two-element subsets of V . Again, elements of V are called nodes (or vertices),
elements of E are called edges.

Most of the following de�nitions can be done simultaneously for directed and undi-
rected graphs. In that case, we write (u; v) for both, a directed edge (u; v) and an undi-
rected edge fu; vg. Unless stated otherwise, all graphs occurring in this thesis are di-

6 Chapter 2: Fundamentals

rected. Given a graph G = (V;E) we sometimes write v 2 G for v 2 V and (u; v) 2 G for
(u; v) 2 E.

A weighted (directed/undirected) graph is an ordered triple (V;E; len) with (V;E) being
a (directed/undirected) graph and len : E ! R being a mapping. We call len(e) the length
(or weight) of edge e.

Given nodes u and v, we call u a neighbor of v if there is an edge (u; v) or (v; u) in G.
Let G = (V;E) be an undirected graph. We denote by N(v) the neighborhood of v, i.e.,
the set of all neighbors of v. Let G = (V;E) be a directed graph. The in-degree of a node
v 2 V in G is the number of edges (in E) with target v, the out-degree of v is the number
of edges with source v. Let G be a directed or undirected graph. The degree of v in G is
the number of edges for which one end-vertex is v.

Any graph G0 = (V 0; E0) where V 0 � V and E0 � E is called a subgraph of G = (V;E).

Finite and Simple Graphs. An edge of the form (u; u) is called a loop. We always work
on loopless graphs. In some applications also in�nite graphs, i.e., graphs with in�nite
node set V , are of interest. Throughout this work, we do not consider in�nite graphs.
Furthermore, we never generalize the set E of edges to be a multiset. Hence, for a (directed
or undirected) graph (V;E) and two nodes v; w 2 V , the edge (v; w) from v to w always
is unique if (v; w) exists. All occurring weighted graphs have positive edge lengths, i.e.,
len(e) > 0 for all e 2 E.

Reverse Graph. Let G = (V;E) denote a directed (unweighted) graph. We denote by
 �
G the reverse graph (of G), i.e., the graph (V;

 �
E) with

 �
E := f(v; u) j (u; v) 2 Eg. In case

G = (V;E; len) is weighted, the reverse graph
 �
G is (V;

 �
E ;
 �
len) with

 �
E being as above and

 �
len being de�ned by

 �
len(u; v) := len(v; u) for (v; u) 2 E.

Walks and Paths. Let G = (V;E) be a (directed or undirected) graph. A walk P
from x1 to xk in G is a �nite sequence (x1; x2; : : : ; xk) of nodes such that (xi; xi+1) 2
E for i = 1; : : : ; k � 1. Given a walk P = (x1; x2; : : : ; xk), we also consider P =
(fx1; : : : ; xkg; f(xi; xi+1) j i = 1; : : : ; k�1g) to be a subgraph of G. Now let G = (V;E; len)
be additionally weighted. The length len(P) of P is the sum of the lengths of all edges in P ,
i.e., len(P) =

Pk�1
i=1 len(xi; xi+1). A path is a walk that contains each vertex at most once,

i.e., P = (x1; x2; : : : ; xk) is a path, if and only if, xi 6= xj holds for each 1 � i 6= j � k.

Connectivity. We say a graph G = (V;E) is strongly connected, if there is an s-t-
path for any pair of nodes s; t 2 V . Given a directed (weighted or unweighted) graph
G = (V;E), the corresponding undirected (and unweighted) graph G0 = (V;E0) is given
by E0 = ffu; vg 2 V � V j 9(u; v) 2 Eg. We say a directed graph is (weakly) connected
if the corresponding undirected graph is strongly connected. Note that, for undirected
graphs, weak and strong connectivity are equivalent and we hence only use the term
connected for these graphs. Given nodes s and t, we say t is reachable from s (in a graph
G0) if there is an s-t-path (in G0).

Cycles, Trees and Acyclic Graphs. A cycle C is a walk starting and ending at the
same node that contains each edge at most once and that contains at least two nodes.

A directed acyclic graph is a directed graph without cycles. We call a graph T =
(V 0; E0) a tree if there is a node s such that for each node t 2 V 0 there is exactly one
path from s to t and such that T is acyclic. We call s a root of T . We say a vertex v
is a descendant of a vertex t in T (with respect to root s), if the path from s to v in T
contains t. Note that each node is a descendant of itself. Given a tree T with root s and
a vertex w in T , we call v the parent of w (on T with respect to s) if the last edge of the
s-w-path in T is (v; w).

A topological order � of a directed acyclic graph G = (V;E) is a re
exive, antisym-

2.2 Dijkstra's Algorithm 7

metric, transitive and total relation on V such that for each edge (u; v) in E, u � v holds.
If G is acyclic, a topological ordering can be computed in time O(jV j+ jEj) [Jun99].

Shortest Paths and Distances. Let G = (V;E; len) be a graph and s; t 2 V be nodes.
A shortest path from node s to node t is a path from s to t of minimum length. We call
a shortest path from s to t a shortest s-t-path. Given two nodes s and t, the distance
dist(s; t) from s to t is the length of a shortest s-t-path and in�nity if no s-t-path exists.
Note that the distance is well-de�ned as we only work on �nite graphs with non-negative
edge lengths.

The diameter of G is the largest distance in G, i.e., maxfdist(s; t) j s; t 2 V g. The
eccentricity �(v) of a node v is the maximum distance from v to any other node t in G,
i.e., �(v) = maxfdist(v; t) j t 2 V g.

A shortest-paths tree with root s is a subgraph T = (V 0; E0) of G such that T is a tree,
V 0 is the set of nodes reachable from s and such that for each edge (u; v) 2 E0 we have
dist(s; u) + len(u; v) = dist(s; v). Note that each path in T is a shortest path in G. The
shortest-paths subgraph with root s is the subgraph Gs = (V 0; E00) of G such that V 0 is the
set of nodes reachable from s and E00 is the set of all edges with dist(s; u) + len(u; v) =
dist(s; v). Note that the paths in Gs that start with s are exactly the shortest paths in
G that start with s. Further, Gs is directed acyclic in case all edge weights are strictly
positive.

The triangle inequality for graphs states that dist(s; u) + dist(u; t) � dist(s; t) for any
triple s; u; t of nodes.

2.2 Dijkstra's Algorithm

In the single-source shortest-paths problem we are given a graph G = (V;E; len) and
a source s 2 V . The objective is to compute the distance from s to all nodes in V .
Sometimes we additionally want to compute a shortest-paths tree or the shortest-paths
subgraph with root s. We describe Dijkstra's algorithm which solves the single-source
shortest-paths problem in graphs with positive edge lengths.

We start by outlining the Bellman-Ford Equations which are a main argument for the
correctness of the approach. We then specify the datastructure priority queue which is
one of the main ingredients of Dijkstra's algorithm. This is followed by the description of
Dijkstra's algorithm.

Bellman-Ford Equations. The Bellman-Ford Equations describe the single-source
shortest-paths problem in a more local fashion. Given the graph G = (V;E; len) and
the source s, we have a variable dv for each node v 2 V . The equations are

ds = 0

dv = minfdu + len(u; v) j (u; v) 2 Eg ; v 2 V n fsg :

If all Bellman-Ford Equations are ful�lled dv equals, for each v 2 V , the distance from s
to v.

Priority Queues. A priority queue is a datastructure that maintains a set S of tuples
(u; key) where u is an arbitrary object and key is a real value. We call key also the priority
of u. Note that sometimes generalized variants are applied, for which key is element of
an arbitrary totally-ordered set. There are various types of priority queues. Throughout
this work, we do not require to know the type of the applied priority queue when working

8 Chapter 2: Fundamentals

theoretically. However, we always use a binary heap when performing experiments (see
[CLRS01] for a description).

In the literature, the operations supported by a priority queue di�er. The operations
we require in this thesis are given in Table 2.1. The operations InsertOrUpdate and
Remove can easily be built from the standard priority queue operations. However, for
binary heaps, the Remove-operation can be implemented more e�ciently than using the
standard operations. We include both operations explicitly as we often use them.

Dijkstra's Algorithm. Given a graph G = (V;E; len) with positive length function
len : E ! R>0 and a node s 2 V , Dijkstra's algorithm [Dij59] �nds the distances from
s to all nodes in the graph. We state a variant that additionally computes a shortest-
paths tree with root s. Accordingly, we call s the root. It is straightforward to adapt the
algorithm to also compute the shortest-paths subgraph with root s.

For each node v in the graph, the algorithm maintains a distance label d(v). During
the run of the algorithm d(v) contains an upper bound for the distance from s to node
v, after termination d(v) equals the exact distance dist(s; v). The shortest-paths tree is
given by a label p(v) for each node v. If v is reachable from s, the value p(v) equals, after
termination, the parent of node v in the computed shortest-paths tree. Further, a priority
queue Q is used that contains (v; d(v)) for some nodes with tentative distance label d(v)
smaller than in�nity.

For each node v, the value d(v) is initialized to be in�nity. Then, d(s) is set to be
0 and s is inserted into Q. While Q is not empty, the algorithm extracts one node v
with minimum distance label from Q and relaxes all of its outgoing edges (v; w). An edge
(v; w) is relaxed as follows: If d(w) � d(v) + len(v; w) nothing is to be done. Otherwise
a tentative shortest s-w-path has been found (this path contains the node v). Hence, we
set d(w) := d(v) + len(v; w) and p(w) := v. If w is already contained in Q, its priority in
the queue is updated, otherwise it is inserted into the queue. The algorithm terminates
when the queue is empty. The pseudocode is listed as Algorithm 2.1.

When using a Fibonacci-heap as priority queue, Dijkstra's algorithm has a runtime in
O(jV j log jV j+ jEj). See [Jun99] and [CLRS01] for more information.

Algorithm 2.1: Dijkstra's algorithm

input : graph G = (V;E; len), source s 2 V
uses : priority queue Q
output: distance label d(v) = dist(s; v) for each v 2 V

shortest-path tree with root s given by the edges (p(v); v) with d(v) <1

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(s) 0
3 Q.insert(s,0)

4 while not Q.isEmpty do /* Main Phase */

5 v Q.extractMin

6 for (v; w) 2 E do
7 if d(v) + len(v; w) < d(w) then

8 d(w) d(v) + len(v; w)
9 p(w) = v
10 Q.InsertOrUpdate(w; d(w))

2.2 Dijkstra's Algorithm 9

isEmpty

description: checks if S is empty
output: true if S is empty and false otherwise

insert(u; key)

description: inserts (u; key) in S
precondition: S does not contain an element (u; key0) for any value key0

action: S := S [f(u; key)g

contains(u)

description: checks if S contains an element (u; key) for some value key
output: true if there is a value key such that (u; key) 2 S, false otherwise

extractMin

description: �nds and outputs an element with minimum key, removes it from S
precondition: S is not the empty set
action: �nd arbitrary element (u; key) with key = minfkey0 j (v; key0) 2 Sg

S := S n f(u; key)g
output: u

decreaseKey(u; key)

description: decreases the key of element u
precondition: S contains exactly one element (u; key0) for some key0 and

key � key0 holds
action: S := (S n f(u; key0)g) [f(u; key)g

InsertOrUpdate(u; key)

description: inserts u into the queue or updates its priority
precondition: if S contains an element (u; key0) for a value key0 it is key � key0

action: if contains(u) is true then
decreaseKey(u; key)

otherwise
insert(u; key)

Remove(u)

description: removes u from the queue
precondition: S contains exactly one element (u; key0) for some key0

action: S := S n f(u; key0)g

Table 2.1: Operations of a Priority Queue.

10 Chapter 2: Fundamentals

2.3 Computational Problems and Complexity

This section shortly sketches the theory of NP-completeness and approximability. See
[GJ79] for a formal and more thorough treatment of NP-completeness. The notation for
optimization problems and approximation algorithms is mostly borrowed from [ACG+02]
which can be consulted for further information on this �eld.

Decision Problems and NP-completeness. In a computational problem we are given
an instance and want to answer a certain question. In this thesis we encounter two types
of computational problems: decision problems and optimization problems. In a decision
problem the answer is either yes or no. More concrete, a decision problem � = (D�; Y�)
is a tuple consisting of a set D� of instances together with a subset Y� � D� of yes-
instances. The elements in D� n Y� are called no-instances. We answer the decision
problem on instance I by deciding whether I is a yes-instance or not.

A polynomial-time algorithm is an algorithm whose computation time is polynomial
in the input size. We fuzzily say that the size of an instance I is the size of a `reasonable
encoding' of I as a string.

We call P the class of all decision problems that can be solved by a polynomial time
deterministic algorithm and NP the class of all decision problems that can be solved by
a polynomial-time non-deterministic algorithm. The class NP can {more intuitively{ be
seen as the class of all decision problems for which we can verify, in polynomial time, a
potential proof of the fact that an instance I is a yes-instance.

Obviously, we have P � NP. It is still not known, but widely assumed that P 6= NP.
The theory of NP-completeness gives us the power to show, for some decision problems
�, that � lies in NP nP under the assumption P 6= NP holds. This is done by identifying
the `most complex problems' in NP.

To compare the complexity of decision problems we use polynomial transformations.
A polynomial transformation (or polynomial-time reduction) from a decision problem
�1 = (D�1 ; Y�1) to a decision problem �2 = (D�2 ; Y�2) is a function f : D�1 ! D�2 such
that f can be computed by a polynomial-time deterministic algorithm and such that for all
I 2 D�1 we have I 2 Y�1 , f(I) 2 Y�2 . We write �1 / �2 if there is a polynomial-time
transformation from �1 to �2.

Given a polynomial-time transformation f from �1 to �2 we can solve �1 if we can
solve �2: We simply decide I as we would decide f(I). Hence, we consider �2 to be at least
as di�cult as �1 if �1 / �2. This way we only neglect polynomial time e�ort. Further,
we consider two problems �1 and �2 to be polynomial equivalent if both, �1 / �2 and
�2 / �1 hold.

We call a decision problem �0 NP-hard, if it is at least as di�cult as all problems
in NP, i.e., if, for each � 2 NP, we have � / �0. We further call a decision problem
NP-complete if it is NP-hard and belongs to NP. If we could solve one NP-hard problem
in polynomial time we could solve all problems in NP in polynomial time. In order to
show that a decision problem � is NP-hard, we can select a known NP-hard problem
�0, construct a polynomial transformation f from �0 to � and prove that f actually is a
polynomial transformation.

Note that, although explaining NP-completeness by de�ning decision problems on sets
and polynomial reductions fuzzily by algorithms is widespread practice, we have to keep
in mind that this is a simpli�cation made for improving readability. The formally correct
de�nitions strongly depend on the notions of languages and Turing Machines.

List of NP-hard problems. In the following, we state the NP-hard decision problems
that are used for the reductions within our NP-hardness proofs. References to the corre-

2.3 Computational Problems and Complexity 11

sponding NP-hardness proofs are given in [GJ79].

Problem Set Cover. Given a collection C of subsets of a �nite set U and a positive
integer k, is there a set cover C 0 of (C;U) of cardinality no more than k, i.e., a subset C 0

of C with jC 0j � k such that each element in U belongs to at least one member of C 0?

In that context we say a set c 2 C covers an element u if u 2 c. The problem remains NP-
hard even if all c 2 C have jcj � 3. This variant of the problem is called 3-MinimumCover.
For both variants we may assume that each element of U is contained in at least one set
of C. The problem is solvable in polynomial time if all c 2 C have jcj � 2 [GJ79].

Problem Exact Cover by 3-Sets (X3C). Given a set U with jU j = 3q and a collection
C of 3-element subsets of U , does C contain an exact cover for U , i.e., a subcollection
C 0 � C such that each element of U occurs in exactly one member of C 0?

Again we may assume that each element of U is contained in at least one set of C.

Problem VertexCover. Given an undirected graph G = (V;E) and a positive integer
k � jV j, is there a vertex cover of size k or less, i.e., a subset V 0 � V of G with jV 0j � k
such that for each edge fu; vg 2 E at least one of u and v belongs to V 0?

Problem 3-Partition. Given a set A of 3m elements, a bound B 2 Z>0 and a size
wa 2 Z>0 for each a 2 A such that B=4 < wa < B=2 and such that

P
a2Awa = mB,

can A be partitioned into m disjoint sets A1; A2; : : : ; Am such that, for 1 � i � m, it isP
a2Ai

wa = B?

This problem is strongly NP-hard, i.e., it remains NP-hard even if the occurring numbers
are encoded unary. Note that the constraint B=4 < wa < B=2 ensures that all sets Ai

have cardinality 3.

Optimization Problems and Approximability. Optimization problems deal with the
problem of �nding a solution that minimizes or maximizes an objective function. More
formally, an optimization problem is speci�ed by the 4-tuple � = (X;S; f; goal) where

� X is an arbitrary set of instances

� S is a mapping de�ned on X that assigns a set S(x) of feasible solutions to each
instance x 2 X

� f is a real-valued function de�ned for each tuple (x; y) with x 2 X and y 2 S(x)

� goal 2 fmin;maxg determines whether the problem is a minimization or maximiza-
tion problem.

We call f the objective function of �. A feasible solution y in S(x) is an (optimal) solution
of instance x 2 X if y optimizes the objective function on S(x), i.e., if f(x; y) is minimal
or maximal (depending on goal) for y 2 S(x). In this case, we call f(x; y) the optimal
value of x.

We can enhance the concept of NP-hardness to optimization problems: An optimiza-
tion problem � is called NP-hard if for every decision problem �0 2 NP, the problem
�0 can be solved in polynomial time by an algorithm that uses an oracle that, for any
instance of �, returns an optimal solution along with its optimal value in constant time.
As a consequence, an optimization problem is NP-hard, if an NP-hard decision problem
�0 can be solved in polynomial time by such an algorithm.

12 Chapter 2: Fundamentals

Let � = (X;S; f; goal) be an optimization problem. An absolute approximation algo-
rithm with maximum error k is an algorithm that computes, for any instance x 2 X, a
solution y 2 S(x) such that jf(x; y�) � f(x; y)j � k where y� is an optimal solution for
instance x. A constant factor approximation algorithm with approximation ratio � � 1 is
an algorithm that computes, for any instance x 2 X, a feasible solution y 2 S(x) such
that (

f(x; y)=f(y; y�) � � ; goal = min

f(y; y�)=f(x; y) � � ; goal = max

where y� is an optimal solution for instance x. The class APX is the class of all optimiza-
tion problems for which there exists a polynomial-time constant-factor approximation
algorithm for some � � 1.

2.4 Mixed-Integer Linear Programs

Mixed-Integer Linear Programs (MILPs) are mathematical models that are able to rep-
resent a wide number of combinatorial problems. Advantages of the approach are the
large amount of theoretical and practical knowledge on MILPs and the availability of
good black-box solvers. This section mostly uses the notation and terminology as given
in [NW88].

De�nitions. Solving a mixed-integer linear programming problem means minimizing a
linear real-valued function of many real-valued and integer-valued variables on a domain
that is given by a set of linear constraints. Such a problem is called mixed because of the
simultaneous presence of integer-valued and real-valued variables. We describe a concrete
instance by

minimize cTx+ hT y such that Ax+Gy � b; x 2 Zn�0; y 2 R
p
�0

where x = (x1; : : : ; xn) and y = (y1; : : : ; yp) are the variables and the instance is speci�ed
by c 2 Rn, h 2 Rp, A 2 Rm�n, G 2 Rm�p and b 2 Rm for some number m. We now �x
an instance I = (c; h;A;G; b). The function

f(x; y) = cTx+ hT y

is called the objective function. The set

S := f(x; y) j Ax+Gy � b; x 2 Zn�0; y 2 R
p
�0g

is called the feasible region. A tuple (x; y) 2 S is called a feasible solution. A feasible
solution (x�; y�) is called an optimal solution if it minimizes the objective function on S,
i.e, if

f(x�; y�) � f(x; y)

for any (x; y) 2 S.

Expressing Problems as MILP's. Let I = (c; h;A;G; b) be an instance. Each row i
of A = (aij), G = (gij) and b = (bi) de�nes a single constraint :

nX
j=1

aijxj +

pX
j=1

gijyj � bi:

2.4 Mixed-Integer Linear Programs 13

We alternatively describe MILP-instances by enumerating all constraints and stating the
objective function. In order to represent maximization problems we can transform a
linear objective function f(x; y) = cTx + hT y to be maximized to an objective function
f 0(x; y) = �cTx� hT y to be minimized. The approach is also powerful enough to express
equalities. The constraint

nX
j=1

aijxj +

pX
j=1

gijyj = bi

can be modelled by the following two constraints

nX
j=1

aijxj +

pX
j=1

gijyj � bi

nX
j=1

�aijxj +

pX
j=1

�gijyj ��bi:

Solvability and Restricted Problems. Let I = (c; h;A;G; b) be an instance. An
optimal solution of I does not necessarily exist even if the feasible region of I is not empty.
We call I unbounded if, for any w 2 R, there is an (x; y) 2 S such that cTx + hT y < w.
Under the assumption that all numbers occurring in I are rational and that the feasible
region is not empty, one can show that I either is unbounded or has an optimal solution
[NW88]. The special case c � 0 and A � 0 leads to the problem

minimize hT y such that Gy � b; y 2 Rp
�0

and is called linear program (LP). This can be solved in polynomial time, for example by
the ellipsoid algorithm. An experimentally fast algorithm for solving linear programs is
the simplex algorithm. However, this algorithm has exponential worst-case runtime. The
special case h � 0 and G � 0 leads to the problem

minimize cTx such that Ax � b; x 2 Zn�0

and is called integer linear program (ILP). This problem is NP-hard already for very
special cases. See [NW88] for an overview on solution approaches for MILP's, ILP's and
LP's.

14 Chapter 2: Fundamentals

Chapter 3

Preprocessing Speedup-Techniques

is Hard

During the last years, preprocessing-based techniques have been developed to compute
shortest paths between two given points in road networks. These speedup-techniques make
the computation a matter of microseconds even on huge networks, as opposed to seconds
required by Dijkstra's algorithm. While there is a vast amount of experimental work in
the �eld, there is still large demand for theoretical foundations. The preprocessing phases
of most speedup-techniques leave open some degree of freedom which, in practice, is �lled
in a heuristical fashion. Thus, for a given speedup-technique, the problem arises of how
to �ll the according degree of freedom optimally. Until now, the complexity status of
these problems has been unknown. In this chapter, we answer this question by showing
NP-hardness for the recent techniques.

3.1 Motivation

Computing shortest paths in graphs is used in many real-world applications like route-
planning in road networks or for �nding good connections in railway timetable information
systems. In general, Dijkstra's algorithm computes a shortest path between a given source
and a given target. Unfortunately, the algorithm is slow on huge datasets. Therefore, it
cannot be directly used for applications like car navigation systems or online route-planners
that require an instant answer to a source-target query.

Often, this problem is coped with by dividing the computation of the shortest paths
into two stages. In the o�ine stage, some data is precomputed that is used in the online
stage to answer a source-target query heuristically faster than Dijkstra's algorithm. Such
an approach is called a speedup-technique (for Dijkstra's algorithm). During the last
years, speedup-techniques have been developed for road networks (see [DSSW09] for an
overview), that make the shortest path computation a matter of microseconds even on
huge road networks consisting of millions of nodes and edges.

Usually, the o�ine stage leaves open some degree of freedom, such as the choice of
how to partition a graph or of how to order a set of nodes. The decision taken to �ll
the respective degree of freedom has direct impact on the search space of the online stage
and therefore on the runtime of a query. Currently, these decisions are made in a purely
heuristical fashion. A common trade-o� is between preprocessing time/space and query
time/search space. Practitioners in the �eld usually compare their results by absolute
query times, size of the search space, size of the preprocessed data and by the time needed
for the preprocessing phase. In this chapter we show the NP-hardness of performing the

16 Chapter 3: Preprocessing Speedup-Techniques is Hard

o�ine stage such that the average search space of the query is optimal. For each technique
we demand that the size of the preprocessed data is bounded by a given parameter. In
practice, the basic technique can be enriched by various heuristic improvements. We do
not consider such improvements and stick to the basic core of each technique. However,
some interesting details are treated separately. This implies that, for the sake of simplicity,
some techniques are slightly altered. The techniques considered are

� ALT [GH05, GW05]

� Arc-Flags [Lau04, KMS05, MSS+05, MSS+06, Sch06a, HKMS06, HKMS09]

� SHARC [BD08, BD09, Del09, BDGW10]

� Multilevel Overlay Graph [SWZ02, Sch05, HSW06, SS07, HSW08, Hol08]

� Contraction Hierarchies [GSSD08].

We left out

� Geometric Containers [SWW99, SWW00, WW03, WWZ05, Wil05]

� Highway Hierarchies [SS05, SS06a]

� Reach-Based Pruning [Gut04, GKW06, GKW07, GKW09]

as their o�ine stages merely contain tuning parameters but no real degree of freedom.
However, two interesting side-aspects of Reach-Based Pruning are included. We further
did not work on

� Transit Node Routing [SS06b, M�ul06, BFM+07, DHM+09, BFM09]

as this is a framework for which also parts of the query algorithm need to be speci�ed.

An Additional Question. We further raise the question of how good a given speedup-
technique actually can get. We give a lower bound on any guarantee for the average
Contraction Hierarchies-search space size on sparse graphs.

Related Work. There is a huge amount of work on speedup-techniques. An overview
of experimental work can be found in [WW07b, DSSW09]. There is large demand for a
theoretical foundation for the �eld and there is only little theoretical work: Part of this
chapter has previously been published in [BCK+10a, BCK+10b]. Based on these papers,
the student's thesis [Fuc10] considers the preprocessing phase of the ALT-algorithm. A
worst-case model for the search space is proposed, ILP-based approaches and a connection
to the maximum coverage problem are given. The student's thesis [Col09] considers the
preprocessing phase of Contraction Hierarchies. The NP-hardness of the preprocessing
phase is proven and a lower bound for the search space size is given. The contents of
[Col09] mostly are covered by [BCK+10a, BCK+10b] and this thesis.

In [BDDW09, BDD+10] results are given for the Shortcut Problem, a problem
related to the technique of inserting shortcuts to the underlying graph. Chapter 4 covers
these results. Recently, a graph generator for road networks was given in [AFGW10].
There, graphs evolving from this generator are shown to exhibit a property called low
highway dimension. For graphs with this property, a special preprocessing technique
is proposed and runtime guarantees for Reach-Based Pruning, Contraction Hierarchies,
Transit Node Routing and SHARC using that preprocessing technique are given.

3.2 Problem Statement 17

3.2 Problem Statement

There are two types of speedup-techniques. Unidirectional techniques base on Dijkstra's
algorithm and �nd the target by conducting one search starting at the source. Bidirectional
approaches rely on Bidirectional Search and simultaneously perform a search starting at
the source and a backward search starting at the target. In the following we describe
both types followed by a generic description of the problem considered in this chapter.
The concrete problem is stated separately for each technique in the according section.
Afterwards we report on some small but important technical details.

Setting. Let G = (V;E; len) denote a directed, weighted graph with positive length
function len : E ! R>0. In this chapter, we consider techniques that answer s-t-queries
in G, i.e., they compute the distance from source s to target t for arbitrary nodes s and t
in V .

We have online route-planning software in mind that has to answer a large number
of s-t-queries. Hence, we allow an o�ine phase in which the graph is already given, but
source and target are unknown. The output of the o�ine phase is additional data that can
be accessed during the online phase. In this phase source s and target t are known and
dist(s; t) is computed with the help of the additional data. Obviously, one could gain opti-
mal query time by simply precomputing all distances in the graph. However, this is often
impractical for real-world input because of the large size of the underlying networks. Each
considered technique is based on Dijkstra's algorithm and could be extended such that
also a shortest s-t-path is returned. See [DSSW09] for a description of such enhancements.

Unidirectional Speedup-Techniques. We study two unidirectional techniques: ALT
and Arc-Flags. For both approaches, the online phase (i.e., the query) basically works like
Dijkstra's algorithm and both are label-setting : Each node v is inserted into the queue
only once. After extracting v from the queue, the distance label d(v) is correct and v is
not inserted into Q again. We call a node v visited if at least one incoming edge of v has
been relaxed, i.e., if d(v) <1. We call a visited node settled, if it has been extracted from
Q. As we focus on s-t-queries, we can stop after the target t has been extracted from the
queue. The search-space of an s-t-query is the set of nodes settled up to the point when t
gets settled, including t.

However, the main speedup compared with Dijkstra's algorithm must be attributed to
additional improvements: In order to direct the search in the direction of the target, ALT
applies a di�erent priority when extracting nodes from Q. Arc-Flags prune the search
space by not relaxing edges that, in the preprocessing phase, have been recognized as
useless for the given query.

Bidirectional Search. This approach simultaneously starts a Dijkstra's search rooted

at s on G (the forward search) and one rooted at t on the reverse graph
 �
G (the backward

search). Whenever a node has been settled it has to be decided if the algorithm should
change to the opposite search. A simple approach is to swap the direction every time a
node is settled. The distance balanced bidirectional search changes to the other direction
if, and only if, the minimal distance label of nodes in the queue is greater than the
minimal distance label of nodes in the contrary queue. The algorithm can stop when one
node is settled in both directions. Finally, dist(s; t) = minfdist(s; v) + dist(v; t)g over
all nodes v, that get visited from both directions. Note that the �rst node v settled in
both directions is not necessarily part of the shortest s-t-path. This can be seen from the
following simple example: G = (fs; t; vg; ffs; tg; fs; vg; ft; vgg) with len(fs; tg) = 10 and
len(fs; vg) = len(ft; vg) = 6.

The worst-case behavior of this approach is not better than Dijkstra's algorithm.

18 Chapter 3: Preprocessing Speedup-Techniques is Hard

Algorithm 3.1: Query of a bidirectional speedup-technique

input : graph G = (V;E; len), source s 2 V , target t 2 V ,
additional preprocessed data �

output: dist(s; t)

1 d+ unidirectionalPrunedSearch(G; s; �) /* forward search */

2 d� unidirectionalPrunedSearch(
 �
G; t; �) /* backward search */

3 output minfd+(v) + d�(v) j v 2 V g

/* search space is the union of the search spaces of forward and

backward search, count nodes contained in both searches twice */

However, on usual inputs, bidirectional search reduces the search space by a factor of 2
compared with Dijkstra's algorithm.

Bidirectional Speedup-Techniques. We study the following bidirectional techniques:
Reach-Based Pruning, Multilevel-Overlay Graph and Contraction Hierarchies. The core
of the online phase of these approaches is an adapted bidirectional search. The forward
and the backward search are changed such that some edges or nodes are not considered.
Thus, part of the graph is pruned from the search space. The main speedup results from
such prunings and it is reasonable to relax the stopping criterion for our theoretical model.
Consequently, we later see that forward and backward search are completely independent
from each other. Hence, the strategy of how to swap between the searches does not matter
anymore and we can execute both searches sequently. We apply this query scheme for each
bidirectional technique. Pseudocode for the main routine is given as Algorithm 3.1, the
individual pruned unidirectional searches are stated for each technique separately in the
respective sections.

Similar to the unidirectional case, a node v is called visited in one direction as soon as
an incoming edge of v is relaxed in the according search and settled in this direction when it
has been extracted from the queue of this direction. For bidirectional speedup-techniques,
the search-space of an s-t-query is the union of the search-spaces of forward and backward
search of this query. We consider the search space to be a multiset, i.e., when computing
the size of the search space we count nodes that get settled in both directions twice.

Problem Statement. The o�ine phase of each technique has a particular degree of
freedom such as the choice of how to order a set of nodes or the choice of how to partition
the underlying graph. This a�ects the output of the o�ine phase and hence the additional
data � used in the online phase.

For a given technique, we write V�(s; t;G) for the search space of an s-t-query in graph
G, when having the additional data � as input. We omit G and write V�(s; t) in case the
choice of the underlying graph is clear. Our aim is to �ll the according degree of freedom,
such that the average search space of a query becomes minimal. We choose source and
target uniformly at random and hence want to compute the additional data � such thatP

s;t2V jV�(s; t)j is minimized.
When working with bidirectional techniques, we use an equivalent formulation of the

seach space size: We denote by V +
� (z) and V �� (z) the search space of forward and backward

search starting at z, respectively. As both searches are completely independent from each
other, we can make the following transformation:X

s;t2V

jV�(s; t)j =
X
s;t2V

jV +
� (s)j+ jV �� (t)j = jV j

X
z2V

�
jV +
� (z)j+ jV �� (z)j

�
(3.1)

3.2 Problem Statement 19

The choices undertaken in the preprocessing phase also a�ect the size of the preprocessed
data. For each technique, we demand that the size of the preprocessed data is bounded
by a given parameter.

Breaking Ties in a Priority Queue. There are many possibilities to break ties when
extracting nodes from the queue. We follow an idea of Goldberg and Harrelson [GH05] that
is helpful for theoretical considerations: Throughout this work, we additionally identify
each node uniquely with an integer between 1 and jV j. Among all nodes with minimal
priority in the queue, the smallest integer gets extracted �rst.

Shortcuts. Given is a graph G = (V;E; len). A shortcut is an additional edge (u; v) that
is inserted into G such that len(u; v) equals the distance from s to v. See Chapter 4 for
more results on shortcuts.

De�nition (Shortcut Assignment). Let G = (V;E; len) be a graph. A shortcut as-
signment for G is a set E0 � (V �V)nE such that, for any (u; v) in E0, it is dist(u; v) <1.
The notation G[E0] abbreviates the graph G with the shortcut assignment E0 added, i.e.,
the graph (V;E [E0; len0) where len0 : E [E0 ! R>0 equals dist(u; v) if (u; v) 2 E0 and
equals len(u; v) otherwise.

Some speedup-techniques use shortcuts to reduce the search space size, a detailed descrip-
tion is given separately for each technique.

Requirements on the Input Graph. Consider the following situation: We are given
an edge (u; v) in a graph G such that the shortest u-v-path does not contain (u; v). After
inserting the shortcut (u; v), the graph G[f(u; v)g] is a multi-graph. Hence, for simplicity
we demand that len(u; v) = dist(u; v) for each (u; v) 2 E. This can easily be assured by
deleting all edges with len(u; v) > dist(u; v) in a preprocessing step.

A Repeating Pattern. We often face the following technical task: We consider Dijk-
stra's algorithm and are given a set T � V such that T = ft 2 V j dist(s; t) = cg for a
number c. Our aim is to compute the sum

P
t2T jV (s; t)j of the search-space sizes of all

s-t-queries with t 2 T .
For each node t 2 T , we have to settle all nodes in fv 2 V j dist(s; v) < dist(s; t)g

before we can settle t. We remember that, when deciding which node to settle next, ties
are broken according to some prede�ned order on the vertices. Hence, the part of nodes
in T on the overall search-space size is 1 + 2 + : : : + jT j = jT j(jT j + 1)=2. Summarizing,
we can decomposeX

t2T

jV (s; t)j = jT j �
���nv 2 V j dist(s; v) < dist(s; t)

o���+ jT j(jT j+ 1)=2 : (3.2)

20 Chapter 3: Preprocessing Speedup-Techniques is Hard

10 520

10
105

5 5
30

10 20

0 10 5 000 10 205 5

15 25

Figure 3.1: Reach values of a sample graph and a sample path. Edge labels represent edge lengths,
node labels represent reach values.

3.3 Reach-Based Pruning

Reach is a centrality measure introduced by Gutman [Gut04]. We use the version of
Goldberg et al. [GKW06, GKW07, GKW09]. In this section, let SP(G) denote the
set of all shortest paths in G. The reach RP (vi) of a node vi with respect to a path
P = (v1; : : : ; vk) with vi 2 P is

RP (vi) := minflen(v1; : : : ; vi); len(vi; : : : ; vk)g:

The reach R(v) of a node with respect to a graph G is

R(v) := max
fP2SP(G)j v2Pg

RP (v):

See Figure 3.1 for an example. For ease of notation, we consider a single vertex to be a
path of length 0. The reach of a node is high, if it lies in the middle of a long shortest
path.

v t

w r

s

r

Sometimes, nodes of low reach can be
pruned from a bidirectional search. Con-
sider the situation to the left. The nodes v
and w both have reach R(v) = R(w) = r.
As dist(s; v) > R(v) and dist(v; t) > R(v)
we do not have to consider v in any di-
rection: If there would be a shortest s-t-
path containing v, this path would e�ect
in R(v) � minfdist(s; v);dist(v; t)g which

is a contradiction.
We further do not have to consider w in the search starting at t if we assure that w is

included in the search starting at s: We will see that we stay correct if we do not consider
a node w in the search with root x 2 fs; tg, if w0s distance from x is larger than R(w).

Query. There exist di�erent variants of how to use reach values for pruning the search
space of a bidirectional search, all of them sharing the same main idea. The variant
described here is called the self-bounding query. In practice the approach is mixed with
other ingredients like ALT, contraction and the computation of upper bounds for reach
values which we do not consider here.

The query is a standard query of a bidirectional speedup-technique (Algorithm 3.1).
The according undirectional pruned search is Dijkstra's algorithm with the di�erence, that
we only insert or change nodes w in the queue, for which R(w) � d(w). The pseudocode is
given as Algorithm 3.2. Whenever we give pseudocode for a speedup-technique, di�erences
with Dijkstra's algorithm are marked grey.

Correctness. Given is an s-t-query. If dist(s; t) = 1 the correctness follows directly.
Now let P = (v1; : : : ; vk) be a shortest s-t-path. To show the correctness of the approach,

3.3 Reach-Based Pruning 21

Algorithm 3.2: Unidirectional Pruned Search of Reach-Based Pruning Query

input : graph G = (V;E; len), node x 2 V , reach values R()

output: distance label d()

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(x) 0 ; Q.insert(x,0)

3 while not Q.isEmpty do /* Main Phase */

4 v Q.extractMin /* v is now contained in the search space */

5 for (v; w) 2 E do
6 if d(v) + len(v; w) < d(w) then

7 d(w) d(v) + len(v; w)

8 if R(w) � d(w) then Q.InsertOrUpdate(w; d(w))

we assure that there is a node w in G such that d+(w) + d�(w) = dist(s; t). As then
d+(w) < 1 and d�(w) < 1 we know that v is visited from both directions. For each
node v in P it isR(v) � RP (v). Hence, we can split P `in the middle' into P1 = (v1; : : : ; vl)
and P2 = (vl+1; : : : ; vk) such that for each node v 2 P1 it is R(v) � dist(s; v) and for each
node v 2 P2 it is R(v) � dist(v; t). Accordingly, all nodes in P1 get settled in the forward
search and all nodes in P2 get settled in the backward search. Consequently, vl+1 gets
visited by the forward search which su�ces to show the correctness.

3.3.1 Search-Space Minimal Reach.

In case shortest paths are not unique the technique still computes correct distances even
if only considering one shortest path for each source-target pair. This can be seen in
the above proof of correctness. When regarding less shortest paths, the resulting reach
values may decrease. This can lead to pruning more nodes and hence the search space
may shrink. The Problem MinReach is that of choosing these shortest paths such that
the resulting average search-space becomes minimal. More formally, we choose a set P of
shortest paths and compute R(v) by maxfP2Pj v2PgRP (v). We denote by VP(s; t;G) the
search space of the s-t-reach-query using these reach-values as input for the search.

Problem MinReach. Given a graph G = (V;E; len), choose P � SP(G) such that P
contains one shortest s-t path for each pair of nodes s; t 2 V with dist(s; t) <1 and such
that

P
s;t2V VP(s; t;G) is minimal.

Theorem 1. Problem MinReach is NP-hard (even for directed acyclic graphs).

Proof. We make a reduction from Exact Cover by 3-Sets (X3C, page 11). Given an X3C-
instance (U;C) with jU j = 3q we may assume that each element in U is contained in at
least one set in C. We construct a MinReach-instance G = (V;E; len) as follows, see
Figure 3.2 for a visualization: V = fag [C [U where a is an additional vertex. There is
an edge (a; c) for each c 2 C. There is an edge (c; u) 2 C � U if, and only if u 2 c. All
edge lengths are 1. The construction is polynomial.

It is R(u) = 0 for u 2 fag [U as these nodes are contained in paths only as start-
or end-nodes. Hence, these nodes only get settled as start nodes from the forward search
or as target nodes from the backward search. Given the set P, we denote the search
space starting at node z by V +

P (z) and V �P (z) for forward and backward search on G,

22 Chapter 3: Preprocessing Speedup-Techniques is Hard

C

U

a

Figure 3.2: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g.

respectively. It is X
s2U[C

jV +(s)j = jU [CjX
t2fag[C

jV �(t)j = jCj+ 1

as the corresponding unidirectional searches only settle their start node. We use Equation
3.1 and decomposeX

s;t2V

jVP(s; t)j = jV j
�
jV +(a)j+

X
s2U[C

jV +(s)j| {z }
=jU[Cj

+
X

t2fag[C

jV �(t)j

| {z }
=jCj+1

+
X
t2U

jV �(t)j
�

Claim. There is a set P such thatX
s;t2V

VP(s; t) � jV j
�
(1 + q) + jU [Cj+ jCj+ 1 + 2jU j

�
(3.3)

if and only if there is an exact cover for (U;C).

`If '. When computing the reach-values of nodes in C we only have to consider paths
that start with a and end in U because paths consisting of only one edge do not contribute
to reach-values greater than 0. Let C 0 � C be an exact cover of (U;C). Further let C 0(u)
denote the c0 2 C 0 with u 2 c0. We set P = f(a;C 0(u); u)j u 2 Ug. Then, for each
c 2 C we have R(c) = 1 if there is a path (a; c; u) in P and R(c) = 0 otherwise. Hence,
jV +(a)j = 1 + q and jV �(u)j = 2 for each u 2 U . This yields the claimed bound.

`Only if '. Let P � SP(G) be such that Equation 3.3 holds. We show that C 0 = fc 2
Cj (a; c; u) 2 Pg is an exact cover of (U;C). As P has to include one shortest a-u path for
each u 2 U we know that C 0 covers U . With the above decomposition of the search-space
we know that jV +(a)j+

P
t2U jV

�(t)j � 1 + q + 2jU j. It is

V +(a) = fag [fc 2 Cj R(c) � 1g = fag [C 0

and, for u 2 U ,

V �(u) = fug [fc 2 Cj R(c) � 1; u 2 cg

= fug [fc 2 Cj (a; c; u) 2 Pg � 2:

Hence jC 0j � q which implies the claim.

Summary. We have shown that the decision variant of problem MinReach that asks if it
is possible to reach a certain search-space size is NP-hard. Hence, also the optimization
variant, i.e., problem MinReach is NP-hard. �

3.3 Reach-Based Pruning 23

3.3.2 External Shortcuts for Reach-Based Pruning.

Given is a graph G = (V;E; len). A shortcut is an additional edge (u; v) that is inserted
into G such that len(u; v) equals the distance from u to v (see Section 3.2, page 19 for
a proper de�nition). The notation G[E0] abbreviates the graph G with the set E0 of
shortcuts added. Shortcuts can be used to reduce reach values and hence to diminish the
search space. Consider the left-hand graph in the following example, node labels give the
reach values, edge labels give the edge weights.

1 1 1 1

10

10

10

10

10

10
11 12 11

S T

1 1 1 1

10

10

10

10

10

10
2 1 2

S T

4

When performing an s-t-query with s 2 S and t 2 T we have to settle the three nodes
in the middle. We compute reach values as for problem MinReach: For each s-t-pair
we consider only one shortest s-t-path. The graph to the right contains one additional
shortcut. Hence, reach values of the center nodes can be chosen smaller and the center
nodes are not contained in such an s-t-query.

Given an input graph G and a parameter k, we consider the following scenario: The
preprocessing phase is split into two stages. In Stage 1, we are allowed to insert a set S of
k shortcuts into G. This yields the graph G[S]. After Stage 1, the remaining part of the
preprocessing phase is determined. Stage 2 is problemMinReach on G[S], i.e., we choose
a subset of the shortest paths in the graph such that the resulting reach values minimize
the average search space of the online phase. We consider two di�erent variants of Stage
2. Accordingly we assume that we have two di�erent means to solve problemMinReach:

� An oracle opt, that returns an optimal solution opt(G[S]) � SP(G[S]) of Min-
Reach-instance G[S] (Variant 1).

� A heuristic algorithm apx that returns an arbitrary feasible solution apx(G[S]) �
SP(G[S]) that, for each connected s-t-pair, contains one edge-minimal shortest s-t-
path (Variant 2).

We show for both variants, that it is NP-hard to choose S such that the objective function
of MinReach-instance G[S] is minimized.

Problem ExtShortcutsReach. Given a graph G = (V;E; len) and a positive integer k,
�nd a shortcut assignment S of cardinality k, such that

�

P
s;t2V Vopt(S)(s; t) :=

P
s;t2V Vopt(G[S])(s; t;G[S]) (Variant 1)

�

P
s;t2V Vapx(S)(s; t) :=

P
s;t2V Vapx(G[S])(s; t;G[S]) (Variant 2)

is minimal

Theorem 2. Both variants of problem ExtShortcutsReach are NP-hard (even for
directed acyclic graphs).

Proof. We make a reduction from Exact Cover by 3-Sets (X3C, page 11). Given an X3C-
instance (U;C) with jU j = 3q we may assume that each element in U is contained in at least
one set in C. We construct an instance (G = (V;E; len); k = q) of ExtShortcutsReach

24 Chapter 3: Preprocessing Speedup-Techniques is Hard

C−

C+

U

a

M
1

2

1

2

edge length

Figure 3.3: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g.

as follows, see Figure 3.3 for a visualization: The set V consists of two nodes c� and c+

for each c 2 C, one node u for each u 2 U , one additional node a and an additional set
M with jM j to be speci�ed later. We denote by C� the set fc� j c 2 C) and by C+

the set fc+ j c 2 C). There is an edge (c+; u) with length 2 if u 2 c. Further, there are
edges (a; c�) with length 2 and (c�; c+) with length 1 for each c 2 C. Moverover, there
is an edge (m; a) with length 1 for each m 2 M . We set k = q. The transformation is
polynomial as jM j will be polynomial in the input size.

We abbreviate the search spaces of the unidirectional pruned searches in the augmented
graph as follows:

V �opt(S)(z) := V �opt(G[S])(z;G[S]) V �apx(S)(z) := V �apx(G[S])(z;G[S])

V +
opt(S)(z) := V +

opt(G[S])(z;G[S]) V +
apx(S)(z) := V +

apx(G[S])(z;G[S]):

We leave out the subscript apx/opt if the choice of the variant does not matter. We use
Equation 3.1:X

s;t2V

VS(s; t) = jV j
X

z2V nM

�
V �S (z) + V +

S (z)
�

| {z }
=:�

+jV j
X
z2M

(V �S (z)| {z }
=j1j

+V +
S (z)):

It is R(m) = 0 for m 2 M as these nodes are at most start-nodes of shortest paths
in the graph. Hence searches starting in V nM do not settle nodes in M and we have
� � 2jV nM j2. We call a shortcut assignment S set covering if S contains, for each u 2 U ,
a shortcut (a; c+) such that u 2 c. If S is set-covering it is S � fag � C+ as S contains
only q shortcuts and these have to cover the 3q nodes in U .

The proof outlines as follows: Obviously, a set covering shortcut assignment of (G; q)
induces a set cover of (U;C) and vice versa. We give an upper bound for the search space
size of a set covering shortcut assignment. Then, we give a lower bound for the search
space size of a shortcut assignment that `cannot be transformed to a set cover of (U;C)'.
Finally, we show that, for jM j big enough, both classes can be separated by a bound on
the search space size and establish the desired relationship between solutions of (C;U)
and (G; q).

Claim. Let S be set-covering. Then
P

m2M V +
apx(S)(m) � 2jM j.

Let m be in M . We proof the claim by showing that reach(x) < dist(m;x) for x 2
C+[C�[U . Hence V +(m) � fm; ag and it immediately follows the claim. It is R(u) = 0
for u 2 U as these nodes are at most end-nodes of shortest paths. With dist(m;u) = 6 we

3.3 Reach-Based Pruning 25

have V +
apx(S)(m) \ U = ;. Further, for c+ 2 C+ we have R(c+) � 2 and dist(m; c+) = 4.

Hence V +
apx(S)(m)\C+ = ;. Remember that apx(S) always chooses edge-minimal shortest

paths. An edge-minimal shortest path P starting inM and ending in U contains a shortcut
in S as S is set-covering. Hence, the shortest paths from M to U chosen by apx(S) do
not contain any node in C�. Accordingly, R(c�) � 2 < dist(m; c�) for c� in C�. Hence
V +
apx(S)(m) � fm; ag.

Corollary. This implies that
P

m2M V +
opt(S)(m) � 2jM j if S is set-covering.

Claim. Assume jM j > k. Let S and u� 2 U be such that (a; u�) 62 S and such that for all
c 2 C with u� 2 c, we have (a; c+) 62 S. Then

P
m2M V +

opt(S)(m) � 3jM j.

We show that, for each m 2M , it is V +
opt(S)(m) � fm; a; c�� g for an c

�
� 2 C

� which proofs

the claim. As jM j > k we have at least one node m0 2 M such that (m0; v) 62 S for
all v 2 V . Hence, (m0; a; c�) is the only shortest path for c� 2 C and R(a) � 1. As
dist(m; a) = 1, the node a gets settled from each m 2M . Further, a shortest m0-u�-path
in G[S] starts with (m0; a; c��) for a c

�
� 2 C

�. Hence, R(c��) � 3 and c�� gets settled from
all m 2 M . Summarizing, for each m 2 M , we have that V +

opt(S)(m) � fm; a; c�� g which
shows the claim.

Corollary. With the requirements of the last claim follows that
P

m2M V +
apx(S)(m) � 3jM j.

Claim. We specify jM j = maxfk; 2jV nM j2g+ 1. Then, there is a shortcut assignment S
such that X

s;t2V

VS(s; t) � jV j
�
2jV nM j2 + jM j+ 2jM j

�
if and only if there is an exact cover for (U;C).

Let C 0 be an exact cover of (U;C). Then f(a; c+)j c 2 C 0g is set-covering and the bound
on the search-space holds with the above claims. On the other hand let S� be such thatX

s;t2V

VS�(s; t) � jV j(2 � jV nM j
2 + jM j+ 2jM j) :

With the last claim we know that for each u 2 U there must be either a shortcut (a; u) 2 S�

or a shortcut (a; c+) with u 2 c as otherwiseX
s;t2V

VS(s; t) � jV j
�
jM j+ 3jM j

�
with contradiction to the assumption We gain a shortcut assignment S 0 out of S� by
copying all shortcuts of the form (a; c+) in S� and taking, for each shortcut of the form
(a; u) 2 S�, one arbitrary shortcut (a; c+) with u 2 c. The set fcj (a; c+) 2 S 0g is a cover
of (U;C) of size q.

Summary. We have shown that the decision variant of problem ExtShortcutsReach
that asks if it is possible to reach a certain search-space size is NP-hard. Hence, also the
optimization variant, i.e., problem ExtShortcutsReach is NP-hard. �

26 Chapter 3: Preprocessing Speedup-Techniques is Hard

Figure 3.4: Visualization of a 2-level multilevel overlay graph. Vertices in V1 are drawn quadratic.
The graph G0 is given at the bottom, the graph G1 at the top.

3.4 Multilevel Overlay Graph

This bidirectional, hierarchical approach has a long history [SWZ02, Sch05, HSW06, SS07,
HSW08, Hol08] and sometimes is also called Highway Node Routing. Given is the input
graph G = (V;E; len) and a number of levels L + 1. The degree of freedom is to choose
a sequence V := V0 � V1 � : : : � VL of subsets of V . The preprocessing phase then
computes a sequence (G0; G1; : : : ; GL) of graphs such that the nodes of Gi are Vi and such
that distances in Gi are same as in G. To keep these graphs sparse, we include exactly
each edge (u; v) in graph Gi+1 for which all shortest u-v-paths in Gi do not contain any
node of Vi+1 as inner node. The length of an edge (u; v) in Gi is the distance from u to v
in G.

The level i of a node v, is the highest index i such that v 2 Vi. The multilevel overlay
graph G0 is given by G0 := G[E1[: : :[EL]. The query is a bidirectional search in G

0, where,
outgoing from a node of level i, only edges in Ei [: : : [EL are relaxed. Pseudocode of
preprocessing phase and query are given as Algorithm 3.3 and Algorithm 3.4, an example
as Figure 3.4.

Algorithm 3.3: Preprocessing-Phase of the Multilevel Overlay Graph-Technique

input : graph G = (V;E; len), number of levels L+ 1,
sequence V := V0 � V1 � : : : � VL

output: multilevel overlay graph G0, level : V ! Z�0

1 G0 G

2 for l = 1; : : : ; L do
3 El f(s; t) 2 Vl � Vl j 8shortest s-t-paths (s; u1; : : : ; uk; t) in Gl�1

4 it is u1; : : : ; uk 62 Vlg
5 lenl function from El to R�0 such that lenl(u; v) = distG(u; v)
6 Gl (Vi; Ei; leni)

7 G0 G[E1 [: : : [EL]

8 for v 2 V do
9 level(v) maxfi j 0 � i � L and v 2 Vig

3.4 Multilevel Overlay Graph 27

Algorithm 3.4: Unidirectional Pruned Search of a Multilevel Overlay Graph-Query

input : graph G0 = (V;E [E0 ; len), node x 2 V , level : V ! Z�0

output: distance label d()

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(x) 0 ; Q.insert(x; 0)

3 while not Q.isEmpty do /* Main Phase */

4 v Q.extractMin /* v is now contained in the search space */

5 for (v; w) 2 E [E0 with level(w) � level(v) do

6 if d(v) + len(v; w) < d(w) then

7 d(w) d(v) + len(v; w)
8 Q.InsertOrUpdate(w; d(w))

Correctness. As we slightly altered the Multilevel Overlay Graph-technique, we proof
the correctness of our variant. Let G = (V;E; len) be the input graph and G0 = (V;E [
E0; len0) be the according multilevel overlay graph with level function level : V ! Z�0.
Given is a pair of nodes s; t 2 V . As distances are equal in G and G0 an s-t query can
not compute a value smaller than dist(s; t). This already proves the case dist(s; t) = 1,
in the following we assume dist(s; t) <1. We now construct two paths P+ and P� that
are shortest-paths in G0 and that are witnesses for the fact that an s-t-query computes a
value of at most dist(s; t). A visualization of P+ and P� is given in the following picture,
the corresponding shortest s-t-path in G is denoted by P .

2
1

3
4level

s
t

P+

P−

P

vmax

We use the notation P ./(x; y) for the set of all nodes that lie on a shortest x-y-path. This
includes x and y, see page 68 for a formal de�nition. Let vmax be an arbitrary node in
P ./(s; t) of maximum level. We construct P+: We start with P+ = vmax. We iteratively
proceed as follows until P+ =: (v1; : : : ; vk) is such that v1 = s: Let vnext be an arbitrary
node in P ./(s; v1)n v1 of maximum level and such that dist(vnext; v1) is minimal among all
such nodes. Set P+ := (vnext; v1; : : : ; vk).

Let P+ = (v1; : : : ; vk) be the sequence resulting from that procedure. It is level(vi) �
level(vi+1) for i = 1; : : : ; k� 1 because of the maximality of vmax. It is (vi; vi+1) 2 E [E0:
If (vi; vi+1) 2 E nothing is to show. Let (vi; vi+1) 62 E. Let d = level(vi). It is vi 2 Gd and
vi+1 2 Gd. If there was a node w 2 Gd such that dist(vi; vi+1) = dist(vi; w)+dist(w; vi+1)
the node vi would not be the predecessor of vi+1 in P+ as w would have been chosen
instead (remember that edge lengths are strictly positive). Consequently, there is no such
node w which implies that (vi; vi+1) 2 Ed � E0. Hence, P+ gets settled in the forward
search starting at s.

We analogously construct P�: We start with P� = vmax. We iteratively proceed as
follows until P+ =: (v1; : : : ; vk) is such that vk = t: Let vnext be an arbitrary node in
v 2 P ./(vk; t) n vk of maximum level and such that dist(vk; vnext) is minimal among all
such nodes. Set P+ := (v1; : : : ; vk; vnext).

Analogously, the sequence P� gets settled in the backward search starting at t. From
the construction of P+ and P� follows that len(P+) + len(P�) = dist(s; t) which shows

28 Chapter 3: Preprocessing Speedup-Techniques is Hard

the correctness.

The Problem. We study the problem of preprocessing the Multilevel Overlay Graph-
technique. We want to minimize the expected search space under the restriction that the
size of the preprocessed data is bounded by a given parameter. This problem turns out to
be NP-hard even when restricting to 2 levels. We denote by OVL(G;V1) the set of overlay
edges introduced to G when choosing the sequence V; V1 as input to the preprocessing,
i.e., OVL(G = (V;E; len); V1) equals the set

f(s; t) 2 V � V j 8shortest s-t-paths (s; u1; : : : ; uk; t) in G it is u1; : : : ; uk 62 V1g n E:

Further, let VV1(s; t;G) be the search space of an s-t-Multilevel Overlay Graph-query whose
input (G0; level) results from preprocessing G with sequence V; V1.

Problem MinOVL. Given a graph G = (V;E; len) and an integer F � jEj, choose
V1 � V , such that jE [OVL(G;V1)j � F and

P
s;t2V jVV1(s; t;G)j is minimal.

We observe that a feasible solution always must exist as we could choose V1 = V .

Theorem 3. Problem MinOVL is NP-hard.

Proof. We make a reduction from Exact Cover by 3-Sets (X3C, page 11). Given an
instance (U;C) of X3C with jU j = 3q, we construct an instance (G = (V;E; len); F = jEj)
of MinOVL as follows, see Figure 3.5 for a visualization. The set V consists of a node b,
one node c for each c 2 C, one node u for each u 2 U and a set Mv of M additional nodes
for each node v in fbg [U where M will be speci�ed later. We set D :=

S
v2fbg[U Mv.

For each c 2 C, there is a directed edge (b; c). For each u 2 U and each c 2 C, such that
u 2 c, there is a directed edge (c; u). Finally, for each v 2 fbg [U and each w 2 Mv,
there is an undirected edge fv; wg. All edges have uniform length 1. The transformation
is polynomial as M will be polynomial in the input size Note that, as F = jEj, no new
edges may be introduced to the overlay-graph, i.e., OVL(G;V1) is empty.

C

U

b

D \Mb

Mb ⊆ D

Figure 3.5: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g, some
nodes in D are omitted.

Requisite. Throughout the remaining proof, we write X := (jU j + jCj + 2) and set
M := 25X5 + 1. We will see that, under this assumption, the maximum search space
of an s-t-query is at most 2X when V1 is chosen appropriately. We use the search space
characterization given as Equation 3.1.

3.4 Multilevel Overlay Graph 29

Claim I. For each V1 with
P

s;t2V jVV1(s; t)j � 2XjV j2, we have fbg [U � V1.

Assume to the contrary that b 62 V1. ThenX
s;t2V

jVV1(s; t)j =
X
z2V

jV j
�
jV +
V1
(z)j+ jV �V1(z)j

�
�
X
z2Mb

jV j
�
jV +
V1
(z)j+ jV �V1(z)j

�
� jV j �M � 2M � 2jV jM25X5 > 2jV j2X

as, for each node z 2 Mb, all nodes in Mb get settled from forward and backward search
rooted at z. The same holds analogously for any node u 2 U not in V1.

Claim II. Let V1 be a solution with
P

s;t2V jVV1(s; t)j � 2XjV j2. Then, for each u 2 U ,
there is at least one c 2 C with u 2 c and c 2 V1.

Recall that fbg [U � V1. Assume, that there is a u with fc 2 C \ V1 j (c; u) 2 Eg = ;.
Then, the set E1 would contain the edge (u; b) which contradicts F = jEj.

Claim III. There is a number B polynomial in jV j and M such that the following holds:
There is a V1 � V with

P
s;t2V jVV1(s; t)j � minfB; 2XjV j2g if and only if (C;U) has an

exact cover.

`If '. For an exact cover C� of (C;U) let V � := C�[U[fbg. It is
P

s;t2V jVV �(s; t)j � 2XjV j2

as for each s-t-pair at most the root and the nodes in fbg[C[U get settled by one direction
of an s-t-query. Further, no new edges are introduced during the preprocessing. It is easy
to verify the following list of search space sizes.

z V +
V �(z) V

�
V �(z)

2Mb 2 + q + jU j 1
b 1 + q + jU j 1

2 C 4 2
2 U 1 3

2 D nMb 1 4

Summing over all possible source-target pairs yields B:

B :=M(3 + q + jU j) + 2 + q + jU j+ 6jCj+ 4jU j+ 5jM jjU j

`Only if '. Let (C;U) be such that there is no exact cover for (C;U). Let V 0 � V be such
that

P
s;t2V jVV 0(s; t)j � 2XjV j2. Then V 0 has the structure as described in Claims I and

II. It is easy to verify that the above tabular for the search-space sizes of V � gives lower
bounds for the search space sizes of V 0. Further, as there is no exact cover, we know that
jV +
V 0(b)j > 1 + q + jU j. Hence,

P
s;t2V jVV 0(s; t)j > B.

Summary. We have shown that the decision variant of problem MinOVL that asks if it
is possible to reach a certain search-space size is NP-hard. Hence, also the optimization
variant, i.e., problem MinOVL is NP-hard. �

A note on the Original Model. This chapter is based on the papers [BCK+10a,
BCK+10b]. There, the model for the Multilevel Overlay Graph-query also includes
a stopping criterion for the bidirectional search. We decided to relax the stopping criterion
in this thesis. This way, we have a uniform description for each bidirectional technique
and focus more on the aspects of theMultilevel Overlay Graph-approach that cause
the main speedup. Further, we could strongly simplify the proof. However, the proof in
[BCK+10a, BCK+10b] also shows that it is not problematic to also consider a stopping
criterion.

30 Chapter 3: Preprocessing Speedup-Techniques is Hard

3.5 ALT

Goal-Directed Search. Goal-Directed Search (also called A�-search) is a variant of
Dijkstra's algorithm which assigns a di�erent priority to the nodes in the queue [HNR68].
This alternative priority shall guide the search more into the direction of the target. When
applying Dijkstra's algorithm, the priority of node v in the queue equals the tentative
distance d(v). Goal-Directed Search adds a potential �t(v) depending on the target
t to the node's priority, i.e., the priority of v when applying Goal-Directed Search is
d(v) + �t(v).

An equivalent formulation is as follows. Given a graph G = (V;E; len) and the poten-
tial function �t : V ! R�0, Goal-Directed Search on G0 = (V;E; len) is Dijkstra's
algorithm on G := (V;E; len) where

len(u; v) = len(u; v)��t(u) + �t(v)

for each edge (u; v) 2 E. The length len(P) of an s-v-path P = (s = v1; : : : ; vk+1 = v) in
G is then

len(P) =
kX
i=1

len(vi; vi+1) =
kX
i=1

len(vi; vi+1)��t(vi) + �t(vi+1)

= ��t(s) + �t(v) +
kX
i=1

len(vi; vi+1) = ��t(s) + �t(v) + len(P):

Hence both formulations are equal except that priorities in the queue di�er by the constant
�t(s). Further, shortest s-t paths inG are also shortest paths inG0 which shows correctness
of the approach if the edge lengths len are positive. We assure this by using only feasible
potentials: A potential is called feasible if len(u; v) � 0 for every edge (u; v). One can
show that, given two feasible potentials �1

t and �2
t , the potential �t de�ned by �t(v) :=

maxf�1
t (v);�

2
t (v)g is also feasible.

ALT. The ALT-algorithm [GH05, GW05] is Goal-Directed Search with a special
potential function. Initially, a set L � V of `landmarks' is chosen. For a landmark l 2 L
we de�ne

�l+
t (v) := dist(v; l)� dist(t; l) (3.4)

�l�
t (v) := dist(l; t)� dist(l; v) (3.5)

We work with graphs that are not strongly connected. Hence, in�nite distances may occur.
When computing landmark potentials, we use the conventions 1�1 := 0, 1� n :=1
and n�1 := 0 for any n 2 R�0. A set L of landmarks de�nes a potential by taking the
maximum over all single landmark potentials:

�L
t (v) := max

l2L

n
�l+
t (v);�l�

t (v); 0
o
:

Note that this potential is feasible and that �L
t (t) = 0. We denote by VL(s; t;G) and

V�(s; t;G) the search space of an s-t-ALT-query in graph G using landmarks L and po-
tential �, respectively. The preprocessing phase of the ALT-technique consists of choosing
the set of landmarks L and precomputing the distances from and to all of these landmarks.
This information is the input to the query. As the distances are determined as soon as the
landmarks are chosen, we consider the set of landmarks L to be the only additional data
handed over to the query-phase. Pseudocode for the ALT-query is given as Algorithm 3.5.

3.5 ALT 31

Algorithm 3.5: ALT-Query

input : graph G = (V;E; len), source s 2 V , target t 2 V , landmarks L � V
output: distance label d(t)

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(s) 0 ; Q.insert(s; 0)

3 while not Q.isEmpty do /* Main Phase */

4 v Q.extractMin /* v is now contained in the search space */

5 if v = t then stop algorithm

6 for (v; w) 2 E do
7 if d(v) + len(v; w) < d(w) then

8 d(w) d(v) + len(v; w)

9 Q.InsertOrUpdate(w; d(w) +�L
t (w))

Correctness for General Graphs. We are aware of a formal proof of correctness only
for the case of strongly connected graphs with positive edge weights. As we work on
arbitrary graphs with positive edge weights, we brie
y adapt the proof of correctness of
Dijkstra's algorithm for our means. We start by proving some technical lemmata.

Lemma 1. From dist(v; t) <1 follows that �L
t (v) <1 for any set of landmarks L.

Proof. We show that from �L
t (v) = 1 follows that dist(v; t) = 1. Let L be a set of

landmarks. If �L
t (v) = 1 there must be a landmark l 2 L such that �l+

t (v) = 1 or
�l�
t (v) = 1. Let �l+

t (v) = 1. This is equal to dist(v; l) = 1 and dist(t; l) < 1. With
1 = dist(v; l) � dist(v; t) + dist(t; l) we have that dist(v; t) = 1 as dist(t; l) < 1. Let
�l�
t (v) = 1. This is equal to dist(l; t) = 1 and dist(l; v) < 1. With 1 = dist(l; t) �

dist(l; v) + dist(v; t) we have dist(v; t) =1 as dist(l; v) <1. �

We now generalize the notion of feasibility for arbitrary graphs.

De�nition. We call a potential �t feasible if len(x; y)��t(x)+�t(y) � 0 for every edge
(x; y) 2 E such that dist(y; t) <1.

Note that the de�nition of feasibility is well-de�ned as, with Lemma 1, we have that
�t(x) <1 and �t(y) <1.

Lemma 2. Let �t and �0t be feasible potentials. Then, the potential �max
t given by

�max
t (v) = maxf�t(v);�

0
t(v)g is feasible.

Proof. Let (x; y) 2 E be such that dist(y; t) <1. Then len(x; y)��t(x)+�t(y) � 0 and
len(x; y)� �0t(x) + �0t(y) � 0 implies that len(x; y)� �t(x) + maxf�t(y);�

0
t(y)g � 0 and

len(x; y) � �0t(x) + maxf�t(y);�
0
t(y)g � 0 which yields len(x; y) � maxf�t(x);�

0
t(x)g +

maxf�t(y);�
0
t(y)g � 0. This was to show. �

Lemma 3. Let L � V be a set of landmarks and �L be the potential induced by L. It is
�L
t feasible for any target t 2 V .

Proof. We show that, for any landmark l 2 V , it is �l+
t and maxf�l�

t ; 0g feasible. The
claim then follows with Lemma 2. Let (x; y) 2 E be such that dist(y; t) <1.

32 Chapter 3: Preprocessing Speedup-Techniques is Hard

[�l+
t]. Let dist(t; l) =1. Then �l+

t (x) = �l+
t (y) = 0 and len(x; y)��l+

t (x)+�l+
t (y) �

0 holds. Let dist(t; l) < 1. Because of dist(x; t) < 1 we have that dist(x; l) < 1 and
dist(y; l) <1. Hence, len(x; y)��l+

t (x)+�l+
t (y) = len(x; y)� dist(x; l)+ dist(y; l). This

is at least 0 because of len(x; y) + dist(y; l) � dist(x; l).
[maxf�l�

t ; 0g]. Let �0t denote maxf�
l�
t ; 0g. Let dist(l; t) =1. Because of dist(l; y) +

dist(y; t) � dist(l; t) and dist(l; x)+dist(x; t) � dist(l; t) it is dist(l; x) =1 and dist(l; y) =
1. Accordingly, �l�

t (x) = �l�
t (y) = 0 and len(x; y)��0t(x)+�0t(y) = len(x; y) � 0 holds.

In the following let dist(l; t) <1. If dist(l; x) =1 then �l�
t (x) = 0 and len(x; y)��0t(x)+

�0t(y) = len(x; y) + �0t(y) � 0. Hence, in the following let dist(l; x) < 1. This implies
dist(l; y) <1. It is len(x; y)��0t(x)+�

0
t(y) = len(x; y)�maxf0;�l�

t (x)g+maxf�l�
t (y); 0g.

Hence, if �l�
t (x) � 0 it is len(x; y) � �0t(x) + �0t(y) � 0. Now let �l�

t (x) � 0. Then
len(x; y)��0t(x) + �0t(y) � len(x; y)��l�

t (x) + �l�
t (y) = len(x; y) + dist(l; x)� dist(l; y).

This is at least zero because of dist(l; x) + len(x; y) � dist(l; y). �

Equipped with these preparatory lemmata we show the correctness of the ALT-query.

Theorem 4. The ALT-Query Algorithm 3.5 computes d(t) = dist(s; t) for any set of
Landmarks L.

Proof. As d(v) < 1 represents the length of a path in G it is d(v) � dist(s; v) for any
v 2 V . This already settles the case dist(s; t) = 1. In the remainder of the proof let
dist(s; t) < 1. We show that, for each v 2 V with dist(v; t) < 1 it is d(v) = dist(s; v)
when v gets settled. This holds in particular for v = t.

We assume the contrary. Let u be the �rst node with dist(u; t) < 1 such that
dist(s; u) < d(u) when u gets settled. We denote by S the set of nodes that get settled
before u. It is s 2 S. Let P = (s = u1; : : : ; uk = u) be a shortest s-u-path. There
must be a vertex in P n fug that is not contained in S: Otherwise uk�1 2 S and with
dist(uk�1; t) < 1 we have that d(uk�1) = dist(s; uk�1) when uk�1 gets settled. The
relaxation of edge (uk�1; u) gives the contradiction d(u) = dist(s; u) when u gets settled.

Let u` be the �rst vertex in P that is not contained in S. Then, when u gets settled,
it is dist(s; u`) = d(u`) because u`�1 gets settled before u. Further u` is in the queue at
the time when u gets settled. As u` gets settled after u we have

dist(s; u`) + �L
t (u`) � d(u) + �L

t (u) > dist(s; u) + �L
t (u) :

As dist(u; t) <1 we can apply Lemma 1 on any node in P . Hence, all potentials of nodes
in P are smaller than in�nity. This allows for the following transformation.

0 > dist(s; uk)� dist(s; u`)��L
t (u`) + �L

t (uk)

=
k�1X
i=`

len(ui; ui+1) +
k�1X
i=`

�
��L

t (ui) + �L
t (ui+1)

�
This is a contradiction to the feasibility of the potential, i.e., to len(x; y)��L

t (x)+�
L
t (y) �

0 for any y with dist(y; t) <1. Consequently, we have a contradiction to the assumption
that there is an u 2 V with dist(u; t) <1 such that d(u) > dist(s; u) when u gets settled.
In particular, this implies that d(t) = dist(s; t) when t gets settled. �

Some helpful Lemmata. The next lemma shows that, when using landmarks, the po-
tential of a node is a lower bound of its distance to the target.

Lemma 4. Let L � V be a set of landmarks and t 2 V be a vertex. Then, for any vertex
v, it is �L

t (v) � dist(v; t).

3.5 ALT 33

Proof. We consider �l+
t and �l�

t separately for any landmark l 2 L. The lemma then
follows with �L

t (v) := maxl2Lf�
l+
t (v);�l�

t (v); 0g and distances always being non-negative.
[�l+

t (v)]. Let dist(t; l) = 1. Then �l+
t (v) = 0 and the claim follows. Now let

dist(t; l) < 1. If dist(v; l) = 1 then �l+
t (v) = 1. With Lemma 1 follows dist(s; v) = 1

and the claim follows. Now let dist(v; l) < 1. Then we have �l+
t (v) = dist(v; l) �

dist(t; l) � dist(v; t) because of dist(v; l) � dist(v; t) + dist(t; l).
[�l�

t (v)]. Let dist(l; v) = 1. Then �l�
t (v) = 0 and the claim follows. Now let

dist(l; v) < 1. If dist(l; t) = 1 it is �l�
t (v) = 1. With Lemma 1 follows dist(s; v) = 1

and the claim follows. Now let dist(l; t) <1. Then we have �l�
t = dist(l; t)� dist(l; v) �

dist(v; t) because of dist(l; t) � dist(l; v) + dist(v; t). �

The next lemma shows that nodes that can be reached from a node with in�nite potential
also have in�nite potential.

Lemma 5. Let t 2 V be a target, (u; v) 2 E and L � V . If �L
t (u) =1 then �L

t (v) =1.

Proof. If �L
t (u) =1 then there is a landmark l 2 L such that �l+

t (u) =1 or �l�
t (u) =1.

Let �l+
t (u) =1. Then it is dist(u; l) =1 and dist(t; l) <1. This implies dist(v; l) =1

Hence, �l+
t (v) = 1. Let �l�

t (u) = 1. Then dist(l; t) = 1 and dist(l; u) < 1. This
implies that dist(l; v) <1. Hence, �l�

t (v) =1. �

The next lemma helps to bound the search space.

Lemma 6. Let s; t 2 V be such that dist(s; t) <1. Let w 2 V be an additional node. If
dist(s; w) + �L

t (w) > dist(s; t) then w 62 VL(s; t)

Proof. Consider an arbitrary shortest s-t-path P = (s = v1; : : : ; vk = t). Until t = vk is
settled, there is always one node vi 2 P in the queue, such that dist(s; vi) = d(vi). Initially,
this is vi = s. Further, if a node vi 2 P n ftg is removed from Q, the edge (vi; vi+1) is
relaxed and the same holds for vi+1. With Lemma 4 we know that dist(s; vi) + �L

t (vi) �
dist(s; vi)+dist(vi; t) = dist(s; t). Hence, until t gets settled, there is always one node with
priority at most dist(s; t) in the queue. As dist(s; w) + �L

t (w) is a lower bound for the
priority of node w and dist(s; w) + �L

t (w) > dist(s; t), node w cannot get settled before
t. �

The Problem. The problem MinALT is that of assigning a given number of landmarks
to a graph (and thus using only a given amount of preprocessing space), such that the
expected size of the search space is minimal.

Problem MinALT. Given a directed graph G = (V;E; len) and an integer r, �nd a set
L � V with jLj = r such that

P
s;t2V VL(s; t) :=

P
s;t2V VL(s; t;G) is minimal.

Theorem 5. Problem MinALT is NP-hard.

Proof. We make a reduction from 3-MinimumCover (see page 11). Given is an instance
(C;U; k) of 3-MinimumCover. We say, a set c 2 C covers an element u 2 U if u 2 c.
W.l.o.g we may assume that for each u 2 U there is a set c 2 C that covers u. Further, as
a preparatory step, we may assume that jcj = 3 for each set c and that, for each element
u, there is a set c that does not cover u. To assure this, we �rst remove each element that
is contained in every set, as such elements do not a�ect the solvability of the instance. In
case each set c of the remaining instance has size of at most 2, we can solve the problem
in polynomial time [GJ79]. Otherwise, we transform the resulting instance (C 0; U 0; k0 = k)

34 Chapter 3: Preprocessing Speedup-Techniques is Hard

M

C

U

edge lengths 1

ε = 1/2

1

1

Figure 3.6: Graph G constructed from the 3MinimumCover-instance
f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g.

to a new instance (C�; U�; k�) by setting k� := k0 + 1, U� := U 0 [fx; y; zg where x; y; z
are new elements and

C� := fx; y; zg [fc j c 2 C 0; jcj = 3g

[fc [fxg j c 2 C 0; jcj = 2g

[fc [fx; yg j c 2 C 0; jcj = 1g

This instance ful�lls our claims as each set c� 2 C� has cardinality 3 by construction and,
for u 2 U , the set fx; y; zg 2 C� does not cover u. Further, for u 2 fx; y; zg, there is a set
in C� that does not cover u as there is a set in C 0 of cardinality 3. Finally, (C�; U�; k�)
is a yes-instance if and only if (C;U; k) is a yes-instance: The only way to cover z is to
incorporate the set fx; y; zg to the cover. Then, x, y and z are covered and the problem
immediately reduces to instance (C 0; U 0; k0).

Given the 3-MinimumCover-instance (C;U; k) of the form described above, we con-
struct an instance (G = (V;E; len); r = k+ 1) of MinALT as follows, see Figure 3.6 for a
visualization. We introduce a set M = fm1; : : : ;mjM jg of nodes, with jM j to be speci�ed
later and assign V := C[U[M . There is an edge (c; u) with length 1 for each u 2 c. More-
over, there is an edge (ui; uj) with length � := 0:5 for each pair of elements ui 2 U , uj 2 U ,
ui 6= uj , an edge (u;m) with length 1 for each pair u 2 U;m 2M and an edge (mi;mi+1)
with length 1 for each i = 1; : : : ; jM j � 1. For breaking ties in the queue, nodes labels are
such that the nodes have the order c1 � : : : � cjCj � u1 � : : : � ujU j � m1 � : : : � mjM j.
The number of landmarks r is set to be k + 1. The transformation is polynomial as we
later choose jM j polynomial.

All following claims are assembled in Claim VII. This can also be used as an outline
for the proof. Let L be a set of landmarks. ThenX
s;t2V

VL(s; t) =
X

s2V;t2C

VL(s; t) +
X

s2M;t2U[M

VL(s; t)| {z }
=:�

+
X

s2U[C;t2U

VL(s; t)| {z }
��

+
X

s2U[C;t2M

VL(s; t)| {z }
=:
(L)

Claim I. The value of � is independent of the choice of L and can be computed in poly-
nomial time.

For the cases s 2 V; t 2 C and s 2M; t 2 U , the target t is not reachable from the source
s (unless s = t). Therefore, in these cases, the search space is exactly the number of
nodes that are reachable from s (or 1 if s = t). If s; t 2 M , either the target is again not
reachable from the source or the search space is a direct path to the target.

3.5 ALT 35

Claim II. It holds 0 �
P

s2U[C;t2U VL(s; t) � � := jU jjCj(1 + jU j) + jU j3.

Let � be an arbitrary potential induced by landmarks and t 2 U . As � is induced by
landmarks, we have � � 0. In case s 2 C, it holds

dist(s; t) + �t(t) = dist(s; t) � 1 + � < 2 = dist(s;m) � dist(s;m) + �t(m)

for m 2M . With Lemma 6 follows, that for each of the jCjjU j s-t-queries in C�U , nodes
in M are not settled. This leaves us with at most 1 + jU j settled nodes for such queries.
In case s 2 U , it holds

dist(s; t) + �t(t) = dist(s; t) � � < 1 = dist(s;m) � dist(s;m) + �t(m)

for m 2M . With Lemma 6 follows, that for each of the jU j2 s-t-pairs in U � U , nodes in
M are not settled. This leaves us with at most jU j settled nodes for such queries.

De�nition. We call a set L of landmarks set-covering if m1 2 L and for each u 2 U , either
u or a node c 2 C with u 2 c is contained in L.

Claim III. Let L � V be set-covering. Then
(L) :=
P

s2U[C;t2M VL(s; t) � jM j(5jCj +
2jU j).

Remember the given order on V to break ties in the queue. Let s 2 U [C and t 2M . It is
VL(s; t)\M = ftg: The value dist(s;m) is equal for all m 2M . Because of the landmark
m1 we have �

L
t (m) > 0 for m < t;m 2M . As �t(t) = 0 we know that nodes m 2M with

m < t do not get settled. Because of �L
t (v) � 0 for each node v and the breaking-ties

rule, nodes m 2M with m > t do not get settled.
As L is set-covering, we have for any u 2 U a landmark l 2 L such that

�L
t (u) � dist(l; t)� dist(l; u) =

(
1� 0 = 1 ; u = l

2� 1 = 1 ; 9l 2 C \ L s.t. u 2 l:

Hence, for s; u 2 U with s 6= u, we have

dist(s; u) + �L
t (u) � �+ 1 > 1 = dist(s; t) + �L

t (t)

which implies with Lemma 6 that VL(s; t) = fs; tg. Accordingly, for s 2 C, we have that
for each u 2 U with u 62 s it is

dist(s; u) + �L
t (t) � 1 + �+ 1 > 2 = dist(s; t)

which with Lemma 6 implies that VL(s; t) � fs; tg [fu 2 U j s covers ug. Summing over
all possible source-target pairs shows the claim.

Claim IV. Let s 2 C; t 2M and �t be an arbitrary potential induced by landmarks. Then
jV�t(s; t)j � 5 and V�t(s; t) � fs; tg [fu 2 U j s covers ug.

It is �t(t) = 0. With Lemma 4 we have that �t(u) � 1 � dist(u; t) for any u 2 U .
Consequently, for any u 2 s it is dist(s; u)+�t(u) � 2 = dist(s; t)+�t(t). With the order
of breaking ties in the queue, we have that each u 2 s is contained in V�t(s; t) which shows
the claim.

Claim V. Let L be a set of landmarks with M \ L = ;. Then
P

s2C[U;t2M VL(s; t) �
(jCj+ jU j)jM j(jM j+ 1)=2.

If there is no landmark inM , then all nodes inM have the same potential due to symmetry
reasons. Hence, before a target t 2 M is settled from a source s 62 M , all nodes m 2 M

36 Chapter 3: Preprocessing Speedup-Techniques is Hard

with m < t are settled �rst. The claim follows by summing over all possible sources and
targets.

Claim VI. Let L be a set of landmarks such that there is an x 2 U that is not a landmark
and not covered by a landmark. Then
(L) :=

P
s2U[C;t2M VL(s; t) � jM j(5jCj+2jU j) +

jM j � jLj.

Let t be in M . Let s be in U , then jVL(s; t)j � 2 as source and target di�er. Let s be
in C, by Claim IV we know that jVL(s; t)j � 5. This already shows
(L) � jM j(5jCj +
2jU j). Because of the preparatory step, we know that there is a set cx 2 C with x 62 cx.
Furthermore, there are at least jM j � jLj nodes in M that are no landmarks. Let tx 2M
denote such a node. We now show that x 2 VL(cx; tx) and hence VL(cx; tx) � fcx; tx; xg [
fu 2 U j s covers ug: For a landmark l, it is

�l
tx(x) = maxf�l+

tx ;�
l�
tx ; 0g =

8>>>><>>>>:
maxf0; 2� (1 + �)g = 1� � ; l 2 C (as x 62 l)

maxf0; 1� �g = 1� � ; l 2 U (as u 6= l)

maxf0; 0g = 0 ; l 2M; l < tx (as tx 62 L)

maxf0; 0g = 0 ; l 2M; l > tx (as tx 62 L)

Consequently, we have

dist(cx; x) + �L
tx(x) � 1 + �+ 1� � = dist(cx; tx) + �L

tx(tx):

It is x with d(x) = dist(cx; x) in the queue as soon as the �rst node in U is settled. As
the node order is such that x � tx we have that x gets settled before tx. Summarizingly,
there are at least jM j � jLj nodes tx 2 M that are no landmarks. For each of them, the
node x gets settled in the cx-tx query. The claim now follows by summing over all possible
source-target pairs in (U [C)�M .

Claim VII. Let jM j := maxf� + r; 2(� + 5jCj + 2jU j + 1)g + 1. Then, there exists a set
L of landmarks such that

P
s;t2V VL(s; t) � � + � + jM j(5jCj + 2jU j) =: q if and only if

(C;U) has a cover of size at most k.

To prove that claim we assemble all preceding claims. `If '. Let C 0 be a set cover of (C;U)
of size k. Then C 0 [fm1g is a set-covering set of landmarks. With Claim I, II and III we
know that

P
s;t2V VL(s; t) � q. `Only if '. Let L be such that

P
s;t2V VL(s; t) � q. It is

jL nM j � k: By construction we have jLj = k+1. If L\M would be the empty set, then
we have with Claim V thatX

s;t2V

V (s; t) � �+ (jCj+ jU j)jM j(jM j+ 1)=2 > �+ � + jM j(5jCj+ 2jU j) = q

which contradicts the assumption
P

s;t2V V (s; t) � q. Hence jL nM j � k. Let the set C 00

contain each landmark in L\C and, for each u 2 L\U , an arbitrary c 2 C with u 2 c. It
is jC 00j � jL nM j. Further, C 00 is a set cover of (C;U). Assume the contrary. Then, with
Claim VIX

s;t2V

V (s; t) � �+ jM j(5jCj+ 2jU j) + jM j � jLj > �+ � + jM j(5jCj+ 2jU j) = q

which contradicts the assumption
P

s;t2V V (s; t) � q.

Summary. We have shown that the decision variant of problemMinALT that asks whether
it is possible to reach a certain search-space size is NP-hard. Hence, also the optimization
variant, i.e., problem MinALT is NP-hard. �

3.5 ALT 37

A Note on the Original Proof. This chapter is based on the papers [BCK+10a,
BCK+10b]. There, the proof of Theorem 5 makes use of the following lemma, which
is taken out of [GH05]. Remember that, when extracting nodes from the queue, ties are
broken by a prede�ned order on the nodes.

Lemma 7 (Theorem 4:1 in [GH05], wrong). Given arbitrary nodes s; t and feasible
potential functions � and �0 with �(t) = �0(t) = 0 and �(v) � �0(v) for any vertex v.
Then V�0(s; t) � V�(s; t).

However, we later observed that this lemma is not correct. The following graph gives a
counterexample:

1

y

L2

t

2

s

L1

x

2
2

1 0 0 0

1

1

1 0 1 0

1

potential to t induced by L1 potential to t induced by L2graph G

Edge lengths are 1 unless stated otherwise. Nodes are ordered such that t < x < y < L1 <
L2. Ties are broken due to that order when extracting nodes from the queue. The ALT-
search space of an s-t-query is fs; y; tg when using landmark L1 and fs; x; y; tg when using
landmark L2. However, landmark L2 induces a stronger potential, i.e., �L2(v) � �L1(v)
for any node v in the graph. The underlying mistake is, that the search space VL(s; t) of
an ALT-query can not generally be expressed as

fv 2 V j dist(s; v) + �L
t (v) < dist(s; t) or

dist(s; v) + �L
t (v) = dist(s; t) and v < tg

which can be seen in the following example that, for simplicity, uses a feasible potential,
not induced by a set of landmarks.

y tsx

2 edge lengths11

2 4 1 3

0 1 0 0

node order
potential to t

A Critical View on our Model. The model for the ALT-algorithm is, in several
aspects, weaker than the other models in this chapter. First, the node order is not arbi-
trary: A special node order for breaking ties in the queue is speci�ed within the reduction.
Second, in contrast to the other techniques, the size of the preprocessed data directly
in
uences the query time: More preprocessed landmarks require a longer time for com-
puting the potentials. Hence, we can claim a close relationship between search space size
and actual query time only for a constant number of landmarks. Finally, we have to note
that our model does not exclude nodes with in�nite potential from the search space which
could be done because of Lemma 1. Including this could improve the runtime for graphs
that are not strongly connected.

38 Chapter 3: Preprocessing Speedup-Techniques is Hard

An Intuition for the ALT-search space. The general intuition behind A�-search is to
guide the search more into the direction of the target. We re�ne this intuition for ALT. We
ignore the actual choice of the node ordering that is applied to break ties when extracting
nodes from the queue and consider a worst-case ordering. E�ects of this decision take place
only at the `border' of the search space. We now consider an s-t-query with landmarks L.
The search space

Vd = fv 2 V j dist(s; v) � dist(s; t)g

of Dijkstra's algorithm can be seen as a graph-theoretic circle. For each landmark l 2 L,
the potential P l

t (v) induced by l consists of an elliptic part

�l+
t (v) = dist(v; l)� dist(t; l)

and an hyperbolic part
�l�
t (v) = dist(l; t)� dist(l; v) :

For each part, we transform the equation

V L(s; t) � fv 2 V j dist(s; v) + �L(v) � dist(s; t)g

given by Lemma 6. The elliptic part �l+
t (v) de�nes the graph-theoretic ellipse

Vl+(s; t) = fv 2 V j dist(s; v) + dist(v; l) � dist(s; t) + dist(t; l)g

with focuses s and l and node t at the boundary. The hyperbolic part �l�
t (v) de�nes the

graph-theoretic hyperbola

Vl�(s; t) = fv 2 V j dist(s; v)� dist(l; v) � dist(s; t)� dist(l; t)g

with focuses s and l and node t at the border. The search space of the ALT s-t-query is
at most the intersection of the circle Vd and all ellipses Vl+(s; t) and hyperbolas Vl�(s; t)
de�ned by the single landmarks l 2 L. See Figure 3.7 for a visualization.

s

t

l1

l2

s

t

l1

l2

s

t

l1

l2

using landmark l1 using landmark l2 using landmarks l1, l2

Figure 3.7: Schematic visualization of the ALT search space of an s-t-query.

3.6 Arc-Flags 39

3.6 Arc-Flags

Given the underlying graph G = (V;E; len), this unidirectional approach [Lau04, KMS05,
MSS+05, MSS+06, Sch06a, HKMS06, HKMS09] works as follows: At �rst V is divided
into k cells V = (V1; V2; : : : ; Vk) such that V = V1 _[V2 _[: : : _[Vk. We call V a k-partition of
G. For a node w, we write V(w) = Vi if w 2 Vi.

The main idea of the approach is to identify, during the preprocessing phase, some
combinations of edges (u; v) and cells Vi, such that we do not have to consider edge (u; v)
in a search with target in Vi. Afterwards, this information is attached to the edges as an
Arc-Flag-Vector F(�;�)(�): It is F(u;v)(Vi) = false if we already know that we do not have to
follow edge (u; v) in a search with target in cell Vi and true otherwise. The Arc-Flags
s-t-query is the variant of Dijkstra's algorithm which only relaxes edges (u; v) for which
F(u;v)(V(t)) is true. The pseudocode is given as Algorithm 3.6. We denote by VF (s; t;G)
the search space of an ArcFlagss-t-query on graph G when using Arc-Flag-Vector F .

Algorithm 3.6: Arc-Flags Query

input : graph G = (V;E; len), source s 2 V , target t 2 V
Arc-Flag-Vector F , partition V

output: distance label d(t)

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(s) 0 ; Q.insert(s; 0)

3 while not Q.isEmpty do /* Main Phase */

4 v Q.extractMin /* v is now contained in the search space */

5 if v = t then stop algorithm

6 for (v; w) 2 E with F(v;w)(V(t)) = true do

7 if d(v) + len(v; w) < d(w) then

8 d(w) d(v) + len(v; w)
9 Q.InsertOrUpdate(w; d(w))

Obviously, wrong choices of F may lead to incorrect queries. An Arc-Flag-Vector F is
correct if the following holds: For each pair s; t 2 V there is a shortest s-t path P such
that, for every edge e 2 P , it is Fe(V(t)) = true. Throughout this section we assume
that all Arc-Flag-Vectors are correct. Figure 3.8 shows that there can be several correct
Arc-Flag-Vectors. There are two degrees of freedom within the Arc-Flags preprocessing
phase:

(1) The choice of a k-partition.

(2) Given a k-partition V, the choice of an Arc-Flag-Vector F .

Given a k-partition V, a straightforward way to compute a correct Arc-Flag-Vector is to
compute all shortest paths in the graph and set F as follows:

F(u;v)(Vi) :=

(
true ;9 shortest path starting with (u; v) and ending with a node in Vi

false ; otherwise

We denote this choice of the Arc-Flag-Vector by Fall(V;G). In Section 3.6.1 we work on
the problem of how to choose the k-partition V such that the average ArcFlags-search
space is minimized when using Arc-Flag-Vector Fall(V;G).

40 Chapter 3: Preprocessing Speedup-Techniques is Hard

u

v

w

V1 V2

V3 V4
x

Graph G and shortest-paths subgraph T
with root u. Edges that are not contained
in T are drawn dashed.

Computing the Arc-Flag-Vector straight-
forwardly, we gain

� (true; true; false; true) for (u; v)

� (false; false; false; true) for (u;w)

However, we stay correct if we set the vec-
tor to

� (true; true; false; false) for (u; v)

as shortest u-x-paths can also use the
node w.

Figure 3.8: Example for the Arc-Flags-preprocessing.

Section 3.6.2 focuses on the second degree of freedom. We are already given a k-
partition and the problem is to compute an Arc-Flag-Vector that minimizes the average
ArcFlags-search space. In Section 3.6.3 we additionally consider shortcuts (see Sec-
tion 3.3.2 and Chapter 4). This models an enhancement of the Arc-Flags-technique
that is used within the Sharc-algorithm [BD08, BD09, Del09, BDGW10]. We assume
that a k-partition is already given and we have the following additional degree of freedom:

(3) Given a k-partition V, the choice of a set of shortcuts.

In the presence of shortcuts, it would not make much sense to use the vector Fall(V;G). Re-
member that we uniquely identify each node with an integer. A shortest path (v1; v2; : : : ; v`)
is called canonical if it is edge-minimal among all shortest v1-v`-paths and if (v1; : : : ; v`)
is lexicographically minimal among all edge-minimal shortest v1-v`-paths. When working
with shortcuts, we compute the Arc-Flag-Vector by

F(u;v)(Vi) :=

8><>:
true ; 9 canonical shortest path starting with (u; v)

and ending with a node in Vi

false ; otherwise

and denote this choice of the Arc-Flag-Vector by Fcan(V;G). Accordingly, given a k-
partition V we study the problem of how to insert a set of shortcuts S to the graph
such that the average ArcFlags-search space is minimized when working with Arc-Flag-
Vector Fcan(V;G[S]). Note that our results also hold when relaxing the de�nition of canon-
ical shortest paths to an arbitrary choice that favors edge-minimal shortest paths.

For all problems, the preprocessing size is bounded. Hence, the number of cells and
the number of shortcuts is an input parameter of the problems.

3.6 Arc-Flags 41

3.6.1 Main Technique: Choosing a Partition

In this section we show the NP-hardness of �nding a k-partition V such that the average
ArcFlags-search space is minimized when using vector Fall(V;G).

Problem ArcFlags. Given a graph G = (V;E; len) and an integer k, �nd a k-partition
V = fV1; : : : ; Vkg of V such that

P
s;t2V VV(s; t;G) :=

P
s;t2V VFall(V;G)(s; t;G) is minimal.

We use the following technical lemmata.

Problem (P). Given numbers L;m 2 Z>0, choose c1; c2; : : : ; cm 2 Z�0 such that

mX
i=1

ci(ci + 1)=2

is minimized under the constraint c1 + c2 + : : :+ cm = Lm.

Lemma 8. The only optimal solution of Problem (P) is c�1 = c�2 = : : : = c�m = L with
objective value D = mL(L + 1)=2. For any other feasible solution c01; c

0
2; : : : ; c

0
m it isPm

i=1 c
0
i(c
0
i + 1)=2 � D + 1.

Proof. Given an arbitrary m-tuple c0 = (c01; c
0
2; : : : ; c

0
m) with c01 + c02 + : : : + c0m = Lm,

we can construct c0 by starting with the m-tuple c = (c1 = L; c2 = L; : : : ; cm = L) and
iteratively proceeding as follows. At each step we choose some i and j full�lling ci > c0i,
cj < c0j and set ci := ci � 1 and cj := cj + 1 until no such i and j exist anymore.

We de�ne �+ :=
P

ijc0i>ci
c0i� ci and �� :=

P
ijc0i<ci

ci� c0i. Throughout the construc-

tion we have the invariant �+ = ��. With each step, �+ and �� monotonically decrease
by 1. Hence, �+ = �� = 0 and c0 is constructed when the algorithm terminates (which
is guaranteed due to monotonicity �+).

Further, throughout the construction we have a second invariant: It is ci � cj for each
pair i; j with ci > c0i and cj < c0j . Finally, when performing a step, the objective value
increases by�

(ci � 1)ci + (cj + 1)(cj + 2)| {z }
values after step

� ci(ci + 1)� cj(cj + 1)| {z }
values before step

�
=2 = cj � ci + 1 � 1

which proves the lemma. �

Problem (P'). Given are a set A of 3m elements, a bound B 2 Z>0 and a size wa for
each a 2 A such that B=4 < wa < B=2 and such that

P
a2Awa = mB. Partition A into

m disjoint sets A1; A2; : : : ; Am such that
Pm

i=1

�
jAij �

P
a2Ai

wa

�
is minimal.

Lemma 9. An optimal solution of Problem (P 0) has to full�ll jAij = 3 for each i =
1; : : : ;m and has objective value D = 3

P
a2Awa = 3mB. Further, for any other partition

of A the objective value is at least D + 1.

Proof. We can construct an arbitrary partition A� = (A�1; A
�
2; : : : A

�
m) analogous to the

proof of Lemma 8: There is a starting partition A0 = (A01; A
0
2; : : : A

0
m) with jA

0
ij = 3 such

that we can construct A� out of A0 by iteratively moving one element from a set Ar with
jArj � 3 to a set As with jAsj � 3. We gain A0 as follows. First, we only consider the sizes
of the cells A0i. Accordingly, we choose A

0 such that each A0i contains exactly three dummy
elements. Then we proceed as in the proof of Lemma 8 such that at the end jA0ij = jA

�
i j

42 Chapter 3: Preprocessing Speedup-Techniques is Hard

holds. Afterwards we know all necessary move-operations. Hence, we re-consider the
initial choice of A0 and exchange the dummy elements with elements in A such that after
the procedure it is A0i = A�i .

Let Ar = f1; : : : ; kg and As = fk + 1; : : : ; k + `g. When moving element k to As the
objective function increases by

(k � 1)
k�1X
i=1

wi + (`+ 1)
k+X̀
i=k

wi| {z }
new values

� k
kX
i=1

wi � `
k+X̀

i=k+1

wi| {z }
old values

:

This simpli�es to

(`+ 1� k)wk +
k+X̀

i=k+1

wi �
k�1X
i=1

wi > B=4 + 3 �B=4� 2B=2 = 0

because of k � 3 and ` � 3 and the bounds on the wi. The claim follows with the objective
function always being integer-valued. �

Theorem 6. Problem ArcFlags is NP-hard.

The following proof often uses Equation 3.2 given in Section 3.2.

Proof. We make a reduction from the strongly NP-complete problem 3-Partition
(see page 11). Given is a 3-Partition-instance (A; fwaj a 2 Ag) with jAj = 3m for
an m 2 Z>0 and

P
a2Awa = Bm for a B 2 Z>0. Remember that B=4 < wa < B=2

for each element a 2 A. Hence, if an instance is a yes-instance, the corresponding
solution has to consist of sets of cardinality 3. We construct an ArcFlags-instance
(G = (V;E; len);m+ 1) as follows, a visualization is given as Figure 3.9.

Initially, G is the empty graph. We introduce a directed cycle of jZj nodes to G. More
exactly, we add the subgraph (Z;U; len0) with

Z = fz1; : : : ; zjZjg

U = f(zi; zi+1) j 1 � i � jZj � 1g [f(zjZj; z1)g)

len0(u; v) = 1=(jZj+ 1) for each (u; v) 2 U:

The cardinality jZj will be speci�ed later. We further introduce the set A to V and, for
each a 2 A, a set Wa of wa nodes. We denote by W the set

S
a2AWa. There is a directed

edge (z; w) of length 1 for each z 2 Z and w 2 W and a directed edge (w; a) of length 1
for each a 2 A and w 2 Wa. The transformation is polynomial as we later choose jZj to
be polynomial in the input size.

The proof outlines as follows. We �rst show that, for jZj big enough, there is an
optimal k-partition such that Z is a separate cell. We then decompose the objective
function and show that queries from Z to the remaining graph dominate the search space
size (as we consider queries within Z as �xed because Z is one cell). With this knowledge
and the preparatory technical lemmata we establish a connection between solutions of
(A; fwaj a 2 Ag) and (G;m+ 1).

Claim. Let Z > 6jA [W j3. Then there is an optimal solution V = (V1; : : : ; Vm+1) of
ArcFlags-instance (G;m+ 1) such that Vm+1 = Z.

We assume Z > 6jA [W j3. In Step 1 we give an upper bound for the search space size
of any partition V� for which Z is exactly the union of some cells in V�. Then, we show

3.6 Arc-Flags 43

A

W

Z

edge lengths

1

1

1
|Z|+1

Figure 3.9: Graph G constructed from the 3-Partition-instance 2,2,2,3,4,5.

that such a partition can be transformed into a partition V�� of the claimed form without
worsening the search space size. In Step 2 we show that each partition V 0 not considered
in Step 1, i.e., each partition for which there is a cell containing nodes in Z and V n Z
cannot be optimal: Then, the search space size is greater than the bound computed in
Step 1.
[Step 1.] Let V� = (V �1 ; : : : ; V

�
m+1) be an m + 1 partition such that there is a J �

f1; 2; : : : ;m+ 1g with Z =
S
j2J V

�
j . Then, the vector F

all(V�;G) is such that queries with

� s; t 2 Z settle exactly the s-t-path in Z.
Hence,

P
s;t2Z VV�(s; t) = jZj2(jZj + 1)=2 as we have jZj di�erent sources with

jZj(jZj + 1)=2 being the sum of the search spaces sizes over all jZj targets per
source.

� s 2 Z, t 2 A [W settle at most fsg [A [W .
Hence,

P
s2Z;t2A[W VV�(s; t) � jZj � (jA [W j+ 1)2 � jZj � jA [W j3.

� s; t 2 A [W settle at most A [W .
Hence,

P
s;t2A[W VV�(s; t) � jA [W j

3.

� s 2 A [W , t 2 Z settle exactly fsg.
Hence,

P
s2A[W;t2Z VV�(s; t) = jZj � jA [W j.

Assembling this yieldsX
s;t2V

VV�(s; t) =
X
s;t2Z

VV�(s; t)| {z }
=jZj2(jZj+1)=2

+
X

s2Z;t2A[W

VV�(s; t)| {z }
�jZj�(jA[W j+1)2

�jZj�jA[W j3

+
X

s;t2A[W

VV�(s; t)| {z }
�jA[W j3

+
X

s2A[W;t2Z

VV�(s; t)| {z }
=jZj�jA[W j

W.l.o.g let max(J) be (m+ 1). We now transform V� to the partition V�� of the desired
form and same search spaces. Let V�� = (V ��1 ; : : : ; V ��m+1) be the m-partition that results
from unioning all cells V �i with i 2 J , i.e., such that

V ��i =

8><>:
V �i ; i 62 J

; ; i 2 J n fm+ 1gS
j2J V

�
j ; i = m+ 1 :

Then
P

s;t2V VV�(s; t) =
P

s;t2V VV��(s; t) which can be seen by the above decomposition
of
P

s;t2V VV�(s; t): Search spaces with target not in V ��m+1 do not change as the according

ags do not change. Search spaces with target in V ��m+1 still are optimal.
[Step 2.] On the other hand, let V 0 = (V 01 ; : : : ; V

0
m+1) be an (m + 1)-partition such that

there are vertices w 2 A [W and z 2 Z with w 2 V 0i and z0 2 V 0i for some i. Then

44 Chapter 3: Preprocessing Speedup-Techniques is Hard

�

P
s;t2Z VV 0(s; t) � jZj

2(jZj + 1)=2 as for each pair s; t 2 Z the path from s to t has
to be settled.

�

P
s2Z VV 0(s; w) � jZj(jZj + 1)=2 as for each z 2 Z it is dist(z; z0) < 1 � dist(z; w).

Hence, for each source z 2 Z and the target w, all nodes on the path from z to z0

get settled.

Assembling this yields

X
s;t2V

VV 0(s; t) �
X
s;t2Z

VV 0(s; t) +
X
s2Z

VV 0(s; w) �
jZj2(jZj+ 1)

2
+
jZj(jZj+ 1)

2
:

We now compare the upper bound for the sum of the search space sizes of partition V�

with the lower bound for V 0. With the assumption Z > 6jA [W j3 we have

X
s;t2V

VV�(s; t) �
jZj2(jZj+ 1)

2
+ jZj � jA [W j3 + jA [W j3 + jZj � jA [W j

<
jZj2(jZj+ 1)

2
+
jZj(jZj+ 1)

2
�
X
s;t2V

VV 0(s; t)

because of

jZj � jA [W j3 + jA [W j3 + jZj � jA [W j < jZj(jZj+ 1)=2 :

Thus, we have
P

s;t2V VV�(s; t) <
P

s;t2V VV 0(s; t) and V
0 cannot be optimal. This �nishes

Step 2 and proves the claim.

Requisite. In the remainder we assume Z := 6jA[W j3 +1. Further V� = (V �1 ; : : : ; V
�
m+1)

denotes an optimal solution of ArcFlags-instance (G;m + 1) such that V �m+1 = Z. We
decompose the objective function as follows (with some abuse of notation).X

s;t2V

VV�(s; t) =
� X

s;t62Z|{z}
�jW[Aj3

+
X
s;t2Z

+
X

s 62Z;t2Z| {z }
=:�

+
X

s2Z;t2A| {z }
=:�(V�)

+
X

s2Z;t2W| {z }
=:
(V�)

�
VV�(s; t)

The value of � is independent of V� as it equals jZj2(jZj+ 1)=2 + jW [AjjZj. We write

Ai := A \ V �i
W i := W \ V �i
Hi := fw 2W j w 2Wa and a 2 Aig:

Note that jHij is exactly the weight of all elements in Ai. Remember that there is an
arbitrary order < on the set of nodes which is used to break ties when extracting nodes
from the queue. A query using partition V� with source z 2 Z and

� target a 2 Ai settles z, a, each node a0 2 Ai with a0 < a and each node in W which
are in the same cell as a or have a successor in the same cell as a (i.e., each node in
W i [Hi).

� target w 2W i settles at least z, w and each node w0 2W i with w0 < w.

3.6 Arc-Flags 45

This leads to

�(V�) =
X

s2Z;t2A

VV�(s; t) = jZj
mX
i=1

�
jAij(jAij+ 1)=2 + jAij(jW i [Hij) + 1

�

(V�) =

X
s2Z;t2W

VV�(s; t) � jZj
mX
i=1

�
jW ij(jW ij+ 1)=2 + 1

�
Further,
(V�) = jZj

Pm
i=1

�
jW ij(jW ij+ 1)=2 + 1

�
in case Wi = Hi for all i.

Claim. Let

�� := jZj
mX
i=1

(3(3 + 1)=2 + 3B + 1)

� := jZj
mX
i=1

(B(B + 1)=2 + 1)

Then there is a partition V � such thatX
s;t2V

VV�(s; t) � jW [Aj
3 + �+ �� +
�

if, and only if, the 3-Partition-instance (A; fwaj a 2 Ag) is a yes-instance.

`If '. Let A1; A2; : : : ; Am be a 3-partition of (A; fwaj a 2 Ag). We partition G such
that for each a 2 Ai it holds a 2 V �i and Wa � V �i . Then, for each i, W i = Hi, jWij = B
and jAij = 3. This implies

P
s;t2V VV�(s; t) � jW [Aj

3 + �+ �� +
�.

`Only if '. On the other hand, let
P

s;t2V VV�(s; t) � jW [Aj
3+�+ ��+
�. We show

that A1; : : : ; Am is a 3-partition of A. We apply

� Lemma 8 on
Pm

i=1 jAij(jAij+ 1)=2 with
Pm

i=1 jAij = 3m.

� Lemma 8 on
Pm

i=1 jW ij(jW ij+ 1)=2 with
Pm

i=1 jW ij = Bm

� Lemma 9 on
Pm

i=1 jAijjHij with
Pm

i=1 jHij = mB. This works as jHij =
P

a2Ai
wa.

By optimizing these terms separately we know thatX
s;t2V

VV�(s; t) � �+ �� +
� :

Further it is jAij = 3, jW ij = B and W i � Hi for all i, since otherwiseX
s;t2V

VV�(s; t) � �+ �� +
� + Z > jW [Aj3 + �+ �� +
�:

FromW i � Hi followsW i = Hi as bothW 1; : : : ;Wm and H1; : : : ;Hm partitionW . Hence
jHij = B for all i = 1; : : :m and A1; : : : Am is a 3-Partition of A.

Summary. We have shown that we can solve problem 3-Partition in polynomial time
with an algorithm that uses an oracle that gives an optimal solution of problem ArcFlags
in constant time. This shows NP-hardness of problem ArcFlags. �

46 Chapter 3: Preprocessing Speedup-Techniques is Hard

C−

C+

U

aV1

V2

Figure 3.10: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g.

3.6.2 Search-Space Minimal Arc-Flags.

This problem models a special aspect of Arc-Flags. We assume that the partition V is
already given. Consider the vector F := Fall(V;G). In case shortest paths are not unique,
the situation may occur that one can improve the ArcFlags-search space by changing
some values in F from true to false without violating the correctness of F . See Figure 3.8
for an example.

We may assume that, for each edge (u; v) with F(u;v)(Vi) = true, there is at least
one shortest path starting with (u; v) that leads to cell Vi. The problem MinFlags is
that of �nding an Arc-Flag-Vector F , such that the resulting average search space of an
Arc-Flags-query is minimized.

Problem MinFlags. Given a graph G = (V;E; len) and a k-partition V = (V1; : : : ; Vk)
of G, �nd a correct Arc-Flag-Vector F such that

P
s;t2V VF (s; t) :=

P
s;t2V VF (s; t;G) is

minimal.

Theorem 7. Problem MinFlags is NP-hard (even for directed acyclic graphs).

Proof. We make a reduction from Exact Cover by 3-Sets (X3C, page 11). Let (U;C) be
an instance of X3C with jU j = 3q. W.l.o.g. we may assume

S
c2C = U . We construct

an instance (G = (V;E; len);V = fV1; V2g) of MinFlags as follows, see Figure 3.10 for a
visualization: The set V consists of two nodes c� and c+ for each c 2 C, one node u for
each u 2 U and one additional node a. The partition is given by V2 = U , V1 = V nV2. The
graph G contains edges (a; c�) and (c�; c+) for each c 2 C, and an edge (c+; u) if u 2 c.
All edges have equal length, the transformation is polynomial. The objective function can
be decomposed intoX

s;t2V

VF (s; t) =
X

s2V nfag;t2V

VF (s; t) +
X

t2V nU

VF (a; t)| {z }
�

+
X
t2U

VF (a; t) :

Claim. The value of � is independent of F and can be computed in polynomial time.

Shortest paths that start with a node u 6= a are unique. Therefore, an Arc-Flag-Vector
for G is quite �xed: F(v;w)(V1) is true if and only if w 62 V2. Further F(v;w)(V2) is true
if v 6= a. The remaining degree of freedom is to decide for arbitrary c� if F(a; c�)(V2) is
true. For each node s 6= a, queries starting from s are not a�ected by the actual choice of
F . Further, queries for which s; t 2 V1 are also not in
uenced by the choice of F as the

ags for cell V1 are �xed.

3.6 Arc-Flags 47

Claim. There is an integer B such that (U;C) contains an exact cover if, and only if, there
is an Arc-Flag-Vector F with

P
s;t2V VF (s; t) � B.

We call an arc-
ag assignment an exact cover of G if, for each u 2 U , the value
F(a;c�)(V2) is true for exactly one c 2 C with u 2 c. Obviously an exact cover of G induces
one of (U;C) and vice versa. Let F� be an Arc-Flag-Vector that is an exact cover on G.
Then

�� :=
X
t2U

VF�(a; t) = jU j|{z}
#targets

(1|{z}
a

+ 2q|{z}
#nodes in C�[C+

) + jU j(jU j+ 1)=2| {z }
overall sum nodes in U

holds. The term jU j(jU j + 1)=2 derives from the fact that the nodes in U are settled in
some arbitrary but �xed order and before settling u all nodes v with v < u get settled.
We set B := � + ��. On the other hand, let F be an arbitrary Arc-Flag-Vector withP

s;t2V VF (s; t) � B. It isX
t2U

VF (a; t) = jU j � 1| {z }
a

+2jU j#f(a; c�)j F(a;c�)(V2) = trueg+ jU j(jU j+ 1)=2| {z }
nodes in U

:

From
P

t2U VF (a; t) � �� follows that #f(a; c�)j F(a;c�)(V2) = trueg � q. As each
set in C contains exactly 3 elements we need at least q sets to cover all 3q elements in
U . The vector F has to cover each element in U to ensure correctness and hence it is
#f(a; c�)j F(a;c�)(V2) = trueg = q. This implies that F is an exact cover.

Summary. We have shown that the decision variant of problem MinFlags that asks if it
is possible to reach a certain search-space size is NP-hard. Hence, also the optimization
variant, i.e., problem MinFlags is NP-hard. �

3.6.3 External Shortcuts for Arc-Flags.

This problem models an enhancement of ArcFlags that is used within the Sharc-
algorithm. We are already given a graph G = (V;E; len), a k-partition V and an integer
`. A shortcut is an edge (u; v) that is added to G for which len(u; v) = dist(u; v), see
Section 3.2 for a proper de�nition. The notation G[E0] denotes the graph G with the set
E0 of shortcuts added. Shortcuts can be used to alter the
ags of some edges from true to
false. The next picture gives an example.

V1 V2 V3

V1:
V2:
V3:

false
true
true

x1 x2 x3 x4

flags for edges (xi, xi+1)

V1 V2 V3

V1:
V2:
V3:

false
true

x1 x2 x3 x4

flags for edges (xi, xi+1)

false

We are allowed to add a set S of ` shortcuts to G, afterwards the vector F is computed by
only considering canonical shortest paths, i.e., we use Arc-Flag-Vector Fcan(V;G[S]) as input
for the query. W.l.o.g. we do not insert shortcuts that are already present in the graph.
Again, our aim is to minimize the average search space of the resulting Arc-Flags-query.

48 Chapter 3: Preprocessing Speedup-Techniques is Hard

Problem ExtShortcutsArcFlags. Given a graph G = (V;E; len), a k-partition V =
(V1; : : : ; Vk) of V and a positive integer `, �nd a shortcut assignment S with jSj � `, such
that

P
s;t2V VS(s; t) :=

P
s;t2V VFcan(V;G[S])(s; t;G[S]) is minimal.

Theorem 8. Problem ExtShortcutsArcFlags is NP-hard (even for directed acyclic
graphs).

For proving this theorem we require the following simple technical result.

Lemma 10. Given is a graph G = (V;E; len), a root s 2 V and a shortcut assignment S.
Then, Dijkstra's algorithm on G with root s settles nodes in the same order as Dijkstra's
algorithm on G[S] with root s.

Proof. We make induction on the order in which nodes are settled in G. The initial step
holds as s always is the �rst node settled. Now let the induction hypothesis hold for the
�rst k settled nodes. Let u be the k+1th node settled in G. Assume that the k+1th node
settled in G[S] is w 6= u. We have dist(s; u) � dist(s; w) as u is settled in G before w. We
have dist(s; u) � dist(s; w) as u is settled in G[S] after w. Hence, dist(s; u) = dist(s; w).
Further, all remaining nodes v with dist(s; v) = dist(s; u) = dist(s; w) are contained with
d(v) = dist(s; v) in the queue when u is settled in G and when w is settled in G[S].
This holds in particular for u and w. This implies that u < w and w < u which is
a contradiction. Hence, the assumption w 6= u was wrong and the induction step is
shown. �

Note that this lemma only holds as edge weights are strictly positive.

Proof (of Theorem 8). We make a reduction from Exact Cover by 3-Sets (X3C, page 11).
Let (U;C) be an instance of X3C with jU j = 3q. W.l.o.g. we may assume

S
c2C = U . We

construct an instance (G = (V;E; len); ` = q) of ExtShortcutsArcFlags as follows,
see Figure 3.11 for a visualization. Initially, G is the empty graph. Then, we insert a path
(h1; h2; a) into G. For each u 2 U we insert an edge (u; h1) into G. For each c 2 C we
insert a path (c; d1c ; d

2
c ; a) and M edges (m1

c ; c); : : : ; (m
M
c ; c) into G with M to be speci�ed

later. We denote by fM the set fmi
c j c 2 C; 1 � i � Mg and by Di the set fdic j c 2 Cg.

Finally, there is an edge (u; c) 2 U � C if u 2 c. The edge lengths are adjusted such that
each path in G is a shortest path, i.e., all edge lengths are 1 except the length of edge
(h2; a) which equals 2. The partition V = (V1; V2) is given by V2 = fag; V1 = V n V2. The
transformation is polynomial as we later chooseM to be polynomial in the input size. Let
S be a shortcut assignment. It isX

s;t2V

VS(s; t) =
X

s2V;t2V nfag

VS(s; t)| {z }
�

+
X

s2V nfM
VS(s; a)

| {z }
��

+
X
s2fM

VS(s; a)| {z }

(S)

We �rst show that the value � is independent of the applied shortcut assignment and
compute a value for the upper bound beta. We will see that, for large M , the value

(S) dominates the average search space size. Further, we show that an optimal shortcut
assignment is contained in C � fag. With these tools we establish a relationship between
an exact cover for (C;U) and a reasonable good shortcut assignment for G.

Claim. The value of � :=
P

s2V;t2V nfag VS(s; t) is independent of S and can be computed
in polynomial time.

Each edge (v; w) in the graph induced by V n fag is the only path from v to w. This
does not change due to a shortcut insertion. Therefore V(v;w)(V1) is true if, and only if,

3.6 Arc-Flags 49

C

U

a

V1

V2

h1

h2 D1

D2

M̃

2

Figure 3.11: Graph G constructed from the X3C-instance f1; 2; 3g; f2; 3; 4g; f3; 4; 6g; f4; 5; 6g.

w 6= a. Hence, as all
ags concerning cell V1 of edges in E are �xed. The Arc-Flags query
is Dijkstra's algorithm on the subgraph for which the
ags of the corresponding target cell
are true. Additional shortcuts do not in
uence the search space of Dijkstra's algorithm,
as shown in Lemma 10. Consequently, searches with target in V1 do not depend on S.

Claim. It is
P

s2V nfM VS(s; a) � � := jV n fM j2.
This holds as the corresponding part of the search space consists of jV n fM j di�erent
queries. For each query, at most the entire subgraph reachable from the source is settled.
This subgraph is fully contained in V n fM .

De�nition. Note that � is independent of M . We now �x M := maxf� + 1; 4g.

Claim. Let S� be an optimal solution, i.e., let S� be a shortcut assignment that minimizesP
s;t2V VS�(s; t). Then it is S� � C � fag.

W.l.o.g it is q � jCj, which ensures the existence of such a shortcut assignment.
Consider the graph G without shortcuts added. There, the search space sizes of all queries
from a node in fM to node a sum up to 5M jCj as there areM jCj such pairs, each of search
space size 5. We now return to the graph G[S] for an arbitrary shortcut assignment S with
jSj = q. We can bound the value of
(S) :=

P
s2fM VS(s; a) by subtracting the maximal

yield for each type of shortcut:

(S) � 5M jCj �1jS \ fM �D1j

�2jS \ fM �D2j �M jS \ C �D2j

�3jS \ fM � fagj �2M jS \ C � fagj �M jS \D1 � fagj:

(3.6)

Let S� � C � fag be a shortcut assignment with jS�j = q. For each shortcut (c; a) 2 S� ,
we have

F
can(V;G[S�])
(c;d1c)

(V2) = false :

Hence
(S�) =
opt := 5M jCj � 2Mq. Let S 0 be a shortcut assignment with jS 0j = q such
that S 0 6� C � fag. With Equation 3.6 we see that
(S 0) �
opt +M as M � 4. It holdsX

s;t

VS�(s; t) � �+ � +
opt < �+
opt +M �
X
s;t

VS0(s; t)

50 Chapter 3: Preprocessing Speedup-Techniques is Hard

which implies that S� is better than S 0.

Claim. We can compute in polynomial time an integer B, such that there is a shortcut
assignment S with jSj = q and

P
s;t2V VS(s; t) � minfB;� + � +
optg if, and only if,

(U;C) contains an exact cover.

Let S� be such that
P

s;t2V VS�(s; t) � �+ � +
opt. Then S� � C � fag as shown in the
previous claim. We write (with some abuse of notation)X

s;t2V

VS�(s; t) =
X

s2V;t2V nfag

VS�(s; t)| {z }
�

+
� X
s2 D1[D2

[fa;h1;h2g

+
X
s2C| {z }

�0

+
X
s2U

+
X
s2fM|{z}
=
opt

�
VS�(s; a)

The value of �0 is equal for all S� � C �fag with jS�j = q and computable in polynomial
time: The corresponding sources in D1 [D2 [fa; h1; h2g lie behind the shortcuts of S�

and hence are not a�ected by the actual choice of S�. A source c 2 C bene�ts only from
S� if there is a shortcut (c; a). This holds for exactly q sources, independent of the choice
of S�.

We call a shortcut assignment S set-covering if for each u 2 U , there is exactly one
c 2 C such that u 2 c and (c; a) 2 S. Obviously an exact cover of (C;U) implies a
set-covering shortcut assignment of G and vice versa.

It is
P

s2U V
�
S (s; a) = 3jU j if S� is set-covering and greater otherwise: Let u be in U .

If S is set-covering, a canonical shortest u-a path in G[S�] is of the form s-c-a for a c 2 C.
Therefore, V(u;v)(V2) is true, only for one node v which must be in C and for which there
is a shortcut (v; a). Because of shortcut (v; a) the
ag V(v;d1v)(V2) is false which implies
VS�(u; a) = 3 which is minimal for every u. On the other hand, if u is not covered by a
shortcut, the canonical shortest u-a-path is u-h1-h2-a and VS(u; a) = 4.

Hence with B := �+ �0 + 3jU j+
opt follows the claim.

Summary. We have shown that the decision variant of problem ExtShortcutsAr-
cFlags that asks if it is possible to reach a certain search-space size is NP-hard. Hence,
also the optimization variant, i.e., problem ExtShortcutsArcFlags is NP-hard. �

3.7 Contraction Hierarchies 51

3.7 Contraction Hierarchies

The main idea of Contraction Hierarchies (CH) [GSSD08] is to further develop the
Multilevel Overlay Graph-approach such that each node has its own level. The
technique is based on the notion of a shortcut, i.e., an edge (u; v) that is added to G for
which len(u; v) = dist(u; v). See Section 3.2 for a proper de�nition. The notation G[E0]
denotes the graph G with the set E0 of shortcuts added.

Given the input graph G = (V;E; len), the degree of freedom is to choose a total
order � on V . The preprocessing phase then consists of iteratively contracting the �-least
node until G is empty. A node v is contracted as follows: For each pair of edges fu; vg,
fv; wg such that (u; v; w) is the only shortest u-w-path, a shortcut (u;w) is introduced to
G. Afterwards v and all of its adjacent edges are removed from G. The output of the
preprocessing phase is the graph H�(G) := G[E0] where G is the original graph and E0 is
the set of all shortcuts that were inserted due to node contraction. We call H� := H�(G)
the contraction hierarchy of G and denote by jH�j the number of edges jE0j .

The query is a bidirectional search in H� that only relaxes edges (u; v) with u � v.
Pseudocode of preprocessing phase and query are given as Algorithm 3.7 and Algo-
rithm 3.8. Throughout this section we work on undirected graphs. This is no restriction
as the results also hold for directed graphs with edges always being symmetric.

The correctness of the approach basically transfers from the correctness of the Mul-
tilevel Overlay Graph-technique: One can see Contraction Hierarchies as a special case
of the Multilevel Overlay Graph-technique where each node has its own level. Then, the
graph after contraction of a node v is the overlay graph of the next level. For a formal
proof of correctness see [GSSD08, Sch08].

Algorithm 3.7: Preprocessing-Phase of Contraction Hierarchies

input : graph G = (V;E; len), total order � on V
output: graph H�(G) := G0

1 G0 G

2 while V 6= ; do
3 v �-least node in V

4 for each pair (u; v); (v; w) 2 E do
5 if (u; v; w) is the only shortest u-w-path in G then

6 G G[f(u;w)g] /* insert shortcut (u;w) */

7 G0 G0[f(u;w)g]

8 E E n f(x; y) 2 E j x = v or y = vg /* remove adjacent edges */

9 V V n fvg /* remove v */

The following problem models the preprocessing phase of Contraction Hierarchies analo-
gous to the other techniques in this chapter.

Problem CH Preprocessing. Given a graph G = (V;E; len) and a number K 2 Z�0,
�nd an order � on V , such that jH�(G)j � K and

P
s;t2V V�(s; t) is minimal?

For this problem, it is not assured that a feasible solution exists: The minimal size
jH�(G)j required for the preprocessed data is unknown. We show that already the problem
of bounding the size of the preprocessed data is NP-hard. This implies that it is NP-hard
to decide if there is a feasible solution for problem CH Preprocessing.

52 Chapter 3: Preprocessing Speedup-Techniques is Hard

Algorithm 3.8: Unidirectional Pruned Search of a CH-Query

input : graph G0 = (V;E [E0 ; len), node x 2 V , total order � on V
output: distance label d()

1 for v 2 V do d(v) 1 /* Initialization Phase */

2 d(x) 0 ; Q.insert(x,0)

3 while not Q.isEmpty do /* Main Phase */

4 v Q.extractMin /* v is now contained in the search space */

5 for (v; w) 2 E [E0 with v � w do
6 if d(v) + len(v; w) < d(w) then

7 d(w) d(v) + len(v; w)
8 Q.InsertOrUpdate(w; d(w))

Problem CH Preprocessing Size. Given a graph G = (V;E; len) and a number K 2
Z�0, is there an order � on V such that jH�(G)j � K?

Theorem 9. Problem CH Preprocessing Size is NP-hard.

Proof. We make a reduction from VertexCover. Given a Vertex Cover instance
(G = (V;E);K), we construct a graph G0 = (V 0; E0; len0), which admits a contraction
hierarchy H with at most jE0j + K arcs, if and only if, G has a vertex cover of size at
most K. From now on let m = jEj and n = jV j and w.l.o.g we assume that each vertex is
adjacent to at least one edge. We further may assume that K < n as we otherwise could
easily check the solvability of instance (G; k).

The set V [E is a subset of V 0. The vertices E � V 0 are henceforth referred to
as edge-vertices. For each e = fu; vg 2 E the graph G0 contains the edges fe; ug 2 E0

and fe; vg 2 E0. Furthermore V 0 contains two special vertices s; t 2 V 0, where s is
connected to all edge-vertices e 2 E and t is connected to all vertices v 2 V . That is
ffs; eg : e 2 Eg � E0 and fft; vgj v 2 V g � E0.

Now we �x an arbitrary order e1; : : : ; em on E and connect each ei to ei+1 by a
honeycomb gadget Hi. We later see that Hi enforces the contraction order ei � ei+1. The
gadget Hi can be seen in Figure 3.12a. Additionally we have a �nal gadget F connecting
s and t, which is depicted in Figure 3.12b. Finally we have to �x the edge-lengths in
G0. We let len(t; v) = 1

2m, len(ei; v) = 2m and len(s; ei) = m + i for ei 2 E and v 2 V .
The edge-lengths in the gadgets are chosen according to Figure 3.12a and Figure 3.12b.
The whole construction is summarized in Figure 3.13. Note that G0 can be computed in
polynomial time, as K is polynomial in jV j.

`Only if '. There is a vertex cover C � V in G of at most K nodes only if G0 admits a
contraction hierarchy H with at most K + jE0j edges: Let C � V be a vertex cover with
at most K vertices. Consider the following contraction order of V 0:

1. Contract all v 2 V nC. This does not insert any shortcuts into the hierarchy: Paths
of the form (t; v; e) are no unique shortest paths as there must be a path (t; c; e) of
same length with c 2 C. Paths of the form (ei; v; ej) have length 4m and are no
shortest paths as the path (ei; s; ej) has length 2m+ i+ j < 4m.

2. Contract all edge-vertices e 2 E in the chosen order e1; : : : ; em. Note that by con-
traction of ei the contraction of the gadget connecting ei to its successor ei+1 is

3.7 Contraction Hierarchies 53

x1 y1

x2 y2

xn+1 yn+1

xn+2 yn+2

ei ei+1

m + 2i

m + 2i

m + 2i

m + 2i

1
2

1
2

1
2

1
2

1
21

2

1
2 1

2

(a) The honeycomb gadget Hi enforcing con-
traction order ei � ei+1.

x1 y1

x2 y2

xn+1 yn+1

xn+2 yn+2

ω

s

t

1

1

1

1

1
1

1
1

σ

σ
σ

σ

τ

τ
τ

τ

(b) The �nal gadget F connecting s and t.
The weights � and � are chosen as � = 5m+
1
8
and � = 5m.

Figure 3.12: The gadgets used in the reduction from Vertex Cover to CH Preprocessing.

implicitly included. This step inserts at most K shortcuts into the hierarchy. We
use the notation from Figure 3.14a.

(a) The path p = (xr; ei; xs) has length 2m + 4i and thus is no shortest path, as
the path (xr; yr; ei+1; ys; xs) has length 2.

(b) The path p = (xr; ei; s) has length 2m+ 3i, while the path (xr; yr; ei+1; s) has
length m + i + 2, which is, for all i � 1, less than 2m + 3i. Therefore p is no
shortest path.

(c) The path p = (xr; ei; v) has length 3m+2i. Again p is no shortest path, as the
path (xr; yr; ei+1; v

0; t; v) has length 3m + 1, which is less than 3m + 2i for all
i � 1.

(d) A shortcut (s; v) may be introduced replacing the path p = (s; ei; v). At this
step at most jCj = K vertices are left in V . Hence at most K such shortcuts
are introduced.

After contraction of ei the remaining part of the gadget Hi consists only of the vertex
ei+1 and simple paths (xr; yr; ei+1). Thus it can be contracted without introducing
any shortcuts.

To exactly know the structure of G0 after this step we additionally proof that there
is a shortcut (s; v) for each v 2 V : Let ei be the �rst edge-vertex adjacent to v
in our �xed order e1; : : : ; em, then p = (v; e1; s) is a unique shortest path of length
3m+ 1 because of the following case distinction.

(a) p0 = (s; ej ; v) for some edge-vertex ej distinct from ei. Then p0 has length
3m+ j, which is greater than 3m+ i as ei is the �rst edge in e1; : : : ; em that is
adjacent to v.

(b) p0 = (s; ej ; u; t; v) for some edge-vertex ej 6= ei and some vertex u 2 V . Then
p0 has length 4m+ j, which is greater than 3m+ 1.

(c) p0 = (s; xr; t; v) for some vertex xr in the �nal gadget F . Then p0 has length at
least 10m, which is greater than 3m+ 1, too.

3. Contract the special vertex s. This does not insert any shortcut in the hierarchy:
The remaining graph consists of fs; tg[C, the �nal gadget F and the set of shortcuts
that were inserted ffs; vg : v 2 Cg, where the edge fs; vg has weight 3m+ i, if ei is

54 Chapter 3: Preprocessing Speedup-Techniques is Hard

e1 e2 em−1 em

s

t

v1 v2 vn−1 vn

2m 2m 2m 2m 2m

2m

2m

2m − 1m + 2m + 1

H1 Hm−1

F

F

1
2 m 1

2 m 1
2 m1

2 m

Figure 3.13: Schematic picture of G0. The honeycomb gadgets Hi are depicted by small hexagons
between ei and ei+1. For readability reasons the �nal gadget F is only shown as half hexagons at
s and t.

the �rst edge-vertex in the order e1; : : : ; em that is adjacent to v. Hence, the graph
like the one shown in Figure 3.14b, from which we borrow notation for the following
considerations. We have to take the following paths into account:

(a) The path p = (v; s; v0) between two vertices v; v0 2 C has length greater than
6m. As the path (v; t; v0) has length m the path p is clearly no shortest path.

(b) The path p = (xr; s; xs) between two vertices xr and xs of the �nal gadget F
has length 10m + 1

4 , while the path (xr; t; xs) has length 10m. Therefore p is
no shortest path.

(c) The path p = (xr; s; v) has length 8m+ i+ 1
8 . Again, p is no shortest path as

the path (xr; t; v) has length 5m+ 1
2m.

4. Contract all v 2 C. This does not insert any shortcut into the hierarchy as after
Step 3 all v 2 C have degree one.

5. After Step 4 the remaining graph consists only of the �nal gadget F without s and
its incident edges. For each two distinct vertices xr; xs in the �nal gadget F the
path (xr; t; xs) has length 10m. Hence it is no shortest path as (xr; yr; !; ys; xs) has
length 4. Thus t can be contracted without introducing any additional shortcuts.
After contraction of t the remaining part of F is the vertex ! with paths (xr; yr; !)
attached to it. This, too, can be contracted without inserting any new shortcuts
into the hierarchy.

`If '. On the other hand suppose there is an order � on the vertices of G0, such that the
corresponding contraction hierarchy has at most jE0j+K arcs { or equivalently at most K
shortcuts. We will �rst show some simpler properties that the contraction order � must

3.7 Contraction Hierarchies 55

1
2

1
2

1
2

1
2

m + 2i

m + 2i

1
2 m

m + i + 1m + i

1
2 mv v′

t

s

xr yr

ysxs

ei ei+1

2m2m

(a) Contraction of edge-vertex ei 2 E(G).

xr

xs

s

t

σ

σ

τ

τ

v

v′

3m + i

1
2 m

3m + j

1
2 m

(b) Contraction of the special vertex s.
The edges of weight m+ i and m+ j origi-
nate in the contraction of edge-vertices ei
and ej . The vertices xi on the right hand
side of the �gure are those from the �nal
gadget F . The weights � and � were ini-
tially chosen as � = 5m+ 1

8
and � = 5m.

Figure 3.14: Important steps during contraction of G0 given a vertex cover C � V .

possess and then construct a vertex cover in G using these properties and the contraction
order.

Claim. Each edge-vertex ei gets contracted before its successor ei+1 in the �xed order
e1; : : : ; em.

Assume the contrary and consider the honeycomb gadgetHi between ei and ei+1. Without
loss of generality let (x1; y1); : : : ; (xL; yL) be the pairs of vertices (xr; yr) in Hi, such that
ei+1 � xr or ei+1 � yr. Then there are n + 2 � L pairs (xL+1; yL+1); : : : ; (xn+2; yn+2),
where xr; yr � ei+1 � ei for r > L which we consider �rst:

1. yr � xr; ei; ei+1
The path p = (xr; yr; ei+1) is a unique shortest path of length 1:

(a) The paths (xr; ei; xs; ys; ei+1), where s 6= r, have length 2m+ 4i+ 1.

(b) The paths (xr; ei; v; ei+1), where v is some vertex v 2 V incident to e have
length 5m+ 2i.

(c) The path (xr; ei; s; ei+1) has length 3m+ 4i+ 1.

2. xr � yr; ei; ei+1
The path p = (ei; xr; yr) is a unique shortest path of length m+ 2i+ 1

2 :

(a) The paths (ei; xs; ys; ei+1; yr), where s 6= r, have length m+ 2i+ 3
2 .

(b) The path (ei; s; ei+1; yr) has length 2m+ 2i+ 3
2 .

(c) The path (ei; v; ei+1; yr) has length 4m+ 1
2 .

56 Chapter 3: Preprocessing Speedup-Techniques is Hard

Therefore contraction of xr and yr before ei and ei+1 results in at least one additional
edge being inserted into the hierarchy. This sums up to at least n+2�L additional edges.

Now consider the pairs (x1; y1); : : : ; (xL; yL), where at least one of xr; yr gets contracted
after ei+1. For 1 � s � L let zs be the vertex zs 2 fxs; ysg that is a neighbour of ei+1
when ei+1 gets contracted. For distinct zr; zs the path p = (zs; ei+1; zr) has length at
most 2, while paths (zr; : : : ; ei; : : : ; zs) have length at least m + 2i, as they include the
edge fxr; eig of length m + 2i or the shortcut fyr; eig of length m + 2i + 1

2 . Hence p is
a unique shortest path and contraction of ei+1 before zs; zr and ei inserts an additional
shortcut fzr; zsg. As there are

1
2L(L� 1) such pairs fzr; zsg, contraction of ei+1 leads to

the insertion of 1
2L(L� 1) shortcuts.

Altogether, contraction of ei+1 before ei results in at least n+2�L+
1
2L(L�1) � n > K

shortcuts contradicting the assumption of at most K inserted edges.

Claim. The special vertices s and t get contracted before the vertex ! in the �nal gadget
F .

Assume the contrary, i.e., that � 2 fs; tg gets contracted after !. Further let �0 2
fs; tg n f�g. Partition the pairs (xr; yr) of vertices in F , such that ! � xr or ! � yr for all
1 � r � L and such that xr; yr � ! for all L+ 1 � r � n+ 2. Now consider the following
contraction orders:

1. yr � xr; !; �. In this situation (xr; yr; !) is a unique shortest path.

2. xr � yr; !; �. In this situation (�; xr; yr) is a unique shortest path.

Contraction of xr and yr before � and ! inserts in any case at least one shortcut which
sums up to at least n+ 2� L additional edges in the hierarchy.

Let zs for 1 � s � L be the vertex zs 2 fxs; ysg that is a neighbour of ! when ! gets
contracted. For distinct zs; zr the path p = (zs; !; zr) has length at most 4. As any path
(zs; �; zr) or (zs; �

0; zr) has length at least 10m, p is a unique shortest path. Contraction
of ! before zs; zr therefore inserts an additional shortcut fzs; zrg. As there are

1
2L(L� 1)

such pairs fzs; zrg, contraction of ! inserts at least 1
2L(L� 1) shortcuts.

Altogether, contraction of ! before � results in at least n+2�L+ 1
2L(L�1) � n > K

additional shortcuts being inserted. This is a contradiction and thus � � !.

Claim. The special vertex t gets contracted after all v 2 V .

Assume the contrary and let v0 2 V be a vertex with t � v0. By the last claim we may
assume that ! is still present when t gets contracted. Consider the �nal gadget F and
partition the pairs (xr; yr) of vertices in F , such that t � xr or t � yr for all 1 � r � L
and such that xr; yr � t for all L+1 � r � n+2. Now consider the following contraction
orders:

1. yr � xr; t; !. In this situation (xr; yr; !) is a unique shortest path of length 2.

2. xr � yr; t; !. In this situation (t; xr; yr) is a unique shortest path of length 5m+ 1.

Contraction of xr and yr before t hence inserts at least one additional edge into the
hierarchy which sums up to at least n + 2 � L additional shortcuts. For 1 � r � L now
let zr be the vertex zr 2 fxr; yrg that is adjacent to t, when t gets contracted. We have
dist(v0; s) � 3m+ 1, dist(s; xr) � 5m+ 1

8 and dist(s; yr) � 5m+ 9
8 .

1. Let zr = xr then p = (v0; t; xr) is a unique shortest path of length 11
2 m.

2. Let zr = yr then p = (v0; t; xr; yr) is a unique shortest path of length 11
2 m+ 1.

3.7 Contraction Hierarchies 57

Contraction of t therefore results in the insertion of an additional shortcut fv0; zrg. As
there are L such neighbours zr of t, contraction of t inserts at least L additional edges.
Altogether contraction of v after t results in n+ 2�L+L � n > K additional shortcuts,
which is a contradiction.

Claim. All edge-vertices ei 2 E get contracted before s.

Assume the contrary, i.e., that there is some edge-vertex ei 2 E that gets contracted after
s. Consider the �nal gadget F and partition the pairs (xr; yr) of vertices in F , such that
for all 1 � r � L it is s � xr or s � yr and such that for all L + 1 � r � n + 2 it is
xr; yr � s. By the last claims we know that xr � s and yr � s imply xr � ! and yr � !
respectively. Now consider the following contraction orders.

1. yr � xr; s; !. In this situation (xr; yr; !) is a unique shortest path of length 2.

2. xr � yr; s; !. In this situation (s; xr; yr) is a unique shortest path of length 5m+ 1
8+1.

Contraction of xr and yr before s hence inserts at least one additional edge into the
hierarchy which sums up to at least n+ 2� L additional edges into the hierarchy.

For 1 � r � L let zr be the vertex zr 2 fxr; yrg that is adjacent to s, when s
gets contracted. The path p = (ei; s; zr) has length 6m + i + 1

8 for zr = xr and length
6m + i + 1

8 + 1 for zr = yr. The path p0 = (ei; u; t; xr) in G0, where u is some vertex
u 2 V , has length 7m+ 1

2m and p0 = (ei; u; t; xr; yr) in G0 has length 7m+ 1
2m+ 1. For p

is a unique shortest path in G0, p is a unique shortest path, when s gets contracted, too.
Contraction of s therefore inserts a shortcut fei; zrg into the hierarchy. As there are L
such vertices zr contraction of s results in the insertion of at least L such shortcuts.

Altogether contraction of ei after s resulted in n + 2 � L + L � n > K additional
shortcuts, which is a contradiction.

Subsumption. The following observations subsume the above claims about possible pair-
wise contraction orders.

1. E gets contracted in order e1; : : : ; em.

2. V � t and E � s, that is whenever we encounter vertices v 2 V or edge-vertices
e 2 E, we may assume that the vertex t or the vertex s respectively are not contracted
yet.

In the �nal step of this proof we will construct a vertex cover for the original graph G and
prove that it contains at most K vertices.

For each vertex v 2 V , let emin(v) be the �rst edge-vertex in order e1; : : : ; em that is
incident to v, that is emin(v) = eM , where M = minfi : ei is incident to vg. We partition
E into two sets. The set E1 contains those edges that are incident to some vertex v that
gets contracted after emin(v).

E1 = fe = fu; vg 2 Ej emin(u) � u or emin(v) � vg

Secondly we let E2 be the set of edges that are incident to two vertices u and v that get
both contracted before emin(v).

E2 = fe = fu; vg 2 Ej u � emin(u) and v � emin(v)g

58 Chapter 3: Preprocessing Speedup-Techniques is Hard

Obviously it is E = E1 _[E2. Now we de�ne for each edge e 2 E the cover vertex v(e) of e
as follows:

v(e) =

(
arbitrary u 2 V incident to e in G such that emin(u) � u ; e 2 E1

�-maximal u 2 V incident to e in G ; e 2 E2

Claim. C = fv(e) : e 2 Eg is a vertex cover in G.

Let e = fu; vg 2 E. Then v(e) = u or v(e) = v by de�nition of the cover vertex v(e).

Claim. C = fv(e) : e 2 Eg has size at most K.

As there are at most K shortcuts in the contraction hierarchy, it su�ces to show that
there is an injective mapping M : C ! S, where S is the set of shortcuts inserted during
the contraction of G0 using contraction order �. We will constructM by assigning to each
vertex v 2 v(E1) the shortcut fs; vg and to each v 2 v(E2) a shortcut of the form ft; eg.

Observe that v(E1) and v(E2) are disjoint, as u 2 v(E1)\v(E2) would imply emin(u) �
u � emin(u). Since the shortcuts assigned to v 2 v(E1) and v 2 v(E2) are of di�erent
kind, it is clear that M : C ! S is well-de�ned and injective on C = v(E1) [v(E2), if it
is well-de�ned and injective on v(E1) and v(E2).

First consider a vertex v = v(e) 2 C with e 2 E1. Then, by de�nition of E1, v � ei =
emin (v). By the subsumption we know that s is still present in the graph when ei gets
contracted. Now consider possible paths between s and v at this step.

1. The path p = (s; ei; v) has length 3m + i. For any other ej the path (s; ej ; v) has
length 3m + j and since ei = emin (v) the path p is a unique shortest path among
the paths (s; ej ; v).

2. For some vertex u 6= v and some edge-vertex ej 6= ei the path (s; ej ; u; t; v) has length
4m+ j.

3. The path (s; xr; t; v), where xr is a vertex of the �nal gadget F , has length (21=2)m+
1
8 .

Hence, (s; ei; v) is a unique shortest path when ei gets contracted and thus contraction of
ei inserts a shortcut fs; vg. We set M(v) := fs; vg.

Next we account for the vertices in v(E2). Let v 2 v(E2). Choose arbitrary e = fu; vg
in E2 such that v = v(e). By de�nition of E2, we have u � emin(u) and v � emin(v). In
particular u � v � e. By the subsumption, the vertex t is not contracted, when u or v get
contracted. Consider the paths pu = (t; u; e) and pv = (t; v; e), each of length 5

2m. Apart
from pu and pv the only relevant path between t and e is p

0 = (t; xr; s; e), where xr is some
vertex of the �nal gadget F . The length of p0 is greater than 10m and thus pu and pv are
shortest paths.

When v gets contracted, u and the path pu are already contracted and pv is a unique
shortest path. Contraction of v hence inserts a shortcut ft; eg into the hierarchy. We
set M(v) := ft; eg. Observe that M is injective on v(E2), as M(x) = M(y) implies
x = y = v(e0) for some e0. This �nishes the proof. �

3.8 Lower Bounds for Search-Space Guarantees 59

3.8 Lower Bounds for Search-Space Guarantees

We now consider the question of how good a speedup-technique actually can get: Let
preprocessing time and space be unrestricted, what guarantee can a speedup-technique
give for the average search space size? We focus on guarantees that depend on the size of
the input graph.

The situation is clear for techniques that do not insert shortcuts into the graph. When
considering a path as the input graph, it is easy to see that no guarantee better than
the trivial O(jV j)-guarantee is possible. However, Arc-Flags and ALT are able to encode
all-pairs shortest-paths in their preprocessed data. Hence, it is possible to show that both
techniques can guarantee to settle at most all nodes that lie on a shortest s-t-path.

The situation is not so clear for the Multilevel Overlay Graph-technique, Contraction
Hierarchies, Arc-Flags with external shortcuts and Reach Based Pruning with external
shortcuts. The main contribution of this section focuses on Contraction Hierarchies. When
working with general graphs, the situation is clear: Considering the complete graph with
jV j nodes we observe that there is no guarantee better than the trivial O(jV j) guarantee.
Hence, we focus on graphs with bounded degree and on trees and give a lower bound of

(ld jV j) for any guarantee on the average search space size. This bound is tight when
restricting the input to paths.

Throughout the remainder of this section, we denote by Pn = (Vn; En; len) a path with
n nodes and uniform edge lengths, i.e.,

Vn = f1; : : : ; ng En = ffi; i+ 1g j 1 � i < ng len � 1 :

Techniques without Shortcuts. Obviously, techniques that do not insert shortcuts
into the graph contain at least as much nodes in the s-t-search space as a shortest s-t-path
requires. We consider the average search space of a path Pn. The sum of sizes of all
shortest paths in Pn is 2(

Pn
i=1

Pi
j=1 j)�n as we consider only paths from node i to nodes

t � i and by symmetry reasons multiply this by 2. We subtract n as we count the n pairs
with i = t twice. We simply sum over the sizes of all shortest s-t-paths to obtain the
following bound.

1

n2

nX
i;t=1

V(i; t; Pn) �
1

n2

0@2 nX
i=1

iX
j=1

j � n

1A
=

1

n2

nX
i=1

(i2 + i)

!
�

1

n

=
1

n2

�
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2

�
�

1

n

=
n+ 1

n

�
2n+ 1

6
+
1

2

�
�

1

n
=
(n) :

Techniques that apply shortcuts can break this barrier. For a brief glance at techniques
without shortcuts, we include the number jP ./(s; t)j of vertices that lie on a shortest
s-t-path into our considerations. We do this for ALT and Arc-Flags.

Arc-Flags. An optimal unrestricted solution for Arc-Flags is obvious: Each node is its
own cell. When working with vector Fall(V;G) this yields the guarantee V(s; t;G) � P ./(s; t)
for any pair s; t 2 V with dist(s; t) < 1. When working with vector Fcan(V;G) the value
of jV(s; t;G)j improves to the minimal number of nodes on a shortest s-t-path.

60 Chapter 3: Preprocessing Speedup-Techniques is Hard

ALT. The set of landmarks L = V not necessarily is optimal but gives the guarantee
V(s; t;G) � P ./(s; t) for any pair s; t 2 V with dist(s; t) <1:

If dist(v; t) = 1 it is �L
t (v) � �v�

t (v) = 1. With Lemma 6 follows that v is not
in the s-t-search space. Further, for v 62 P ./(s; t) with dist(v; t) < 1 we have that
dist(s; v) + dist(v; t) > dist(s; t). This yields dist(s; v) + �L

t (v) � dist(s; v) + �v�
t (v) =

dist(s; v) + dist(v; t) � dist(v; v) > dist(s; t). With Lemma 6 follows that v is not in the
s-t-search space.

Contraction Hierarchies. For arbitrary graphs, no bound outside
(jV j) is possible as
the complete graph with jV j nodes and uniform edge lengths has average search space size
(jV j+ 1). This follows from

1

jV j2

X
s;t2V

V(s; t) =
1

jV j2
jV j
X
z2V

�
V+(z) + V�(z)

�
=

2

jV j

X
z2V

�
jfv 2 V : z � v _ z = vgj

�
= jV j+ 1 :

Hence, in the following we consider sparse graphs. We still work on undirected graphs
and, for simplicity, consider only one direction of the actual query. We show that the
optimal average search space size achieved on a path is logarithmic in jV j. This gives a
lower bound of
(ld jV j) for any guarantee on the average search space size on a large
class of sparse graphs, especially for graphs with bounded degree or trees. Throughout
the remainder of this section, we consider the input graph to be a path Pn = (Vn; En; len).

We approach the proof as follows: We �rst conjecture that the sorting number B(n+1)
gives a lower bound for the sum of the search space sizes on a path with n nodes. We then
give two auxiliary results for the sorting numbers and afterwards proof the conjecture.
Next, we present an algorithm that shows that the bound is tight on paths. Finally, we
evaluate the asymptotic behavior of the sorting numbers which yields our claim.

Given a graph G = (V;E; len), an order � on V and the contraction hierarchy

(V;E�; len) := H�(G), the directed contraction hierarchy
�!
H (G;�) is de�ned as

�!
H (G;�) := (V; f(u; v) j fu; vg 2 E�; u � vg):

Remember that distG(u; v) denotes the distance from vertex u to vertex v in graph G. We
de�ne

VG;�(u) := fv 2 Vn j dist�!H (G;�)
(u; v) <1g

and consequently, jVG;�(u)j is the number of nodes visited during a query starting at
vertex u. Further,

V(G;�) :=
X
u2V

jVG;�(u)j

is n times the average search space size (of one direction) for the contraction hierarchy
H�(G). For all de�nitions, we will leave out the order � whenever the choice of � is clear.
We further use the convention

P0
i=1 f(i) := 0 for any function f .

Lemma 11. For all n 2 Z>0 and all orders � on Vn, it is

V(Pn;�) � B(n+ 1)

where B(k) =
Pk

i=1dld ie and Pn = (Vn; En) with Vn = f1; : : : ; ng and En = ffi; i + 1g j
1 � i < ng.

3.8 Lower Bounds for Search-Space Guarantees 61

In order to proof this result we �rst give two facts on the sequence B(k). The sorting
numbers B(k) are sequence A001855 in [Slo08]. The following recursive formula is a key
to the proof of Lemma 11.

Lemma 12. Let B(k) =
Pk

i=1dld ie for k 2 Z�0. Then

B(n) = B
�ln

2

m�
+B

�jn
2

k�
+ n� 1

Proof. We do induction on n. The case n = 1 is easy to check. For n = 2 we have

B(2) = 0 + 1 = B

��
2

2

��
+B

��
2

2

��
+ 2� 1

For n > 2, we get by induction hypothesis

B(n) = B(n� 1) + dldne = B

��
n� 1

2

��
+B

��
n� 1

2

��
+ dldne+ n� 2

If n is even, then
�
n�1
2

�
= n

2 � 1 and
�
n�1
2

�
= n

2 . Furthermore dldne = dld n
2 e + 1 and

thus we get

B(n) = B
�n
2
� 1
�
+B

�n
2

�
+ dldne+ n� 2 = B

�n
2

�
+B

�n
2

�
+ n� 1

If n is odd, then
�
n�1
2

�
= n�1

2 =
�
n�1
2

�
. Additionally dldne = dld n+1

2 e+ 1 and we get

B(n) = B

�
n� 1

2

�
+B

�
n� 1

2

�
+

�
ld
n+ 1

2

�
+ n� 1

= B

�
n� 1

2

�
+B

�
n+ 1

2

�
+ n� 1

This �nishes the proof. �

Further, from the monotonicity of ld we have the following inequality.

Lemma 13. Let B(k) =
Pk

i=1dld ie for k 2 Z�0. Further, let n1; n2; n 2 Z�0 with
n1 + n2 = n. Then

B(n1) +B(n2) � B
�ln

2

m�
+B

�jn
2

k�

Proof. Without loss of generality let n1 � n2. As n1 + n2 = n this implies in particular
n1 �

�
n
2

�
and

�
n
2

�
� n2. The special case n2 = 0 is easy to check. Now this lemma follows

directly from the monotonicity of ld and the de�nition of sorting numbers:

B(n1) +B(n2) =

n1X
i=1

dld ie+
n2X
i=1

dld ie =

dn2 eX
i=1

dld ie+
n1X

i=dn2 e+1

dld ie+
n2X
i=1

dld ie

� B
�ln

2

m�
+

n2+n1�dn2 eX
i=n2+1

dld ie+
n2X
i=1

dld ie = B
�ln

2

m�
+B

�jn
2

k�
This was to show. �

62 Chapter 3: Preprocessing Speedup-Techniques is Hard

Equipped with these two lemmata on the sorting numbers we now approach the proof of
Lemma 11:

Proof (of Lemma 11). We do induction on n. If n = 1, there is nothing to show, as
B(2) = 1. Now let n > 1. Furthermore let � be an order on Vn and v be the �-largest
vertex in Vn. Removal of v splits Pn into graphs P1, P2 and H = H�(pn) into graphs H1,
H2 of n1 and n2 vertices, where n1 + n2 = n � 1. It is H1 = H�(P1) and H2 = H�(P2).
Furthermore VPi(v) = VPn(v)� 1 for all vertices v 2 V (Pi) and thus

V(Pn) = V(P1) + n1 + V(P2) + n2 + 1

By induction hypothesis we have V(Pi) � B(ni + 1). Hence we may apply Lemmata 12
and 13 to obtain

V(Pn) � B(n1 + 1) +B(n2 + 1) + n

� B

��
n+ 1

2

��
+B

��
n+ 1

2

��
+ n = B(n+ 1)

which was to show. �

The lower bound of B(n+1) is tight as Algorithm 3.9 computes an according order � on
Vn.

Lemma 14. Given input Pn, Algorithm 3.9 computes an order � on Vn such that such
that V(Pn;�) = B(n+ 1).

The proof is by induction analogous to the proof of Lemma 11.

Proof. We do induction on n. The case n = 1 holds as V(Pn;�) = 1 = B(2). Now let
n > 1. Then

V(Pn) = V(Pb(n�1)=2c) +

�
n� 1

2

�
+ V(Pd(n�1)=2e) +

�
n� 1

2

�
+ 1

= B(

�
n� 1

2

�
+ 1) +B(

�
n� 1

2

�
+ 1) + n

= B(n+ 1)

This was to show. �

Algorithm 3.9: OptimalPathOrder

Input : Path Pn = (Vn; En) of n vertices
Output: Order � on Vn, such that V(H�) = B(n+ 1)

1 if n = 0 then
2 return h i;
3 else
4 Pick vertex v 2 V separating Pn into paths Q and R of length

�
n�1
2

�
and

�
n�1
2

�
;

5 return OptimalPathOrder(Q) �OptimalPathOrder(R) � hvi;

Corollary. It is V(Pn;�n) =
(n ldn) for all orders �n on Vn and there are orders �n
on Vn, such that V(Pn;�n) = �(n ldn).

3.8 Lower Bounds for Search-Space Guarantees 63

Proof. We �rst show by induction on n that B(n) = n dldne � 2dldne + 1. If n = 2 we
have B(2) = 1 = 2� 2 + 1. If n > 2, then

B(n) = B(n� 1) + dldne

= (n� 1) dld(n� 1)e � 2dld(n�1)e + 1 + dldne

If dldn� 1e = dldne, the claimed equality follows immediately. On the other hand,
dldn� 1e < dldne, if and only if n = 2k + 1 for some k 2 Z�0. In that case we have

B(n) = (n� 1) dld(n� 1)e � 2dld(n�1)e + 1 + dldne

= (n� 1) � k � 2k + 1 + k + 1

= nk � n+ 3

= n(k + 1)� 2(n� 1) + 1

= n(k + 1)� 2k+1 + 1

= n dldne � 2dldne + 1

which shows B(n) = n dldne � 2dldne + 1. The corollary is an immediate consequence of

n dldne � 2dldne + 1 � n(ldn+ 1) + 1 = O(n ldn)

n dldne � 2dldne + 1 � n ld(n)� 2n =
(n ldn)

which means B(n) = �(n ldn). �

64 Chapter 3: Preprocessing Speedup-Techniques is Hard

3.9 Conclusion

Speedup-techniques have been widely studied experimentally for the last years, especially
for road networks. There is large interest in a theoretical foundation of the techniques
developed and some �rst work on the topic has been published [AFGW10, BDDW09].

Complexity Status of the Preprocessing Phase. In this chapter we focused on the
preprocessing phases of the recent techniques. These usually incorporate a degree of
freedom that, in practice, is �lled in a heuristical manner. The quality of a preprocessing
strategy can be measured by the e�ort of the according query. We used the average
number of settled nodes in an s-t-query of random nodes s and t as such a measure.

Until now, the complexity status of �lling the according degree of freedom was un-
known. We settled this question by showing that all variants considered are NP-hard to
optimize. This prepared the ground for further work on the given problems.

There are numerous open questions for the topic. A reasonable next step is the devel-
opment of approximation- or �xed parameter tractable algorithms for the preprocessing
phase. E�cient algorithms for special graph classes would help to show the bounds of in-
tractability and to further understand the approaches. These might also be used to yield
runtime guarantees for the queries of the given techniques. When working on speedup-
techniques that have shown to be hard on directed acyclic graphs it would be particularly
interesting to know the complexity status on trees. Finally, we have the conjecture {but
did not prove{ that problem ArcFlags is NP-hard already for two cells.

A Critical View on the Applied Models. Theoretically modeling a sophisticated
algorithm-engineering approach goes with taking many decisions `in a reasonable way'.
The decision to use the average search space size as objective function is motivated by the
common practice to compare experimental approaches by query runtime and search space
size. Should we measure the search space in terms of settled nodes (which emphasizes the
queue operations) or is it better to count the number of relaxed edges (which emphasizes
the edge relaxations)? We have positively tested, for some of the proofs in this chapter, if
an adaption to `edge relaxations' is possible. Accordingly, we expect to obtain the same
results for that model with slightly modi�ed proofs.

We also brie
y considered to optimize the worst-case search space. It seems much
harder to adapt our proofs for that model. However, we expect that these problems are
also NP-hard and positively tested for problem ArcFlags.

Further, many of the considered approaches consist of a large number of heuristic
improvements. Some of these are not even documented in the corresponding paper but
hidden inside the program code. We considered some of these improvements separately,
such as External Shortcuts for Reach-Based Pruning or Search-Space Minimal Reach.
Many other improvements were just neglected. Sometimes reasons for ignoring part of
a technique are given in the corresponding paper. An example is the relaxation of the
stopping criterion of Contraction Hierarchies: This was already mentioned to be reasonable
in [GSSD08]. For others we had to make our own experiments for which we mainly used the
code basis of [BDW07]. An example is the relaxation of the stopping criterion of Reach-
Based Pruning. Furthermore, we often talked to the programmers of the corresponding
approach to gain more knowledge on the impact of a speci�c improvement.

Summarizing, we claim the considered models to be reasonable. However, we think
that the model of the ALT-algorithm can be improved, a more detailed discussion is given
in the corresponding section.

3.9 Conclusion 65

Lower Bounds for the Search Space Size of Contraction Hierarchies. We also
considered the question of how good a speedup-technique can actually get: Let prepro-
cessing time and space be unrestricted, what guarantee can a speedup-technique give for
the size of the average search space? We focused on guarantees that solely depend on the
input size, which is the most fundamental measure for such considerations.

The situation is clear for techniques that do not use shortcuts: Guarantees for such
approaches lie in
(jV j) which is not better than Dijkstra's algorithm. However, ALT
and Arc-Flags can encode all-pairs shortest-paths in a way such that the search-space of
an s-t-query consists only of nodes that lie on a shortest s-t-path. Even stronger, Arc-
Flags can guarantee that the search-space of an s-t-query consists only of a node-minimal
shortest path.

The situation is less obvious for the Multilevel Overlay Graph-technique, Reach-Based
Pruning with Shortcuts, Arc-Flags with Shortcuts and Contraction Hierarchies as these
could break the
(jV j) barrier. For Contraction Hierarchies we presented a concrete
answer. We have shown that any guarantee for the average search space of an s-t-query
lies in
(jV j) for arbitrary graphs and in
(log jV j) for graphs with bounded degree and
for trees. Is the second bound tight, i.e., are there algorithms that guarantee the average
search space to be in O(log jV j)? We further conjecture that the same or similar bounds
hold for the other techniques that apply shortcuts and leave this as an open question.

Analyzing guarantees that solely depend on the input size is a reasonable and insightful
point of view. However, our work indicates that a deeper understanding can be gained
from applying another measure. In Chapter 4.6 we de�ne the shortest paths diameter
spDiam(G) to be the maximum hop-distance between any two nodes in the graph G.
This could be a good parameter for future work on such guarantees. Some considerations
of this chapter can already be translated to terms of spDiam(G): For techniques without
shortcuts, spDiam(G) is a lower bound for any guarantee on the s-t-search space of a query.
In the unrestricted case, Arc-Flags can guarantee the search space size to be bounded by
spDiam(G). ALT can guarantee the same for graphs in which shortest paths are unique.
Contraction Hierarchies can break the spDiam(G) barrier. However, on arbitrary graphs,
no guarantee for the search space size of an s-t-query is possible that depends solely on
spDiam(G). For graphs with bounded degree or trees, any guarantee for the average search
space size lies in
(log spDiam(G)).

Models for Road-Networks. Finally, we want to point out an interesting, related
branch of research that is not topic of this thesis. Besides railway/timetable-networks,
road networks are the main application for route-planning. Accordingly, some of the
presented techniques heuristically aim to capture properties of these networks. This can
also be done theoretically, related approaches are as follows.

The work [AFGW10] tries to capture one such property by introducing the notion
of highway dimension. For graphs with low highway dimension, runtime guarantees for
some speedup-techniques are given. An obvious and reasonable {yet still open{ task is to
experimentally evaluate if road networks really exhibit low highway dimension.

Another way to allow for a theoretical analysis that is custom-tailored for road net-
works is the use of graph generators. We are aware of two generators [AFGW10, BKMW10]
that create arti�cal road networks. Both are experimentally evaluated in [BKMW10]. A
reasonable next step into this direction would be to derive helpful properties of graphs
originating from these generators.

Some related ideas are given in [EG08] by discussing the question if road networks
are almost planar as often claimed. In [EG08] this claim is refused and a model for road
networks is given. This model can be used for deriving further properties but has some
open degrees of freedom such that it cannot directly be used as a generator.

66 Chapter 3: Preprocessing Speedup-Techniques is Hard

Chapter 4

The Shortcut Problem

We study a graph-augmentation problem arising from a technique applied in recent
approaches for route planning. Many such methods enhance the graph by inserting short-
cuts, i.e., additional edges (u; v) such that the length of (u; v) is the distance from u to v.
Given a weighted, directed graph G and a number c 2 Z>0, the shortcut problem asks how
to insert c shortcuts into G such that the expected number of edges that are contained
in an edge-minimal shortest path from a random node s to a random node t is minimal.
In this chapter, we study the algorithmic complexity of the problem and give an approxi-
mation algorithm for a special graph class. Further, we state ILP-based exact approaches
and show how to stochastically evaluate a given shortcut assignment on graphs that are
too large to do so exactly.

4.1 Introduction

Background. The problem studied in this chapter originates from the speedup tech-
niques described in the last chapter. One core part of some of these approaches is the
insertion of shortcuts [BD08, BCD+08, GSSD08, GKW06, GKW07, HSW06, SS06a, SS07,
SWW00, SWZ02], i.e., additional edges (u; v) whose length is the distance from u to v
and that represent shortest u-v-paths in the graph. The strategies of assigning the short-
cuts and of exploiting them during the query di�er depending on the speedup technique.
Until now, all existing shortcut insertion strategies are heuristics and only few theoretical
worst-case or average case results are known [AFGW10, BCK+10a, BCK+10b].

In this context, an interesting new theoretical problem arises: Given a weighted, di-
rected graph G and a number c 2 Z>0, the shortcut problem asks how to insert c shortcuts
into G such that the expected number of edges that are contained in an edge-minimal
shortest path from a random node s to a random node t is minimal.

Contribution. In this work we formally state the Shortcut Problem and a variant
of it, the Reverse Shortcut Problem. While we study the algorithmic complexity
of both problems, the algorithmic contribution focuses on the Shortcut Problem. We
state exact, ILP-based solution approaches. We further describe an algorithm that gives
an approximation guarantee on graphs in which, for each pair s; t of nodes, there is at most
one shortest s-t-path. It turns out that this class is highly relevant as in road networks,
most shortest paths are unique and only small modi�cations have to be made to obtain
a graph having unique shortest paths. Finally, we show how to stochastically evaluate
a given shortcut assignment on graphs that are too large to do so exactly. Besides its
relevance as a step towards theoretical results on speedup-techniques, we consider the
problem to be interesting and beautiful on its own right.

68 Chapter 4: The Shortcut Problem

Related Work. Parts of this chapter have been published in [BDDW09, BDD+10].
There, an additional approximation strategy is proposed. The approach is based on a
partition of the nodes and works on graphs with bounded degree for which shortest paths
are unique. It gives an O

�
� �max

�
1; jV j2=(�2c)

	�
-approximation of the optimal solution,

where � is the number of subsets of the underlying partition and c the number of short-
cuts to insert. The diploma thesis [Sch09b] experimentally examines heuristic algorithms
to �nd shortcut assignments with high quality, including local search strategies and a
betweenness-based approach. Furthermore, the Greedy-step Algorithm 4.3 is proposed
in this thesis. To the best of our knowledge, the problem of �nding shortcuts as stated in
this work has never been treated before.

Speedup-techniques that incorporate the usage of shortcuts are the following. Given a
graph G = (V;E) the multilevel overlay graph technique [SWZ02, Sch05, HSW06, SS07,
HSW08, Hol08] uses some centrality measures or separation strategies to choose a set
of `important' nodes V 0 in the graph and inserts the shortcuts S such that the graph
(V 0; S) is edge-minimal among all graphs (V 0; E0) for which the distances between nodes
in V 0 are as in (V;E). Highway hierarchies [SS05, SS06a] and Reach Based Pruning
[Gut04, GKW06, GKW07, GKW09] iteratively sparsi�cate the graph according to the
`importance' of the nodes. After each sparsi�cation step, nodes v with small in- and out-
degree are deleted. Then for each pair of edges (u; v), (v; w) a shortcut (u;w) is inserted
if necessary to maintain correct distances in the graph. SHARC-Routing [BD08, BD09,
Del09, BDGW10] and Contraction Hierarchies [GSSD08] use a similar strategy.

Overview. This chapter is organized as follows. Section 4.2 introduces basic de�ni-
tions. The Shortcut Problem and the Reverse Shortcut Problem are stated in
Section 4.3. Furthermore, results concerning complexity and non-approximability of the
problems are given. The remainder of the chapter focuses on the Shortcut Problem.
Section 4.4 proposes two exact, ILP-based approaches. In Section 4.5 a greedy algorithm
is presented that gives an approximation guarantee on graphs in which shortest paths are
unique. A probabilistic approach to evaluate a given solution of the Shortcut Problem
is introduced in Chapter 4.6. The chapter is concluded by a summary and possible future
work in Section 4.7.

4.2 Speci�c Notation

Throughout this chapter, G = (V;E; len) denotes a directed, weighted graph with positive
length function len : E ! R>0. Consider a path P = (x1; x2; : : : ; xk). We say P contains
node u before node v if there are numbers i; j with 0 � i � j � k such that u = xi and
v = xj .

Given is a sequence y1; : : : ; yk for k � 2. A y1-y2-: : :-yk-path is a path P from y1
to yk such that P contains node yi before node yi+1 for i = 1; : : : ; k � 1. A shortest
y1-y2-: : :-yk-path is a y1-y2-: : :-yk-path that is a shortest path from y1 to yk. Let

P�(x; y) := fs 2 V j 9 shortest s-y-path containing xg

P+(x; y) := ft 2 V j 9 shortest x-t-path containing yg

denote the sets of start- or end-vertices of shortest paths through x and y. Similarly, let

P (x; y) := f(s; t) 2 V � V j 9 shortest s-t-path that contains x before yg

4.3 Problem Statement and Complexity 69

consist of all pairs of nodes, for which a connecting shortest path containing �rst x and y
exists. Finally, let

P ./(x; y) := fu 2 V j 9 shortest x-y-path that contains ug

be the set of all nodes that lie on a shortest x-y-path.

We call a graph G sp-unique if, for any pair of nodes s and t in G, there is at most one,
unique shortest s-t-path in G. Let P = (x1; x2; : : : ; xk) be a path. The hop-length jP j of
P is k� 1. Given two nodes s and t, the hop-distance hG(s; t) from s to t is the minimum
hop-length of any shortest s-t-path in G and 0 if there is no s-t-path in G or if s = t. We
abbreviate hG(s; t) by h(s; t) if the choice of the graph G is clear. We further assume that
for each edge (u; v) in G it is len(u; v) = dist(u; v). This can easily be assured by deleting
edges (u; v) with len(u; v) > dist(u; v) in a preprocessing step. This guarantees that, after
the insertion of a shortcut (a; b), there is only one edge (a; b) in the graph.

4.3 Problem Statement and Complexity

In this section, we introduce the Shortcut Problem and the Reverse Shortcut
Problem. We show that both problems are NP-hard. Moreover, we show that there is
no polynomial-time constant-factor approximation algorithm for the Reverse Shortcut
Problem and no polynomial-time algorithm that approximates the Shortcut Problem
up to an additive constant unless P = NP. Finally, we identify a critical parameter of the
Shortcut Problem and discuss some monotonicity properties of the problem.

In the following, we augment a given graph G with shortcuts. These are edges (u; v)
that are added to G such that len(u; v) = dist(u; v). A set of shortcuts is called a shortcut
assignment. We repeat the de�nition of shortcut assignment from the last chapter.

De�nition (Shortcut Assignment). Consider a graph G = (V;E; len). A shortcut
assignment forG is a set E0 � (V�V)nE such that, for any (u; v) in E0, it is dist(u; v) <1.
The notation G[E0] abbreviates the graph G with the shortcut assignment E0 added, i.e.,
the graph (V;E [E0; len0) where len0 : E [E0 ! R>0 equals dist(u; v) if (u; v) 2 E0 and
equals len(u; v) otherwise.

When working with shortcuts we are interested in the expected number of edges that are
contained in an edge-minimal shortest path from a random node s to a random node t.
The gain of a shortcut assignment E0 measures how much this value decreases due to the
graph-augmentation with E0.

De�nition (Gain). Given a graph G = (V;E; len) and a shortcut assignment E0, the
gain wG(E

0) of E0 is

wG(E
0) :=

X
s;t2V

hG(s; t)�
X
s;t2V

hG[E0](s; t) :

We abbreviate wG(E
0) by w(E0) in case the choice of the graph G is clear.

We brie
y consider an augmented graph G[E0] = (V;E[E0; len0) and choose nodes s and t
uniformly at random. The expected number of edges on an edge-minimal shortest s-t-path

70 Chapter 4: The Shortcut Problem

is 1
jV j2

P
s;t2V hG[E0](s; t) when we count pairs s and t with dist(s; t) =1 by 0. The termP

s;t2V hG(s; t) does not depend on E0 and hence is constant. Consequently, maximizing
the gain and minimizing the expected number of edges on edge-minimal shortest-paths are
equivalent problems. The Shortcut Problem consists of adding a number c of shortcuts
to a graph, such that the gain is maximal.

Problem (Shortcut Problem). Let G = (V;E; len) be a graph and c 2 Z>0 be a
positive integer. Given an instance (G; c), the Shortcut Problem is to �nd a shortcut
assignment E0 with jE0j � c such that the gain wG(E

0) of E0 is maximal.

The Reverse Shortcut Problem searches for a shortcut assignment E0 of minimum
cardinality achieving at least some given gain k. We assure that such a solution exists by
stating an upper bound on k. To obtain k, we �rst compute the number��f(u; v) 2 V � V j dist(u; v) <1; u 6= vg

�� :
This is exactly the value of

P
s;t2V hG[S](s; t) when inserting all possible shortcuts S to G.

Then we subtract this value from
P

s;t2V hG(s; t) to yield a sharp bound on the gain.

Problem (Reverse Shortcut Problem). Let G = (V;E; len) be a graph and k 2 Z>0
be less than or equal to

P
s;t2V hG(s; t)�jf(u; v) 2 V �V j dist(u; v) <1; u 6= vgj. Given

an instance (G; k) the Reverse Shortcut Problem is to �nd a shortcut assignment E0

such that wG(E
0) � k and such that jE0j is minimal.

As an auxiliary problem to shorten proofs we also consider the Shortcut Decision
Problem.

Problem (Shortcut Decision Problem). Let G = (V;E; len) be a graph and c; k 2
Z>0 be positive integers. Given an instance (G; c; k), the Shortcut Decision Problem
is to decide if there is a shortcut assignment E0 for G = (V;E; len) such that wG(E

0) � k
and jE0j � c.

In order to show the complexity of the problems we make transformations from Set
Cover (see page 11) and from its optimization variant Min Set Cover.

Problem (Min Set Cover). Given a collection C of subsets of a �nite set U , �nd a set
cover C 0 of (C;U) of minimum cardinality.

Notation (Solution). Given a fShortcut Problem, Reverse Shortcut Problem,
Min Set Coverg-instance I, we denote by optfSP,RSP,MSCg(I) an arbitrary (optimal)
solution of I of the according problem.

We now show a relationship between Set Cover and the Shortcut Problem.

Lemma 15. Let (C;U; k) be a Set Cover-instance. Then, there is a graph G =
(V;E; len) such that there is a set cover C 0 for (C;U) of cardinality jCj0 � k if, and
only if there is a shortcut assignment E0 for G of cardinality jEj0 � k and gain w(E0) �
(2jCj+ 1)jU j. Further, the size of G and the time to compute G is polynomial in the size
of (C;U). Finally, given a shortcut assignment E0 with w(E0) � (2jCj + 1)jU j, we can
compute a set cover of cardinality at most jE0j in time polynomial in the size of (C;U; k).

4.3 Problem Statement and Complexity 71

c+
1

c−1

c+
2

c−2

c+
3

c−3

U1 U2 U3 U4

U

C−

C+

s {s}

Figure 4.1: Graph G = (V;E) constructed from the Set Cover-instance fc1 = f1; 2g; c2 =
f2; 3g; c3 = f3; 4gg.

Proof. Given an instance (C;U; k) of Set Cover we construct the graph G = (V;E; len)
as follows, see Figure 4.1 for an illustration: We denote the value 2jCj + 1 by �. We
introduce a node s to G. For each u 2 U , we introduce a set of nodes Uu = fu1; : : : ; u�g
to G. For each c in C, we introduce nodes c�, c+ and edges (c�; c+), (c+; s) to G.
The graph furthermore contains, for each u 2 U and each c 2 C with u 2 c, the edges
(ur; c

�); r = 1; : : : ;�. All edges are directed and have length 1. We abbreviate U :=S
u2U Uu, C

� := fc�jc 2 Cg and C+ := fc+jc 2 Cg.
We �rst observe that shortcuts in G are always contained in one of the following three

sets: U � fsg; C� � fsg and U � C+. Given u 2 U , we say u is covered by a shortcut
(c�; s) 2 C� � fsg if u 2 c.

Claim. Let C 0 be a set cover of (C;U). Then, the shortcut assignment E0 = f(c�; s) j c 2
C 0g ful�lls jE0j = jC 0j and w(E0) � �jU j.

Obviously jE0j = jC 0j holds. For each node v 2 U the hop-distance to node s decreases
by 1 due to the insertion of E0. As jU j = �jU j it is w(E0) � �jU j.

Claim. Let E0 be a shortcut assignment of G with w(E0) � �jU j. Then, we can construct
a shortcut assignment E00 � C��fsg of G with cardinality jE00j � jEj and w(E00) � �jU j
in polynomial time.

We �rst check if jE0j > jCj. In this case we set E00 := f(c�; s)jc 2 Cg and terminate.
Otherwise, we proceed as follows until E0 � C� � fsg or each u 2 U is covered by a
shortcut (c�; s): We choose a shortcut (x; y) in E0 \ (U � C+ [U � fsg). We further
choose a shortcut (c�; s) 2 V � V such that there is a u 2 c which is not covered by any
shortcut in E0. Then, we set E0 := (E0 [f(c�; s)g) n f(x; y)g.

The removal of a shortcut in U � C+ [U � fsg decreases the gain by at most 2. Let
u 2 U be an element that is not covered by a shortcut in E0 and let u 2 c 2 C. The
insertion of (c�; s) in E0 improves the hop distance h(v; s) for each node in v 2 Uu which
is not part of a shortcut in E0 by 1. As there are 2jCj+1 nodes in Uu and we have at most
jCj shortcuts, the gain increases by at least 2jCj + 1 � jCj. Summarizing, at each step
w(E0) increases at least by 2jCj+1�jCj�2 = jCj�1 � 0. Any shortcut assignment that
covers all u 2 U results in the desired gain. Hence, after termination E00 := E0\(C��fsg)
gives a solution to the claim.

Claim. Let E0 be a shortcut assignment of G with w(E0) � �jU j. Then, we can compute
in polynomial time a set cover C 0 for (C;U) of cardinality at most jE0j.

We use the last claim to transform E0 such that E0 � C��fsg and w(E0) � �jU j. It
is w(E0) = jE0j+�jfu 2 U j u is covered by a shortcut in E0gj � �jU j. This implies that
each u 2 U is covered by a shortcut in E0 and fcj(c�; s) 2 E0g is a set cover of (C;U). �

72 Chapter 4: The Shortcut Problem

Theorem 10. The Shortcut Decision Problem is NP-complete.

Proof. Let (C;U; k) be a Set Cover-instance and G be constructed as described in
Lemma 15. It is (C;U; k) a yes-instance if and only if the Shortcut Decision Problem-
instance (G; jkj; (j2jCj+ 1)jU j) is a yes-instance, and the transformation is polynomial.�

We remember that an optimization problem P is NP-hard if there is an NP-hard decision
problem P 0 such that following holds: Problem P 0 can be solved by a polynomial-time
algorithm which uses an oracle that, for any instance of P , returns {in constant time{ an
optimal solution along with its value.

Corollary. The Shortcut Problem and the Reverse Shortcut Problem are NP-
hard.

The transformation applied in Lemma 15 also preserves part of the non-approximability
of Min Set Cover.

Theorem 11. Unless P = NP, no polynomial-time constant-factor approximation algo-
rithm exists for the Reverse Shortcut Problem, i.e., there is no combination of an
algorithm apx and an approximation ratio � > 0 such that

� apx(G; k) is a shortcut assignment for G of gain at least k

� j apx(G; k)j=j optRSP(G; k)j � � for all instances (G; k) of the Reverse Shortcut
Problem

� the runtime of apx(G; k) is polynomial in the size of (G; k).

Proof. Given a Min Set Cover-instance (C;U), assume to the contrary that there is a
polynomial-time constant-factor approximation apx of the Reverse Shortcut Prob-
lem with approximation ratio �. Using apx, we construct a constant-factor approximation
algorithm for Min Set Cover, contradicting the fact that Min Set Cover is not con-
tained in the class APX unless P = NP [ACG+02]:

As described in Lemma 15, we �rst construct the graph G. Then we compute E0 =
apx(G; (2jCj+ 1)jU j) and �nally transform E0 to a set cover instance C 0 of (C;U) of size
at most jE0j. With Lemma 15 we have that

j optMSC(C;U)j = j optRSP(G; (2jCj+ 1)jU j)j :

Hence it is
jC 0j=j optMSC j � jE

0j=j optRSP(G; (2jCj+ 1)jU j)j � �

which shows the theorem. �

Theorem 12. Unless P = NP, no polynomial-time algorithm exists that approximates
the Shortcut Problem up to an additive constant, i.e., there is no combination of an
algorithm apx and a maximum error � 2 R>0 such that

� apx(G; c) is a shortcut assignment for G of cardinality at most c

� the runtime of apx(G; c) is polynomial in the size of (G; c)

� wG(optSP(G; c))�wG(apx(G; c)) � � for all instances (G; c) of the Shortcut Prob-
lem.

4.3 Problem Statement and Complexity 73

Proof. Assume to the contrary that there is an polynomial-time algorithm apx that ap-
proximates the Shortcut Problem up to an additive constant maximum error � and let
(G = (V;E; len); c; k) be a Shortcut Decision Problem-instance. To assure � 2 Z+,
we set � := d�e. We construct an instance (G = (V ;E; len); c) of the Shortcut Prob-
lem by adding to G, for each node v 2 V , exactly � := � + 1 + jV j2 nodes v1; : : : ; v�
and directed edges (v1; v); : : : ; (v�; v). We further set len(vi; v) = 1 for i = 1 : : : �. This
construction can be done in polynomial time. Let E0 denote apx(G; c).

Our aim is to solve (G = (V;E; len); c; k) in polynomial time. We can insert at most
cmax := jf(u; v) 2 V � V nEjdist(u; v) <1; u 6= vgj shortcuts into G. If c � cmax we can
decide the problem in polynomial time by adding all possible shortcuts and computing
the according gain. Hence, in the following we may assume c < cmax.

Claim. The endpoints of all shortcuts inserted by apx in G lie in V , i.e E0 � V � V .

If a shortcut in G is not contained in V � V it must be contained in V � V because
of the edge directions in G. Assume that there is a shortcut (u; v) 2 E0 such that (u; v) 2
(V n V)� V . Removing (u; v) from E0 will decrease the gain wG(E

0) by at most jV j2 (as
it represents only paths starting from u of length at most jV j + 1). Afterwards inserting
an arbitrary shortcut (x; y) 2 V � V increases the gain wG(E

0 n f(u; v)g) by at least � (as
it represents at least � paths ending at y of length at least 2). Summarizing,

wG((f(x; yg) [E
0) n f(u; v)g)� wG(E

0) � �� jV j2 > �

contradicting the approximation guarantee of apx.

Claim. We can use apx to decide (G = (V;E; len); c; k) in polynomial time contradicting
the assumption P 6= NP.

An exact algorithm can be seen as an approximation algorithm with maximum error
� = 0. We can show in a similar fashion as in the last claim that an optimal solution of
(G; c) only consists of shortcuts in V � V , i.e., optSP(G; c) � V � V . Given a shortcut
assignment E00 2 V � V it is wG(E

00) = (1 + �) � wG(E
00). Given an optimal solution E�

for (G; c) and (G; c), it follows

(1 + �)
�
wG(E

�)� wG(E
0)
�
= wG(E

�)� wG(E
0) � �:

Hence, wG(E
�) � wG(E

0) � �=(1 + �) < 1 which implies wG(E
�) = wG(E

0) as both
wG(E

�) and wG(E
0) are integer valued. This shows the claim and �nishes the proof. �

To obtain a better intuition on the Shortcut Problem, we report some properties
of the problem.

Trivial approximation bounds. Consider an arbitrary non-empty shortcut assignment
E0. It is 0 �

P
s;t2V hG(s; t) � jV j

3 for any graph G = (V;E; len) and hence wG(E
0) �

jV j3. As each shortcut in E0 decreases the hop-distance from its start to its end-node
by at least one 1 we have that each E0 is a trivial factor jV j3=jE0j-approximation of the
Shortcut Problem. Further, any shortcut assignment achieving the desired gain is a
trivial factor jV j2-approximation of the Reverse Shortcut Problem.

Bounded number of shortcuts. If the number of shortcuts we are allowed to insert is
bounded by a constant kmax, the number of possible solutions of the Shortcut Problem
is at most �

jV j2

kmax

�
=

jV j2!

(jV j2 � kmax)!kmax!
� jV j2kmax :

This is polynomial in the size of the input graph G = (V;E; len). We can evaluate a
given shortcut assignment by basically computing all-pairs shortest-paths, hence this can

74 Chapter 4: The Shortcut Problem

2

s1 s2

s3

Figure 4.2: Example Graph G with shortcuts s1, s2, s3. All edges for which no weight is given in
the picture have weight 1.

be done in time O(jV j2 log jV j + jV jjEj) using Dijkstra's algorithm. For this reason, the
case with bounded number of shortcuts can be solved in polynomial time by a brute-force
algorithm.

Monotonicity. In order to show the hardness of working with the problem beyond the
complexity results, Figure 4.2 gives an example that, given a shortcut assignment S and
an additional shortcut s 62 S, the following two inequalities do not hold in general:

w(S [fsg) � w(S) + w(s) (4.1)

w(S [fsg) � w(S) + w(s): (4.2)

It is easy to verify that in Figure 4.2 the inequalities w(fs1; s2g) > w(s1) + w(s2) and
w(fs1; s2; s3g) < w(fs1; s2g) + w(s3) hold.

Note that Inequality 4.2 holds if, for any pair of nodes (s; t) of graph G, there is at
most one, unique shortest s-t-path in G. We call such a graph sp-unique and prove that
fact in the following lemma.

Lemma 16. Given an sp-unique graph G = (V;E; len) and a set of shortcuts S =
fs1; s2; : : : ; skg. Then, wG(S) �

Pk
i=1wG(si) and wG(S) � wG(fs1; : : : sk�1g) + wG(sk).

Proof. Given arbitrary but �xed a; b 2 V we denote by wab
G (S) the gain of S on graph G

restricted to shortest a-b-paths, i.e., wab
G (S) = hG(a; b)� hG[S](a; b). Because of wG(S) =P

u;v2V w
uv
G (S) it su�ces to show wab

G (S) � wab
G (fs1; : : : sk�1g) + wab

G (sk). The inequality

wab
G (S) �

Pk
i=1w

ab
G (si) then follows by induction. We write sk = (x; y). It is

wab
G (S) = wab

G (fs1; : : : ; sk�1g) + wab
G[s1;:::;sk�1]

(f(x; y)g):

If (a; b) 2 P (x; y) we have

wab
G[s1;:::;sk�1]

(f(x; y)g) � hG[s1;:::;sk�1](f(x; y)g)� 1 � hG(f(x; y)g)� 1 = wab
G (sk):

Further, if (a; b) 62 P (x; y) we have wab
G[s1;:::;sk�1]

(f(x; y)g) = 0 = wab
G (sk): Hence, we have

wab
G (S) � wab

G (fs1; : : : sk�1g) + wab
G (sk)

which shows the lemma. �

Later, we use these results to present an approximation algorithm for sp-unique graphs.

4.4 ILP-Approaches 75

4.4 ILP-Approaches

In this section we present two exact, ILP-based approaches for the Shortcut Problem.
Throughout this section, we are given an instance (G = (V;E; len); c) of the Shortcut
Problem that is to be solved optimally.

For a vertex x 2 V , we denote by Px the set of all vertices u 2 V for which an x-u-path
exists. Remember that we denote by P+(x; y) the set of all vertices u 2 V for which a
shortest x-u path containing y exists and that we denote by P ./(x; y) the set of all vertices
that lie on a shortest x-y-path. We assume that all distances in the graph are precomputed
and hence that the sets Px, P

./(x; y) and P+(x; y) are known for all x; y 2 V .

Simple ILP-Formulation. The following ILP-formulation (SLSP) is straightforward
and simple but has the drawback to incorporate O(jV j4) variables and constraints. The
interpretation of the ILP is as follows: The variables kst (�; �) represent an edge-minimal
shortest s-t-path in the augmented graph. It is kst (u; v) = 1 if and only if the edge (u; v) is
used in this path. We characterize all edges or possible shortcuts (u; v) that can be used
for a shortest s-t-path by introducing the set

A := f(s; u; v; t) 2 V 4 j dist(s; u) + dist(u; v) + dist(v; t) = dist(s; t) <1; u 6= vg:

Consequently, for �xed s; v; t 2 V , the set fu 2 V j (s; u; v; t) 2 Ag contains each node u
such that the edge or shortcut (u; v) can be used in a shortest s-t-path. The variable c(u; v)
equals 1 if the computed shortcut assignment contains (u; v). Instead of maximizing the
gain, our aim is to minimize the sum of all hop-distances in the augmented graph. This
value equals the sum of all variables kst (u; v) with (s; u; v; t 2 A).

(SLSP) minimize
X

(s;u;v;t)2A

kst (u; v) (4.3)

such that

X
fv2V j(s;v;t;t)2Ag

kst (v; t) = 1 s 2 V; t 2 Ps n fsg (4.4)

X
fu2V j(s;u;v;t)2Ag

kst (u; v) =
X

fw2V j(s;v;w;t)2Ag

kst (v; w)
s 2 V; t 2 Ps n fsg

v 2 P ./(s; t); v 6= s; t
(4.5)

kst (u; v) � c(u; v) (s; u; v; t) 2 A; (u; v) 62 E (4.6)X
(u;v)2(V�V)nE

c(u; v) � c (4.7)

kst (u; v) 2 f0; 1g (s; u; v; t) 2 A (4.8)

c(u; v) 2 f0; 1g (u; v) 2 V � V n E (4.9)

Constraint 4.4 and Constraint 4.5 ensure that a shortest path is considered for every s-
t-pair: Constraint 4.4 requires that each target t owns exactly one incoming edge on an s-t-
path while Constraint 4.5 guarantees that, for each node v 6= s; t, there is an incoming edge
(on an s-t-path) if there is an outgoing edge (on such a path). The Constraint 4.6 forces
shortcuts to be present whenever edges are used that are not present in the graph. Finally,
Constraint 4.7 limits the number of shortcuts to be inserted. Consequently, a solution of

76 Chapter 4: The Shortcut Problem

model (SLSP) gives an optimal solution of (G; c): The set f(u; v) 2 V � V jc(u; v) = 1g is
a shortcut assignment for G of maximum gain and cardinality at most c.

Obviously, there can be more than one edge-minimal shortest path from a given source
to a given target. Hence, the model may incorporate unwanted symmetries. In order to
break these symmetries one could use additional constraints. We did not further pursue
this direction because of the huge number of constraints that would be necessary. Note
that the model stays correct when relaxing Constraint 4.8 to

kst (u; v) 2 [0; 1] (s; u; v; t) 2 A:

Flow-Based ILP-Formulation. The number of variables and constraints of the fol-
lowing integer linear program (LSP) is cubic in jV j. The model exhibits two types of
variables. It is c(u; v) = 1 if and only if the solution found uses the shortcut (u; v).
Instead of directly counting the hop-distance for each pair of nodes, we use a
ow-like
formulation that counts, for each edge, how often it is used in the solution. More de-
tailed, the value of f s(u; v) can be interpreted as the number of vertices t for which the
hop-minimal shortest s-t-path found by (LSP) includes the edge or shortcut (u; v). To
characterize all possible combinations of s; u; v 2 V such that (u; v) could be an edge or a
shortcut in the shortest-paths subgraph with root s, we introduce the set

B := f(s; u; v) 2 V 3 j dist(s; u) + dist(u; v) = dist(s; v) <1; u 6= vg :

The
ow outgoing from source s is exactly the number of vertices reachable from s (Con-
straint 4.11). As each node consumes exactly one unit of
ow (Constraint 4.12), it is
assured that a shortest path from s to any reachable node is considered. Constraint 4.13
forces shortcuts to be present whenever edges are used that are not present in the graph.
Finally, Constraint 4.14 limits the number of shortcuts to be inserted. Again, instead of
maximizing the gain, our aim is to minimize the sum of all hop-distances in the augmented
graph which is given as obj(f; c).

(LSP) minimize obj(f; c) :=
X

(s;u;v)2B

fs(u; v) (4.10)

such that

X
fv2V j(s;s;v)2Bg

fs(s; v) = jPsj � 1 s 2 V (4.11)

X
fu2V j(s;u;v)2Bg

fs(u; v) = 1 +
X

fw2V j(s;v;w)2Bg

fs(v; w) s 2 V; v 2 Ps; v 6= s (4.12)

fs(u; v) � jP+(s; v)j � c(u; v) (s; u; v) 2 B; (u; v) 62 E; (4.13)X
(u;v)2(V�V)nE

c(u; v) � c (4.14)

fs(u; v) 2 Z�0 (s; u; v) 2 B (4.15)

c(u; v) 2 f0; 1g (u; v) 2 V � V n E (4.16)

We now prove the correctness of model (LSP). The proof of the following preparatory
lemma shows that a solution of (LSP) can be converted into a solution of equal objective
value that, for each node, induces a shortest-paths tree.

4.4 ILP-Approaches 77

Lemma 17. There exists an optimal solution (f; c) of (LSP), such that for each s 2 V ,
the subgraph induced by Ts := f(u; v) 2 V � V j fs(u; v) > 0g is a tree.

Proof. Let (f; c) be a solution of (LSP). Then Ts is a directed acyclic graph with root s
as Ts is contained in the shortest-paths subgraph of G with root s. As long as Ts is not a
tree proceed as follows:

First, consider an arbitrary node y such that there are two edges (v; y) and (w; y) in Ts.
Let x be an arbitrary node such that there are disjoint x-y-paths P1 and P2 in Ts. Such a
node x has to exist as there is more than one shortest s-y-path in Ts and we can take any
topologically maximal node x for which there is more than one x-y-path. Let (y0; y) be
the last edge on P1 and � := fs(y0; y). For each edge e on P1 we set f

s(e) := fs(e)��,
for each edge e on P2 we set f

s(e) := fs(e) + �.
It is easy to verify that this does not change the feasibility of the solution. Obviously,

the objective function cannot decrease because of this operation as (f; c) is optimal. Fur-
ther, the objective function may not increase: Assume the contrary. Then P2 contains
more edges than P1. Let (y00; y) be the last edge of P2 and �0 := f s(y00; y). We would
obtain a better feasible solution by setting fs(e) := fs(e) ��0 for each edge e 2 P2 and
f s(e) := fs(e) + �0 for each edge e 2 P1, contradicting the optimality of (f; c). �

The following theorem shows that model (LSP) and the Shortcut Problem are equiv-
alent with regard to exact solutions.

Theorem 13. Given an optimal solution E0 of the Shortcut Problem, the assignment

c0(u; v) :=

�
1 ; (u; v) 2 E0

0 ; otherwise

can be extended to an optimal solution of (LSP). Further, given an optimal solution (f; c)
of (LSP), the set

E00 := f(u; v) 2 V � V j c(u; v) = 1g

is an optimal solution for the Shortcut Problem.

Proof. Let (G = (V;E; len); c) be a Shortcut Problem-instance. As we have observed
before, maximizing the gain is equivalent to �nding a shortcut assignment E0 that mini-
mizes obj(E0) :=

P
s;t2V hG[E0](s; t). Throughout this proof, we use this point of view.

Let E0 be a shortcut assignment of (G = (V;E; len); c). Consider an arbitrary ver-
tex s 2 V . There is a shortest-paths tree Ts � G[E0] such that, for each t 2 V with
dist(s; t) < 1, the number of edges on the s-t-path in Ts equals hG[E0](s; t). Such a tree
Ts can be computed using Dijkstra's algorithm by altering the distance labels to be tuples
(edge length; hop distance) and applying lexicographical ordering. Let

c0(u; v) =

(
1 ; (u; v) 2 E0

0 ; otherwise

and

f 0s(u; v) =

�
0 ; (u; v) 62 Ts
jfw j w is descendant of v in Tsgj ; otherwise

The pair (c0; f 0) is a feasible solution of (LSP). We denote by PTs(s; t) the s-t-path in Ts
and by jPTs(s; t)j the number of edges on this path. It isX
t2Ps

hG[E0](s; t) =
X
t2Ps

jPTs(s; t)j =
X
t2Ps

X
e2Ts

1e(PTs(s; t)) =
X
e2Ts

X
t2Ps

1e(PTs(s; t))

=
X

(u;v)2Ts

jfw j w is descendant of v in Tsgj =
X

u2Ps; v2P+(s;u); u 6=v

f 0s(u; v)

78 Chapter 4: The Shortcut Problem

Consequently, obj(f 0; c0) = obj(E0).
On the other hand, let (f; c) be a feasible solution of (LSP). With Lemma 17 we may

assume that, for each node s, the subgraph induced by Ts := f(u; v) 2 V �V j fs(u; v) > 0g
is a tree. Hence, we can show by induction that f s(u; v) = jfw j w is descendant of v in Tsgj
for each edge (u; v) 2 Ts. Further, the set

E00 = f(u; v) 2 V � V j c(u; v) = 1g

is a feasible solution of the Shortcut Problem. Finally, we show that obj(E00) �
obj(f; c). We consider each root s 2 V separately. To bound the hop-distances in G[E00]
starting at s from above we use the shortest-paths tree Ts as a witness. This yieldsX

t2Ps

hG[E00](s; t) �
X
t2Ps

jPTs(s; t)j

With the same computation as above, we deriveX
t2Ps

hG[E00](s; t) �
X
t2Ps

jPTs(s; t)j =
X

u2Ps; v2P+(s;u); u 6=v

fs(u; v)

which shows the claim. �

Tuning the Flow-Based Formulation. In order to simplify model (LSP), we relax
Constraint 4.15 to

fs(u; v) 2 R�0 (s; u; v) 2 B (4.17)

and denote the resulting model (4.10, 4.11, 4.12, 4.13, 4.14, 4.16, 4.17) by (rLSP).

Lemma 18. Let (f; c) be a solution of (rLSP). Then there is a solution (f 0; c) of (LSP)
with same objective value.

Proof. Note that Lemma 17 also holds for (rLSP). Hence, we assume that, for each
node s, the subgraph induced by Ts := f(u; v) 2 V � V j fs(u; v) > 0g is a tree. The
integrality of f now follows by induction on the nodes in reverse topological order and
Constraint 4.12. �

In order to heuristically speedup the solving process we may add the following constraints
that give bounds on the f -variables.

fs(u; v) � jP+(s; v)j (s; u; v) 2 B (4.18)

An additional heuristic improvement works as follows: The sum
P

s;t2V hG(s; t) is the
value of the objective function of model (LSP) in case no shortcuts are allowed. The value
(hG(a; b)�1) � jP (a; b)j is an upper bound for the amount that shortcut (a; b) improves the
objective function. We precompute

P
s;t2V hG(s; t) and, for each pair (a; b) of connected

nodes, the value (hG(a; b)� 1) � jP (a; b)j. Then we can add the constraintX
(s;u;v)2B

fs(u; v)

| {z }
=obj(f;c)

�
X
s;t2V

hG(s; t)

| {z }
lower bound of obj(f; 0)

�
X
a;b2V

dist(a;b)<1

c(a; b) � (hG(a; b)� 1) � jP (a; b)j| {z }
upper bound of improvement
because of shortcut (a; b)

(4.19)

to additionally tighten the model.

4.4 ILP-Approaches 79

Case Study. While our main interest on the problem is of theoretical nature, we re-
port some experimental results of the ILP-based approaches. This shall allow for a brief
comparison of both formulations and for assessing the heuristic improvements. Our im-
plementation is written in Java using CPLEX 11.2 as ILP-Solver and was compiled with
Java 1.6. The tests were executed on one core of an AMD Opteron 6172 Processor, run-
ning SUSE Linux 10.3. The machine is clocked at 2.1 GHz and has 16 GB of RAM per
processor.

We tested on four di�erent graphs. The graph Gdisk is a unit-disk graph and generated
by randomly assigning 100 nodes to a point in the unit square of the Euclidean plane. Two
nodes are connected by an edge if their Euclidean distance is below a given radius. This
radius is adjusted such that the resulting graph has approximately 1000 edges. The graph
Gka represents a part of the road network of Karlsruhe. It contains 102 nodes and 241
edges. The graph Ggrid is based on a two-dimensional 10� 10 square grid. The nodes of
the graph correspond to the crossings in the grid. There is an edge between two nodes if
they are neighbors on the grid. Finally, the graph Gpath is a path consisting of 30 nodes.
In each graph, edge weights are randomly chosen integer values between 1 and 1000. For
each experiment, the computation time has been limited to 60 minutes. The integrality
constraints of the variables kts(�; �) of the simple model and the variables f s(�; �) of the
ow
model have been relaxed. Some example outcomes are depicted in Figure 4.3.

The results are summarized in Table 4.1. Columns mean the following: Columns
Eq4.19 and Eq4.18 indicate if Equation 4.19 and Equation 4.18 are incorporated in the
model. For the simple model, we adapted Equation 4.19 in a straightforward fashion.
Columns opt show if an optimal solution has been found and proven to be optimal.
Columns gap give the guaranteed approximation ratio of the best feasible solution found
within 60 minutes, i.e., the value (best feasible solution found - best proven lower bound)
/ best proven lower bound. The value of gap is 1 if no feasible solution has been found in
60 minutes. Finally, columns time give the computation time in minutes.

We observe that the simple model does not bene�t from Equation 4.19 and the plain
version without this enhancement is always superior. For the
ow formulation, it turned
out that the version enriched with Equation 4.18 is best: This version is always better
than the plain model without improvement and than the formulation enhanced only with
Equation 4.19. Further, it is most times better than the version enriched with Equa-
tion 4.19 and 4.18. Finally, we see that Equation 4.19 was an improvement to the plain
model if more than one shortcut was to be inserted.

Comparing the two formulations we obtain that the
ow formulation is superior. The

ow formulation enhanced with Equation 4.18 was most times better than the simple
model, sometimes with a big gap. With one exception, the di�erence was small when the
simple model was better. Concluding, in this testset the
ow formulation enhanced with
Equation 4.18 performed best.

In our experiments we did not take memory consumption into account as the limiting
factor was computation time. However, to enable a vague comparison of the memory
consumption, we report in Table 4.2 the number of nonzeros reported by CPLEX after
the presolve routine. Note that this number turned out to be almost independent from
the number of shortcuts to be inserted.

80 Chapter 4: The Shortcut Problem

Ggrid Gka Gpath Gdisk

shortcuts model Eq4.19 Eq4.18 opt gap time opt gap time opt gap time opt gap time

1
ow X 0 2 X 0 5 X 0 1 X 0 2
1
ow X X 0 2 X 0 3 X 0 0 X 0 1
1
ow X X 0 4 X 0 8 X 0 0 X 0 3
1
ow X X X 0 2 X 0 7 X 0 0 X 0 2
1 simple X 0 16 X 0 29 X 0 1 X 0 14
1 simple X X 0 18 X 0 49 X 0 1 X 0 24
2
ow 0.02 60 0.09 60 0.2 60 X 0 12
2
ow X X 0 10 X 0 35 X 0 8 X 0 2
2
ow X X 0 17 0.01 60 0.06 60 X 0 2
2
ow X X X 0 3 X 0 40 X 0 9 X 0 2
2 simple X 0 20 X 0 26 X 0 2 X 0 12
2 simple X X 0 21 X 0 48 X 0 2 X 0 20
5
ow 0.16 60 0.53 60 0.4 60 0.06 60
5
ow X X 0 28 X 0 46 0.16 60 X 0 4
5
ow X 0.05 60 0.12 60 0.39 60 X 0 55
5
ow X X 0 60 0.01 60 0.17 60 X 0 9
5 simple X 0 30 X 0 40 0.04 60 X 0 15
5 simple X X 0 58 1 60 1 60 X 0 38
10
ow 0.58 60 0.83 60 0.45 60 0.11 60
10
ow X 0.03 60 0.49 60 0.27 60 X 0 27
10
ow X 0.14 60 0.49 60 0.49 60 0.07 60
10
ow X X 0.05 60 0.34 60 0.32 60 X 0 25
10 simple 1 60 1 60 0.47 60 X 0 22
10 simple X 1 60 1 60 2.08 60 X 0 39

Table 4.1: Experimental results of the ILP-approaches.

model Eq4.19 Eq4.18 Ggrid Gka Gpath Gdisk

ow 274.818 328.102 34.391 249.564

ow X 327.022 392.422 41.849 295.460

ow X 342.689 409.157 43.029 311.547

ow X X 394.737 473.390 50.379 357.146
simple 1.241.560 1.724.034 259.211 1.005.390
simple X 1.551.052 2.165.022 324.256 1.250.583

Table 4.2: Number of nonzeros reported by CPLEX after the presolve routine for each model and
graph.

4.4 ILP-Approaches 81

graph ka with 5 optimal shortcuts graph ka with 10 optimal shortcuts

graph grid with 5 optimal shortcuts graph grid with 10 optimal shortcuts

graph disk with 5 optimal shortcuts graph disk with 10 optimal shortcuts

Figure 4.3: Optimal shortcut assignments for some example graphs.

82 Chapter 4: The Shortcut Problem

4.5 Approximation using the Greedy-Strategy

In this section, we propose a polynomial-time algorithm that approximatively solves the
Shortcut Problem in a greedy fashion. Given the number c of shortcuts to insert,
the approach �nds a c-approximation of the optimal solution if the underlying graph is
sp-unique. While the algorithm works on arbitrary graphs, we restrict our description to
strongly connected graphs to improve readability. The restriction to sp-unique graphs is
only needed for achieving the approximation guarantee.

Description. Given the instance (G; c), the Greedy approximation scheme consists of
iteratively constructing a sequence G = G0; G1; : : : ; Gc of graphs where Gi+1 results from
solving the Shortcut Problem on Gi with only one shortcut allowed to insert. The
pseudocode for the approach is given as Algorithm 4.1. The following theorem shows the
approximation ratio for Greedy.

Algorithm 4.1: GREEDY(G; c)

input : graph G = (V;E; len), number of shortcuts c
output: shortcut assignment E0

1 E0 ;; for i = 1; 2; : : : ; c do
2 (x; y) argmax(x;y)2(V�V)n(E[E0); dist(x;y)<1fwG[E0](f(x; y)g)g

3 E0 E0 [f(x; y)g

4 output E0.

Theorem 14. Consider an sp-unique graph G = (V;E; len) together with a positive
integer c 2 Z>0. The solution E0 := Greedy(G; c) of the Greedy-approach is a c-
approximation of an optimal solution E�, i.e., wG(E

�)=wG(E
0) � c.

Proof. Let e1 2 E0 be the �rst shortcut inserted by Greedy. Then, wG(e) � wG(e1) for
each e 2 E�. Moreover by Lemma 16, w(E�) �

P
e2E� w(e). This yields

wG(E
�) �

X
e2E�

wG(e) �
cX

i=1

wG(e1) = c � wG(e1) � c � wG(E
0)

which shows w(E�)=w(E0) � c. �

Basic Runtime Issues. The runtime of Greedy crucially depends on how the next
shortcut to be inserted is found. A straightforward approach would be to �rst precompute
the distance dist(s; t) for each pair s; t 2 V as well as the shortest-paths subgraph Gs for
each node s 2 V . Then, the evaluation of a possible shortcut can be done by running
breadth-�rst searches on the jV j graphs Gs. After insertion of a shortcut (a; b) to G, the
shortest-paths subgraphs Gs can be adapted by adding (a; b) to each subgraph Gs for
which dist(s; a) + dist(a; b) = dist(s; b). Hence Gs contains at most jEj+ c edges and the
time needed for evaluating one shortcut is O(jV j � (jV j+ jEj+ c)). This leads to a runtime
in O(jV j2 � jV j � (jV j + jEj + c)) for evaluating all jV j2 possible shortcuts. The runtime
O(jV j2 log jV j+ jV j � jEj) of precomputing the shortest-paths subgraphs can be neglected.

In the remainder of this section, we show how to perform this step in time O(jV j3)
using a dynamic program. Consequently, the Greedy-strategy can be implemented to
work in time O(c � jV j3).

4.5 Approximation using the Greedy-Strategy 83

Greedily �nding one optimal shortcut in sp-unique graphs. In sp-unique graphs
each shortest path is edge-minimal. Hence, we can compute the gain of a shortcut (a; b)
restricted to a pair of nodes (s; t) 2 P (a; b) by the equation

hG(s; t)� hG[(a;b)](s; t) = hG(a; b)� 1: (4.20)

Exploiting this we obtain

w(a; b) = (hG(a; b)� 1) � jP (a; b)j = (hG(a; b)� 1) �
X

s2P�(a;b)

jP+(s; b)j: (4.21)

This equation directly leads to Algorithm 4.2 that �nds one optimal shortcut for sp-unique
graphs. The runtime of the algorithm lies in O(jV j3) as the computation of jP+(s; b)j is
linear in jV j: For each v 2 V we have to check if dist(s; b) + dist(b; v) = dist(s; v).

Algorithm 4.2: greedy step on sp-unique graphs

input : graph G = (V;E; len), distance table dist(�; �) of G
output: optimal shortcut (a; b)

1 initialize w(�; �) � 0
2 compute hG(�; �)
3 for s 2 V do
4 for b 2 V do
5 compute jP+(s; b)j
6 for a 2 V do
7 if dist(s; a) + dist(a; b) = dist(s; b) then
8 w(a; b) w(a; b) + (hG(a; b)� 1)jP+(s; b)j

9 output arbitrary (a; b) with maximum w(a; b)

The problem of this approach is that we can not apply Algorithm 4.2 for the Greedy-
strategy, even when the input graph is sp-unique: After insertion of the �rst shortcut, the
augmented graph is not sp-unique any more and hence we can not use Equation 4.20.

An O(jV j3)-implementation for greedily �nding one optimal shortcut. In the
following we generalize the above approach to work with arbitrary graphs. The o�set

!sb(t) := hG(s; b) + hG(b; t)� hG(s; t)

re
ects the increase of the hop-distance between given nodes s and t, if we restrict ourselves
to shortest paths containing b. We de�ne the potential gain gs(a; b) of a shortcut from a
to b with respect to s as

gs(a; b) := hG(a; b)� 1� !sa(b) :

This is an upper bound for the decrease of the hop-distance between s and any t in the
graph G[(a; b)].

Lemma 19. For all vertices s; t; a; b 2 V such that (s; t) 2 P (a; b) it holds that

hG(s; t)� hG[(a;b)](s; t) = maxfgs(a; b)� !sb(t), 0g:

84 Chapter 4: The Shortcut Problem

Proof. Directly from the de�nition of potential gain and o�set we obtain

gs(a; b)� !sb(t) > 0() hG(s; t) > hG(s; a) + 1 + hG(b; t) (4.22)

Case [gs(a; b) � !sb(t) > 0]. Then hG(s; t) > hG(s; a) + 1 + hG(b; t). The presence of
shortcut (a; b) decreases the s-t-hop-distance to hG[(a;b)](s; t) = hG(s; a) + 1 + hG(b; t) as
the lemma assumes that there is a shortest s-a-b-t-path. This yields

hG(s; t)� hG[(a;b)](s; t) = hG(s; t)� hG(s; a)� 1� hG(b; t)

= hG(a; b)� 1

�hG(s; a)� hG(a; b) + hG(s; b)| {z }
=�!sa(b)

�hG(s; b)� hG(b; t) + hG(s; t)| {z }
=�!sb(t)

= gs(a; b)� !sb(t):

Case [gs(a; b) � !sb(t) � 0]. With Equation (4.22) we obtain hG(s; t) � hG(s; a) + 1 +
hG(b; t). Hence, a shortcut (a; b) does not improve the hop-distance from s to t and we
have hG(s; t)� hG[(a;b)](s; t) = 0. �

Lemma 19 implies that vertices t in P+(s; b) with the same value of !sb(t) bene�t from
a shortcut ending at b to the same extent, if we restrict ourselves to shortest paths starting
at s. We divide the vertices in P+(s; b) in equivalence classes with respect to !sb. Let

�i(s; b) := jft 2 P
+(s; b) j !sb(t) = igj

be the number of vertices in these equivalence classes.
The algorithm we propose makes use of partial (weighted) sums of the �i(s; b) for

�xed s and b in V . For convenience, we introduce two further abbreviations :

Cr(s; b) :=
rX
i=0

�i(s; b)

Dr(s; b) :=
rX
i=0

i ��i(s; b):

With these de�nitions, we can form an alternative equation for w(a; b).

Lemma 20. Let a; b; s; t 2 V be arbitrary nodes. Then

w(a; b) =
X

s2P�(a;b)
gs(a;b)>0

�
gs(a; b) � Cgs(a;b)�1(s; b)�Dgs(a;b)�1(s; b)

�
:

Proof.

w(a; b) =
X
s;t2V

�
hG(s; t)� hG[(a;b)](s; t)

�
=

X
(s;t)2P (a;b)

�
hG(s; t)� hG[(a;b)](s; t)

�
+

X
(s;t)=2P (a;b)

�
hG(s; t)� hG[(a;b)](s; t)

�| {z }
=0

=
X

(s;t)2P (a;b)
!sb(t)<gs(a;b)

�
hG(s; t)� hG[(a;b)](s; t)

�
+

X
(s;t)2P (a;b)
!sb(t)�gs(a;b)

�
hG(s; t)� hG[(a;b)](s; t)

�| {z }
=0 with Lemma 19

:

4.5 Approximation using the Greedy-Strategy 85

With Lemma 19, we yield

w(a; b) =
X

(s;t)2P (a;b)
!sb(t)<gs(a;b)

gs(a; b)� !sb(t):

It is !sb(t) � 0 as (s; t) 2 P (a; b) and hence we have

w(a; b) =
X

s2P�(a;b)
gs(a;b)>0

gs(a;b)�1X
i=0

X
t2P+(s;b)
!sb(t)=i

gs(a; b)� i:

As gs(a; b) is independent of t we can transform the equation as follows

w(a; b) =
X

s2P�(a;b)
gs(a;b)>0

gs(a;b)�1X
i=0

�i(s; b) �
�
gs(a; b)� i

�

=
X

s2P�(a;b)
gs(a;b)>0

�
gs(a; b)

gs(a;b)�1X
i=0

�i(s; b)�

gs(a;b)�1X
i=0

�
i ��i(s; b)

��

=
X

s2P�(a;b)
gs(a;b)>0

�
gs(a; b) � Cgs(a;b)�1(s; b)�Dgs(a;b)�1(s; b)

�
:

This �nishes the proof. �

Lemma 20 is the key for obtaining our O(jV j3)-algorithm for performing one Greedy-
step, which is stated as Algorithm 4.3: First, all distances and hop-distances are precom-
puted. We then consider, for each s 2 V , each shortest-paths subgraph with root s sepa-
rately. It is easy to see that the values of ��(s; �), C�(s; �) and D�(s; �) can be computed in
time O(jV j2).

Prepared with these values we are ready to apply Lemma 20. We initialize the values
w(�; �) with 0. For each triple s; a; b 2 V , we check if there is a shortest s-a-b-path and if
gs(a; b) > 0. We increment w(a; b) according to Lemma 20 in case of a positive answer.
Finally, we take an arbitrary shortcut (a; b) that maximizes w(a; b). The correctness of the
algorithm directly follows from the de�nitions of ��(�; �), C�(�; �) and D�(�; �) and Lemma 20.
To reach the runtime in O(jV j3) we answer the question if a shortest s-a-b path exists by
checking if dist(s; a) + dist(a; b) = dist(s; b).

86 Chapter 4: The Shortcut Problem

Algorithm 4.3: Greedy Step

Input: Strongly connected graph G = (V;E; len)
Output: shortcut (a; b) maximizing wG(f(a; b)g)

1 compute dist(�; �), h(�; �)
2 initialize w(�; �) � 0
3 initialize �i(�; �) � 0

4 for s 2 V do
5 for b; t 2 V do /* compute � */

6 if there exists a shortest s-t-path containing b in G then
7 j !sb(t)
8 �j(s; b) �j(s; b) + 1

9 for b 2 V do /* compute C and D */

10 C0(s; b) �0(s; b)
11 D0(s; b) 0
12 for r := 1 to jV j � 1 do
13 Cr(s; b) Cr�1(s; b) + �r(s; b)
14 Dr(s; b) Dr�1(s; b) + r ��r(s; b)

15 for a; b 2 V do /* apply Lemma 20 */

16 if there exists a shortest s-b-path containing a and gs(a; b) > 0 then
17 w(a; b) w(a; b) + gs(a; b) � Cgs(a;b)�1(s; b)�Dgs(a;b)�1(s; b)

18 output arbitrary (a; b) with maximum w(a; b)

4.6 Evaluation of the Measure Function

To evaluate the gain of a given shortcut assignment, a straightforward algorithm requires
computing all-pairs shortest-paths. Since this computation is expensive, we provide a
probabilistic method to quickly assess the quality of a shortcut assignment E0. This
approach can be used for networks where the computation of all-pairs shortest-paths is
prohibitive, such as big road networks. For the sake of simplicity we state the approach for
the evaluation of �(E0) :=

P
s;t2V hG[E0](s; t), the adaption to the Shortcut Problem

is straightforward. More concrete, we apply the sampling technique to obtain an unbiased
estimate for �(E0) and apply Hoe�ding's Bound [Hoe63] to get a con�dence intervall for
the outcome. As an auxiliary result we propose algorithms that approximate the maximum
hop-distance in a graph.

Theorem 15 (Hoe�ding's Bound). IfX1; X2; : : : ; XK are real valued independent ran-
dom variables with ai � Xi � bi and expected mean � = E[

P
Xi=K], then

P

(�����
PK

i=1Xi

K
� �

����� � �

)
� 2e�2K

2�2=
PK

i=1(bi�ai)
2

for each � > 0.

We now model the assessment of a shortcut assignment E0 of a graph G in terms of
Hoe�ding's Bound. Let X1; : : : ; XK be the family of random variables such that Xi is
de�ned by

Xi := jV j
X
t2V

hG[E0](si; t)

4.6 Evaluation of the Measure Function 87

where si 2 V is a vertex chosen uniformly at random. We estimate �(E0) by

�̂ :=
KX
i=1

Xi=K :

Because of

E(�̂) = E

KX
i=1

Xi

K

!
=

KX
i=1

E(Xi)

K
= E(X1) =

1

jV j

X
s2V

jV j
X
t2V

hG[E0](s; t) = �(E0)

we can apply Hoe�ding's Bound if we know lower and upper bounds for the variables Xi.
The values 0 and jV j3 are trivial such bounds. We introduce the notion of shortest-paths
diameter to obtain stronger upper bounds.

De�nition. The shortest-paths diameter spDiam(G) of a graph G is the maximum hop-
distance from any node to any other node in G.

Applying Hoe�ding's Bound with 0 � Xi � jV j2 spDiam(G) yields

P
����̂� �(E0)

�� � �
	
� 2e�2K�2=(jV j4�spDiam(G)2)

and with lrel := �=�̂ we have

P

����� �̂� �(E0)

�̂

���� � lrel

�
� 2e�2K(�̂�lrel)

2=(jV j4�spDiam(G)2)

where the parameter lrel states the relative size of the con�dence intervall. The values
of the variables Xi are chosen by randomly choosing values from the �nite population
c1; : : : ; cjV j with replacement where ci := jV j

P
t2V hG[E0](vi; t) and V = fv1; : : : vjV jg. In

[Hoe63] it is reported that Hoe�ding's Bound stays correct if, when sampling from a
�nite population, the samples are being chosen without replacement. Algorithm 4.4 is
an approximation algorithm that exploits the above inequality and that samples without
replacement.

Algorithm 4.4: stochastically assess shortcut assignment

input : graph G = (V;E [E0; len),
size of con�dence intervall lrel, signi�cance level �

output: approximation �̂ for � =
P

s;t2V hG(s; t)

1 compute random order v1; v2; : : : ; vn of V

2 compute upper bound spDiam for shortest-paths diameter
3 i 0; sum 0; �̂ 0

4 while not (i = jV j or 2 � exp(�2i(�̂ � lrel)
2=(jV j4spDiam(G)2)) � �) do

5 i i+ 1
6 T grow shortest-paths tree rooted at vi (favor edge-minimal shortest paths)
7 sum sum+jV j �

P
t2V h

0
G(vi; t)

8 �̂ sum =i

9 output �̂

88 Chapter 4: The Shortcut Problem

Approximating the Shortest-Paths Diameter. A straightforward approach to com-
pute the exact shortest-paths diameter requires computing all-pairs shortest-paths. This
is reasonable when working with mid-size graphs that allow the computation of all-pairs
shortest-paths at least once and for which a large number of shortcut assignments is to
be evaluated. In case the computation of all-pairs shortest-paths is prohibitive one can
also use upper bounds for the shortest-paths diameter. We obtain an upper bound the
following way:

First we compute an upper bound diam(G) for the diameter of G. To do so we choose a
set of nodes s1; s2; : : : ; sl uniformly at random. We denote by �G(v) = maxfdistG(v; t) j t 2
V g the eccentricity of node v in graph G = (V;E; len). For each node si, the value
� �
G
(si) + �G(si) is an upper bound for the diameter of G: Let u; v 2 V be such that

dist(u; v) = diam(G). Then

diam(G) = dist(u; v) � dist(u; si) + dist(si; v) � � �
G
(si) + �G(si) :

We set diam(G) to be the minimum of these values over all si. The bound diam(G) is
a 2-approximation for the exact diameter diam(G) of G (already for l = 1) as there are
u; v 2 V and si 2 V such that

diam(G) = dist(u; si) + dist(si; v) � diam(G) + diam(G) = 2 � diam(G):

Let lenmax and lenmin denote the lengths of a longest and a shortest edge in G, respectively.
The value diam(G)= lenmin is an upper bound for spDiam(G): Let P be an edge-minimal
shortest path in G with jP j = spDiam(G) edges. Then

spDiam(G) = jP j �
len(P)

lenmin
�

diam(G)

lenmin
�

diam(G)

lenmin
:

Further, diam(G)= lenmin is a 2 � lenmax = lenmin-approximation for spDiam(G) as with
spDiam(G) � diam(G)= lenmax follows that

diam(G)

lenmin
�

2 diam(G)

lenmin
�

2 lenmax � spDiam(G)

lenmin
:

A more expensive approach works as follows, pseudocode is given as Algorithm 4.5: After
computing diam(G), we choose a tuning parameter �. Then we grow, for each node s
in G, a shortest-paths tree whose construction is stopped directly before one vertex with
distance greater than diam(G)=� is settled. When breaking ties between di�erent shortest
paths we favor edge-minimal shortest paths. We denote by �max the maximum number of
edges of the shortest paths on any of the trees grown plus one. Then spDiam := �max � � is
an upper bound for the shortest-paths diameter of G: Let P = (v1; : : : ; vn) be an arbitrary
edge-minimal shortest path in G. We can split P in sub-paths

P1 = (v1; : : : ; vk1); P2 = (vk1 ; : : : ; vk2); : : : ; P` = (vk`�1
; : : : ; vk`)

such that

dist(vki ; vki+1
) > diam(G)=� and dist(vki ; vki+1�1) � diam(G)=� :

The number ` of these subpaths is at most � as ` > � would imply that

len(P) >
diam(G)

�
(`� 1) � diam(G):

4.7 Conclusion 89

It is jPij � �max which yields jP j � �max ��. As P was arbitrary we have that spDiam(G) �
�max � �. Further �max � � is a 2�-approximation and an �(1 + 1=(�max� 1))-approximation
of spDiam(G) : With �max � 1 � spDiam(G) follows that

�max � �

spDiam(G)
�

(spDiam(G) + 1)�

spDiam(G)
= �(1 +

1

spDiam(G)
) � �(1 +

1

�max � 1
) � 2 � � :

Algorithm 4.5: compute upper bound for shortest-paths diameter

input : graph G = (V;E; len), tuning parameter l, tuning parameter �
output: upper bound spDiam for the shortest-paths diameter of G

1 diam(G) 1; � 0;

2 for i = 1; : : : ; l do /* compute diam(G) */

3 s choose node uniformly at random
4 grow shortest-paths tree rooted at s

5 grow shortest-paths tree rooted at s on the reverse graph
 �
G

6 diam(G) minfdiam(G);maxv2V fdist(s; v)g+maxv2V fdist(v; s)gg

7 for s 2 V do /* compute spDiam(G) */

8

T grow partial shortest-paths tree rooted at s
(favoring edge-minimal shortest paths). Stop growing the tree directly

before the �rst node with dist(s; v) > diam(G)=� is settled.
�max maxf�max; 1 + maximal number of edges of a path in T g

9 output spDiam := �max � �

Obviously, the whole proceeding only makes sense for graphs for which the shortest-
paths diameter is much smaller than the number of nodes. This holds for a wide range
of real-world graphs, in particular for road networks. For example, the road network of
Luxembourg provided by the PTV AG [PTV08] consists of 30733 nodes and has a shortest-
paths diameter of only 429. The road network of the Netherlands consists of 946.632 nodes
and has a shortest-paths diameter of 1503.

4.7 Conclusion

Summary. In this chapter we studied two problems. The Shortcut Problem is the
problem of how to insert c shortcuts in G such that the expected number of edges that are
contained in an edge-minimal shortest path from a random node s to a random node t is
minimal. The Reverse Shortcut Problem is the variant of the Shortcut Problem
where one has to insert a minimal number of shortcuts to reach a desired expected number
of edges on edge-minimal shortest paths.

We proved that both problems are NP-hard and that there is no polynomial-time
constant-factor approximation algorithm for the Reverse Shortcut Problem, unless
P = NP. Furthermore, no polynomial-time algorithm exists that approximates the Short-
cut Problem up to an additive constant unless P = NP.

The algorithmic contribution focused on the Shortcut Problem. We proposed
two ILP-based approaches to exactly solve the Shortcut Problem: A straightforward
formulation that incorporates O(jV j4) variables and constraints and a more sophisticated

90 Chapter 4: The Shortcut Problem

ow-like formulation that requires O(jV j3) variables and constraints. We considered a
greedy approach that computes a c-approximation of the optimal solution if the input
graph is such that shortest paths are unique. We further presented a dynamic program
that performs a greedy step in time O(jV j3) which yields an overall runtime in O(c � jV j3).
Finally, we proposed a probabilistic method to quickly evaluate the measure function of
the Shortcut Problem. This can be used for large input networks where an exact
evaluation is prohibitive.

Future Work. A wide range of possible future work exists for the Shortcut Problem.
From a theoretical point of view the probably most interesting open �eld is the approx-
imability of the Shortcut Problem. It is still unknown if it is in APX. Furthermore,
it would be helpful to identify graph classes for which the Shortcut Problem or the
Reverse Shortcut Problem becomes tractable. FPT-algorithms are also desirable.
From an experimental point of view it would be interesting to develop heuristics that �nd
good shortcuts for large real-world inputs. In particular, evolutionary algorithms and local
search algorithms seem promising.

Finally, we pose the question if the given ILP-approaches can be used for the design
of approximation algorithms. We do not see good chances for rounding-based methods.
However, other techniques like primal-dual arguments might work.

Chapter 5

Batch-Dynamic Single-Source

Shortest-Paths Algorithms

A dynamic shortest-paths algorithm is called a batch algorithm if it is able to handle
graph changes that consist of multiple edge updates at a time. In this chapter we focus
on fully-dynamic batch algorithms that compute the distances from one single node to
each other node in directed graphs with positive edge weights. We give an extensive
experimental study of the existing algorithms for the single-edge and the batch case,
including a broad set of test instances. We further present tuned variants of the already
existing SWSF-FP-Algorithm being up to 15 times faster than SWSF-FP. A surprising
outcome of our experiments is the astonishing level of data dependency of the algorithms.

5.1 Motivation

The single-source shortest-paths problem is a fundamental graph problem with many real-
world applications, such as routing in road networks, routing/data harvesting in sensor
networks and internet routing using link state protocols (for example OSPF and IS-IS).
In these applications shortest-paths trees are stored and have to be updated whenever the
underlying graph undergoes changes [NST00, BCD+08, DW07, WW07a].

Algorithms that update the trees without a full recomputation from scratch are called
dynamic single-source shortest-paths algorithms. Such algorithms di�er slightly in the type
of their output. Some store only the distances from the source, while others additionally
store a shortest-paths tree or the shortest-paths subgraph. Some of the algorithms known
in the literature are only able to cope with the update of one edge at a time, while others
can perform batch updates, i.e., update the shortest-paths information after multiple edges
have simultaneously changed their weights. Batch updates naturally arise in real-world
applications: tra�c jams usually a�ect a set of edges, updating the information in sensor
networks usually requires
ooding, which is done in intervals big enough so that more than
one link in the network may have changed.

We consider edge insertions and deletions as special cases of weight changes: Deletions
correspond to weight increments to in�nity, while insertions are weight decrements from
in�nity. An algorithm is called fully dynamic if both weight increases and decreases
are supported, and semi-dynamic if only weight decreases or only weight increases are
supported.

Aims. In this chapter we focus on fully-dynamic batch updates for directed graphs with
positive edge weights. In order to compare the di�erent approaches, the only requirement

92 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

that we make regarding the tested algorithms is that they update the distance vector.
Hence, we do not demand that the algorithm's output contains a shortest-paths tree
or the shortest-paths subgraph. We furthermore require that the algorithms be able to
cope with edge insertions and deletions. For our experimental study, we use integer edge
weights.

Up to now, the experimental knowledge on this topic has been quite sparse. The
existing experimental work focuses on very speci�c datasets. Hence, our �rst interest
is to study the performance when applying single-edge updates to graphs with di�erent
structural properties. Do algorithms behave uniformly or is there a high degree of data de-
pendency? This question will be answered in an experimental study, including a broad set
of real-world and synthetic instances. For batch updates more fundamental open questions
exist: It even is unknown if it is useful to process a set of updates as a batch. Intuition tells
us that edge updates that are far away from each other do not interfere regarding their
impact on the shortest paths in the graph. So it seems that these updates can be han-
dled independently. On the other hand, updated edges with a strong interference should
be processed in a batch (paying with some computational overhead). We show that this
intuition is right, and how to formalize the interference of updated edges through a simple
approach. Finally, we pay some attention to the already existing SWSF-FP-algorithm.
This algorithm has been stated with regard to mainly theoretical considerations. We test
if it can be implemented more e�ciently and if combinations with other algorithms yield
additional speedup.

Related work. Part of this work has already been published in [BW09a, BW09b]. Ra-
malingam and Reps [RR96b] introduce the batch algorithm SWSF-FP, Narv�aez et al.
[NST00] propose the Narv�aez-framework containing six single-edge update algorithms
and a modi�cation to the framework leading to the according batch algorithms. Pure
single-edge update algorithms are RR [RR96a] (due to Ramalingam and Reps) and FMN
[FMSN00] (by Frigioni et al.). All these algorithms are described shortly in Section 5.3.
Buriol et al. [BRT08] present a heuristic technique to speed up RR-like approaches. The
technique is similar to techniques used in the Narv�aez-framework but does not support
edge insertions or deletions. Furthermore, in [BRT08] the RR algorithm is adapted to
maintain a special (shortest-paths) tree proposed in [KT01].

There is no algorithm known in the literature for which the worst case is asymptot-
ically better than recomputing the new solution from scratch. In the original works the
algorithms are theoretically analyzed with respect to di�erent measures. These measures
mostly depend on the size of the subgraph for which the shortest-paths subgraph changes.
An overview of these complexity results can be found in Appendix B.

There is some work on the variant of the problem where edge weights may also be
negative. In [RR96a] the algorithm RR is adapted to cope with the existence of negative
cycles, in [FMSN03] the same is done for the algorithm FMN. In [Dem01] Demetrescu
gives some algorithms for that problem. These algorithms use the reweighting technique,
which incorporates a complete Dijkstra run on the graph (with changed edge weights).
Hence, this approach is impractical for the problem with positive edge weights.

A well-studied related problem is the fully dynamic all-pairs shortest-paths problem,
in which the distances between all pairs of nodes have to be maintained while the graph
undergoes changes. See [DI06] for a survey on the problem.

There is only little experimental work on this topic, all concentrating on single-edge
updates. In [FINP98] the algorithms FMN, RR and a full recomputation from scratch
are compared on two instance classes: Erd}os-R�enyi graphs, where updates are chosen
uniformly at random and a graph representing the internet on the AS-level, where up-
dates simulate the failure and recovery of the links. In [NST00] the algorithms of the

5.2 Problem Statement 93

Narv�aez-framework are evaluated on graphs originating from a generator. This gener-
ator randomly places nodes on a grid and connects them by edges with probability that
exponentially decreases with the distance of the nodes. The generator does not seem to
be available anymore. In [TTIW07] the algorithms SWSF-FP, RR, FMN, Narv�aez
and a full recomputation from scratch using Dijkstra, Bellman Ford and D'Esopo
Pape are evaluated with single-edge updates on Erd}os-R�enyi-like graphs. In [DW07] one
algorithm of the Narv�aez-framework is evaluated on random single-edge updates on a
graph representing the road-network of Western Europe. In [BRT08], the algorithm RR
as well as seven variants thereof are evaluated on a real world AT&T IP network, syn-
thetic internet-related graphs and a large set of other synthetic instances, namely those of
[CGR96] with non-negative edge lengths.

Overview. This chapter is organized as follows. Section 2 states basic de�nitions and
formally introduces the problem. Section 3 reviews the existing algorithms. Section 4
presents our tuned variants of the SWSF-FP-algorithm, while an extensive experimental
study of these algorithms on synthetic and real-world data is given in Section 5. The
chapter ends with a conclusion in Section 6.

5.2 Problem Statement

Throughout this chapter let G = (V;E; len) be a directed graph with positive length
function len : E ! R>0 [f1g. Let s 2 V be an arbitrary but �xed source.

A batch update is a set of edge modi�cations on G which can be edge insertions, edge
deletions, edge weight increases and edge weight decreases (that keep the length function
positive). We are given a distance vector D[] such that D[v] = dist(s; v) for each node
v 2 V . We want to maintain D[] in a dynamic environment where G is undergoing batch
updates. After each batch update, D[] and possibly required auxiliary data needed by the
recomputation algorithm has to be updated accordingly.

Throughout the text we recompute D[] and the auxiliary data when one concrete
batch update is given. Because of the recomputation of the auxiliary data the algorithms
are able to handle subsequent updates. For notational convenience, we consider inserted
or deleted edges to be existing in the original and the updated graph and set the edge
length to in�nity if necessary.

Some of the following algorithms are designed to handle only one edge modi�cation
at a time. Obviously, repeated application of these algorithms also solves the batch case.
We call such algorithms iterative algorithms while the others are called batch algorithms.
Whenever we use an iterative algorithm, the single-edge updates are processed in a random
order. If we compare di�erent iterative algorithms we always apply the same order for
each algorithm.

Iterative algorithms can be split into two parts: the incremental part handles edge
insertions and weight decreases while the decremental part handles edge deletions and
weight increases. This terminology can be unintuitive on a �rst glance but originates from
the point of view that the graph increases when edges are inserted.

94 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

5.3 Description of Algorithms

In this section we describe the algorithm of Ramalingam and Reps, the approach of Frigioni
et al. and the Narv�aez-framework. The algorithm SWSF-FP and tuned variants of it
are described in the next section.

Each description starts with an outline explaining the key ideas of the approach.
This part su�ces to inform about the behavior and main concepts of the strategy. The
outline is followed by a more technical description of the algorithms and data structures
applied. The technical description can be used to reconstruct, in more detail, what has
been implemented. Pseudocode and more extensive explanations can be found in the
original papers. A review on complexity results can be found in Appendix B.

5.3.1 General Approach and Notation.

Setting. The input of the algorithms is the outdated distance vector D[], the graph G,
the original length function len, the batch update U and some auxiliary data which is
described for each algorithm separately. The output is the updated distance vector D[]
and the updated auxiliary data.

Consistency. The consistent value con(v) of a node v is

con(v) :=

�
min(u;v)2E fD[u] + len(u; v)g ; v 6= s

0 ; v = s

A node is said to be consistent if D[v] = con(v) and to be overconsistent if D[v] > con(v).
Further, v is said to be inconsistent if v is not consistent. If, for each incoming edge (u; v)
of a consistent node v, we have D[u] = dist(s; u), then it is also D[v] = dist(s; v). Hence,
when all nodes are consistent, the Bellman-Ford Equations are ful�lled and D[] contains
the correct distances from the source.

Initialization Phase. Each algorithm contains an initialization phase that updates the
edge lengths. Further it assures that all nodes are consistent or overconsistent. Hence,
after the initialization phase, D[v] is an upper bound for dist(s; v).

Main Phase. Each algorithm includes a main phase in which a min-based priority queue
Q is used to recompute the distances in a Dijkstra-like fashion but on a hopefully smaller
subgraph. As the aim is to make overconsistent nodes consistent, we have to search for
edges that cause overconsistency. This is done by relaxing edges.

In this chapter, we say we relax an edge (u; v) when we check if D[v] > D[u]+len(u; v).
An edge (u; v) is said to be consistent if D[v] = len(u; v) + D[u] and underconsistent if
D[v] > len(u; v)+D[u]. We use the convention min ; :=1, i.e., we consider the minimum
of the empty set to be in�nity.

5.3.2 Algorithm of Ramalingam and Reps

Ramalingam and Reps [RR96a] describe the iterative algorithm RR that handles only
edge insertions and deletions. It can directly be transfered to an algorithm that also
works with edge weight increases and decreases. We state this variant. The main idea is
to store additional information on the shortest-paths subgraph that helps to speedup the
recomputation.

Outline. This is an iterative approach, hence updates are handled edge by edge. The
algorithm additionally maintains the shortest-paths subgraph S of G with root s. Further,
for each node v, the indegree of v in S is known.

5.3 Description of Algorithms 95

Given the updated edge (x; y), the incremental part �rst checks if the distance from s
to y decreases because of the update (remember that the incremental part handles edge
weight decreases). This is done by relaxing the edge (x; y). In that case, the distance label
is updated and y is inserted into the priority queue.

Given the updated edge (x; y), the decremental part removes (x; y) from S if (x; y) 2
S. Then, the subgraph B � S that is not connected to s any more is identi�ed. For
each node b 2 B we compute an upper bound for the distance from s as follows: If b
does not own an incoming edge from outside B, we set D[b] := 1. Otherwise, we set
D[b] := minfD[a] + len(a; b) j (a; b) 2 E; a 62 Bg and insert b with priority D[b] in the
queue. Then, the main phase starts.

The main phase of both, decremental and incremental algorithm behaves like the
main phase of Dijkstra's algorithm. The structure of S and the corresponding indegrees
are updated whenever necessary.

The advantages of the approach are the small overhead compared with Dijkstra's
algorithm and the easy detection of the possibly a�ected area in the decremental part:
The knowledge on S helps to compute the set B in the decremental part which can be
done by performing an altered depth �rst search. Note, that the incremental part does
not bene�t from the knowledge on S.

Auxiliary Data. The approach maintains the following auxiliary data: for each edge
(u; v), a binary
ag that indicates if (u; v) lies on the shortest-paths subgraph S rooted at
s and for each node v, the number indeg(v) of incoming edges of v in S. In the following
indeg is adjusted whenever S changes.

Incremental Part. Given the edge (x; y) with weight decrease, we �rst update len(x; y)
and relax (x; y). If (x; y) is consistent we insert the edge (x; y) in S. If (x; y) is undercon-
sistent we set D[y] := D[x] + len(x; y) and insert y with priority D[y] into Q.

Main phase. We perform as follows until Q is empty: We extract and delete the
minimum node v from Q. Then, each edge with target v is removed from S and each
consistent incoming edge (u; v) is inserted into S. Afterwards, for each outgoing consistent
edge (v; w) we insert (v; w) into S. For each outgoing underconsistent edge (v; w) we set
D[w] := D[v] + len(v; w) and insert w with priority D[w] in Q.

Decremental Part. Given the edge (x; y) with weight increase, we �rst update len(x; y).
If (x; y) 62 S, nothing is to do. Otherwise, we remove (x; y) from S. We now compute the
subgraph B � S of S that is not connected with s any more: If indeg(y) > 0 nothing is
to do. Otherwise we initialize the set W := fyg. Then, we iteratively extract elements v
from W . Directly after extracting v we check, for each outgoing edge (v; w), if (v; w) 2 S.
In this case we remove (v; w) from S and insert w into W if indegree(w) = 0. Afterwards,
B is the set of all nodes that have been inserted into W . In order to save overhead for
computing both, W and B, we implemented W as a FIFO that never forgets extracted
elements.

For each node b 2 B, we set D[b] := minfD[a] + len(a; b) j (a; b) 2 E; a 62 Bg. As we
use the convention min ; =1 it is D[b] =1 if b has no incoming edge from outside B. If
D[b] is not in�nity we insert b with priority D[b] into Q.

Main phase. Now, we perform as follows until Q is empty: We extract and delete the
minimum node v from Q. Each incoming consistent edge (u; v) is inserted into S. For
each outgoing underconsistent edge (v; w), we assign D[w] := D[v] + len(v; w) and insert
w with priority D[w] into Q.

96 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

5.3.3 Algorithm of Frigioni et al.

The FMN-algorithm of Frigioni et al. [FMSN00] is an iterative algorithm that uses more
complex auxiliary data to obtain better theoretical worst case bounds for a special graph
class. Its main ingredient are two additional priority queues attached to each node that
prevent the algorithm from relaxing some unnecessary edges.

k-Bounded Accounting Functions. The approach relies on the existence of a k-
bounded accounting function on G = (V;E; len), which is a mapping K : E ! V such that
for each edge (u; v) the nodeK(u; v) is either u or v and such that for each node n, no more
than k edges are n-valued. For our experiments, we use the constructive 2-approximation
algorithm described in [FMSN03] for �nding a k-bounded accounting function on G.

Edge insertions and deletions may change the k-bounded accounting function used
within the algorithm. An adaption of the approach coping with that problem is described
in [FMSN00].

Auxiliary Data. The algorithm stores a k-bounded accounting function K of the graph.
Given a node x, the set of edges e with K(e) = x is called ownership(x). The set of the
other edges adjacent to x is called not ownership(x). For each node x, we store two
additional lists that contain all incoming and outgoing edges in ownership(x). Later,
these lists are used to quickly iterate over such elements. The backward level of an edge
(z; q) is the value

b levelz(q) := D[q]� len(z; q):

The forward level of an edge (z; q) is the value

f levelz(q) := D[q] + len(z; q):

For each node x, the algorithm stores two priority queues, each containing the edges in
not ownership(x). The queue Bx is max-based. The priority of an edge (x; y) is b levelx(y).
The queue Fx is min-based. The priority of an edge (x; y) is f levelx(y). In the original
version a shortest-paths tree is additionally maintained by storing a parent node P [n] for
each node n 6= s. We do not store that tree.

Roughly speaking, the additional priority queues help to save e�ort when relaxing
edges during the recomputation of the distances. The separation in ownership-edges and
not ownership-edges is used to balance the bene�t of the queues and the extra work
necessary to keep the information in the queues up-to-date.

Outline. This algorithm basically works like the algorithm of Ramalingam and Reps.
There are two di�erences. Firstly, the shortest-paths subgraph and the corresponding
indegrees are not maintained. Hence, the initialization phase of the decremental part can
not make use of that information. Secondly, the additional queues attached to each node
may help to relax fewer edges:

Consider the main phase of the incremental part. We have just extracted a node v
and the next task is to relax all edges outgoing from v. Using the queue Bv we may save
some relaxations. We relax the edges (v; w) in not ownership(v) in descending order of
b levelv(w). We can stop after the �rst edge (v; w) with b levelv(w) = D[w]� len(v; w) <
D[v] is reached. All following edges (v; x) can not e�ect in improving D[x]. We still have
to relax all outgoing edges in ownership(v) as these are not contained in Bv.

Now consider the initialization phase of the decremental part. We have to identify
the branch of the shortest-paths subgraph S that is disconnected from s after removing
the updated edge (x; y) from S. As the shortest-paths subgraph and the corresponding
indegrees are not explicitely stored anymore (as they are in the algorithm RR) we use
a straightforward search starting at the updated edge. This search is explained in the

5.3 Description of Algorithms 97

technical part. The search needs, when visiting a node v, to check if there is an incoming
edge (u; v) that lies on the shortest-paths subgraph S and whose source node u already
has been visited. This could be checked by checking if D[u] + len(u; v) = D[v]. We can
use the queue Fv to speed up this part similar to the argument described above for the
queue Bv.

Incremental Part. Given the edge (x; y) with weight decrease, we �rst update len(x; y)
and update the queues B(x), F (x), B(y) and F (y). Then, if (x; y) is underconsistent, we
set D[y] = D[x] + len(x; y) and insert y with priority D[y] into Q.

In the main phase we perform as follows until Q is empty: We extract and delete
the minimum node v from Q and update the queues B(v) and F (v) (i.e., we recompute
backward and forward level of all edges adjacent to v but not owned by v and re-order the
priority queues accordingly). Afterwards we check for each edge (v; w) in ownership(v)
and for each edge (v; w) in not ownership(v) with b levelv(w) > D[v] if (v; w) is undercon-
sistent. In that case we set D[w] = D[v]+len(v; w) and call Q.InsertOrUpdate(v;D[v]).

Decremental Part. Given the edge (x; y) with weight increase, we �rst update len(x; y)
and the queues B(x), F (x), B(y) and F (y). Let S be the tentative shortest-paths subgraph
that is induced by all consistent edges. Let B � S be the subgraph of S that is not
connected to s anymore. We compute B as follows.

We apply another priority queue M and insert y with priority D[y] into M . Then we
proceed as follows until M is empty. We extract a node v with minimum priority from M
and check for all incoming edges (u; v) if (u; v) 2 S and if u 62 B. This is done by checking
all edges in ownership(v) in the straightforward way and by considering all edges in Fv
ordered by the according priority until an edge (u; v) with u 62 B is found.

If there is no edge (u; v) 2 S with u 62 B, we insert v into B and for each outgoing edge
(v; w) we insert w with priority D[w] into M if (v; w) 2 S and w is not already contained
in M .

For each node b 2 B, we set D[b] := minfD[a] + len(a; b) j (a; b) 2 E; a 62 Bg and
insert b with priority D[b] into Q if D[b] <1 (remember that min ; =1).

Main phase. Now, we perform as follows until Q is empty: We extract and delete
the minimum node v from Q and update the queues B(v) and F (v). For each outgo-
ing underconsistent edge (v; w) we assign D[w] := D[v] + len(v; w) and call the routine
Q.InsertOrUpdate(w;D[w]).

Reading the Priority Queues Bv and Fv. In the above algorithm we sometimes have
the task to read the k biggest values in a priority queue or to �nd the biggest value of
all elements that ful�ll a given property. This could be done by using extractMin-
operations followed by Insert-operations to rebuild the original state of the queue. We
did not use this approach. As we implemented the priority queues as binary heaps we
searched directly inside the binary tree with a pruned depth/breadth �rst search.

5.3.4 Algorithm of Narv�aez et al.

Narv�aez et al. [NST00] propose a batch algorithm incorporating two degrees of freedom.
The main idea of the Narv�aez-framework is to maintain a tentative shortest-paths tree
and to early-propagate distance changes through that tree. Please note that, although we
consider the approach to be a batch algorithm, edge updates are handled iteratively in
the initialization phase and incremental and decremental parts are handled separately.

Degrees of Freedom. One degree of freedom is the choice of the datastructure Q used
in the main phase. This approach requires Q to support the same operations as a priority
queue but the speci�cation of operation extractMin is relaxed: extractMin is allowed

98 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

to output and remove any element currently stored within Q.

Narv�aez et al. propose three di�erent choices. Firstly, a FIFO-queue which leads to
an approach similar to the Bellman-Ford Algorithm (BF) [Bel58]. Secondly a heap, either
implemented as a binary heap or as a linked list. Thirdly a D'Esopo-Pape-like approach
[Pap74] is stated: The datastructure stores the elements in an ordered list. Elements are
always extracted from the top. When inserting an element v for the �rst time into Q it is
appended at the bottom, all following times v is appended at the top.

In our experiments we do not include the D'Esopo-Pape variants of the Narv�aez-
framework because pretests had revealed some instances with extremely bad performance
with this approach. For the heap variants we only report the results for the binary heap
implementation as this variant was clearly superior.

The other degree of freedom consists of two di�erent variants for the main phase of
the algorithms. We describe both variants below and refer to the speci�c algorithms as
NARf1st, 2ndgfHEAP, BFg.

Overall Work
ow. First, the batch update is split into the set of updates with edge
weight increases (the decremental part) and the set of updates with edge weight decreases
(the incremental part). Then, the initialization phase of the incremental part is executed,
followed by the main phase. Afterwards, the initialization phase of the decremental part
is executed, again followed by the main phase.

Outline. The algorithm maintains a shortest-paths tree T of the graph by storing the
parent node P [v] for each node v.

Initialization - Decremental. The decremental part of the initialization phase �rst
applies each edge weight increment to the graph and updates the labels D[] by, for each
node v, setting D[v] to be the distance from s to v in the outdated shortest-paths tree T .
Afterwards, for each node y with changed tentative distance, we relax each incoming edge
(x; y) and insert y with priority con(y) into Q if y is inconsistent.

Initialization - Incremental. The incremental part of the initialization phase �rst
applies all edge weight decrements to the graph and updates the labels D[] by, for each
node v, setting D[v] to be the distance from s to v in the outdated shortest-paths tree T .
Afterwards, for each node x with changed tentative distance, we relax all outgoing edges
(x; y) and insert y with priority D[x] + len(x; y) into Q if (x; y) is underconsistent.

Main Phase. The main phase of the 1st variant basically works like Dijkstra's algo-
rithm. There are two di�erences: Firstly, the distance label D[x] of a node x is not altered
when relaxing edges but altered to the priority key(x) of node x directly after extracting
x from Q. Secondly, the decision which node to process next depends on the type of Q.

The main phase of the 2nd variant uses the following additional heuristic: After ex-
tracting node x from the queue, D[x] is updated. This distance change of x is propagated
in the subtree of T starting with x. Branches with already better distance label in Q
are omitted. Further, nodes v are deleted from Q for which the priority key(v) of v in
Q is bigger than the new value of D[v]: For such nodes, the value in the queue does not
improve the tentative distance anymore. Afterwards, not only edges outgoing of x, but all
edges outgoing of this subtree are relaxed.

The recomputation of T is done by setting the parent of x accordingly when extracting
node x from Q and changing D[x]. To that end, the new parent is already stored when x
is inserted into Q and changed, whenever the priority of x is changed.

Auxiliary Data. The algorithm maintains a shortest-paths tree T of the graph by storing
the parent node P [v] for each node v. Initially, T is a shortest-paths tree with respect to
the graph before the update, after execution of the algorithm, T is a shortest-paths tree
with respect to the graph after the update. With B(u; v) we denote the set of nodes that

5.3 Description of Algorithms 99

are contained in the branch of T that starts with (u; v) minus fug.
Further, along with any node v in Q a potential new parent parent(v) in the shortest-

paths tree is stored. Hence Insert is expanded to Insert(v; key(v);parent(v)), De-
creaseKey to DecreaseKey(v; key(v); parent(v)), and InsertOrUpdate to Inser-
tOrUpdate(v; key(v); parent(v)). Finally, extractMin additionally outputs key(v) and
parent(v).

Initialization Phase - Decremental Part. For each edge (u; v) with weight increase
�, we update len(u; v) and set D[x] := D[x] + � for each x in B(u; v). By Ninc we denote
the set of all vertices x which are contained in at least one of the sets B(u; v) considered
in the decremental part of the update. Afterwards we relax each edge with target y in
Ninc. Let y be an underconsistent node in Ninc and (x; y) 2 E be the incoming edge of y
such that D[x] + len(x; y) is minimal. We call InsertOrUpdate(y;D[x] + len(x; y); x).

Initialization Phase - Incremental Part. For each edge (u; v) with weight decrease
�, we update len(u; v) and set D[x] := D[x]� � for each x in B(u; v). By Ndec we denote
the set of all vertices x which are contained in at least one of the sets B(u; v) considered in
the incremental part of the update. Afterwards we relax each edge (x; y) with source x in
Ndec. Let y be an underconsistent node in V nNdec and (x; y) 2 E be the incoming edge of
y such that D[x] + len(x; y) is minimal. We call InsertOrUpdate(y;D[x] + len(x; y); x).

Main Phase, 1st Variant. We perform as follows until Q is empty: We extract and
delete the next triple (v; key(v);parent(v)) from Q (according to the actual choice of Q),
set D[v] := key(v) and P (v) := parent(v). Afterwards we relax each outgoing edge (v; w)
and call InsertOrUpdate(w;D[v] + len(v; w); v) if (v; w) is underconsistent.

Main Phase, 2nd Variant. We perform as follows until Q is empty: We extract and
delete the next triple (v; key(v);parent(v)) from Q (according to the actual choice of Q).
We set � := key(v)�D[v] and P (v) := parent(v).

Now, we identify a subset N consisting of v and the set of all descendants of v in T
as follows: We perform a depth �rst search in T starting at v. If we visit a node u that is
already contained in Q with priority key(u) < D[u] + � we do not include u in N and do
not investigate edges outgoing from u. If we visit a node u that is already contained in Q
with priority key(u) � D[u] + � we remove u from Q. After termination of the depth �rst
search, N consists of all vertices visited during the search.

Afterwards we set D[v] := D[v] + � for each node v 2 N . Then, we relax each edge
(v; w) outgoing from a node v 2 N and call InsertOrUpdate(w;D[v] + len(v; w); v) if
(v; w) is underconsistent.

100 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

5.4 Tuning SWSF-FP

In this section, we review the batch algorithm SWSF-FP which is due to Ramalingam
and Reps [RR96b] and propose some tuned variants of it. The algorithms described in this
section are the only algorithms in our testset that process updates completely in a batch.
The main di�erence to the algorithms described in the last section are the limitations on
the values D[v]. The initialization phase of SWSF-FP does not assure that D[v] contains
upper bounds for the distance from s to v in the updated graph. Our description only
considers edge weight increases and decreases. The generalization to edge insertions and
deletions is straightforward. We use the terminology as introduced in Section 5.3.1.

5.4.1 SWSF-FP.

Outline. This approach attaches an additional label d[v] to each node v and, after the
initialization phase, incorporates two invariants:

� for each v 2 V , the value d[v] equals the consistent value con(v) of v

� each inconsistent node v is contained in the priority queue Q.

If we change the graph or the array D[] we may violate one of these invariants for a node v
and have to repair them. This is done by the routine adjust. Pseudocode for that routine
is given as Algorithm 5.1. The initialization phase does nothing than adjusting all target
nodes of updated edges.

A straightforward main phase could work as follows: Iteratively extract an arbitrary
node from Q, set D[v] := d[v] and adjust all targets of outgoing edges of v. After termi-
nation, D[] contains correct distances as the Bellman-Ford Equations are ful�lled for any
node.

A problem of this approach is, that we cannot bound the number of times that a node
gets re-inserted into the queue. Hence, the algorithm SWSF-FP applies two changes:
Firstly, if we extract a node v with D[v] < d[v], we set D[v] := 1 and adjust v and all
of its outgoing neighbors. Secondly, we do not extract an arbitrary node from Q but a
node v minimizing the value minfd[v]; D[v]g. One can show that, this way, each node is
re-inserted into Q at most once.

Auxiliary Data. The approach does not require any auxiliary data. In order to initialize
the vector d[] that contains the consistent value of each node one could simply copy the
distance vector D[]. In order to save time for the copy process we implemented d[] as
auxiliary data.

Description. We say we adjust an inconsistent node v when we set d[v] := con(v) and
insert v with priority min(D[v]; d[v]) in Q. In case v is already contained in Q we only
update the priority. We adjust a consistent node v when we remove it from Q. If v is not
contained in Q we do nothing.

Initially, we adjust each node which is target of an edge in U . Main Phase. While Q is
not empty, we perform as follows: We extract and delete the minimum node w from Q. If
d[w] < D[w] we set D[w] := d[w] and adjust each outgoing neighbor of w. If d[w] > D[w]
we set D[w] :=1 and adjust w and each of its outgoing neighbors. Pseudocode for that
approach is given as Algorithm 5.2.

5.4.2 Tuned SWSF

This algorithm basically works like the SWSF-FP-algorithm, but with less computational
e�ort.

5.4 Tuning SWSF-FP 101

Algorithm 5.1: adjust(v)

input : node v
access : to all data of the calling SWSF-FP-routine

1 if v = s then break /* break as D[s] always equals 0 */

2 d[v] 1 /* compute consistent value of v */

3 for each incoming edge (u; v) do
4 d[v] minfd[v]; D[u] + len(u; v)g

5 if d[v] 6= D[v] then /* if v is not consistent */

6 Q.InsertOrUpdate(v;minfd[v]; D[v]g)

7 else /* if v is consistent */

8 if Q:contains(v) then Q: remove(v)

Algorithm 5.2: SWSF-FP

input : graph G = (V;E; len)
source s 2 V
distance vector D[]=d[] containing distances from s in G = (V;E; len)
set of updated edges U
new length function lennew : E ! R�0

output: distance vector D[]=d[] containing distances from s in G = (V;E; lennew)

uses : priority queue Q

1 len lennew /* Initialization Phase */

2 for each node y such that there is an edge (x; y) 2 U do
3 adjust(y)

4 while not Q.isEmpty do /* Main Phase */

5 v Q.extractMin
6 if d[v] < D[v] then
7 D[v] d[v]
8 for each outgoing edge (v; w) 2 E do
9 adjust(w)

10 if d[v] > D[v] then
11 D[v] 1
12 for each outgoing edge (v; w) 2 E do
13 adjust(w)

14 adjust(v)

102 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

Outline. We have a look at the algorithm SWSF-FP. In lines 1, 7 and 11, we change
either edge weights or values in D[]. Hence, in lines 3, 9, 13 and 14 we recompute the
consistent values of possibly a�ected nodes. To that end, we scan all incoming edges of
these nodes. Tuned SWSF tries to scan fewer of such incoming edges. We distinguish
four cases:

We decrease the weight of an edge (x; y). This operation can only violate the consis-
tency of node y. As decreasing the edge weight may only decrease the consistent value of
y, it is minfd[y]; D[x] + len(x; y)g the consistent value of y after the weight change.

We increase the weight of an edge (x; y). Again, this operation can only violate the
consistency of node y. Before updating the weight, we check if D[x] + len(x; y) > d[y].
In that case there is another edge (u; y) such that D[u] + len(u; y) = d[y] and D[x] is not
responsible for the consistent value of y. Hence we do not have to recompute D[y].

We decrease D[x]. This may a�ect any target y of an outgoing edge (x; y). The
consistent value of y can only decrease and minfd[y]; D[x] + len(x; y)g is the consistent
value of y after changing D[x].

We increase D[x]. Also for that case, only nodes y that are target of an outgoing edge
(x; y) may become inconsistent. Before we update D[x], we check if D[x]+len(x; y) > d[y].
In that case D[y] does not change, as seen for the case of an edge weight increase.

Auxiliary Data. Same as for SWSF-FP.

Description. The approach can be constructed by exchanging any adjust-operation in
SWSF-FP by the corresponding argument of the above case distinction. The pseudocode
is given as Algorithm 5.4, the subroutine con(v) as Algorithm 5.3. The correctness follows
directly from the correctness of SWSF-FP and the case distinction.

Algorithm 5.3: con(v)

input : node v
access : to all data of the calling Tuned SWSF-routine
output: consistent value of node v

1 if v = s then /* consistent value of s is 0 */

2 return 0

3 else /* otherwise scan all incoming edges */

4 conValue(v) 1
5 for each incoming edge (u; v) 2 E do
6 conValue minfconValue; D[u] + len(u; v)g

7 return conValue

5.4.3 Tuned SWSF-RR

This variant enhances the Tuned SWSF-algorithm with a technique adapted from the
RR-algorithm.

y

u
vx

Outline. The improvement takes place at line 22 in Tuned SWSF.
We have just extracted a node x from the queue and increased the
tentative distance from Dold[x] to D[x]. This may destroy consistency
of node y for each outgoing edge (x; y) with Dold[x] + len(x; y) = d[y].
Hence we have to recompute the consistent value of y. If we knew that
there is another node u with D[u] + len(u; y) = d[y] we could skip the

5.4 Tuning SWSF-FP 103

Algorithm 5.4: Tuned SWSF

input : graph G = (V;E; len)
distance vector D[]=d[] containing distances from s in G = (V;E; len)
source s
set of updated edges U
new length function lennew : E ! R�0

output: distance vector D[]=d[] containing distances from s in G = (V;E; lennew)

uses : priority queue Q

1 for (u; v) 2 U do /* Initialization Phase */

2 if len(u; v) > lennew(u; v) then
3 len(u; v) lennew(u; v)
4 d[v] minfd[v]; D[u] + len(u; v)g

5 if len(u; v) < lennew(u; v) then
6 lenold len(u; v)
7 len(u; v) lennew(u; v)
8 if D[u] + lenold = d[v] then d[v] con(v)

9 if D[v] 6= d[v] then
10 Q.InsertOrUpdate(v;minfD[v]; d[v]g)

11 while not Q.isEmpty do /* Main Phase */

12 v Q:ExtractMin
13 if d[v] < D[v] then
14 D[v] d[v]
15 for each outgoing edge (v; w) 2 E do
16 if D[v] + len(v; w) < d[w] then
17 d[w] D[v] + len(v; w)
18 Q.InsertOrUpdate(w;minfD[w]; d[w]g)

19 if d[v] > D[v] then
20 Dold D[v]
21 D[v] 1
22 for each outgoing edge (v; w) 2 E with Dold + len(v; w) = d[w] do
23 d[w] con(w)
24 Q.InsertOrUpdate(w;minfD[w]; d[w]g)

25 d[v] con(v)
26 Q.InsertOrUpdate(v;minfD[v]; d[v]g)

104 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

computation of con(y). To that end we maintain the subgraph S consisting of all edges
(u; v) with D[u] + len(u; v) = d[v] and, for each node w, the indegree of w on S. With
this information we can do better: We only recompute con(y) if the indegree of y in S
becomes zero.

Auxiliary Data. Same as for SWSF-FP and as follows: For each edge (u; v), a boolean
label S(u; v) indicating if D[u] + len(u; v) = d[v]. We denote the subgraph induced by all
edges (u; v) with S(u; v) = true by S. For each node v, a label indeg(v) indicating the
indegree of v in S. Note, that S initially equals the outdated shortest-paths subgraph.

Description. The algorithm performs like Tuned SWSF with the following two di�er-
ences: Line 22 of Tuned SWSF is changed to:

for each outgoing edge (v; w) 2 E with Dold + len(v; w) = d[w] and indeg(w) = 0.

Further we have to keep track how changes of len, D[] and d[] e�ect in changes of S. The
following cases may occur:

� We increase D[v] to Dnew[v]. For each outgoing edge (v; w) 2 E with D[v] +
len(v; w) = d[w] we remove (v; w) from S and decrement indeg(w).

� We decrease D[v] to Dnew[v]. For each outgoing edge (v; w) 2 E with Dnew[v] +
len(v; w) = d[w] we set indeg(w) = 1, remove all incoming edge of w from S and
insert (v; w) in S.

� We increase d[v] to dnew[v]. This happens after completely recomputing con(v).
Hence, while recomputing con(v) we remove all incoming edges of v from S and
insert the corresponding new edges and the indegree accordingly.

� We decrease d[v] to dnew[v]. Then, we already know the edge (u; v) responsible for
the decrease operation. Hence, we remove all incoming edges of v from S, insert
(u; v) into S and set indeg(v) = 1.

� We increase len(u; v) to lennew(u; v). We remove (u; v) from S and decrement
indeg(v) if D[u] + len(u; v) = d[v].

� We decrease lennew(u; v). If D[u] + lennew(u; v) = d[v] we remove all incoming edge
of v from S, insert (u; v) in S and set indeg(v) = 1.

5.4.4 Tuned SWSF-NAR

This variant enhances the Tuned SWSF-algorithm with a technique adapted from the
Narv�aez-algorithm.

Outline. We additionally store a shortest-paths tree of the graph. The initialization
phase �rst recomputes distances in the graph with respect to the new edge weights but
the old shortest-paths tree. Then, all possibly inconsistent nodes are adjusted. The main
phase of the algorithm works like the main phase of Tuned SWSF but additionally has
to maintain the shortest-paths tree.

Auxiliary data. Same as for SWSF-FP and as follows: For each node v that is not the
source, a label P [v] is given pointing at another node, such that D[P [v]] + len(P [v]; v) =
d[v]. We denote by T the subgraph given by all edges (P [v]; v). Initially, T is a shortest-
paths tree in the original graph.

5.4 Tuning SWSF-FP 105

Description. The algorithm works like the Tuned SWSF with the following two di�er-
ences: Firstly, whenever d[v] or D[w] is changed, the value P [v] is changed accordingly.

Secondly, the initialization phase is di�erent and works as follows: We start by updat-
ing the edge weights. Then, we recompute distances in the graph with respect to the new
edge weights but the old shortest-paths tree. This is done by starting a depth �rst search
in T for each target node of an updated edge on T . In order to process each node only
once, we process the updates ordered by the distance of their source node and do not visit
already visited nodes again. When visiting a node v we set D[v] := D[P [v]] + len(P [v]; v).

Finally we adjust each node that either is target node of an updated edge, is marked
as visited or is target of an edge whose source node has been visited. The pseudocode of
the initialization phase is given as Algorithm 5.5. Note that the FIFO F can easily be
implemented to still contain all visited nodes at Line 13.

Algorithm 5.5: Initialization Phase of Tuned SWSF-NAR

uses: FIFO F

1 len lenold
2 remove all edges with target s from U
3 sort U = f(u1; v1); : : : ; (uk; vk)g such that D[vi] � D[vi+1]

4 for i = 1; : : : ; k do
5 if P [vi] = ui and vi is not marked as visited then
6 F:push back(vi)

7 while not F .IsEmpty do
8 v F:pop front
9 mark v as visited

10 D[v] D[P [v]] + len(P [v]; v)
11 for each outgoing edge (v; w) 2 E with P [w] = v do
12 F:push back(v)

13 for each node v that either is visited or target node of an updated edge or target
node of an edge whose source is visited do

14 adjust(v)

106 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

5.5 Experiments

In this section, we present an experimental evaluation of the algorithms described above.
Our implementation is written in C++ (using the STL at some points). Our tests were
executed on one core of an AMD Opteron 2218, running SUSE Linux 10:3. The machine
is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4:2, using optimization level 3.

For each experiment, 1000 update instances were generated. Each instance is gener-
ated by choosing a new source node uniformly at random and choosing the edge updates
according to the given distribution. To properly measure the speedups, a full Dijkstra run
is performed directly after each update and the speedup compared to that run (i.e., the
time needed by Dijkstra's algorithm divided by the time needed by the update algorithm)
is computed. Finally we compute the mean value of these speedups. Thus, measurement
disturbances due to background processes, etc are avoided as much as possible. For Tables
5.2-5.6 we showed in bold letters all algorithms whose performance was at least 85% of the
best observed performance. We later see that some algorithms perform quite similarly. In
this case we only report the results for one example algorithm. The full data is given in
the appendix.

In our experiments we evaluated all previously described algorithms. We do not in-
clude the heuristic of Buriol et al. [BRT08] because it does not support edge insertions or
deletions. To gain further insights into the performance of the batch-algorithms (Narv�aez
and Tuned SWSF), we executed these two times: one time with processing the edges in
batch and one time with iteratively processing the edges one after another. We refer to
these approaches as itNar and Ittuned SWSF. Note that we refer to the Narv�aez-
framework as a batch algorithm while it actually does not perform updates completely in
a batch: its initialization phase handles edge updates iteratively but the following main
phase handles all updates in a batch.

5.5.1 Graph Instances

We use the following test instances for our study. The average absolute running times of
Dijkstra's algorithm for each instance is given in Table 5.1.

UNIT-DISK. During the last years, the �eld of sensor networks has received wide at-
tention. We evaluate so called unit-disk graphs, which are widely used for experimental
evaluations in that �eld. Given numbers n and m, a unit-disk graph is generated by
randomly assigning each of the n nodes to a point in the unit square of the Euclidean
plain. Two nodes are connected by an edge in case their Euclidean distance is below a
given radius. This radius is adjusted such that the resulting graph has approximately m
edges. As edge weights we use the Euclidean distance to the power of 0 (hop length), 1
(Euclidean distance) and 2 (energy). All tested graphs consist of 15 000 nodes.

RAILWAY. The graph RAIL represents the condensed railway network of Europe, based
on timetable information provided by the company HaCon [HaC08] for scienti�c use.
Nodes represent stations while edges represent direct connections between the stations.
The edge weights correspond to the average travel time between the according stations.
The graph has 29 578 nodes and 159 914 edges.

AS-GRAPH. The graph AS-HOP represents the internet as of 2008/3/26 on the AS-
level, i.e., each node corresponds to an autonomous system and edges represent connections
between autonomous systems. This graph is taken from the Routeviews project page
[Uni08]. It has 27 909 nodes and 114 474 edges. The edge weight is 1 for each edge. The

5.5 Experiments 107

graph description name runtime

road network of Luxembourg LUX 7.09
road network of the Netherlands NLD 429.99
road network of Germany DEU 2414.28
condensed railway network of Europe RAIL 7.86
(part of the) internet on router-level CAIDA 157.85
internet on AS-level, edge length 1 AS-HOP 8.80
internet on AS-level, random edge lengths AS-RAN 17.53
synthetic grid-graph, 10.000 nodes GRID 100 2.03
synthetic grid-graph, 90.000 nodes GRID 300 26.86
UNIT-DISK graph, hop length, av. edge degree 7 UN-HO 5.39
UNIT-DISK graph, hop length, av. edge degree 10 - 6.61
UNIT-DISK graph, hop length, av. edge degree 15 - 8.91
UNIT-DISK graph, Euclidean length, av. edge degree 7 UN-EU 5.84
UNIT-DISK graph, Euclidean length, av. edge degree 10 - 7.24
UNIT-DISK graph, Euclidean length, av. edge degree 15 - 9.34
UNIT-DISK graph, energy length, av. edge degree 7 - 6.12
UNIT-DISK graph, energy length, av. edge degree 10 - 7.85
UNIT-DISK graph, energy length, av. edge degree 15 - 10.35

Table 5.1: Average absolute runtime (in milliseconds) of a full run of Dijkstra's algorithm

same graph with edge weights chosen uniformly at random from the interval [1; 1000] is
called AS-RAN.

CAIDA. This dataset represents the internet on router level, i.e., nodes are routers and
edges represent connections between routers. The network is taken from the CAIDA
webpage [CAI08] and has 190 914 nodes and 1 215 220 edges. The edge weight is 1 for
each edge.

ROAD. We evaluate three road networks provided by the PTV AG [PTV08]. DEU
represents Germany with 4 378 447 nodes and 10 968 884 edges, NLD the Netherlands
with 946 632 nodes and 2 358 226 edges and LUX represents Luxembourg with 30 647
nodes and 75 576 edges. The edge weights are the corresponding travel times with speed
pro�le `slow car'.

GRID. These are fully synthetic graphs based on two-dimensional square grids. The
nodes of the graph correspond to the crossings in the grid. There is an edge between two
nodes if these are neighbors on the grid. Edge weights are randomly chosen integer values
between 1 and 1000. GRID 100 is a 100x100 grid graph while GRID 300 is a 300x300 grid
graph.

5.5.2 Data Structures

For our tests we always apply integral edge weights. We further use a binary heap whenever
a priority queue is needed. We use the graph data structure that is also applied in [BD08,
BDW07, Del08]. There, the data structure has experimentally shown to perform well
in the context of shortest-paths computation on sparse graphs. It is described in the
following.

The input graphG = (V;E; len) is stored by mixing forward and reverse representation,
an example is given as Figure 5.1. It is represented by two arrays. Nodes are directly
identi�ed by the numbers 0; : : : ; jV j � 1. Attributes of nodes like distances are stored in
arrays and are keyed by the number of the corresponding node.

We use two arrays to manage the edges. The array edges contains the actual infor-

108 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

a

b c

5
5

1
3

2

NODES EDGES

ed
ge

s
in

de
x

ta
rg

et
no

de
ed

ge
le
ng

th
re

ve
rs

e
in

de
x

fo
rw

ar
d

ba
ck

wa
rd

re
pr

es
en

ts

ar
ra

y
in

de
x

ed
ge

in
de

x

0

3
4
5
6
7

0
1
2

0

0
2
0
0
1

1
2
2

5
2
1
3
2

5
1
3

0
7
1
2
4

3
5
6

X
–
–
X
X

X
X
–

X
X
X
–
–

X
–
X

0
3
5

0
1
2

a
b
c

Figure 5.1: Example graph and the corresponding data structure. Information given in the grey
areas is not part of the data structure but added for better readability.

mation on the edges like length or target node. Each edge (u; v) corresponds to two entries
in edges: one as a forward edge of node u (the forward entry) and one as a backward
edge of node v (the backward entry). The entries of (u; v) are of the following form:

� forward entry:
(v; len(u; v); false; true; index of the backward entry of (u; v) in edges)

� backward entry:
(u; len(u; v); true; false; index of the forward entry of (u; v) in edges)

The third (fourth) component of an entry indicates if the entry is a backward (forward)
entry.

The array edges is ordered such that, for any node v, the forward entries of all
outgoing edges of v and the backward entries of all incoming edges of v are located in a
row. We call such a row the block of v. Moreover, these blocks are ordered such that the
block of a node x is located before the block of a node y if x < y (remember that we
identify nodes directly by their numbers).

To be able to iterate e�ciently over the adjacent edges of a given node, we use the
second array nodes. The array contains, for each node v, the index nodes(v) of the �rst
entry of the block of v. In order to iterate over all in- and outcoming edges of node v, one
has to consider all entries in edges at the locations from nodes(v) to nodes(v+1)-1. To
recognize the orientation one has to additionally evaluate the 3rd and 4th component of
the respective entry. A dummy node is added at the end to simplify the handling of the
last node.

Note that source and target node of an edge are not stored in the same entry. Given
the forward entry of an edge (u; v), the target node v is directly given as �rst component
of that entry. In order to reconstruct the source node u, one hast to �rst access the
corresponding backward entry. This can be done by using the 5th component of the
forward entry.

We often work on graphs that are `almost undirected'., i.e., on directed graphs for
which an edge (u; v) is usually complemented by an edge (v; u) of same length. To save
space (and time needed for iterating), we compress the respective entries. More detailed,
for edges (u; v) and (v; u) with len(u; v) = len(v; u) we combine the entries

� forward entry of (u; v): e1 = (v; len(u; v); false; true; index of e2)

� backward entry of (u; v): e2 = (u; len(u; v); true; false; index of e1)

5.5 Experiments 109

� forward entry of (v; u): e3 = (u; len(u; v); false; true; index of e4)

� backward entry of (v; u): e4 = (v; len(u; v); true; false; index of e3)

to

� combined forward entry of (u; v) and backward entry of (v; u):
e5 = (v; len(u; v); true; true; index of e6)

� combined forward entry of (v; u) and backward entry of (u; v):
e6 = (u; len(u; v); true; true; index of e5).

In order to dynamically insert or delete edges one has to rearrange the array edges
and adjust the information in nodes. To prevent that as far as possible some dummy
edges are inserted in edges and some extra information is maintained to organize the
dummy edges. We do not describe that in full detail as this has to be equally done for
each update algorithm and for a full recomputation from scratch.

5.5.3 Assessing the Performance of the Algorithms

Let U = fu1; : : : ; ukg be a set of edge updates. By �(G;U) we denote the number of
vertices in V for which the distance from the source changes due to the batch update
U . The expected speedup of an update is the number of vertices in the graph divided by
�(G;U). This value is roughly the speedup we expect from a good update algorithm. Of
course, speedups can even be higher for special instances. It experimentally turned out
that the propagation of the updated edge's weights through the original shortest-paths
tree can gain a large speedup especially when the topology of the original shortest-paths
tree does not change.

When we want to measure the di�culty of an update for an iterative algorithm we
consider U = (u1; : : : ; uk) to be ordered. We perform the updates ui iteratively in the
given order (always additional to the former updates) obtaining a sequence of graphs
G = G0; G1; : : : ; Gk. We write �(G; (u1; : : : ; uk)) :=

Pk�1
i=0 �(Gi; fui+1g). We have the

following hypothesis: if the di�erence between �(G;U) and �(G;U) is small, then the
contained single-edge updates do not interfere much and it is reasonable to use an iterative
algorithm for the update. If the di�erence is great, an iterative algorithm would change
the distance of many nodes multiple times. Hence, it is more appropriate to use a batch
algorithm. The experimental evaluation will support our hypothesis.

The algorithm Ittuned SWSF can be seen as a very simple iterative approach in-
corporating no extra features like early edge-weight propagation. Figure 5.2 shows the
improvement of Tuned SWSF over Ittuned SWSF compared with �(G;U)=�(G;U)
for all batch experiments performed in this study.

5.5.4 Space-Saving Implementation of RR

The algorithm RR needs to maintain the shortest-paths subgraph S. This subgraph is
implicitly given by each edge (u; v) with D[u] + len(u; v) = D[v]. We implemented the
algorithm doubly. One time we explicitely stored the subgraph (RR DAG), i.e., we stored
a
ag for each edge (u; v) indicating if (u; v) 2 S. The other time with reconstructed it
when needed (RR), i.e., we checked ifD[u]+len(u; v) = D[v] in order to know if (u; v) 2 S.
It turned out that there are only small di�erences between both implementations, with no
variant being clearly superior. We therefore only report the results for the space-saving
implementation RR.

110 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
.0

1
.5

2
.0

2
.5

3
.0

Delta(G,U) / delta(G,U)

s
p

e
e

d
u

p
 t

u
n

S
W

S
F

/s
p

e
e

d
u

p
 i
tT

u
n

S
W

S
F

Figure 5.2: Value of �(G;U)=�(G;U) (x-axis) and speedup of Tuned SWSF / speedup of It-
tuned SWSF (y-axis) for all batch-experiments.

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GR100 GR300 UN-HO UN-EU

FMN 42 1504 29087 151 22702 1624 2182 25 142 327 36

SWSF-FP 112 3759 65404 366 12429 416 691 59 351 1613 31
tunSWSF-FP 152 5140 84873 562 16406 893 3442 105 598 2436 186

tunSWSF-NAR 147 3354 70245 215 9306 614 695 94 523 748 129
tunSWSF-RR 118 3798 66068 412 26093 2148 3766 74 430 2096 102

RR 155 4666 74857 510 34586 2599 4057 103 568 2519 137

Nar-1st BF 284 5335 100944 357 6578 417 305 138 784 1176 20

�(G;U) 130 141 71 31 0.21 0.41 0.74 59 113 0.01 93
exp. speedup 236 6762 62549 986 inf inf inf 169 804 inf 163

Table 5.2: Speedups of experiments with single-edge updates.

5.5.5 Single-Edge Update Experiments

We start our experimental study with single edge updates. Because of a di�erent focus of
this work we do not carry out a separate analysis for the decremental and the incremental
case. An update consists of choosing an edge uniformly at random and multiplying its
weight by a random value in (0; 2). The results can be seen in Table 5.2 , extended results
in Table A.1.

We observe that the algorithms of the Narv�aez-framework have only tiny di�erences
in performance with Nar-1st BF being slightly (but not signi�cantly) faster most times
(see Table A.1). There is no such uniform behavior for the SWSF-FP-like algorithms.
Tuned SWSF is always faster (between 1.3 and 6 times) than SWSF-FP. The algorithm
Tuned SWSF-RR is always at least as fast as SWSF-FP and up to 5.5 times faster.
The algorithm Tuned SWSF-NAR seems to be very volatile being between half as fast
and 4 times faster than SWSF-FP.

Comparing the di�erent classes of algorithms, we �nd the algorithms to perform quite
di�erently, but within the same order of magnitude. The algorithm FMN is most times
much slower than the other ones. This is due to the overhead caused by maintaining and
reading the priority queues used by this algorithm. The technique used in this algorithm

5.5 Experiments 111

can pay o� in case nodes with high degree exist (for which many edge-relaxations can be
saved). This is not the case for the test instances used. Exceptions are the INTERNET
instances CAIDA, AS-HOP and AS-RAN. Here, the gap to the other algorithms is much
smaller, which meets the theoretical considerations. Hence, it is to be expected that
there are dense graph classes for which FMN is the superior algorithm. On the ROAD
and GRID instances, the Narv�aez-framework is superior. This is because the structure
of the shortest-paths tree stored by the algorithm hardly changes on these experiments.
Therefore, the early-propagation of the weight change works well. On the INTERNET
instances, RR is the fastest algorithm. Looking at the small value of �(G;U), we can see
that updates hardly have any impact on these instances, which favors the RR-algorithm
with its small computational overhead and the early detection of edge weight increases
that do not change distances in the graph.

The achieved speedups vary greatly between the instances. This is mainly due to the
di�erent structure of the underlying graphs, which results in greatly di�ering expected
speedups. It is interesting to see that in nearly all cases the best actual speedups are close
to the expected speedups or even higher. This, in combination with the small absolute
runtimes, makes us expect that there is not much space for further improvement for the
single-edge update case.

The corresponding experiments for edge insertions and deletions are given in Table
5.3, extended results in Table A.2. For this type of experiments the situation is much
clearer. The early-detection of updated edges that do not change distances in the graph
makes the algorithm RR superior on this testset.

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GRID100 GRID300 UN-HOP UN-EU

FMN 62 1884 690 339 21427 1444 3592 50 304 257 681

SWSF-FP 142 4855 1490 742 12218 347 989 99 737 439 543
tunSWSF-FP 190 6202 1986 1049 15806 767 2151 165 1185 873 1676

tunSWSF-NAR 154 3128 2326 369 13137 462 769 104 618 428 525
tunSWSF-RR 143 5066 1495 763 27671 1798 4201 120 881 1043 1147

RR 322 6172 4619 1139 34537 2427 5046 221 1336 1457 1714

Nar-1st BF 55 2504 246 383 9770 280 800 23 105 587 560

�(G;U) 52 59 977 7 0.23 0.22 0.12 19 35 2 2
exp. speedup 589 16045 4486 4930 inf inf inf 556 2647 7500 15000

Table 5.3: Speedups of single edge updates, edge failure and recovery.

5.5.6 Experiments on Batch Updates

Multiple Randomly Chosen Edges. In this experiment we choose 25 edges uniformly
at random. For each edge, we choose a value from the interval (0; 2) uniformly at random
and multiply the weight of the edge with that value. The results can be seen in Table A.3.
For each graph there is hardly any di�erence between �(G;U) and �(G;U). Therefore,
the single-edge updates do only interfere marginally with each other. Hence, not much
news is to be expected by this setting regarding the comparison of the algorithms. This
has been con�rmed by the experiments.

However, we ran the batch-algorithms (Narv�aez and Tuned SWSF) twice. One
time with processing the edges in batch as stated in the description and one time with
iteratively processing the edges one after another. Nearly no runtime di�erences were
observed between the iterative and the batch variants, which indicates a low overhead
with batch updates.

112 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

AS-HOP AS-RAN CAIDA
degree 1-10 10-100 100-500 1-10 10-100 100-500 1-10 10-100 100-500

FMN 784 173 23 1368 129 3 7824 2284 185

ittun SWSF-FP 912 228 26 1320 235 11 12874 4212 382
SWSF-FP 273 68 8 389 28 1 9651 2203 128
tunSWSF-FP 967 250 24 1417 252 15 14042 4693 405
tunSWSF-NAR 407 92 9 410 50 4 9785 2187 122
tunSWSF-RR 1272 528 130 2475 433 21 12395 6839 969

RR 1438 576 142 2623 490 17 13915 7075 1163

Nar-1st Heap 53 21 9 86 59 16 4315 761 75
itNar-1st Heap 52 18 6 71 30 8 4060 573 63

�(G;U) 1.26 12.16 82.54 1.47 45.01 1365.85 1.97 7.4 90.99
�(G;U) 1.07 8.59 71.28 1.1 34.6 712.3 1.45 5.7 85.73
exp. speedup 27909 3489 393 27909 821 86 190914 38183 2246

Table 5.4: Speedups of experiments with node failure and recovery updates on INTERNET-
instances.

Node Failure and Recovery. This update class uses the two parameters degmin and
degmax. First, a node v with degree between degmin and degmax is chosen uniformly at
random. The update consists of two steps. In the �rst step, v fails, i.e., the weights of
all edges adjacent to v are set to in�nity. In the second step, v recovers, i.e., the weights
of all edges adjacent to v are reset to their original values. The results can be found in
Tables 5.4 and 5.5, extended results in Tables A.4 and A.5. For the sake of completeness
we applied this update class also to railway and road networks, the results are given in
Table A.7.

We take a look at the INTERNET instances. The most remarkable result is the bad
performance of the Narv�aez-framework, which clearly is the inferior algorithm for that
testset. One main reason for that is, that on this testset the edge-weight propagation in the
initialization phase creates useless extra e�ort which gets overwritten later on. The gap
between �(G;U) and �(G;U) is small to mid-size, favoring RR with its small overhead,
but big enough such that Tuned SWSF-RR is nearly as fast. The small di�erence of
�(G;U) and �(G;U) also manifests in the small di�erence between Ittuned SWSF and
Tuned SWSF.

The situation is similar, but a bit clearer, for UNIT DISK graphs. When applying hop
distance, �(G;U) and �(G;U) are still near to each other, Tuned SWSF and RR are the
best-performing algorithms (with RR being slightly better). When applying Euclidean
or energy edge weights, the di�erence between �(G;U) and �(G;U) is much bigger, and
Tuned SWSF clearly is the superior algorithm. We also observe the advantage of Tuned
SWSF against SWSF-FP being between 2 and 15 times faster.

Tra�c Jams. This update class models real-world tra�c jams. It derives from the
observation that tra�c jams often occur along shortest paths. The number k of updated
edges is given as a parameter. Initially, a node v is chosen uniformly at random. Then a
shortest path P ending at v and containing exactly k edges is chosen uniformly at random.
The update consists of two steps: in the �rst step, the weights of edges in P are multiplied
by 10. In the second step, the edge weights are reset to their original values. The results
can be found in Tables 5.6 and A.6.

We observe that this update class consists of strongly interfering single-edge updates:
there is a big di�erence between �(G;U) and �(G;U). Tuned SWSF andTuned SWSF-
NAR are the best-performing algorithms for this testset. This is because pure batch
algorithms avoid processing nodes many times. It is astonishing to see that the Narv�aez-

5.5 Experiments 113

metric hop euclidean energy
average degree 7 10 15 7 10 15 7 10 15

FMN 30 40 55 27 21 24 12 14 20

ittun SWSF-FP 238 398 485 116 95 98 56 66 91
SWSF-FP 128 214 236 60 32 36 28 24 22
tun SWSF-FP 260 462 561 158 115 141 75 86 110

tun SWSF-NAR 106 116 147 101 77 97 57 61 67
tun SWSF-RR 223 395 527 105 75 89 49 54 67

RR 289 504 628 111 91 106 55 63 84

Nar-1st Heap 70 87 131 84 62 111 52 62 74
itNar-1st Heap 55 71 100 64 50 66 36 46 52

�(G;U) 19 8 6 86 107 99 194 174 132
�(G;U) 18 7 5 54 79 55 128 119 98
exp. speedup 833 2500 3750 283 190 273 117 126 153

Table 5.5: Speedups of experiments with node failure and recovery updates on UNIT DISK-
instances.

GRID LUX NLD DEU
edge updates 10 20 30 5 10 20 10 20 30 10 20 30

FMN 3 2 1 4 2 1 11 5 2 185 30 7

ittun SWSF-FP 15 9 5 15 7 2 39 17 6 755 100 23
SWSF-FP 13 10 6 15 9 5 75 32 12 873 173 40
tun SWSF-FP 23 16 9 20 12 6 107 44 17 1210 235 55
tun SWSF-NAR 22 16 9 22 13 7 107 41 17 1402 342 79

tun SWSF-RR 16 12 7 15 9 5 72 31 12 957 181 42

RR 17 10 5 20 9 3 43 18 6 924 149 36

Nar-1st Heap 16 9 5 20 10 4 37 15 5 1120 196 35
itNar-1st Heap 19 12 6 24 12 4 57 24 8 1231 219 54

�(G;U) 4367 7909 15552 1178 3052 8616 12910 32088 93725 7885 39260 142191
�(G;U) 2591 3564 6412 821 1366 2567 4134 10899 26153 3884 13701 51252
exp. speedup 35 25 14 37 22 12 229 87 36 1127 320 85

Table 5.6: Speedups of experiments with tra�c jam updates.

114 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

framework is not able to take advantage of the batch-character of the update. This can
be seen through a comparison with itNarvaez. The iterative variant is even faster than
the batch one, which could be a hint on space for improvement. Again, FMN is much
slower than the other algorithms as its overhead does not pay o� on these instances.

5.6 Conclusion

In this chapter we focused on the dynamic single-source shortest-paths problem with
positive edge weights.

Broad Experimental Study for Single-Edge Case. We gave the �rst experimental
study evaluating the performance for single-edge updates that contains all according algo-
rithms and incorporates a broad set of instance classes. It turned out that the algorithms
perform quite di�erently, but within the same order of magnitude. For road networks
and grid graphs, the Narv�aez-framework performed best while RR was superior for the
internet-instances. The Tuned SWSF-algorithm was up to 6 times faster than its base
algorithm SWSF-FP. Together with RR it was the best approach for the railway graph
and unit-disk graphs. Due to its overhead on the graphs used, FMN was the slowest algo-
rithm. The algorithm RR was superior on all instances when considering edge insertions
and deletions instead of edge weight changes.

First Experimental Study for Batch Case. We presented the �rst experimental
study at all for the case of multiple edge-weight changes at a time. One experiment was
to choose a set of edges uniformly at random. It turned out that this way the single-edge
updates hardly interfere. Therefore, the results deviated not much from the single-edge
case. Interestingly, nearly no runtime di�erences could be observed between the iterative
and the batch variants of Tuned SWSF and the Narv�aez-framework, indicating a low
overhead for batch updates.

We also tested two more realistic types of batch updates. One is the simulation of
node failure and recovery, which a�ects all incident edges. When applying that update
class, the single-edge updates interfered, but not very strongly. For the internet-instances,
the best performing algorithms were RR and Tuned SWSF-RR with RR being slightly
faster. For unit disk graphs, Tuned SWSF was the best algorithm with RR being slightly
faster when applying uniform edge lengths. The other update class modelled tra�c jams.
The single-edge updates interfered greatly, Tuned SWSF and Tuned SWSF-NAR were
the superior algorithms there.

Tuned Variants of SWSF-FP. We proposed three tuned variants for the SWSF-FP-
algorithm and evaluated their performance. Tuned SWSF requires only simple changes
compared to SWSF-FP but yields a great improvement in runtime. This approach was
never slower than its base algorithm and up to 15 times faster. The algorithm performed
very well (and often best) when many nodes were a�ected by multiple single-edge updates.
The combination of Tuned SWSF and ideas of the Narv�aez-framework was slightly
faster than Tuned SWSF for tra�c jams, but slower on nearly all other datasets. The
enhancement of Tuned SWSF with the main ingredient of the algorithm RR was faster
than Tuned SWSF on the INTERNET-instances and slower otherwise.

Further Insights. We introduced a simple methodology (based only on Dijkstra's algo-
rithm) to decide if one should try an iterative or a batch update algorithm for a given
instance class. We compared the `impact' of the update when processed in batch to the
`impact' when processed iteratively. For updates with a big gap between both values, the

5.6 Conclusion 115

algorithms Tuned SWSF or Tuned SWSF-RR usually performed best. With a small
gap, there was usually a better-performing iterative algorithm.

The achieved speedups varied greatly between di�erent instances. We were able to
explain this by measuring the impact of the updates on the graphs. These measurements
also proposed that there is not much space for further improvements when applying the
instances used in our study.

Summary. We gave an experimental overview on the di�erent approaches for the prob-
lem, which can be used as a basis for further research. The most important insight that
can be gained from our experiments is the astonishing level of data dependency within
the problem. It turned out that a proper assessment of an algorithm's runtime is not
possible without full knowledge of the application it is used in. Further, a great amount
of experiments is required to get the big picture of an algorithm's e�ciency.

116 Chapter 5: Batch-Dynamic Single-Source Shortest-Paths Algorithms

Chapter 6

Practical Online Algorithms for

Delay Management

The delay management problem asks how to react to exogenous delays in public railway
tra�c such that the overall passenger delay is minimized. These source delays occur in the
operational business of public transit and easily make the scheduled timetable infeasible.
The delay management problem is further complicated by its online nature. Source delays
are not known in advance, hence decisions have to be taken without exactly knowing the
future. This chapter focuses on online delay management.

We enhance established o�ine models and gain a generic model that is able to cover
complex realistic memoryless delay scenarios as well as standard academic delay scenarios
that require knowing the past. We introduce and experimentally evaluate online strate-
gies for delay management that are practical, easily applicable, and robust. The most
promising approach is based on simulation and a learning strategy. Finally, by analyz-
ing the solutions found, we gain interesting new insights in the structure of good delay
management strategies for real-world railway data.

6.1 Introduction

The delay management problem asks how to react to exogenous delays (source delays) in
public railway tra�c such that the overall passenger delay is minimized. These source
delays occur in the operational business of public transit and usually make the scheduled
timetable infeasible. Many operational constraints have to be taken into account when
updating the scheduled timetable to a disposition timetable. The two main aspects treated
in literature are as follows: Firstly, passenger trips often require changing from one train
to another. Given a delayed feeding train, a wait-depart decision settles the question if a
follow-up train should wait in order to enable changing activities. Secondly, the limited
capacity of the track system complicates the creation of a good disposition timetable.
Headway constraints model this limited capacity. Every time two trains simultaneously
compete for the same part at the train system, it has to be decided which train may go
�rst.

What has been neglected in most publications so far is the online nature of the problem.
Source delays are usually not known in advance, hence decisions have to be taken without
exactly knowing the future.

118 Chapter 6: Practical Online Algorithms for Delay Management

Contribution. This chapter focuses on online delay management. We enhance both
o�ine models given in [SS10] for the online case: The uncapacitated model that concen-
trates on wait-depart decisions and the more general model that additionally considers
the limited capacity of the track system. We gain a generic model that is able to cover
complex realistic memoryless delay scenarios as well as standard academic delay scenarios
that require knowing the past.

In particular, we introduce and experimentally evaluate online strategies for delay
management. Besides the quality of the online solution, our aim also is to �nd strategies
that are practical in the sense that they are easily applicable and robust. We propose
for the �rst time a learning-strategy for online delay management. It does not need
complete information on the state of the entire system and is hence simple and robust,
but nevertheless turns out to be superior to other heuristics proposed in the literature and
even to ILP-approaches. We compare our results to tight a-posteriori bounds given by an
optimal o�ine solution. Finally, by analyzing the solutions found, we gain interesting new
insights in the structure of good delay-management strategies for real-world railway data.

Related work. There exist various models and solution approaches for delay manage-
ment, mainly treating its o�ine version. If capacities are neglected the question is to
decide which trains should wait for delayed feeder trains and which trains better depart
on time. A �rst integer programming formulation for this problem has been given in
[Sch01] and has been further developed in [HGL08] and [Sch07]; see also [Sch06b] for
an overview on various models. The complexity of the problem has been investigated in
[GGP+04, GJPS05] where it turns out that the problem is NP-hard even in very special
cases.

Further publications about delay management include a model in the context of max-
plus-algebra [VSM98, Gov98], a formulation as discrete time-cost tradeo� problem [GS07]
and simulation approaches [KS10, SMB01]. Recently, also the limited capacity of the track
system has been taken into account, see [Sch09a] for modeling issues and [SS10, Sch10]
for an extensive analysis of the resulting integer program and heuristic approaches solving
the capacitated delay management problem. A model which includes the routing of the
passengers can be found in [DHSS09].

An online version of the problem has been studied in [Gat07, GJPW07], where its
relation to job-shop scheduling is pointed out and Graham's algorithm is studied. In
[BHLS07], it was shown that the online version of the delay management problem is
PSPACE-hard. In [KS10], an online version of delay management was studied in which
priority-based strategies were compared with the according optimal o�ine solution and
with a solution resulting from an optimal recomputation in each step. The optimal o�ine
solution and the optimal recomputation are gained by an ILP-formulation. The underlying
model is similar to the one used in this work. However, it di�ers in some aspects, such as
the objective function and the existence of headway constraints.

Overview. In Section 2 we formally state the problem. Section 3 introduces the con-
sidered delay-management strategies. Experimental results are given in Section 4. The
chapter ends with a conclusion in Section 5.

6.2 Problem Statement 119

6.2 Problem Statement

Given two vectors a; b 2 Rk for some k we write a � b if ai � bi for each i = 1; : : : ; k. We
use the convention 1+1 =1.

Model of the railway system. An event-activity network is a directed graph N =
(E ;A) where E = Earr _[Edep is decomposed into arrival and departure events Earr and Edep.
Each node in E corresponds to a speci�c train arriving or departing at a speci�c time in or
from a speci�c station. An edge in A is called an activity. The set of activities partitions
into A = Adrive _[Await _[Achange _[Ahead with each activity a 2 A having a minimal duration
La > 0. Structure and meaning of the activities is as follows:

� A driving activity a 2 Adrive � Edep � Earr represents a train driving between two
consecutive stations.

� A waiting activity a 2 Await � Earr � Edep corresponds to the time period in which
a train is waiting in a station to let passengers on or o�.

� A changing activity a 2 Achange � Earr�Edep corresponds to the transfer of passengers
from one train to another (by foot, within a station).

� A headway activity a 2 Ahead � Edep � Edep models the limited capacity of the
track system. This can either be two trains driving on the same track into the same
direction or two trains driving into opposite directions on a single-way track. The
duration L(i;j) of a headway activity (i; j) means that the departure j must take
place at least L(i;j) minutes after the departure i (if j actually takes place after i).

For each changing activity Achange the delay management problem asks to decide if we
leave it in the network (i.e., if the connection is maintained) or if it is deleted (if the
connection is not maintained). For each activity (i; j) 2 Ahead, it is (j; i) 2 Ahead. If
(i; j) is respected this means that i happens before j. The delay management problem
decides which of these two constraints is respected and which is dropped. There is no such
decision to be made for Adrive and Await. Hence we abbreviate Adrive [Await by Atrain.

De�nition (timetable). A timetable for N is a vector x 2 NjEj which assigns a time xi 2 N
to each event i 2 E such that

xj � xi � L(i;j) for each activity (i; j) 2 Atrain (6.1)

xj � xi � L(i;j) or xi � xj � L(j;i) for each activity (i; j) 2 Ahead (6.2)

holds.

Throughout this chapter we assume that an event-activity network N = (E ;A) is given.
The network will always be annotated with the following information: For each event
i 2 Earr the number of passengers wi getting o� at event i and arriving there at their �nal
destination, and for all a 2 Achange, the number of passengers wa who want to use activity
a. We always assume wa > 0 for each a 2 Achange.

Further, a number T 2 N is given. We interpret T as a common time-period for
all lines of the underlying railway system und use it as a penalty for not maintaining a
changing activity. Finally, we are given a timetable � for N which we call the scheduled
timetable. This timetable maintains every changing activity of N , that is, �i +L(i;j) � �j
for all (i; j) 2 Achange. Note that the graph (E ;A n Ahead) is acyclic as otherwise � would
not exist. More detailed explanations on this model can be found in [Sch10] and [SS10], a
small example of an event-activity network is given in Figure 6.1.

120 Chapter 6: Practical Online Algorithms for Delay Management

station C
departure

train 3

station D
arrival

train 1

station D

train 2

station D

train 3

station D
departure

train 1

station D
departure

train 2

station D
departure

train 3

station E

train 1

station F

train 2

station G

train 3

station B
departure

train 2

station A
departure

train 1

arrival

arrival

arrival

arrival

arrival

change

headway

headway

Figure 6.1: Example of an event-activity network. Solid edges represent driving and waiting
activities, dotted edges represent changing activities and dashed edges represent headway activities.

Models for o�ine delay management. A (source) delay state d re
ects the current
knowledge and expectations on exogenous delays in the underlying railway system. Such
delays are called source delays. Formally, d is a mapping from E [Atrain to N meaning
that there is a source delay of d(w) at activity/event w. We write d(i;j) and di for d(i; j)
and d(i), respectively. Whenever we become aware of altered source delays, the scheduled
timetable � has to be updated to a so-called disposition timetable x 2 NjEj.

De�nition (Disposition timetable). Given a delay state d, a disposition timetable x 2 NjEj

for d is a timetable for N such that

xi ��i + di for each event i in E (6.3)

xj �xi + d(i;j) + L(i;j) for each activity (i; j) in Atrain: (6.4)

Given a disposition timetable x and a changing activity (i; j) we write

zx(i;j) =

(
0 if xj � xi + L(i;j)

1 otherwise :

That means zx(i;j) equals 0 if and only if the changing activity (i; j) is maintained by the

disposition timetable x. The overall delay f(x) of a disposition timetable x is

f(x) =
X
i2Earr

wi(xi � �i) +
X

a2Achange

zxawaT:

approximating the overall delay of passenger arrivals according to the timetable x. O�ine
delay management assumes that all source delays are known in advance.

Problem (Capacitated O�ine Delay-Management). Given a timetable � and a delay state
d, �nd a disposition timetable x for d of minimal overall delay f(x).

The uncapacitated case does not take the limited capacity of the track system into account.

Problem (Uncapacitated O�ine Delay-Management). Given a timetable � and a delay
state d, �nd a disposition timetable x for d on N 0 = (E ;A n Ahead) of minimal overall
delay f(x).

6.2 Problem Statement 121

Models for online delay management. In the online case, source delays are not
completely known in advance and expectations may change over time. We model this as
a process of repeatedly updated knowledge and expectations on future delays. We are led
by the following considerations:

� We want to be able to model completely unexpected delays (like accidents) that get
known just at the time the respective event is scheduled.

� We want to be able to model changing expectations (like changing plans for working
sites).

� The knowledge and expectation on delays are given by a �nite sequence � = (d1; t1);
(d2; t2); : : : ; (dm; tm) where dk is a delay state and tk 2 N the time at which dk

becomes active.

� Between time tk and tk+1 everything happens as expected in state dk.

From a more technical point of view, we have the request to be able to express realistic,
memoryless models that work similar to Markov-chains as well as distributions applied in
academics for experiments. The following de�nitions of feasible next delay state and online
strategy for delay management give the minimal technical restrictions that are necessary
to ful�ll the above desiderata.

Assume that at time t1, the current delay state is d1 and the disposition timetable is
x1. At a point t2 > t1 in time, the delay state changes to a new state d2. We assume
that all events and delays that were scheduled between t1 and t2 happened as planned in
x1. Hence, d1 and d2 are equal for all activities (i; j) with x1j < t2. A delay state d2 that
guarantees this property is called a feasible next delay state.

De�nition (Feasible next delay state). Given delay states d1 and d2, a timetable x1 and a
point in time t2 2 N, we call (d2; t2) feasible for (x1; d1) if d1(i;j) = d2(i;j) for each activity

(i; j) with x1j < t2 and d1j = d2j for each event with x1j < t2.

At time t2, it may turn out that the timetable x1 is not feasible any more. An online
strategy (for delay management) adapts a timetable to �t the new delay state. We assume
that the re-scheduling is done at time t2 and all events that were scheduled in x1 before
time t2 already happened as planned. Hence, only events scheduled (according to x1) after
time t2 can be rescheduled.

De�nition (Online Strategy for Delay Management). Given are a timetable x1, a time
t2 2 N and delay states d1; d2 such that (d2; t2) are feasible for (x1; d1). An online-
strategy for delay management is an algorithm S that computes a disposition timetable
x2 = S(x1; d2; t2) for d2 such that

� x2i = x1i for each i 2 E with x1i < t2 (6.5)

� from x1i � t2 follows x2i � t2 : (6.6)

Accordingly, we express the current state of the system through the triple (x; d; t) of
current disposition timetable x, delay state d and a time t representing the start of d.
Then, next delay state and time (d0; t0) are randomly chosen by a delay generator.

De�nition (Delay Generator). Let D be a black-box routine whose input may consist of
current disposition timetable x, delay state d, time t, additional random values and values
computed in former executions of D. We call D a delay generator if (d0; t0) := D(x; d; t) is
a feasible next delay state for input (x; d; t) and any additional input.

122 Chapter 6: Practical Online Algorithms for Delay Management

time t1
delay state d1

timetable x1

time t0 = 0

delay state d0 ≡ 0

timetable x0 = π

time t2
delay state d2

time t3
delay state d3

timetable x3 = xm

D

S(x0, d1, t1) S(x1, d2, t2) S(x2, d3, t3)

f(xm) overall
delay

timetable x2

D D

Figure 6.2: Illustration of the delay management process for a delay management strategy S.

Starting with (x; d; t) = (�; 0; 0) online delay management �rst obtains a tuple (d0; t0)
from D. Then, a new disposition timetable x0 is computed by a delay management strategy
S. The process iteratively repeats until the considered time horizon ends (i.e., it stops,
when the roll-out time is reached). The objective function (the delay of all passengers) is
computed out of the �nal disposition timetable.

De�nition (Delay Management Process). We are given a delay management strategy S
and a delay generator D. The delay management processM with respect to S and D is
the process constructed as follows:

Starting with x0 = �, d0 � 0 and t0 = 0, we iteratively obtain (di+1; ti+1) :=
D(xi; di; ti) and afterwards compute xi+1 = S(xi; di+1; ti+1). The process ends when
tm+1 = 1 (and there with the convention xm+1 = xm and dm+1 = dm). Let � =
(x1; d1; t1); (x2; d2; t2); : : : ; (xm; dm; tm) be a realization of M. The overall delay of � is
f(xm).

The process is depicted in Figure 6.2. At a �rst glance it might look unnecessary that
the delay generator also incorporates the current disposition timetable x as an input. The
reason is the following: In order to have the next delay state feasible, the delay generator
has to assure that events that already happened do not change. In order to know which
events already happened it is necessary to know the current disposition timetable x. Online
Delay Management aims at �nding good average case strategies.

Problem (Capacitated Online Delay Management). Given a delay generator D, �nd an on-
line strategy S, such that the expected overall delay of the delay processM of S and D
is minimal.

Again, the uncapacitated case does not take the limited capacity of the track system into
account.

Problem (Uncapacitated Online Delay Management). Uncapacitated Online Delay Man-
agement is Capacitated Online Delay Management on N 0 = (E ;A n Ahead).

A Delay Generator. Within our experiments we use the delay generator DDA (delays
determined in advance) which is described in the following. We assume that delays do not
depend on the delay management strategy and a �nal delay state d�nal randomly is chosen
before the actual delay management process starts. Note that we still start the process
with state (x0 = �; d0 = 0; t0 = 0).

Delays get known over time, directly when they are scheduled to happen, i.e., to
compute (dk+1; tk+1) := D(xk; dk; tk) we search for the next (according to xk) set of events
or activities that are source delayed (according to d�nal). More formally, let

� i 2 E be such that dki = 0, d�nali > 0 and xki is minimal, and

6.3 Delay Management Strategies 123

� (j; w) 2 A be such that dk(j;w) = 0, dfinal(j;w) > 0 and xkj is minimal

We set tk+1 = minfxki ; x
k
j g. Given arbitrary a 2 E , (v; w) 2 Atrain, the next delay state

dk+1 is given by

dk+1a =

(
d�nala ; xka � tk+1 or dka > 0

0 ; otherwise
(6.7)

dk+1(v;w) =

(
d�nal(v;w) ; xkv � tk+1 or dk(v;w) > 0

0 ; otherwise.
(6.8)

We �nish with time tk+1 = 1 when dk = d�nal. As the delay management process gets
deterministic as soon as d�nal is �xed, we call d�nal an instance of generator DDA.

6.3 Delay Management Strategies

An a-posteriori bound and ILP-approaches. In [SS10] an exact integer programming
formulation for the o�ine problem is given. The formulation is as follows.

min f(x; z; g) :=
X
i2Earr

wi(xi � �i) +
X

a2Achange

zawaT (6.9)

such that

xi � �i + di i 2 E (6.10)

xj � xi � L(i;j) + d(i;j) (i; j) 2 Atrain (6.11)

Mz(i;j) + xj � L(i;j) + xi (i; j) 2 Achange (6.12)

Mgij + xj � L(i;j) + xi (i; j) 2 Ahead (6.13)

gij + gji = 1 (i; j) 2 Ahead (6.14)

xi 2 Z
+ i 2 E (6.15)

za 2 f0; 1g a 2 Achange (6.16)

gij 2 f0; 1g (i; j) 2 Ahead (6.17)

whereM is a number `big enough'. Detailed explanations on the ILP including a discussion
on the size of M can be found in the original work.

When working with delay generator DDA, all source-delays are determined by d�nal

before the delay management process starts. Consider an optimal solution to the o�ine
problem for d�nal. This solution obviously gives an a-posteriori bound on the corresponding
online problem for that instance. The following lemma shows that this bound is tight.

Lemma 21. Let d�nal be an instance of delay generatorDDA. Let xopt be an optimal solu-
tion to the o�ine problem for d�nal. Then, there is an online strategy S that generates (on
instance d�nal) a delay management process � = (x1; d0; t0); (x2; d1; t1); : : : ; (xm; dm�1 =
d�nal; tm�1) such that f(xopt) = f(xm).

Proof (of Lemma 21). Given d�nal, the following online strategy does the desired. Let
t1 = minf�i j i 2 E ^ di > 0 or (i; j) 2 A ^ d(i;j) > 0g and let x0 := �. For k � 1, we set

S(xk; dk+1; tk+1) to be a timetable x0 which is de�ned by x0i = �i if �i < t1 and x0i = xopti

otherwise.

124 Chapter 6: Practical Online Algorithms for Delay Management

Obviously, S is an online strategy for k > 0. Because of xopti � �i for any i 2 E , we
have wi(x

opt
i � �i) � wi(x

0
i� �i). Further, it is z

x0

(i;j) = 0 if �i < t1. (This holds in the case
that �j < t1 since then both events are not delayed, and in the case that �j � t1 since the

transfer can take place if only the departing train has a delay). Accordingly, zx
0

(i;j) = zx
opt

(i;j)
if �i; �j � t1.

Consequently we have zx
0

(i;j)waT � zx
opt

(i;j)waT . Summarizing, it is f(x
0) � f(xopt). To

prove f(xopt) � f(xm), it remains to show that x0 is a disposition timetable for each dk

which can easily be done by checking Equations 6.2, 6.3 and 6.4. It is f(xopt) � f(xm) as
xm must be a disposition timetable for dm.

By �xing past events and iteratively recomputing the exact o�ine-solution we can use the
ILP as an online strategy:

Strategy (OnlineILP). Given (xk; dk+1; tk+1), compute xk+1 = S(xk; dk+1; tk+1) by setting
xk+1 = x for a feasible solution (x; z; g) of

min f(x; z; g) :=
X
i2Earr

wi(xi � �i) +
X

a2Achange

zawaT (6.18)

such that (6.10)-(6.17) and such that

xi = xki i 2 E and xki < tk+1 (6.19)

xi � tk+1 i 2 E and xki � tk+1 (6.20)

Ad-Hoc Re-Scheduling. This online strategy iteratively re-schedules the timetable
event-by-event. Simple heuristic functions are used to decide time and choice of the
next event to schedule. The approach uses only local information when scheduling an
event. The resulting disposition timetable strongly depends on the choice of the heuris-
tic functions. Without considering headway constraints the strategy is straightforward:
First, order the events that may be in
uenced by the given delay topologically. Then
proceed the events in this order and let each event start as early as possible with respect
to the applied heuristic. If headways are regarded, we further re�ne the topological order
and have to obey more restrictions. The computation of the next disposition timetable
xk+1 = S(xk; dk+1; tk+1) then works as follows:

For each event i, the time xk+1i is initialized to xki if x
k
i < tk+1. Otherwise we initialize

xk+1i with 1. During the run of the algorithm, xk+1i = 1 indicates that event i has not
yet been scheduled. For each event i we can compute a wish time(i; xk+1; dk+1; tk+1) for
the event to happen. This wish depends on the choice of the already re-scheduled events.
It consists of three parts.

time(i; xk+1; dk+1; tk+1) := maxf timeearliest(i; x
k+1; dk+1; tk+1);

timedm(i; x
k+1; dk+1);

timetop(i; x
k+1)g

The function timeearliest(i; x
k+1; dk+1; tk+1) assures that all technical restrictions are re-

spected and hence makes sure that we gain a (feasible) disposition timetable. The func-
tion timedm(i; x

k+1; dk+1) realizes the applied heuristics while timetop(i; x
k+1) in
uences

the order in which events are scheduled. All three functions will be described later.
Now, while there is an unscheduled event, we pick an arbitrary unscheduled event i

with minimum time(i; xk+1; dk+1; tk+1) and schedule it to happen at that time. Note that
scheduling an event imay alter time(j; xk+1; dk+1; tk+1) for other events j. The pseudocode
is given as Algorithm 6.1. Each computation step needs only local information. Hence,
only small changes are required such that the approach can be applied locally by the trains
drivers or by the local disponents at single train stations.

6.3 Delay Management Strategies 125

Algorithm 6.1: Ad-Hoc Re-Scheduling

input : time tk+1 2 N, old disposition timetable xk, new delay state dk+1,
function time(�; �; �; �)

output: new disposition timetable xk+1

1 for i 2 E do

2 xk+1i 1

3 if xki < tk+1 then xk+1i xki

4 while there is an event i with xk+1i =1 do

5 i choose an arbitrary element in fi 2 E j xk+1i =1g with minimal

time(i; xk+1; dk+1; tk+1)

6 xk+1i time(i; xk+1; dk+1; tk+1)

Common Parts of all Heuristics. While the function timedm contains the individual
part of each heuristic, all applied strategies share the same choice of timeearliest and timetop.

The graph N 0 = (E ;A n Ahead) is a acyclic. It turned out that the quality of Ad-
Hoc Re-Scheduling signi�cantly increases when we perform the scheduling of the events
in topological order of N 0. The reason is, that we otherwise loose information when
computing timedm. Given an event i, a successor j of i in N 0 and the resulting disposition
timetable x, that does not necessarily mean that xi � xj but that we determine the value
of xi before we determine the value of xj . It further is possible that we determine the
value of xi before we determine the value of xj even if xi > xj . The function

timetop(i; x) :=

(
1 there is an (j; i) 2 Achange with xj =1

0 otherwise

ensures that the topological order is respected for changing activities. The task of function
timeearliest(i; x; d; t) is to compute the earliest point in time at which event i can take place
with respect to the original timetable �, the predecessing event on the same line, the
current time t, the headway constraints of already scheduled events and all known source
delays. This also ensures that the topological order is guaranteed for waiting and driving
activities. The value

earliestNoHead(i; x; d; t) := max
�
ft; �i + dig [fxj + L(j;i) + d(j;i) j (j; i) 2 Atraing

�
already respects all requirements but the headways. The function nextSlot considers the
headway constraints by giving the earliest point in time at or after the time t at which
event i can take place without violating a headway constraint of an already scheduled
event, i.e., an event j with xj <1.

nextSlot(i; x; t) := minft � tj t 62 [xj ; xj + L(j;i)) for (j; i) 2 Ahead; xj <1

xj 62 [t; t+ L(i;j)) for (i; j) 2 Ahead; xj <1g

Note that this function may be suboptimal in case of L(i;j) = 0, but this can easily be

handled as a special case. The function timeearliest(i; x
k+1; dk+1; tk+1) combines nextSlot

and earliestNoHead

timeearliest(i; x; d; t) := nextSlot(i; x; earliestNoHead(i; x; d; t))

and hence satis�es all technical requirements.

126 Chapter 6: Practical Online Algorithms for Delay Management

Uniform-Heuristics for Ad-Hoc Re-Scheduling. This class of Ad-hoc Re-Scheduling
uses the same decision strategy for all events and does not depend on preprocessed infor-
mation. The function timedm determines whether a train should wait for a feeder train.
In the following, we use the indicator function

1A(y) =

(
y ; y 2 A

0 ; otherwise

and the convention minf;g = 0. Given a parameter `i, we de�ne timedm as

timedm(i; x; d; t) := max
�
1[0;`i](nextSlot(x; i; xj + L(j;i) + d(j;i))) j (j; i) 2 Achange

	
:

The value of `i steers how long event i waits for feeder trains. We apply the following
choices.

� Always wait. Formally: `i =1

� Never wait. Formally: `i = 0

� Wait if enough slack on next activity.
Formally: `i = minf�w � L(j;w) � d(j;w) j (j; w) 2 Atraing

� Wait y minutes starting from earliest possible departure.
Formally: `i = timeearliest(i; x; d; t) + y

� Wait y minutes starting from original timetable.
Formally: `i = �i + y

The strategies always wait, never wait, and wait y minutes starting from original timetable
have been used before in [KS10], but without respecting headway constraints.

Learning Non-Uniform Heuristics from Simulation. In the non-uniform case, we
preprocess some data that is used as a parameter when computing priorities. For each
changing activity (i; j) we are given a value `(i;j) 2 N meaning that event j should wait
at most `(i;j) minutes starting from the scheduled timetable in order to maintain (i; j).
Accordingly, we have

timedm(i; x; d) = max
n
1[0;�i+`(j;i)](xj + L(j;i) + d(j;i)) j (j; i) 2 Achange

o
:

To learn the values of `(i;j) we �rst generate a number of random delay states. In case of

model DDA we use the �nal delay states d�nal. Otherwise it is reasonable to obtain �nal
delay states by applying an arbitrary delay management strategy. Afterwards we exactly
solve the o�ine problem on these instances using the ILP. We obtain a sequence (x1; d1),
. . . , (xn; dn) where disposition timetable xi is an optimal solution of the random instance
di. In order to obtain `(i;j) for a changing activity (i; j), we compute the multisets

yes(i;j) :=
n
xki + L(i;j) � �j j x

k
j � xki + L(i;j); k 2 1; : : : ;m

o
no(i;j) :=

n
xki + L(i;j) � �j j x

k
j < xki + L(i;j); k 2 1; : : : ;m

o
:

These sets contain, for each instance, the value how long event j would have had to wait
in order to maintain activity (i; j). The simulated instances x1; : : : ; xm are split such that
yes(i;j) represents all instances in which (i; j) actually has been maintained and such that

6.4 Experiments 127

no(i;j) represents the remaining instances. We let `(i;j) be an arbitrary value that separates
yes(i;j) and no(i;j) optimally. That is a value `(i;j) for which

p(`(i;j)) :=
���fv 2 yes(i;j) j v > `(i;j)g

���+ ���fv 2 no(i;j) j v < `(i;j)g
���

is minimal. Experimentally, we made the observation that it usually is possible to split
both sets very well, often with p(`(i;j)) = 0. Further, when considering the quality of the
online-phase, the actual choice of `(i;j) out of all optimal values only mattered for very
small simulation numbers m.

6.4 Experiments

In this section, we present an experimental evaluation of the algorithms described above.
Unless stated otherwise experiments are performed on a random sample of size 100 and
the preprocessing of the learning heuristics uses 1000 simulation runs.

All experiments are reported as box-and-whiskers plots: There is one entry on the
x-axis for every online delay management strategy applied. The y-axis always gives the
relative quality of the solutions compared to the respective optimal solutions (i.e., the
objective value of the online strategy divided by the objective value of the tight lower
bound described in Section 6.3). Bottom and top of the box give the lower and upper
quartiles, the band inside a box gives the median and the whiskers give the smallest and
highest observations without outliers. We classify any observation outside 1.5 interquartile
range of the lower quartile or outside 1.5 interquartile range of the upper quartile as outlier
and depict it as a circle.

Instances. We work on two di�erent datasets. LinTim is the medium sized real-world
based instance that is part of the LinTim-package. See [SS09] for further details. Until
now, the dataset does not incorporate headways. The instance Harz is a real-world
dataset representing the network of Deutsche Bahn in the Harz region. The instance
incorporates headways. Further information on that data can be found in [Sch10]. For
both datasets, the roll-out time gives the length of the considered time horizon.

We use the delay generator DDA. We generate an instance d�nal by choosing a given
number of activities uniformly at random. Each of them is assigned a random delay,
uniformly distributed in the interval [1min, 3min] (scenario weak), [3min, 15min] (sce-
nario medium) or [15min, 18min] (scenario strong). We use the scheme network-
name/roll-out-time/number of delays/delay-scenario for identifying particular
instances. We add the post�x /noHead for Harz-instances with headway constraints
removed.

Small Observations made by Pretests. It turned out that the strategies `wait y
minutes from initial timetable' and `wait y minutes from earliest possible departure' per-
form very similar. Hence we only include `wait y minutes from initial timetable' in our
experimental study.

When learning the values `(i;j) from simulation, there are many possibilities of how to
treat changing activities for which no data has been gained by the simulation. Further,
even in case there is data available, `(i;j) usually can be chosen out of one (or even more
intervals). In our experiments the actual choice of these degrees of freedom only mattered
for very small simulation numbers.

Runtime. Our implementation is written in Java using XPRESS as ILP-Solver and the
tests were executed on one core of an AMD Opteron 2218, running SUSE Linux 10:3.

128 Chapter 6: Practical Online Algorithms for Delay Management

o
n

lin
e

 i
lp

s
im

u
la

ti
o

n
−

b
a

s
e

d

n
e

v
e

r
w

a
it

w
a

it
 i
f

s
la

c
k

w
a

it
 1

0
0

 s
e

c
o

n
d

s

w
a

it
 2

0
0

 s
e

c
o

n
d

s

w
a

it
 3

0
0

 s
e

c
o

n
d

s

w
a

it
 4

0
0

 s
e

c
o

n
d

s

w
a

it
 5

0
0

 s
e

c
o

n
d

s

w
a

it
 6

0
0

 s
e

c
o

n
d

s

a
lw

a
y
s
 w

a
it

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

o
n

lin
e

 i
lp

s
im

u
la

ti
o

n
−

b
a

s
e

d

n
e

v
e

r
w

a
it

w
a

it
 i
f

s
la

c
k

w
a

it
 1

0
0

 s
e

c
o

n
d

s

w
a

it
 2

0
0

 s
e

c
o

n
d

s

w
a

it
 3

0
0

 s
e

c
o

n
d

s

w
a

it
 4

0
0

 s
e

c
o

n
d

s

w
a

it
 5

0
0

 s
e

c
o

n
d

s

w
a

it
 6

0
0

 s
e

c
o

n
d

s

a
lw

a
y
s
 w

a
it

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

o
n

lin
e

 i
lp

s
im

u
la

ti
o

n
−

b
a

s
e

d

n
e

v
e

r
w

a
it

w
a

it
 i
f

s
la

c
k

w
a

it
 1

0
0

 s
e

c
o

n
d

s

w
a

it
 2

0
0

 s
e

c
o

n
d

s

w
a

it
 3

0
0

 s
e

c
o

n
d

s

w
a

it
 4

0
0

 s
e

c
o

n
d

s

w
a

it
 5

0
0

 s
e

c
o

n
d

s

w
a

it
 6

0
0

 s
e

c
o

n
d

s

a
lw

a
y
s
 w

a
it

1
.0

1
.1

1
.2

1
.3

Harz/6h/10/medium/noHead Harz/6h/20/medium/noHead Harz/6h/60/medium/noHead

Figure 6.3: Experiments on the Harz instances with headways removed.

The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB of L2 cache. The
program was compiled with Java 1:6. Because of the di�erent focus of the problem we do
not report the runtimes in great detail or measure highly accurate. Further, we observed
that the applied ILP-solver slightly slowed down with growing number of simulation runs.
Hence, the given numbers shall only give an impression on the required runtime.

The average time needed for solving the ILPs mainly depends on size and structure
of the network and the roll-out time. The approximate numbers in seconds are < 1 for
LinTim/2h, 3 for LinTim/4h, 5 for LinTim/6h, 10 for LinTim/8h, < 1 for Harz/2h,
9 for Harz/4h, 48 for Harz/6h and 234 for Harz/8h. The runtime of Ad-Hoc Re-
Scheduling is neglectable. On the instances of this study it usually took less than 1 second
to solve one o�ine problem.

Main Experiments. Our main experiments are given as Figures 6.5 and 6.3. We observe
that the OnlineILP and the learning heuristics are both performing very well. Both
strategies are always better than the best uniform strategy and often are very close to the
optimum.

All experiments on the learning heuristics have been made using 1000 simulation runs.
More simulation runs lead to more accurate values of `a and more activities for which
estimations of `a are available. Accordingly, in Figure 6.4 we see that the quality of the
approach strongly depends on the number of simulation runs. Hence, the already good
quality of the approach can be further improved by using a longer simulation phase.

There are noticeable, extreme outliers on the weak-instances. The reason is simple:
On these instances, the part of the objective function representing delayed arrivals in
stations is so small that any wrong wait-decision leads to these extreme values.

We now have a short look at the Harz/noHead-instances. Comparing the strategies
against each other, the situation here is similar to the LinTim-instances. The OnlineILP
performs slightly worse on Harz/noHead and there is a signi�cantly smaller gap be-
tween the always-wait and the never-wait strategy. A big di�erence lies in the absolute
approximation-ratios. These are much better for all strategies on Harz/noHead. We in-
terpret that as follows: There is much less in
uence of the applied strategy on the objective
function and hence, less space for improvement on the Harz/noHead-instances.

6.4 Experiments 129

1
0

0
 r

u
n

s

5
0

0
 r

u
n

s

1
0

0
0

 r
u

n
s

2
0

0
0

 r
u

n
s

1
.0

1
.2

1
.4

1
.6

Figure 6.4: Performance of Simulation-Based Ad-Hoc Re-Scheduling on LinTim/8h/20/medium
for di�erent numbers of simulation runs.

In
uence of the Rollout Time. We also checked if the roll-out time has in
uence on
the performance of the applied strategies. It turned out that this in
uence is small and the
strategies' performance is quite robust with respect to roll-out time. As a small impact of
the roll-out time, good solutions on longer roll-out times tend to have slightly less waiting
decisions. This is easily explainable as in this case waiting decisions can propagate further
into the future. Some experiments on the roll-out time can be seen in Figure 6.6.

Robustness Issues. The preprocessing phase of our learning heuristics makes use of
knowledge on the underlying delay distribution. Hence we tested the robustness of the
approach with respect to deviations in the delay distribution. To that end, we trained
our strategy for the delay scenario 20/medium and used the following scenarios in the
online phase: 10/medium, 60/medium, 20/weak, 20/strong. The results are given
in Figure 6.7. The approach shows to be robust and the solution quality only decreases
little. However the scenario strong deviates heavy enough from medium to e�ect in a
noticeable decrease in solution quality. This suggests the following modus operandi for
practical application: Perform preprocessing for a `standard' and one or two `extreme'
scenarios (incorporating more or stronger delays). In the online phase apply the standard
values unless an extreme situation is detected. In case of identifying an extreme situation
within the online phase, it is technically unproblematic to immediately switch to the
preprocessed data for the according situation.

Towards Learning Headways. The experiments seen so far were based on the unca-
pacitated model, i.e., aimed at solving Problem 2. However, Ad-hoc Re-Scheduling also
computes feasible solutions in the presence of headway constraints. The only realistic
dataset incorporating headways we have access to are the Harz-instances. We did some
preliminary tests on these instances. Often all strategies performed very similar and the
results were considerably worse than the results obtained for the uncapacitated case. The
results of the `best' instance we tested are given in Figure 6.8.

We did some further diagnostics on the Harz-instances and came to the following
conclusion. On the Harz-instance, the in
uence of wait-depart decisions on the objective
function is rather small even when not considering headway constraints (see Figure 6.3).

130 Chapter 6: Practical Online Algorithms for Delay Management

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

0
1
0

2
0

3
0

4
0

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

2
4

6
8

1
0

1
2

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

2
4

6
8

1
0

1
2

LinTim/8h/10/weak LinTim/8h/20/weak LinTim/8h/60/weak

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

LinTim/8h/10/medium LinTim/8h/20/medium LinTim/8h/60/medium

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

o
n

lin
e

 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
2

3
4

5
6

LinTim/8h/10/strong LinTim/8h/20/strong LinTim/8h/60/strong

Figure 6.5: Main experiments on the LinTim-instances. The number of simulation runs for Ad-Hoc
Re-Scheduling is always 1000.

6.4 Experiments 131

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
2

3
4

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

o
n

lin
e
 i
lp

s
im

u
la

ti
o
n
−

b
a
s
e
d

n
e
v
e
r

w
a
it

w
a
it
 i
f

s
la

c
k

w
a
it
 1

0
0
 s

e
c
o
n
d
s

w
a
it
 2

0
0
 s

e
c
o
n
d
s

w
a
it
 3

0
0
 s

e
c
o
n
d
s

w
a
it
 4

0
0
 s

e
c
o
n
d
s

w
a
it
 5

0
0
 s

e
c
o
n
d
s

w
a
it
 6

0
0
 s

e
c
o
n
d
s

a
lw

a
y
s
 w

a
it

1
.0

1
.5

2
.0

2
.5

3
.0

LinTim/2h/20/medium LinTim/4h/20/medium LinTim6h/20/medium

Figure 6.6: Experiments on di�erent rollout times.

When we additionally consider headway constraints on the Harz-instances, this little
in
uence is compensated by the impact of the priority decisions (that determine which
headway to favor). Ad-Hoc Re-Scheduling handles headway constraints in a �rst-come
�rst-served manner, which of course is not optimal. In [Sch10] it is shown that this
strategy works well for small delays but is not suitable for large delays. In this chapter we
focus on wait-depart decisions, hence we did not study this issue in detail. However, we
checked if the learning heuristics can also be applied to learn priority-decisions.

To that end, we performed simulation runs by optimally solving random instances. For
a given solution x and a headway constraint (i; j), we de�ne hki := maxf�i+di;maxfxkw+
L(w;i) + d(w;i)j(w; i) 2 Atraingg and split the multi-sets

preferi<j :=
n
hki � hkj j x

k
i < xkj ; k 2 1; : : : ;m

o
preferi>j :=

n
hki � hkj j x

k
i > xkj ; k 2 1; : : : ;m

o

as described the previous section. Again, both sets could be separated very well by a
single value. This is a strong hint for the applicability of the learning heuristics also on
priority decisions.

Insights in the Structure of Good Solutions. While the delay management problem
allows complex interactions between di�erent regions in the underlying network, our results
suggest that the impact of wait-depart decisions is astonishingly local on typical instances.
Even more surprising, optimal solutions mostly stick to the following simple decision rule:
Maintain changing activity (i; j) if j has to wait no more than time `(i;j) on event i (for
some value `(i;j) which has to be chosen extremely carefully). As we worked on datasets of
di�erent origin we expect that our results can be generalized to a larger class of real-world
instances.

132 Chapter 6: Practical Online Algorithms for Delay Management

m
e

d
iu

m
 1

0
 a

p
x

m
e

d
iu

m
 1

0
 e

x

m
e

d
iu

m
 2

0

m
e

d
iu

m
 6

0
 a

p
x

m
e

d
iu

m
 6

0
 e

x

w
e

a
k
 2

0
 a

p
x

w
e

a
k
 2

0
 e

x

s
tr

o
n

g
 2

0
 a

p
x

s
tr

o
n

g
 2

0
 e

x

1
2

3
4

Figure 6.7: Performance of Simulation-
Based Ad-Hoc Re-Scheduling on
LinTim/8h/X where X is given
in the respective column. `apx'
indicates preprocessing on Lin-
Tim/8h/20/medium, `ex' on instance
X.

o
n

lin
e

 i
lp

s
im

u
la

ti
o

n
−

b
a

s
e

d

n
e

v
e

r
w

a
it

w
a

it
 i
f

s
la

c
k

w
a

it
 1

0
0

 s
e

c
o

n
d

s

w
a

it
 2

0
0

 s
e

c
o

n
d

s

w
a

it
 3

0
0

 s
e

c
o

n
d

s

w
a

it
 4

0
0

 s
e

c
o

n
d

s

w
a

it
 5

0
0

 s
e

c
o

n
d

s

w
a

it
 6

0
0

 s
e

c
o

n
d

s

a
lw

a
y
s
 w

a
it

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

Figure 6.8: Harz/4h/20/medium
no results are given for online ilp as
it was not possible to compute this
strategy in reasonable time.

6.5 Conclusion

This chapter concentrates on wait-depart decisions for online delay management. We en-
hance the o�ine model described in [SS10] to the online case and only introduce additional
restrictions that are required to assure that the delay management process is well-de�ned.
Hence, we gain a generic model that is able to model a wide range of scenarios. Con-
sequently, the considered online strategies only use fundamental information and can be
applied to a broad number of di�erent settings.

We state three approaches for solving the problem: An ILP-based approach (that is
based on the corresponding o�ine-ILP), a class of simple `rule of thumb' strategies and a
learning heuristics that identi�es the structure of good solutions using a simulation-based
preprocessing phase.

All strategies are evaluated in an extensive experimental study on real-world and real-
world based instances. The ILP-based and the learning heuristics perform very well, usu-
ally resulting in near-optimal solutions. An additional advantage of the learning heuristics
is its simplicity, robustness, and speed. This leads to better practicability in real-world
applications. Furthermore, our experiments indicate that the learning-based approach can
be enhanced to also suggest good priority decisions in case of capacity constraints.

Finally, we gain interesting new insights into the structure of good solutions: Firstly,
single wait-depart decisions have in real-world railway data a surprisingly local impact
on the solution. Secondly, optimal solutions mostly stick to a decision rule which is
astonishingly simple applicable once its parameters have been identi�ed.

Chapter 7

Conclusion

Summary. In this thesis we addressed four problems in the area of shortest-paths com-
putation and algorithms for infrastructure networks. The character of the considered
problems di�ers considerably. Issues treated in this work range from completely theoreti-
cal considerations to purely experimental e�orts.

We theoretically analyzed the preprocessing phases of recent algorithms for point-to-
point shortest-paths computation. These leave open some degrees of freedom which we
proved to be NP-hard to �ll. While the hardness of several of these techniques has been
conjectured, the work in this thesis thoroughly paves the way for further theoretical work
on the given problems. Probably, the most desireable future results are preprocessing
strategies with quality guarantees and approximation algorithms. Another interesting
question is the following: Given unrestricted preprocessing time and space, how good can
a speedup technique actually get? While some techniques can, in some way, encode all-
pairs shortest-paths in the preprocessed data, the situation is not so clear for others. In
this context, we gave a lower bound for Contraction Hierarchies.

The shortcut problem is a graph-augmentation problem arising from a technique ap-
plied in route-planning algorithms. While the problem statement originates from algorithm
engineering approaches, we mainly treated it as a theoretical problem that is interesting
on its own right. We studied the computational complexity and proposed exact and ap-
proximative algorithms.

Dynamic problems are problems in which the input-data changes with time. Most
real-world problems are inherently dynamic. We considered the batch-dynamic single-
source shortest-paths problem on graphs with positive edge weights. There exist several
algorithms for that task. Some of them have been developed with respect to theoretical
aspects, others concentrate on practical performance. For none of them, a proof exists for
being generally faster than Dijkstra's algorithm. Until now, there was little experimen-
tal knowledge on these algorithms and the big picture was unclear. We presented new
algorithms for the problem and conducted an extensive experimental study including all
existing algorithms and a wide set of di�erent instances. The most surprising result was
the astonishing level of data dependency of both the algorithms and the problem itself.
This shows, reaching even beyond the �eld of shortest-paths computation, that the exper-
imental assessment of an algorithm's performance cannot be done by simply testing it on
some few instances of similar origin, properties and size.

Finally, we worked on online delay management for passenger-oriented railway. We
enhanced o�ine models as to serve the online case and focused on simple and robust
delay management strategies. The main point for optimization in our model are wait-
depart decisions, which settle the question if a follow-up train should wait in order to
enable changing from delayed feeder trains. We brie
y consider also headway constraints,

134 Chapter 7: Conclusion

which model the limited capacity of the track system. The results show that a simple,
learning-based approach that relies on simulation achieves near-optimal solutions. The
development of this strategy led to the insight that optimal solutions mostly stick to an
astonishingly simple and local decision rule. As we worked on datasets of di�erent origins,
we expect that our results can be generalized to a larger class of real-world instances. The
learning-based approach focuses on wait-depart decisions. A reasonable next step is to
generalize the approach for also learning headway decisions. First experiments con�rm
this to be promising.

Outlook. The classical approach of algorithm design either completely goes without ex-
periments or simply uses them to con�rm expectations deduced from theory. The wide
availability of meaningful real-world data strongly in
uenced algorithmics. This is accom-
panied by an increasing complexity of modern hardware, e�ecting in less predictability of
an algorithm's performance and worse accuracy of the standard models like the REAL-
RAM. Consequently, algorithmics slowly changes from a theoretical science to a theoretical
and experimental science. The `invention' of and increasing attention to algorithm engi-
neering is a direct e�ect.

Working in the �eld of shortest-paths computation was a great pleasure, as it opened
the opportunity to see part of the future of algorithm design. The search for helpful
patterns or properties in real-world data, the integration of experiments as a central part
of algorithm design and the re-orientation from beautiful yet simple theoretical problems
towards also considering complex, sometimes technical and ugly but important real-world
applications will further gain in importance.

From the example of shortest-paths computation we can also learn that the algorithm
engineering cycle can be a longsome process. While there often is a fast-rotating smaller
cycle of experiments, evaluation and heuristic improvement, the overall process can be
slow. Concerning the overall cycle that also contains theory and deeper insights, advance
is only made step-by-step and distributed all over the community. Insights made by one
group are reused and improved by another, techniques are combined or simpli�ed again. It
took many years to develop the techniques currently up-to-date and the theoretical work
just started.

On the other hand, the path towards an experimental science is not �nished yet. I
want to point out two problem �elds that still lack progress. Firstly, reproducibility and
clarity in description are obligatory in any experimental science. This is sometimes hard to
cope with in algorithmics as data may be con�dential or implementations may incorporate
a vast number of technical details, many of them important. Although there is big e�ort
to ensure reproducibility, there is still no generally accepted, easy-to-use standard way for
doing so. Secondly, combining engineering with theory is rather uncommon and the main
merits of algorithm engineering still are of purely experimental nature. One reason could
be that theory for algorithm engineering often turns out to contain many technicalities.
Perhaps a better `technical toolbox' for such work could help to overcome that problem.

The demand for e�cient algorithms for real-world applications will further grow. Al-
gorithm engineering is an interesting �eld of research that still undergoes changes and that
will play a key role in satisfying this demand.

Appendix A

Extended Tables

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GRID100 GRID300 UN-HOP UN-EU

FMN 42 1504 29087 151 22702 1624 2182 25 142 327 36

SWSF-FP 112 3759 65404 366 12429 416 691 59 351 1613 31
tunSWSF-FP 152 5140 84873 562 16406 893 3442 105 598 2436 186
tunSWSF-NAR 147 3354 70245 215 9306 614 695 94 523 748 129
tunSWSF-RR 118 3798 66068 412 26093 2148 3766 74 430 2096 102

RR 155 4666 74857 510 34586 2599 4057 103 568 2519 137
RR dag 149 4340 71293 498 36801 2752 3882 95 534 2801 116

Nar-1st Heap 250 5192 97532 533 6438 410 304 146 821 1117 153
Nar-2nd Heap 274 5189 97035 554 6385 411 303 155 857 1063 110
Nar-1st BF 284 5335 100944 357 6578 417 305 138 784 1176 20
Nar-2nd BF 275 4636 99886 467 6494 411 304 156 871 1061 57

�(G;U) 130.42 140.52 70.72 30.68 0.21 0.41 0.74 59 113 0.01 93
exp. speedup 236 6762 62549 986 inf inf inf 169 804 inf 163

Table A.1: Speedups of single edge updates - extended table.

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GRID100 GRID300 UN-HOP UN-EU

FMN 62 1884 690 339 21427 1444 3592 50 304 257 681

SWSF-FP 142 4855 1490 742 12218 347 989 99 737 439 543
tunSWSF-FP 190 6202 1986 1049 15806 767 2151 165 1185 873 1676
tunSWSF-NAR 154 3128 2326 369 13137 462 769 104 618 428 525
tunSWSF-RR 143 5066 1495 763 27671 1798 4201 120 881 1043 1147

RR 322 6172 4619 1139 34537 2427 5046 221 1336 1457 1714
RR dag 307 6250 4479 1078 30886 2237 4680 205 1254 1399 1627

Nar-1st Heap 263 6349 3930 748 9373 274 782 202 1141 897 1234
Nar-2nd Heap 189 5106 2686 642 9183 275 766 143 877 759 1101
Nar-1st BF 55 2504 246 383 9770 280 800 23 105 587 560
Nar-2nd BF 26 1219 148 237 9805 282 792 10 51 394 331

�(G;U) 52 59 977 7 0.23 0.22 0.12 19 35 2 2
exp. speedup 589 16045 4486 4930 inf inf inf 556 2647 7500 15000

Table A.2: Speedups of single edge updates, edge failure and recovery - extended table.

136 Chapter A: Extended Tables

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GRID100 GRID300 UN-HOP UN-EU

FMN 2 12 184 7 1571 69 49 1 4 18 1

ittun SWSF-FP 6 56 784 35 1183 49 136 5 19 222 7
SWSF-FP 5 40 534 18 773 28 9 3 11 101 1
tunSWSF-FP 7 58 767 35 1207 49 139 6 19 236 7
tunSWSF-NAR 7 50 839 15 636 21 12 5 16 29 6
tunSWSF-RR 5 40 595 25 3913 409 183 4 14 400 4

RR 7 47 783 32 5501 592 236 6 18 618 5
RR dag 7 47 764 30 5556 627 220 5 17 658 4

Nar-1st Heap 12 73 31 738 9 33 9 25 71 6
Nar-2nd Heap 13 70 33 721 9 33 9 27 65 4
Nar-1st BF 12 63 19 753 9 33 8 17 73 1
Nar-2nd BF 13 73 29 729 9 33 9 27 64 2
itNar-1st Heap 12 72 30 728 9 33 8 25 70 6
itNar-2nd Heap 12 73 31 709 9 33 9 27 63 4

�(G;U) 3081 10833 5414 727 8 6 90 1420 4160 4 2612
�(G;U) 2886 10468 5414 723 8 6 90 1304 4059 4 2340
exp. speedup 11 90 809 41 23864 4652 310 8 22 5000 6

Table A.3: Speedups of experiments with 25 edges chosen uniformly at random.

AS-HOP AS-RAN CAIDA
degree 1-10 10-100 100-500 1-10 10-100 100-500 1-10 10-100 100-500

FMN 784 173 23 1368 129 3 7824 2284 185

ittun SWSF-FP 912 228 26 1320 235 11 12874 4212 382
SWSF-FP 273 68 8 389 28 1 9651 2203 128
tunSWSF-FP 967 250 24 1417 252 15 14042 4693 405
tunSWSF-NA 407 92 9 410 50 4 9785 2187 122
tunSWSF-RR 1272 528 130 2475 433 21 12395 6839 969

RR 1438 576 142 2623 490 17 13915 7075 1163
RR dag 1377 550 116 2351 462 16 12723 6228 938

Nar-1st Heap 53 21 9 86 59 16 4315 761 75
Nar-2nd Heap 53 21 9 86 58 15 4294 751 73
Nar-1st BF 53 21 9 87 58 13 4386 762 74
Nar-2nd BF 53 21 9 86 53 9 4329 747 71
itNar-1st Heap 52 18 6 71 30 8 4060 573 63
itNar-2nd Heap 51 18 6 71 29 7 3976 564 60

�(G;U) 1.26 12.16 82.54 1.47 45.01 1365.85 1.97 7.4 90.99
�(G;U) 1.07 8.59 71.28 1.1 34.6 712.3 1.45 5.7 85.73
exp. speedup 27909 3489 393 27909 821 86 190914 38183 2246

Table A.4: Speedups of experiments with node failure and recovery on INTERNET-instances -
extended table.

137

metric hop euclidean energy
average degree 7 10 15 7 10 15 7 10 15

FMN 30 40 55 27 21 24 12 14 20

ittun SWSF-FP 238 398 485 116 95 98 56 66 91
SWSF-FP 128 214 236 60 32 36 28 24 22
tunSWSF-FP 260 462 561 158 115 141 75 86 110
tunSWSF-NAR 106 116 147 101 77 97 57 61 67
tunSWSF-RR 223 395 527 105 75 89 49 54 67

RR 289 504 628 111 91 106 55 63 84
RR dag 255 422 561 102 81 94 52 58 76

Nar-1st Heap 70 87 131 84 62 111 52 62 74
Nar-2nd Heap 62 76 120 73 55 94 44 52 62
Nar-1st BF 49 63 109 7 2 8 2 2 3
Nar-2nd BF 32 44 87 5 1 4 1 1 2
itNar-1st Heap 55 71 100 64 50 66 36 46 52
itNar-2nd Heap 50 64 93 56 44 52 31 39 44

�(G;U) 19 8 6 86 107 99 194 174 132
�(G;U) 18 7 5 54 79 55 128 119 98
exp. speedup 833 2500 3750 283 190 273 117 126 153

Table A.5: Speedups of experiments with node failure and recovery on UNIT DISK-instances -
extended table.

GRID LUX NLD DEU
edge updates 10 20 30 5 10 20 10 20 30 10 20 30

FMN 3 2 1 4 2 1 11 5 2 185 30 7

ittun SWSF-FP 15 9 5 15 7 2 39 17 6 755 100 23
SWSF-FP 13 10 6 15 9 5 75 32 12 873 173 40
tunSWSF-FP 23 16 9 20 12 6 107 44 17 1210 235 55
tunSWSF-NAR 22 16 9 22 13 7 107 41 17 1402 342 79
tunSWSF-RR 16 12 7 15 9 5 72 31 12 957 181 42

RR 17 10 5 20 9 3 43 18 6 924 149 36
RR dag 16 9 5 19 8 3 42 17 6 859 143 34

Nar-1st Heap 16 9 5 20 10 4 37 15 5 1120 196 35
Nar-2nd Heap 16 9 5 22 11 4 37 14 5 1153 197 36
Nar-1st BF 2 1 1 10 7 2 12 7 2 524 71 11
Nar-2nd BF 13 7 4 20 10 5 35 14 5 1041 155 29
itNar-1st Heap 19 12 6 24 12 4 57 24 8 1231 219 54
itNar-2nd Heap 22 13 6 28 13 5 55 23 8 1421 249 67

�(G;U) 4367 7909 15552 1178 3052 8616 12910 32088 93725 7885 39260 142191
�(G;U) 2591 3564 6412 821 1366 2567 4134 10899 26153 3884 13701 51252
exp. speedup 35 25 14 37 22 12 229 87 36 1127 320 85

Table A.6: Speedups of experiments with tra�c jam updates - extended table.

138 Chapter A: Extended Tables

RAIL LUX

FMN 271 15

ittun SWSF-FP 748 55
SWSF-FP 638 50
tunSWSF-FP 892 66
tunSWSF-NAR 535 77
tunSWSF-RR 556 51

RR 697 75
RR dag 638 72

Nar-1st Heap 312 74
Nar-2nd Heap 295 65
Nar-1st BF 302 22
Nar-2nd BF 261 12
itNar-1st Heap 263 69
itNar-2nd Heap 250 57

�(G;U) 13.31 281.6
�(G;U) 9.5 227.3
exp. speedup 3286 135

Table A.7: Speedups of experiments with node-failure-and-recovery updates on additional graphs.

Appendix B

Review on Complexity Results

In this section we shortly report complexity results on the algorithms described in
Section 5.3 which are taken out of the original works.

FMN. The algorithm FMN has worst-case runtime in O(k log jV j) if we consider only
weight updates of edges and the underlying graph G = (V;E; len) has a k-bounded ac-
counting function.

In case we consider a sequence of updates including insertions and deletions, then
each output update requires O(k log jV j) amortized time when the underlying graph G =
(V;E; len), augmented by all edges that get inserted during the updates, has a k-bounded
accounting function.

SWSF-FP. The algorithm SWSF-FP requires time in O(k � k (log k � k +M�)) where
we use the following notation: A vertex is said to be modi�ed if it is not the source and
if it is the target node of an updated edge. A vertex is said to be a�ected if its distance
changes. A node is said to be changed if it is modi�ed or a�ected. With j�j we denote the
number of changed nodes. With k � k we denote the number of changed nodes plus the
number of all edges adjacent to a changed node. Finally, M� denotes the time required to
solve the Bellman Ford Equations for a changed node.

RR. The algorithm RR processes a single edge update in time O(k � k +j�j log j�j) where
we use the same notation as for the algorithm SWSF-FP except for the term modi�ed.
A vertex is said to be modi�ed if it is adjacent to an updated edge.

Narv�aez. The algorithms of the Narv�aez-Framework have the following runtimes:

Queue Type First Variant Second Variant

FIFO O(Dmax � �2d) O(Dmax � �3d)
D'Esopo Pape no polynomial upper bound no polynomial upper bound
PQ: Linear List O(�2d +Dmax � �d) O(�pd�d +
 �Dmax � �d)
PQ: Binary Heap O(Dmax � �d � log �d) O(
 �Dmax � �d � log �d)
PQ: Fibonacci Heap O(�d � log �d +Dmax � �d) O(�d � log �d +
 �Dmax � �d)

Symbols mean the following: �d is the minimum number of nodes whose distance or
parent attribute (or both) must change (between in- and output independently of the
algorithm applied). The value �pd is the minimum number of nodes whose distance and
parent attributes must change (between in- and output independently of the algorithm
applied). Dmax denotes the maximum node degree. Finally,
 denotes the redundancy
factor, which represents the average time that each node is visited by the algorithm.

140 Chapter B: Review on Complexity Results

Deutsche Zusammenfassung (German Summary)

Algorithm Engineering ist eine moderne Methode des Algorithmenentwurfs. Der Kern die-
ses Ansatzes ist ein Kreislauf aus Entwurf, theoretischer Analyse, Implementierung und
experimenteller Bewertung von praktikablen Algorithmen. Die experimentelle Bewertung
soll hierbei R�uckschl�usse auf Entwurf und Theorie erlauben und den Kreislauf neu an-
sto�en. Theoretische Betrachtungen sollen Entwicklung, Verbesserung und Verst�andnis
e�zienter Algorithmen f�ordern. Ein besonderer Fokus liegt h�au�g auf der Arbeit mit Re-
alweltdaten und Realweltanwendungen.

Diese Arbeit wird von der Idee des Algorithm Engineering geleitet und gliedert sich in
vier Teile aus dem Bereich der K�urzeste-Wege-Suche und der Algorithmen f�ur Infrastruk-
turnetzwerke. F�ur jedes Problemfeld wird ein jeweils sinnvoller n�achster Schritt im Sinne
des Algorithm Engineering bestimmt und durchgef�uhrt. Die einzelnen Problemfelder, so-
wie die entsprechenden Ergebnisse werden im Folgenden n�aher erl�autert.

Theoretische Betrachtung von Punkt-Zu-Punkt-K�urzeste-Wege-Techniken. Im
Jahr 1999 ver�o�entlichten Schulz, Wagner und Weihe die erste Arbeit zur schnellen Berech-
nung von k�urzesten Wegen zwischen beliebigen Punktepaaren in einem (Bahn-)Netzwerk
unter Ausnutzung einer Vorberechnungsphase [SWW99]. Darauf folgte ein beachtlicher
Wettlauf vieler Arbeitsgruppen um die schnellste Technik zur exakten Punkt-zu-Punkt-
Berechnung von k�urzesten Wegen in gro�en Netzwerken. Die resultierenden Ans�atze sind
meist ma�geschneidert f�ur Stra�ennetzwerke und auf diesen bis zu 3:000:000 mal schneller
als Dijkstra's Algorithmus. Eine Besonderheit ist die Verf�ugbarkeit von aussagekr�aftigen
Realweltdaten: Graphen, die das Stra�ennetzwerk der USA und Europas abbilden, sind f�ur
wissenschaftliche Zwecke verf�ugbar. Neben einer gro�en Anzahl an Arbeiten zum bishe-
rigen Kernproblem der

"
Punkt-Zu-Punkt-K�urzeste-Wege-Berechnung in statischen Netz-

werken\ gibt es mittlerweile auch eine Reihe von Arbeiten zu erweiterten Problemen wie
zeitabh�angiger Routenplanung, Routenplanung unter Ber�ucksichtigung verschiedener Ver-
kehrsmittel und dem gleichzeitigen Berechnen von mehreren k�urzesten Wegen.

Das Themengebiet wird heute als eines der Paradebeispiele f�ur Algorithm Engineering
angesehen. Die sehr guten experimentellen Ergebnisse sind allerdings bis heute noch nicht
theoretisch fundiert. Diese Arbeit m�ochte durch folgenden Ansatz zu einer theoretischen
Basis beitragen.

Fast alle Techniken weisen Freiheitsgrade in ihrer Vorberechnungsphase auf. Typi-
sche Beispiele sind verschiedene M�oglichkeiten, einen Graphen zu partitionieren oder
zus�atzliche Kanten in ein Netzwerk einzuf�ugen. Diese Freiheitsgrade werden in der Pra-
xis rein heuristisch gef�ullt. �Uber die Komplexit�at, dies m�oglichst gut zu tun, ist bis jetzt
nichts bekannt. Um dies zu �andern wurden alle relevanten Techniken in einem einheitlichen
Rahmen modelliert. Als Zielfunktion wurde der durchschnittliche Suchraum einer Start-
Ziel-Anfrage gew�ahlt, die Gr�o�e von vorberechneten Daten soll hierbei beschr�ankt sein.
Es stellt sich heraus, dass es f�ur jede Technik NP-schwer ist, den jeweiligen Freiheitsgrad
optimal auszunutzen. Dies rechtfertigt den Einsatz von Heuristiken.

Das
"
Shortcut Problem\. Dieses Problem besch�aftigt sich mit dem Hinzuf�ugen von

Abk�urzungen zu einem Graphen. Eine Abk�urzung ist eine Kante, die einem Graphen hinzu-
gef�ugt wird und deren L�ange genau die Distanz von Start- zu Zielknoten ist. Der Einsatz
von Abk�urzungen ist eine der verbreitesten und e�ektivsten Techniken zur Punkt-Zu-
Punkt-K�urzeste-Wege-Suche. Die Strategie, nach der Abk�urzungen eingef�ugt und ausge-
nutzt werden, variiert aber. Unabh�angig von einer bestimmten Technik untersuchen wir
folgendes Graphaugmentierungsproblem:

142 Deutsche Zusammenfassung (German Summary)

Gegeben sei ein Graph G, zu dem k Abk�urzungen hinzugef�ugt werden sollen. Danach
werden zwei Knoten s und t zuf�allig und gleichverteilt aus G ausgew�ahlt und ein kan-
tenminimaler k�urzester s-t Weg P berechnet. Wie k�onnen die Abk�urzungen hinzugef�ugt
werden, so dass die erwartete Anzahl jP j von Kanten in P minimal wird? Zus�atzlich wird
eine Variante betrachtet, bei der der erwartete Nutzen vorgegeben ist und die Anzahl der
daf�ur ben�otigten Abk�urzungen zu minimieren ist.

Die wesentlichen Ergebnisse dieses Teilbereichs sind: Beweis der NP-Schwere beider
Varianten, sowie Beweis der NP-Schwere f�ur bestimmte Approximationsaufgaben. Au�er-
dem exakte, ILP-basierte Ans�atze und ein Approximationsalgorithmus f�ur Graphen in
denen k�urzeste Wege eindeutig sind.

Experimentelle Studie zu dynamischen K�urzeste-Wege-Algorithmen. Ein dy-
namischer Graph ist ein Graph, der sich mit der Zeit �andert. Erlaubte Operationen sind
L�oschen und Hinzuf�ugen von Kanten oder Knoten, sowie die Neuwahl von Kantengewich-
ten. Das Problem besteht darin, f�ur einen dynamischen Graphen G zu jedem Zeitschritt
die Distanzen von einem vorher gew�ahlten Quellknoten zu allen anderen Knoten in G zu
unterhalten. Zu Beginn eines neuen Zeitschrittes soll die Distanztabelle schneller angepasst
werden, als eine komplette Neuberechnung ben�otigen w�urde.

F�ur das Problem gibt es bereits Ans�atze von Ramalingam und Reps [RR96b, RR96a],
Frigioni et al. [FMSN00] und Narv�aez et al. [NST00] die auch schon durch einige kleine
Experimente praktisch evaluiert wurden. Dieser Teil der Arbeit evaluiert die bestehenden
Algorithmen auf einer breiteren Datenbasis und stellt au�erdem eine Verbesserung f�ur
einen der Ans�atze von Ramalingam und Reps vor. In Realweltdaten �andern sich h�au�g
mehrere Kanten w�ahrend eines Zeitschrittes und diese Kanten liegen oft nahe beieinander.
Dieses Szenario wird gesondert betrachtet, die Ergebnisse sind wie folgt:

� Auf dem benutzen Testfeld h�angt die G�ute der Algorithmen in �uberraschend hohem
Ma�e von den zugrundeliegenden Instanzen ab. Dies schr�ankt die Aussagekraft der
bestehenden Evaluationen ein, die immer nur auf einer sehr eingesch�ankten Daten-
basis arbeiten.

� Bisher gab es keine experimentellen Ergebnisse, die mehrere �Anderungen pro Zeit-
schritt betrachten. Es zeigt sich, dass es sinvoll ist, diese gleichzeitig zu behandeln,
falls die �Anderungen sich gegenseitig beein
ussen. Eine simple Methode wird vorge-
stellt, die den gegenseitigen Ein
uss von �Anderungen misst.

� Der verbesserte Ansatz erweist sich als nie schlechter als der Basis-Algorithmus und
ist bis zu 15-mal schneller. Damit ist er der schnellste Algorithmus f�ur die meisten
betrachteten Szenarien mit sich beein
ussenden, multiplen Kanten�anderungen.

Entwurf von praktikablen Verfahren f�ur das Bahn-Verz�ogerungsmanagment.
Bahn-Verz�ogerungsmanagement besch�aftigt sich mit der Fragestellung wie auf exogene
Versp�atungen im Zugverkehr zu reagieren ist. Diese Arbeit befasst sich mit Verz�ogerungs-
management f�ur den Personenverkehr und versucht die Gesamtversp�atung aller Passagiere
zu minimieren.

In der wissenschaftlichen Literatur werden haupts�achlich zwei Aspekte betrachtet:
Warte-Entscheidungen legen fest, ob Anschlussz�uge auf versp�atete Zubringer warten sol-
len. Vorfahrts-Entscheidungen hingegen fragen, welcher Zug bevorzugt werden soll, wenn
mehrere Z�uge gleichzeitig auf das gleiche St�uck Schieneninfrastruktur zugreifen wollen.
Dies sind auch die Hauptaspekte in dieser Arbeit. Ein zus�atzliches Hindernis ist der Um-
stand, dass exogene Versp�atungen h�au�g nicht vorher bekannt sind. Dieser Online-Fall
wird betrachtet. Dazu werden bestehende Modelle auf den Online-Fall erweitert und simple

143

und praktikable L�osungsalgorithmen entwickelt. Eine Verz�ogerungsmanagement-Strategie
bezeichnen wir im weitesten Sinne als praktikabel, wenn sie einfach und robust genug ist,
um in der Praxis eingesetzt werden zu k�onnen. Eine aufwendigere Vorberechnung sei aber
erlaubt.

Es stellt sich heraus, dass ein simples, simulationsbasiertes Lernverfahren Ergebnisse
erzielt, die nahe am Optimum liegen. Eine interessante und hilfreiche Beobachtung ist, dass
optimale L�osungen gr�o�tenteils durch eine sehr einfache und lokale Entscheidungsregel
erzeugt werden k�onnen.

144 Deutsche Zusammenfassung (German Summary)

Curriculum Vit�

Personal Information

Reinhard Bauer, born April 4, 1981 in Feuchtwangen, Germany

Current Status

since 03/2007 Research and teaching assistant
Chair Algorithmics I (Prof. Dr. Dorothea Wagner)
Karlsruhe Institute of Technology
(former Universit�at Karlsruhe (TH))

Education

06/2000 Abitur (German university entrance quali�cation)
Gymnasium Dinkelsb�uhl

10/2000 - 8/2001 Alternative civilian service
Kinder- und Jugendheim Sonnenhof

10/2001 - 2/2007 Study of mathematics with minor computer science
Universit�at Karlsruhe (TH)

2/2007 Diploma in mathematics with minor computer science
Universit�at Karlsruhe (TH)

since 03/2007 Research and teaching assistant
Chair Algorithmics I (Prof. Dr. Dorothea Wagner)
Karlsruhe Institute of Technology
(former Universit�at Karlsruhe (TH))

146 Curriculum Vit�

List of Publications

Journal articles

[1] Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental Study on
Speed-Up Techniques for Timetable Information Systems. Networks, 57(1):38{52,
January 2011.

[2] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-
Up Techniques for Dijkstra's Algorithm. ACM Journal of Experimental Algorithmics,
15(2.3):1{31, January 2010. Special Section devoted to WEA'08.

[3] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. ACM Journal of Experimental Algorithmics, 14(2.4):1{29, August 2009. Special
Section on Selected Papers from ALENEX 2008.

Conference articles

[1] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wag-
ner. Preprocessing Speed-Up Techniques is Hard. In Proceedings of the 7th Con-
ference on Algorithms and Complexity (CIAC'10), volume 6078 of Lecture Notes in
Computer Science, pages 359{370. Springer, 2010.

[2] Reinhard Bauer, Marcus Krug, Sascha Meinert, and Dorothea Wagner. Synthetic
Road Networks. In Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM'10), volume 6124 of Lecture Notes
in Computer Science, pages 46{57. Springer, 2010.

[3] Reinhard Bauer, Marcus Krug, and Dorothea Wagner. Enumerating and Generating
Labeled k-Degenerate Graphs. In Proceedings of the Seventh Workshop on Analytic
Algorithmics and Combinatorics (ANALCO '10), pages 90{98. SIAM, 2010.

[4] Reinhard Bauer, Gianlorenzo D'Angelo, Daniel Delling, and Dorothea Wagner. The
Shortcut Problem { Complexity and Approximation. In Proceedings of the 35th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM'09), volume 5404 of Lecture Notes in Computer Science, pages
105{116. Springer, January 2009.

[5] Reinhard Bauer and Dorothea Wagner. Batch Dynamic Single-Source Shortest-Path
Algorithms: An Experimental Study. In Proceedings of the 8th International Sympo-
sium on Experimental Algorithms (SEA'09), volume 5526 of Lecture Notes in Com-
puter Science, pages 51{62. Springer, June 2009.

[6] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. In Proceedings of the 10th Workshop on Algorithm Engineering and Experiments
(ALENEX'08), pages 13{26. SIAM, April 2008.

[7] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-
Up Techniques for Dijkstra's Algorithm. In Proceedings of the 7th Workshop on
Experimental Algorithms (WEA'08), volume 5038 of Lecture Notes in Computer Sci-
ence, pages 303{318. Springer, June 2008.

148 Conference articles

[8] Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental Study on
Speed-Up Techniques for Timetable Information Systems. In Proceedings of the
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems (ATMOS'07), pages 209{225. Internationales Begegnungs- und
Forschungszentrum f�ur Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

Bibliography

[ACG+02] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, and Alberto
Marchetti-Spaccamela. Complexity and Approximation - Combinatorial Optimization
Problems and Their Approximability Properties. Springer, 2nd edition, 2002.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. Highway
Dimension, Shortest Paths, and Provably E�cient Algorithms. In Moses Charikar,
editor, Proceedings of the 21st Annual ACM{SIAM Symposium on Discrete Algo-
rithms (SODA'10), pages 782{793. SIAM, 2010.

[ALE06] Proceedings of the 8th Workshop on Algorithm Engineering and Experiments
(ALENEX'06). SIAM, 2006.

[BCD+08] Francesco Bruera, Sera�no Cicerone, Gianlorenzo D'Angelo, Gabriele Di Stefano, and
Daniele Frigioni. Dynamic Multi-level Overlay Graphs for Shortest Paths. Mathe-
matics in Computer Science, 1(4):709{736, April 2008.

[BCK+10a] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wag-
ner. Preprocessing Speed-Up Techniques is Hard. In Proceedings of the 7th Con-
ference on Algorithms and Complexity (CIAC'10), volume 6078 of Lecture Notes in
Computer Science, pages 359{370. Springer, 2010.

[BCK+10b] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wag-
ner. Preprocessing Speed-Up Techniques is Hard. Technical Report 2010-04, ITI
Wagner, Faculty of Informatics, Karlsruhe Institute of Technology, 2010.

[BD08] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. In Ian Munro and Dorothea Wagner, editors, Proceedings of the 10th Workshop
on Algorithm Engineering and Experiments (ALENEX'08), pages 13{26. SIAM, April
2008.

[BD09] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. ACM Journal of Experimental Algorithmics, 14(2.4):1{29, August 2009. Special
Section on Selected Papers from ALENEX 2008.

[BDD+10] Reinhard Bauer, Gianlorenzo D'Angelo, Daniel Delling, Andrea Schumm, and
Dorothea Wagner. The Shortcut Problem { Complexity and Algorithms . Technical
Report 2010-17, ITI Wagner, Faculty of Informatics, Universit�at Karlsruhe (TH),
2010.

[BDDW09] Reinhard Bauer, Gianlorenzo D'Angelo, Daniel Delling, and Dorothea Wagner. The
Shortcut Problem { Complexity and Approximation. In Proceedings of the 35th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM'09), volume 5404 of Lecture Notes in Computer Science, pages
105{116. Springer, January 2009.

[BDGW10] Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner. Space-E�cient
SHARC-Routing. In Paola Festa, editor, Proceedings of the 9th International Sympo-
sium on Experimental Algorithms (SEA'10), volume 6049 of Lecture Notes in Com-
puter Science, pages 47{58. Springer, May 2010.

[BDW07] Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental Study on
Speed-Up Techniques for Timetable Information Systems. In Christian Liebchen,
Ravindra K. Ahuja, and Juan A. Mesa, editors, Proceedings of the 7th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS'07), pages 209{225. Internationales Begegnungs- und Forschungszentrum
f�ur Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

150 Bibliography

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87{
90, 1958.

[BFM+07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes.
In Transit to Constant Shortest-Path Queries in Road Networks. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX'07), pages
46{59. SIAM, 2007.

[BFM09] Holger Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast Shortest-Path Queries
via Transit Nodes. In Demetrescu et al. [DGJ09], pages 175{192.

[BHLS07] Andre Berger, Ralf Ho�mann, Ulf Lorenz, and Sebastian Stiller. Online Delay Man-
agement: PSPACE Hardness and Simulation. Technical Report 0097, ARRIVAL
Project, 2007.

[BKMW10] Reinhard Bauer, Marcus Krug, Sascha Meinert, and Dorothea Wagner. Synthetic
Road Networks. In Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM'10), volume 6124 of Lecture Notes
in Computer Science, pages 46{57. Springer, 2010.

[BRT08] Luciana Buriol, Mauricio Resende, and Mikkel Thorup. Speeding Up Dynamic
Shortest-Path Algorithms. Informs Journal on Computing, 20(2):191{204, 2008.

[BW09a] Reinhard Bauer and Dorothea Wagner. Batch Dynamic Single-Source Shortest-Path
Algorithms: An Experimental Study. In Jan Vahrenhold, editor, Proceedings of the
8th International Symposium on Experimental Algorithms (SEA'09), volume 5526 of
Lecture Notes in Computer Science, pages 51{62. Springer, June 2009.

[BW09b] Reinhard Bauer and Dorothea Wagner. Batch Dynamic Single-Source Shortest-Path
Algorithms: An Experimental Study. Technical Report 2009,6, ITI Wagner, Faculty
of Informatics, Universit�at Karlsruhe (TH), 2009.

[CAI08] CAIDA: The Cooperative Association for Internet Data Analysis. http://www.

caida.org/, 2008.

[CGR96] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths
algorithms. Mathematical Programming, Series A, 73:129{174, 1996.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[Col09] Tobias Columbus. On the Complexity of Contraction Hierarchies, 2009. Student's
thesis - Karlsruhe Institute of Technology - ITI Wagner.

[Del08] Daniel Delling. Time-Dependent SHARC-Routing. In Proceedings of the 16th An-
nual European Symposium on Algorithms (ESA'08), volume 5193 of Lecture Notes
in Computer Science, pages 332{343. Springer, September 2008.

[Del09] Daniel Delling. Engineering and Augmenting Route Planning Algorithms. PhD thesis,
Universit�at Karlsruhe (TH), Fakult�at f�ur Informatik, 2009.

[Dem01] Camil Demetrescu. Fully Dynamic Algorithms for Path Problems on Directed Graphs.
PhD thesis, University of Rome La Sapienza, Department of Computer and Systems
Science, April 2001.

[Dem07] Camil Demetrescu, editor. Proceedings of the 6th Workshop on Experimental Al-
gorithms (WEA'07), volume 4525 of Lecture Notes in Computer Science. Springer,
June 2007.

[DGJ06] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. 9th DI-
MACS Implementation Challenge - Shortest Paths, November 2006.

http://www.caida.org/
http://www.caida.org/

Bibliography 151

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Short-
est Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS
Book. American Mathematical Society, 2009.

[DHM+09] Daniel Delling, Martin Holzer, Kirill M�uller, Frank Schulz, and Dorothea Wagner.
High-Performance Multi-Level Routing. In Demetrescu et al. [DGJ09], pages 73{92.

[DHSS09] Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Sch�obel. Delay Man-
agement with Re-Routing of Passengers. In Proceedings of the 9th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS'09), Dagstuhl Seminar Proceedings, pages 1{17, 2009.

[DI06] Camil Demetrescu and Giuseppe F. Italiano. Dynamic shortest paths and transitive
closure: Algorithmic techniques and data structures. Journal of Discrete Algorithms,
4(3):353{383, September 2006.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1:269{271, 1959.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering
Route Planning Algorithms. In J�urgen Lerner, Dorothea Wagner, and Katharina A.
Zweig, editors, Algorithmics of Large and Complex Networks, volume 5515 of Lecture
Notes in Computer Science, pages 117{139. Springer, 2009.

[DW07] Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic Graphs.
In Demetrescu [Dem07], pages 52{65.

[EG08] David Eppstein and Michael T. Goodrich. Studying (non-planar) road networks
through an algorithmic lens. In Proceedings of the 16th ACM SIGSPATIAL inter-
national conference on Advances in geographic information systems (GIS '08), pages
1{10. ACM Press, 2008.

[FINP98] Daniele Frigioni, Mario Io�reda, Umberto Nanni, and Giulio Pasqualone. Experimen-
tal Analysis of Dynamic Algorithms for the Single Source Shortest Path Problem.
ACM Journal of Experimental Algorithmics, 3(5):1{20, 1998.

[FMSN00] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully Dynamic
Algorithms for Maintaining Shortest Paths trees. Journal of Algorithms, 34(2):251{
281, February 2000.

[FMSN03] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dy-
namic shortest paths in digraphs with arbitrary arc weights. Journal of Algorithms,
49(1):86{113, October 2003.

[Fuc10] Fabian Fuchs. On Preprocessing the ALT-Algorithm, 2010. Student's thesis - Karl-
sruhe Institute of Technology - ITI Wagner.

[Gat07] Michael Gatto. On the impact of uncertainty on some optimization problems . PhD
thesis, ETH Z�urich, 2007.

[GGP+04] Michael Gatto, Bj�orn Glaus, Leon Peeters, Riko Jacob, and Peter Widmayer. Railway
Delay Management: Exploring Its Algorithmic Complexity . In Proceedings of the 9th
Scandinavian Workshop on Algorithm Theory (SWAT'04), volume 3111 of Lecture
Notes in Computer Science, pages 199{211. Springer, 2004.

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search
Meets Graph Theory. In Proceedings of the 16th Annual ACM{SIAM Symposium on
Discrete Algorithms (SODA'05), pages 156{165. SIAM, 2005.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

152 Bibliography

[GJPS05] Michael Gatto, Riko Jacob, Leon Peeters, and Anita Sch�obel. The computational
complexity of delay management. In Proceedings of the 31th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG'05), volume 3787 of Lecture
Notes in Computer Science, pages 227{238. Springer, 2005.

[GJPW07] Michael Gatto, Riko Jacob, Leon Peeters, and Peter Widmayer. On-line delay man-
agement on a single train line. In Algorithmic Methods for Railway Optimization
[GKS+07].

[GKS+07] Frank Geraets, Leo G. Kroon, Anita Sch�obel, Dorothea Wagner, and Christos Zaro-
liagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes
in Computer Science. Springer, 2007.

[GKW06] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for A*: E�cient
Point-to-Point Shortest Path Algorithms. In ALENEX'06 [ALE06], pages 129{143.

[GKW07] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Better Landmarks
Within Reach. In Demetrescu [Dem07], pages 38{51.

[GKW09] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for A*: Shortest
Path Algorithms with Preprocessing. In Demetrescu et al. [DGJ09], pages 93{139.

[Gov98] Rob Goverde. The Max-Plus Algebra Approach to Railway Timetable Design . In
Computers in Railways VI, pages 339{350. WIT Press, 1998.

[GS07] Andreas Ginkel and Anita Sch�obel. To wait or not to wait? The bicriteria delay
management problem in public transportation. Transportation Science, 41(4):527{
538, 2007.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contrac-
tion Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In
Catherine C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental
Algorithms (WEA'08), volume 5038 of Lecture Notes in Computer Science, pages
319{333. Springer, June 2008.

[Gut04] Ronald J. Gutman. Reach-Based Routing: A New Approach to Shortest Path Al-
gorithms Optimized for Road Networks. In Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX'04), pages 100{111. SIAM, 2004.

[GW05] Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point Shortest
Paths from External Memory. In Proceedings of the 7th Workshop on Algorithm
Engineering and Experiments (ALENEX'05), pages 26{40. SIAM, 2005.

[HaC08] HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.

[HGL08] Geraldine Heilporn, Luigi De Giovanni, and Martine Labbe. Optimization models
for the single delay management problem in public transportation. European Journal
of Operational Research, 189:762{774, 2008.

[HKMS06] Moritz Hilger, Ekkehard K�ohler, Rolf H. M�ohring, and Heiko Schilling. Fast Point-
to-Point Shortest Path Computations with Arc-Flags. In Demetrescu et al. [DGJ06].

[HKMS09] Moritz Hilger, Ekkehard K�ohler, Rolf H. M�ohring, and Heiko Schilling. Fast Point-
to-Point Shortest Path Computations with Arc-Flags. In Demetrescu et al. [DGJ09],
pages 41{72.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Pearson International Edition, 2007.

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4:100{107, 1968.

http://www.hacon.de

Bibliography 153

[Hoe63] Wassily Hoe�ding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):713{721, 1963.

[Hol08] Martin Holzer. Engineering Planar-Separator and Shortest-Path Algorithms. PhD
thesis, Karlsruhe Institute of Technology (KIT) - Department of Informatics, 2008.

[HSW06] Martin Holzer, Frank Schulz, and DorotheaWagner. Engineering Multi-Level Overlay
Graphs for Shortest-Path Queries. In ALENEX'06 [ALE06], pages 156{170.

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multi-Level Over-
lay Graphs for Shortest-Path Queries. ACM Journal of Experimental Algorithmics,
13(2.5):1{26, December 2008.

[Jun99] Dieter Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algorithms and
Computation in Mathmatics. Springer, 1999.

[KMS05] Ekkehard K�ohler, Rolf H. M�ohring, and Heiko Schilling. Acceleration of Shortest
Path and Constrained Shortest Path Computation. In WEA'05 [WEA05], pages
126{138.

[KS10] Natalia Kliewer and Leena Suhl. A Note on the Online Nature of the Railway Delay
Management Problem. Networks, 2010.

[KT01] Valerie King and Mikkel Thorup. A space saving trick for directed dynamic transitive
closure and shortest path algorithms. In Proceedings of the 7th Annual International
Conference on Computing Combinatorics (COCOON'01), volume 2108 of Lecture
Notes in Computer Science, pages 268{277. Springer, 2001.

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In Geoinformation und Mobilit�at
- von der Forschung zur praktischen Anwendung, volume 22, pages 219{230. IfGI
prints, 2004.

[MSS+05] Rolf H. M�ohring, Heiko Schilling, Birk Sch�utz, Dorothea Wagner, and Thomas Will-
halm. Partitioning Graphs to Speed Up Dijkstra's Algorithm. In WEA'05 [WEA05],
pages 189{202.

[MSS+06] Rolf H. M�ohring, Heiko Schilling, Birk Sch�utz, Dorothea Wagner, and Thomas Will-
halm. Partitioning Graphs to Speedup Dijkstra's Algorithm. ACM Journal of Ex-
perimental Algorithmics, 11(2.8):1{29, 2006.

[M�ul06] Kirill M�uller. Design and Implementation of an E�cient Hierarchical Speed-up Tech-
nique for Computation of Exact Shortest Paths in Graphs. Master's thesis, Univer-
sit�at Karlsruhe (TH), Fakult�at f�ur Informatik, June 2006.

[NST00] Paolo Narv�aez, Kai-Yeung Siu, and Hong-Yi Tzeng. New Dynamic Algorithms
for Shortest Path Tree Computation. IEEE/ACM Transactions on Networking,
8(6):734{746, 2000.

[NW88] Georg L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, 1988.

[Pap74] U. Pape. Implementation and E�ciency of Moore-Algorithms for the Shortest Route
Problem. Mathematical Programming, 7:212{222, 1974.

[PTV08] PTV AG - Planung Transport Verkehr. http://www.ptv.de, 2008.

[RR96a] G. Ramalingam and Thomas Reps. On the computational complexity of dynamic
graph problems. Theoretical Computer Science, 158(1):233{277, May 1996.

[RR96b] Thomas Reps and G. Ramalingam. An Incremental Algorithm for a Generalization of
the Shortest-Path Problem. Journal of Algorithms, 21(2):267{305, September 1996.

http://www.ptv.de

154 Bibliography

[Sch01] Anita Sch�obel. A model for the delay management problem based on mixed-integer
programming. Electronic Notes in Theoretical Computer Science, 50(1):1{10, 2001.

[Sch05] Frank Schulz. Timetable Information and Shortest Paths. PhD thesis, Universit�at
Karlsruhe (TH), Fakult�at f�ur Informatik, 2005.

[Sch06a] Heiko Schilling. Route Assignment Problems in Large Networks. PhD thesis, Tech-
nische Universit�at Berlin, 2006.

[Sch06b] Anita Sch�obel. Optimization in Public Transportation, volume 3 of Springer Opti-
mization and Its Applications. Springer, 2006.

[Sch07] Anita Sch�obel. Integer programming approaches for solving the delay management
problem. In Algorithmic Methods for Railway Optimization [GKS+07], pages 145{
170.

[Sch08] Dominik Schultes. Route Planning in Road Networks. PhD thesis, Universit�at Karl-
sruhe (TH), Fakult�at f�ur Informatik, February 2008. http://algo2.iti.uka.de/

schultes/hwy/schultes_diss.pdf.

[Sch09a] Anita Sch�obel. Capacity constraints in delay management. Public Transport,
1(2):135{154, 2009.

[Sch09b] Andrea Schumm. Heuristic Algorithms for the Shortcut Problem. Master's thesis,
Karlsruhe Institute of Technology (KIT), July 2009.

[Sch10] Michael Schachtebeck. Delay Management in Public Transportation: Capacities,
Robustness, and Integration. PhD thesis, Georg-August-Universit�at G�ottingen, 2010.

[Slo08] Neil James Alexander Sloane. The On-Line Encyclopedia of Integer Sequences, 2008.
www.research.att.com/~njas/sequences/.

[SMB01] Leena Suhl, Taieb Mellouli, and Claus Biederbick. Managing and preventing delays
in railway tra�c. In Matti Pursula and Jarko Niittym�aki, editors, Mathematical
methods on Optimization in Transportation Systems, pages 3{16. 2001.

[SS05] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest
Path Queries. In Proceedings of the 13th Annual European Symposium on Algo-
rithms (ESA'05), volume 3669 of Lecture Notes in Computer Science, pages 568{579.
Springer, 2005.

[SS06a] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. In Proceed-
ings of the 14th Annual European Symposium on Algorithms (ESA'06), volume 4168
of Lecture Notes in Computer Science, pages 804{816. Springer, 2006.

[SS06b] Peter Sanders and Dominik Schultes. Robust, Almost Constant Time Shortest-Path
Queries in Road Networks. In Demetrescu et al. [DGJ06].

[SS07] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In Deme-
trescu [Dem07], pages 66{79.

[SS09] Michael Schachtebeck and Anita Sch�obel. LinTim - A Toolbox for the Experimental
Evaluation of the Interaction of Di�erent Planning Stages in Public Transportation.
Technical Report 0206, ARRIVAL Project, 2009.

[SS10] Michael Schachtebeck and Anita Sch�obel. To wait or not to wait and who goes �rst?
Delay Management with Priority Decisions. Transportation Science, 44(3):307{321,
2010.

[SWW99] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's Algorithm On-Line:
An Empirical Case Study from Public Railroad Transport. In Proceedings of the
3rd International Workshop on Algorithm Engineering (WAE'99), volume 1668 of
Lecture Notes in Computer Science, pages 110{123. Springer, 1999.

http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
www.research.att.com/~njas/sequences/

Bibliography 155

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra's Algorithm On-Line:
An Empirical Case Study from Public Railroad Transport. ACM Journal of Experi-
mental Algorithmics, 5(12):1{23, 2000.

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs
for Timetable Information in Railway Systems. In Proceedings of the 4th Workshop
on Algorithm Engineering and Experiments (ALENEX'02), volume 2409 of Lecture
Notes in Computer Science, pages 43{59. Springer, 2002.

[TTIW07] Satoshi Taoka, Daisuke Takafuji, Takashi Iguchi, and Toshimasa Watanabe. Perfor-
mance Comparison of Algorithms for the Dynamic Shortest Path Problem. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, E90-A(4), April 2007.

[Uni08] University of Oregon Routeviews Project. http://www.routeviews.org/, 2008.

[VSM98] Remco De Vries, Bart De Schutter, and Bart De Moor. On max-algebraic models
for transportation networks. In Proceedings of the 4th International Workshop on
Discrete Event Systems (WODES '98), pages 457{462, 1998.

[WEA05] Proceedings of the 4th Workshop on Experimental Algorithms (WEA'05), volume
3503 of Lecture Notes in Computer Science. Springer, 2005.

[Wil05] Thomas Willhalm. Engineering Shortest Paths and Layout Algorithms for Large
Graphs. PhD thesis, Universit�at Karlsruhe (TH), Fakult�at f�ur Informatik, 2005.

[WW03] Dorothea Wagner and Thomas Willhalm. Geometric Speed-Up Techniques for Find-
ing Shortest Paths in Large Sparse Graphs. In Proceedings of the 11th Annual Euro-
pean Symposium on Algorithms (ESA'03), volume 2832 of Lecture Notes in Computer
Science, pages 776{787. Springer, 2003.

[WW07a] Dorothea Wagner and Roger Wattenhofer, editors. Algorithms for Sensor and Ad
Hoc Networks, volume 4621 of Lecture Notes in Computer Science. Springer, 2007.

[WW07b] Dorothea Wagner and Thomas Willhalm. Speed-Up Techniques for Shortest-Path
Computations. In Proceedings of the 24th International Symposium on Theoretical
Aspects of Computer Science (STACS'07), volume 4393 of Lecture Notes in Computer
Science, pages 23{36. Springer, 2007.

[WWZ05] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Geometric Containers
for E�cient Shortest-Path Computation. ACM Journal of Experimental Algorith-
mics, 10(1.3):1{30, 2005.

http://www.routeviews.org/

	Nomenclature
	Introduction and Outline
	Fundamentals
	Graphs
	Dijkstra's Algorithm
	Computational Problems and Complexity
	Mixed-Integer Linear Programs

	Preprocessing Speedup-Techniques is Hard
	Motivation
	Problem Statement
	Reach-Based Pruning
	Multilevel Overlay Graph
	ALT
	Arc-Flags
	Contraction Hierarchies
	Lower Bounds for Search-Space Guarantees
	Conclusion

	The Shortcut Problem
	Introduction
	Specific Notation
	Problem Statement and Complexity
	ILP-Approaches
	Approximation using the Greedy-Strategy
	Evaluation of the Measure Function
	Conclusion

	Batch-Dynamic Single-Source Shortest-Paths Algorithms
	Motivation
	Problem Statement
	Description of Algorithms
	Tuning SWSF-FP
	Experiments
	Conclusion

	Practical Online Algorithms for Delay Management
	Introduction
	Problem Statement
	Delay Management Strategies
	Experiments
	Conclusion

	Conclusion
	Extended Tables
	Review on Complexity Results
	Deutsche Zusammenfassung (German Summary)
	Curriculum Vitæ
	List of Publications
	Bibliography

