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Deutsche Zusammenfassung

Ein PQ-Baum repräsentiert eine Menge von zyklische Ordnungen seiner Blätter, indem
die Ordnung der Kanten um einen P-Knoten frei wählbar und um einen Q-Knoten bis auf
Umkehrung festgelegt ist. Betrachtet man zwei PQ-Bäume T und T ′ mit den Blattmengen
L beziehungsweise L′, sodass jedem Blatt von T ′ ein Blatt von T zugeordnet ist (zum
Beispiel durch die Teilmengenbeziehung L′ ⊆ L), so induziert jede zyklische Ordnung auf
L eine zyklische Ordnung auf L′. Wir bezeichnen T als Vater von T ′ und T ′ als Kind von T .
Es stellt sich die Frage, ob eine zyklische Ordnung der Blätter L des Vaters existiert, die von
T repräsentiert wird und zusätzlich eine Ordnung der Blätter L′ des Kindes induziert, die
von T ′ repräsentiert wird. Für zwei PQ-Bäume lässt sich diese Frage leicht beantworten,
doch was passiert, wenn T weitere Kinder oder T ′ weitere Eltern hat? Diese Frage führt zu
dem neuen Problem Simultaneous PQ-Ordering, das wie folgt definiert ist. Gegeben
eine Menge an PQ-Bäumen mit Vater-Kind Beziehungen (ein gerichteter azyklische Graph
mit PQ-Bäumen als Knoten), können für alle PQ-Bäume simultan zyklische Ordnungen
ihrer Blätter gewählt werden, sodass jede Vater-Kind Beziehung berücksichtigt wird?

Wir zeigen, dass Simultaneous PQ-Ordering im allgemeinen NP-schwer ist, für eine
Klasse

”
leichter“ Instanzen jedoch in Polynomialzeit gelöst werden kann. Anschließend

wird gezeigt, wie verschiedene Probleme sehr einfach als
”
leichte“ Instanz von Simultane-

ous PQ-Ordering formuliert und damit effizient gelöst werden können. Konkret zeigen
wir, dass das bedingte Einbettungsproblem Partially PQ-Constrained Planarity
für zweifach zusammenhängende Graphen in Linearzeit gelöst werden kann. Des weiteren
kann Simultaneous Embedding with Fixed Edges für zweifach zusammenhängende
Graphen mit zusammenhängendem Schnitt in quadratischer Zeit gelöst werden. Außer-
dem verbessern wir die Laufzeit des bisher schnellsten Algorithmus zum Erkennen von
simultanen Intervallgraphen von O(n2 logn) auf Linearzeit.
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1. Introduction

Many types of data can be formulated as graphs, such as UML-diagrams in software
engineering, evolutionary trees in biology, communication networks or relationships in
social networks, to name a few. For a human it is nearly impossible to extract useful
information out of such a graph by looking at the pure data. The way a graph is interpreted
crucially relies on its visualization. Besides that, creating a small chip with a large number
of transistors on it is closely related to the problem of drawing a graph with few bends, few
crossings and high resolution (ratio between smallest and largest distances). Thus, drawing
graphs and particularly drawing planar graphs is an important filed of research. However,
in many applications one needs not only to find a drawing of a given graph but also satisfy
additional conditions that are for example specified by a user in an interactive graph
drawing system. Such additional conditions lead to constrained embedding problems.
Closely related to constrained embeddings are simultaneous embeddings asking for a set
of graphs sharing some vertices and edges if they can be drawn simultaneously, such that
the common parts are drawn the same in all drawings. This is for example important to
compare a dynamic graph at different points in time.

The constrained embedding problem we consider involves PQ-trees. In a PQ-tree every
inner node is either a P- or a Q-node and the order of edges around a P-node can be chosen
arbitrarily, whereas the order of edges around a Q-node is fixed up to reversal; Figure 1.1a
depicts an example. Such a PQ-tree represents a set of possible orders of its leaves. We
consider the problem Partially PQ-Constrained Planarity having as input a graph
G together with a PQ-tree T (v) for every vertex v with a subset of edges incident to v
as leaves. Thus T (v) restricts the possible orders of these edges to the orders that are
represented by it. The question is, if G has a planar drawing respecting these restrictions.
Furthermore, we consider the problem Simultaneous Embedding with Fixed Edges
(SEFE) having two planar graphs G 1 and G 2 with a common subgraph G as input, asking
whether planar drawings of G 1 and G 2 exist, such that the drawing of G is the same in
both drawings; see Figure 1.1b for an example. We show how to solve Partially PQ-
Constrained Planarity for biconnected graphs. Moreover, we extend the so far known
results on Simultaneous Embedding with Fixed Edges by providing a polynomial-
time algorithm for the case that both graphs are biconnected and the common graph is
connected. To this end, we define the auxiliary problem Simultaneous PQ-Ordering
and show how to solve it in polynomial time for “simple” instances, providing a framework
to easily achieve the above mentioned results on Partial PQ-Constrained Planarity
and Simultaneous Embedding with Fixed Edges. Furthermore, Simultaneous PQ-
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Figure 1.1: (a) A PQ-tree with leaves {a, . . . , `} where P- and Q-nodes are depicted as
circles and boxes, respectively. For example the degree-5 Q-node at the top
enforces the leaves a, b, c, h to occur in this or its reversed order. Furthermore,
the two P-nodes on the left enforce the leaves i, j, k, ` to appear consecutively.
(b) Drawings of two graphs G 1 and G 2 on the common node set {1, . . . , 8}.
Although some of the vertices are drawn to similar positions in both drawings,
it is hard to identify the differences and similarities between the two graphs.
This is much easier in the SEFE on the right.

Ordering can be used to recognize simultaneous interval graphs in linear time.

Simultaneous PQ-Ordering is defined as follows. Given a PQ-tree T with the leaves
L and another PQ-tree T ′ with leaves L′ ⊆ L, called a child of T , are there orders
O and O′ of the leaves L and L′ represented by the PQ-trees T and T ′, respectively,
such that the order O extends O′? This question is fairly easy to answer, but what
happens if T has more than one child or if T ′ has additional parents? The problem
Simultaneous PQ-Ordering asks for a given collection of PQ-trees with child-parent
relations whether orders for the PQ-trees can be simultaneously chosen, such that each
child-parent relation is satisfied; see Section 3 for a precise definition. We show that
Simultaneous PQ-Ordering is NP -complete in general but can be solved efficiently
for “simple” instances. As mentioned above, we show how Partially PQ-Constrained
Planarity for biconnected graphs, Simultaneous Embedding with Fixed Edges
for two biconnected graphs with a connected intersection and the problem of recognizing
simultaneous interval graphs can be formulated as “simple” instances of Simultaneous
PQ-Ordering.

1.1 Related Work

The quality of a drawing of a graph is hard to measure and of course depends on the
specific application. However, there are several generally accepted design goals, such as
low number of bends per edge, low number of edge crossings, high resolution (which is
equivalent to a small area when drawing on a grid) and good angle resolution (angles
between edges incident to a common vertex or angles between crossing edges). Unfortu-
nately, one of the most important design goals, namely crossing minimization, has shown
to be NP -hard [GJ83, Bie91] and seems to be really challenging since there are only very
few approaches working in practice. Note that it is for example not even known how many
crossings are needed in a drawing of the complete graph Kn with n vertices, anyhow,
Guy’s conjecture [Guy72] stating that 1/4 · bn/2c · b(n − 1)/2c · b(n − 2)/2c · b(n − 3)/2c
crossings are necessary and sufficient is widely believed. However, testing whether a graph
can be drawn without any crossings, that is, testing whether a graph is planar, can be done
efficiently. One of the most promising heuristic approaches to crossing minimization starts
with a maximal planar subgraph of a given graph and tries to insert the remaining edges
optimally [GM04]. The problem of finding the crossing minimal drawing of a planar graph
with a single additional edge over all drawings in which the planar graph is drawn crossing
free is known as Optimal Edge Insertion and can be done in linear time [GMW01].
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1.1. Related Work 3

Note that inserting a single edge optimally does not mean that the resulting drawing is
optimal since an optimal drawing can require that not a single edge is involved in all
crossings. This motivates why planar graphs are worth to study them, besides from being
interesting on theirselves. One can hope that a result for a problem on a planar graph
can be extended somehow to a result for the more challenging problem on general graphs.
Note that planar graphs are not only easier to handle for graph drawing problems but also
for general graph problems such as maximum cuts or flows [SWK90, BK06]. We start with
a short overview about the basic results on planarity.

Planarity

Planarity is a well studied topic. There are several characterizations for planar graphs,
such as the well-known theorem of Kuratowski [Kur30] stating that a graph is planar if
and only if it does not contain a subdivision of the complete graph K5 or the complete
bipartite graph K3,3 as subgraph. Other characterizations are for example in terms of
the dimension of partially ordered sets by Schnyder [Sch89] or in terms of a partition
of fundamental cycles with respect to a DFS-tree (depth-first search) into clockwise and
counter-clockwise oriented cycles by de Fraysseix and Rosenstiehl [dR82, dR85]. The first
linear time planarity test is due to Hopcroft and Tarjan [HT74], using the following ap-
proach. Consider a cycle in the graph and the components obtained by removing the cycle
augmented by the vertices and edges attaching it to the cycle. Then each component can
be placed either inside or outside the cycle. Deciding planarity for each of the components
and testing if they can be arranged with the cycle in a planar way yields a planarity test
for the whole graph. Lempel et al. provided a planarity test iteratively inserting the ver-
tices of the graph in an st-order [LEC67]. This can only be done for biconnected graphs,
which does not matter since a graph is planar if and only if its biconnected components
are planar. The approach by Lempel et al. was improved by Booth and Lueker to run in
linear time using PQ-trees [BL76]. Shih and Hsu [SH93] and Boyer and Myrvold [BM99]
used a similar approach with a bottom-up order with respect to a DFS-tree instead of an
st-order. Haeupler and Tarjan provided a common framework for both approaches [HT08].
They start with a completely unembedded graph and add vertices iteratively, such that
the unembedded part is always connected, ensuring that the unembedded part can be as-
sumed to lie in the outer face of all embedded components. While inserting vertices, they
keep track of the possible embeddings of the embedded parts by representing the possible
orders of half embedded edges around every component with a PQ-tree having these edges
as leaves. A different approach to planarity testing is the SPQR-tree introduced by Di Bat-
tista and Tamassia [DT96a, DT96b]. The SPQR-tree is a decomposition of a biconnected
graph into its triconnected components. Furthermore, it represents all planar embeddings
of a graph and can be computed in linear time [GM01]. Another linear time planarity
testing algorithm is the left-right planarity test [ddR06, Bra09] using the characterization
of planar graphs in terms of the orientation of fundamental cycles by de Fraysseix and
Rosenstiehl [dR82, dR85].

Fáry showed that every planar graph has a planar drawing such that every line segment
is a straight line [Fár48] and there are several algorithms creating straight line drawings
of planar graphs with given planar embedding [Tut63, CYN84, CON85]. However, the
resulting drawings of these algorithms do not care about the size of the drawing and thus
potentially yield exponentially large drawings. De Fraysseix et al. provided an O(n logn)-
time algorithm creating a planar straight-line drawing on a grid of size O(n)×O(n). The
running time was improved to linear time by Chrobak and Payne [CP95].

3



4 1. Introduction

Constrained Planarity

One can conclude that there are several practically usable and fast algorithms creating
nice drawings of planar graphs. However, in many applications there are additional re-
quirements. For example a given drawing of a subgraph needs to be extended due to
changes in a dynamic graph, the position where an edge enters a node (depicted for ex-
ample by a rectangle) in a diagram can be given by the application (port-constraints) or
the graph needs to be embedded to vertex positions that are (partially) prespecified by
the user of an interactive graph drawing system, to name a few. These considerations
lead to constrained embedding problems such as Point Set Embedding asking whether
a graph has a planar drawing respecting prespecified vertex positions. Pach and Wenger
showed that this can be done for every planar graph no matter which vertex positions
are given [PW98]. Unfortunately, such a drawing can require linearly many bends per
edge. Kaufmann and Wiese proved that two bends per edge are sufficient if only the set
of points in the plane is given whereas the mapping of the vertices to these points can
be chosen [KW02]. Another constrained embedding problem is Partially Embedded
Planarity asking whether a planar drawing of a subgraph can be extended to a planar
drawing of the whole graph. Angelini et al. give a linear-time algorithm for testing Par-
tially Embedded Planarity [ADF+10] and Jeĺınek et al. give a characterization by
forbidden substructures similar to Kuratowski’s theorem [JKR11].

The problem PQ-Constrained Planarity has as input a planar graph G and a PQ-tree
T (v) for every vertex v of G, such that the leaves of T (v) are exactly the edges incident
to v. PQ-Constrained Planarity asks whether G has a planar drawing such that
the order of incident edges around every vertex v is represented by the PQ-tree T (v).
Gutwenger et al. show that PQ-Constrained Planarity can be solved in linear time
by simply replacing every vertex with a gadget and testing planarity of the resulting
graph [GKM07] (their main result is a solution for Optimal Edge Insertion with these
constraints). Furthermore, they show how to deal with PQ-Constrained Planarity
if additionally the orientation of some Q-nodes is fixed. In this work, we consider the
constrained embedding problem Partially PQ-Constrained Planarity. The differ-
ence to PQ-Constrained Planarity is that the tree T (v) may have only a subset of
edges incident to v as leaves. Note that Partially PQ-Constrained Planarity is a
straight-forward extension of PQ-Constrained Planarity. We show how to solve Par-
tially PQ-Constrained Planarity in linear time if the given graph is biconnected.
This solution can be easily extended to also solve the case where the orientation of some
Q-nodes is fixed.

Simultaneous Embedding

Closely related to the constrained embedding problems mentioned above are simultaneous
embedding problems. Let G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two planar graphs
with a common subgraph G = (V,E). Simultaneous Embedding (SE for short) ask
for planar drawings of G 1 and G 2 such that the vertices V of the common graph are
drawn to the same points in the plane in both drawings. Simultaneous Embedding
with Fixed Edges (SEFE) additionally requires the common edges E to be drawn the
same in both drawings, whereas for Simultaneous Geometric Embedding (SGE) each
edge needs to be drawn as a straight line segment. We also say that G 1 and G 2 have
a SE, SEFE or SGE if there are solutions for these problems. These definitions can
be canonically extended to an arbitrary number of graphs, however, SEFE and SGE are
challenging enough for two graphs. Besides from being interesting due to the close relation
to constrained embedding problems (this relation will be made more precise in a moment),
simultaneous embeddings have interesting applications themselves. Consider for example
a graph changing over the time. To compare the graph at different points in time for
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1.1. Related Work 5

the purpose of recognizing changes, the parts of the graph remaining need to be drawn
the same or at least similar enough to recognize it. Alternatively, the input graphs may
represent different relations between the same objects. Note that there are also several
practical approaches to simultaneous graph drawing problems [EKLN04, KP05, EBFK09].
The relation to constrained embedding is of the following kind. Fixing the drawing of one
of the two graphs reduces SE and SEFE to the constrained embedding problems Point
Set Embedding and Partially Embedded Planarity. This shows that every pair of
graphs has a SE, since every planar graph can be drawn to arbitrary prespecified vertex
positions. Recall that such a drawing can have linearly many bends per edge [PW98], thus
it is of interest to find a SE with fewer bends. Erten and Kobourov show that every two
graphs can be drawn simultaneously in O(n) time with at most three bends per edge on
a O(n2) × O(n2) grid (O(n3) × O(n3) if bends need to be placed on grid points), where
n is the number of vertices [EK05]. This result was improved by Di Giacomo and Liotta
to at most two bends per edge in general and one bend per edge if G 1 and G 2 are both
outerplanar, both trees or both series-parallel [DL07]. Unfortunately, not every pair of
graphs has a SGE and not even a SEFE. Furthermore, the decision problem SEFE is
known to be NP-complete for three graphs [GJP+06] and SGE is already NP-hard for
two graphs [EBGJ+08]. The complexity of SEFE for two graphs is still open. In most
cases, approaches to SEFE and SGE consider special kinds of instances, such as pairs
of specified graph classes and there are three types of results. First, that the special
instances always have a simultaneous embedding, second, that they do not (by providing
a counterexample), and third, testing for such a special instance if it has a simultaneous
embedding. To the best of our knowledge no approaches of the third type exist for SGE.
Additionally, some of the approaches to SEFE limit the number of bends per edge and
the necessary size when drawing on a grid.

Simultaneous Geometric Embedding

Estrella-Balderrama et al. show that SGE is NP-hard even for two graphs. However,
there are some additional results on SGE. Erten and Kobourov and Brass et al. give
examples for a planar graph and a path not having a SGE [EK05, BCD+07]. Brass et al.
furthermore show that a SGE always exists for two caterpillars (graphs being paths after
the removal of all degree-1 vertices), k stars, a path and an extended star (collection of
stars with an additional special root and paths from the special root to the center of all
stars), two paths, and two cycles. On the other hand, Geyer et al. give an example of two
trees not having a SGE [GKV09]. This result is further extended by Angelini et al. to
the case of a tree and a path [AGKN11]. More precisely, they give an example of a tree of
depth 4 and an edge disjoint path not having a SGE. On the other hand they show that
every tree of depth 2 has a SGE with every path.

Simultaneous Embedding with Fixed Edges

In the following we give a detailed description of the results on SEFE that are known so
far; Figure 1.2 illustrates these results. We start with the instances that are known to
always have a SEFE. Erten and Kobourov show that a tree and a path can always be
embedded simultaneously [EK05]. They additionally give an algorithm finding a simul-
taneous embedding in O(n) time on a grid of size O(n) × O(n2) such that the edges of
G 1 and G 2 have at most one and zero bends per edge, respectively. Note that a grid of
size O(n2) ×O(n3) is necessary if the bends are required to be drawn on grid points. Di
Giacomo and Liotta extend this result to the case of an outerplanar graph and a path
with the same grid and bend requirements [DL07]. They extend it further to the case
where G 1 and G 2 are outerplanar and the common graph G is a collection of paths and
to the case where G 1 is outerplanar and G 2 is a cycle. However, in both cases a grid
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Figure 1.2: Overview over the so far known results on SEFE. Each box represents one
result and an arrow highlights that the source-result is extended by the target-
result. The arrowheads are empty for the cases in which this is only true, if
the number of bends per edge, the consumed grid size or the necessary running
time is neglected. Note that transitive arrows are omitted.
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1.1. Related Work 7

of size O(n2) × O(n2) and up to one bend per edge are required. If the grid and bend
requirements are completely neglected, the results considering the pairs tree plus path and
outerplanar graph plus path can be extended to the case where one of the two graphs is
a tree. Frati shows how a tree G 1 can be simultaneously embedded with an arbitrary
planar graph G 2 [Fra07]. This algorithm still works if G 1 contains one additional edge
that is not a common edge, yielding the result that every graph with at most one cycle
(a pseudoforest) can be embedded simultaneously with every other planar graph if the
common graph does not contain this cycle. Fowler et al. extend this result further to the
case where G 1 contains only disjoint cycles and the common graph G does not contain a
cycle [FGJ+09].

Aside from instances always having a SEFE, there are also examples that cannot be si-
multaneously embedded. Brass et al. give examples for k outerplanar graphs, three paths
and an outerplanar graph plus a planar graph not having a SEFE [BCD+07]. The re-
sults concerning outerplanar graphs can be extended to the case where both graphs are
outerplanar [Fra07]. In between the positive and negative results there are some char-
acterizations stating which instances have a SEFE and which do possibly not. Fowler
et al. give a characterization of the graphs G 1 having a SEFE with every other planar
graph [FJKS11]. This of course extends all results concerning only G 1 . In particular, the
results that a tree can be simultaneously embedded with every other graph whereas an
outerplanar graph cannot are extended. This characterization essentially requires that G 1

must not contain a subgraph homeomorphic to K3 (a triangle) and an edge not attached
to this K3. The considerations made for this characterization additionally yield a char-
acterization for the outerplanar graphs G 1 having a simultaneous embedding with every
other outerplanar graph G 2 . This of course extends the result that two outerplanar graphs
possibly do not have a SEFE. Another characterization, in terms of the common graph,
is given by Jünger and Schulz [JS09]. They show that two graphs can be simultaneously
embedded if the common graph G has only two embeddings, whereas in all other cases
graphs G 1 and G 2 with the common graph G not having a SEFE can be constructed.
They additionally show that finding a SEFE is equivalent to finding combinatorial embed-
dings of G 1 and G 2 inducing the same combinatorial embedding on the common graph
G [JS09, Theorem 4] (note that they use the term topological embedding equivalent to
our combinatorial embedding). Note that this is not obvious and not even true for more
than two graphs [ADF11a].

Since SEFE has positive and negative instances, it would be nice to have an algorithm
deciding for given graphs, whether they can be embedded simultaneously. If more than
two graphs are allowed, this problem is known to be NP-complete [GJP+06], whereas
the complexity for two graphs is still open. However, there are several results solving
SEFE for special cases. For example the characterization of outerplanar graphs having
a simultaneous embedding with every other outerplanar graph mentioned above yields a
linear time algorithm testing, if two outerplanar graphs have a SEFE [FJKS11]. Fowler
at al. showed how to test SEFE, if G 1 is a pseudoforest, that is, a graph with at most
one cycle [FGJ+09]. Note that such an instance has always a SEFE, if this single cycle is
not contained in G, as mentioned above. This result can be extended to the case where
G 1 contains up to two cycles, if G does not contain the second cycle, that is, G is a
pseudoforest. To achieve this result the following auxiliary problem was solved. Given
a planar graph G with a designated cycle C and a partition P = {P1, . . . , Pk} of the
vertices not contained in C, does G admit a planar embedding, such that all vertices in Pi
are on the same side of the cycle for every set Pi? Note that this again is a constrained
embedding problem, showing that constrained and simultaneous embedding are closely
related. Angelini et al. give an algorithm to solve SEFE in linear time if the common
graph is a star [ADF+11b]. To this end, they show the equivalence of SEFE for the
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8 1. Introduction

case that G is a tree to a constrained version of a 2-Page Book Embedding problem
and were able to extend this equivalence to the case where G is connected [ADF+11c].
The problem 2-Page Book Embedding asks for a given graph, whether the vertices can
be placed on a straight line (which can be interpreted as the spine of a book) and the
edges on the two half planes defined by the line (two pages of the book), such that no
two edges cross. Note that this can be seen as an extension of outerplanarity, a graph
is outerplanar if and only if only one page is sufficient. 2-Page Book Embedding can
be solved in linear time, if additionally the edge partition is fixed [HN09]. Angelini et al.
show that SEFE is equivalent to 2-Page Book Embedding with a given edge partition
if the common graph G is a star, furthermore, if G is a connected, SEFE is equivalent
to a constrained version of 2-Page Book Embedding. Besides this result, Agelini et
al. also show how to solve SEFE in O(n3) time if G is biconnected [ADF+11b]. They
were able to improve this result linear running time [ADF+11c]. Their approach uses the
SPQR-tree, choosing an embedding of the common graph (up to a flip) bottom up. A
completely different approach is used by Haeupler et al. to solve SEFE in linear time if G
is biconnected [HJL10]. Their solution is an extension of the planarity testing algorithm
by Haeupler and Tarjan mentioned above [HT08].

In Section 4.3 we show how to solve SEFE for the case that G 1 and G 2 are biconnected
and G is connected. This extends the case where G is biconnected for the following reason.
If G is biconnected, then G is completely contained in a single block (maximal biconnected
component) of G 1 and G 2 . Thus, even if G 1 or G 2 are not biconnected, they contain
only one block that is of interest, all other blocks can simply be attached to this block.
Note that PQ-trees play a central role in the algorithm of Haeupler et al. and in the
result we present here. However, we use them in a completely different way. The iterative
algorithm by Haeupler et al. uses PQ-trees to keep track of possible edge orders around
the parts of the graph that are already embedded. In our approach both graphs G 1 and
G 2 constrain one another with PQ-constraints for the allowed orders of edges around every
vertex. This finally results in a large number of PQ-trees describing orders of edges around
every vertex and we need to choose orders“fitting” to one another, resulting in the problem
Simultaneous PQ-Ordering.

PQ-Trees

Since PQ-Trees play an important role in this work, we given a short overview on what
was done about them and what they are used for while their functionality is discussed
in Section 2.3. PQ-Trees were originally introduced by Booth and Lueker [BL76]. They
were designed to decide if a set L has the Consecutive Ones property with respect to
a family S = {S1, . . . , Sk} of subsets Si ⊆ L. The set L has this property if a linear
order of its elements can be found, such that the elements in each subset Si ∈ S appear
consecutively. Booth and Lueker showed how to solve Consecutive Ones in linear time.
Furthermore, they showed that all linear orders of the elements in L in which each subset
Si ∈ S appears consecutively can be represented by a PQ-tree having the elements in L
as leaves. Besides testing planarity in linear time, as mentioned above, they were able to
decide in linear time if a given graph is an interval graph. An interval graph is a graph
for which each vertex can be represented as an interval of the real numbers, such that
there is an edge between two vertices if and only if the corresponding intervals intersect.
The relation between interval graphs and the Consecutive Ones property was given by
Fulkerson and Gross [FG65]. They showed that a graph G is an interval graph if and only if
the maximal cliques of G can be ordered, such that for every vertex v the maximal cliques
containing v appear consecutively. Two graphs with common vertices are simultaneous
interval graphs, if they have interval representations representing the common vertices by
the same intervals. Jampani and Lubiw show that simultaneous interval graphs can be
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1.2. Outline 9

recognized in O(n2 logn) time [JL10]. We show that it is also possible in linear time.

In the original approach by Booth and Lueker, the PQ-trees were rooted, representing
linear orders of its leaves. However, they can also considered to be unrooted representing
circular orders. Unrooted PQ-trees are sometimes also called PC-trees [Hsu01, HM01,
HM03]. In most cases we will use unrooted PQ-trees representing circular orders while
the same results can be achieved for rooted PQ-trees representing linear orders by simply
adding a single leaf (see Section 2.3 for further details).

1.2 Outline

This thesis is structured as follows. In Section 2 we define the notation we use and present
the known results forming the basis of our work. Section 3 contains the main part of
this work. We define the problem Simultaneous PQ-Ordering and show that it is
NP-complete in general but efficiently solvable for special instances. In Section 4 we
use our results on Simultaneous PQ-Ordering to solve several problems. First, we
give a representation of all embeddings of a biconnected planar graph in terms of PQ-
trees (Section 4.1). This representation is used to solve Partially PQ-Constrained
Planarity for biconnected graphs (Section 4.2) and Simultaneous Embedding with
Fixed Edges for the case that both graphs are biconnected and have a connected intersec-
tion (Section 4.3). Furthermore, Simultaneous PQ-Ordering can be used to recognize
simultaneous interval graphs (Section 4.4). We conclude in Section 5 with some thoughts
about open problems.

9





2. Preliminaries

In this chapter we define the notation and provide some basic tools we use in this work.
Section 2.1 deals with graphs and their connectivity, planar graphs and embeddings of
planar graphs, directed acyclic graphs and trees. Linear and circular orders and how per-
mutations act on them is considered in Section 2.2. PQ-trees are defined in Section 2.3.
Furthermore, the relation between rooted and unrooted PQ-trees is described and opera-
tions that can be applied to them are defined. In Section 2.4 we give a short introduction to
SPQR-trees, which are used to represent all embeddings of a planar graph. In Section 2.5
we show how PQ- and SPQR-trees are related.

2.1 Graphs, Planar Graphs, DAGs and Trees

An (undirected) graph G consists of a set V of vertices and a multiset E ⊆ {{u, v} | u, v ∈
V } of undirected pairwise relations between vertices, called edges. The graph G is called
simple, if there are no multiple edges, that is, E is a set, and no self loops, that is, u 6= v
for every edge {u, v} ∈ E. If u, v ∈ V are connected by an edge e = {u, v} they are called
adjacent, whereas e is said to be incident to u and v. A path in G is a sequence of adjacent
vertices using each edge at most once and the length of a path is the number of edges used
on the path. A path is simple if every vertex occurs at most once. A path of length at
least 1 from a vertex to itself is a cycle and it is simple if every vertex occurs at most once
except for the start- and end-vertex occurring twice. The degree of a vertex v, denoted by
deg(v), is the number of edges incident to v. The graph G is connected if there is a path
from u to v for every pair of vertices u, v ∈ V . A separating k-set is a set of k vertices whose
removal disconnects G. Separating 1-sets and 2-sets are called cutvertices and separation
pairs. A graph is biconnected if it is connected and does not have a cutvertex and it is
triconnected if it additionally does not have a separation pair. The maximal connected
subgraphs (maximal with respect to inclusion) of G are called connected components and
the maximal biconnected subgraphs are called blocks. A subgraph of G that is complete,
that is, each pair of vertices is connected by an edge, is called a clique. A clique is maximal
if it is not contained in any other clique. Sometimes we also use the term node instead of
vertex to emphasize that it represents a larger object.

A drawing of a graph G is a mapping of every vertex v to a point (xv, yv) in the plane and a
mapping of every edge {u, v} to a Jordan curve having (xu, yu) and (xv, yv) as endpoints. A
drawing of G is planar if edges do not intersect except at common endpoints. The graph G
is planar if a planar drawing of G exists. Consider G to be a connected planar graph. Every
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12 2. Preliminaries

(a)

C1C2 f1

f2

f = f1 ∩ f2

(b)

Figure 2.1: (a) Two drawings of a disconnected planar graph with the same order of inci-
dent edges around every vertex having different topologies. (b) The component
C1 lies completely inside the face f2 of C2 and C2 lies in the face f1 of C1. Con-
sidering the whole drawing, they share the common face f = f1 ∩ f2 whereas
all other faces of the components remain unchanged.

planar drawing of G splits the plane into several connected regions, called the faces of the
drawing. Exactly one of these faces, called the outer face, is unbounded. The boundary of
each face is a cycle in G and two faces in different drawings are said to be the same if they
have the same boundary. Additionally, every planar drawing of G induces for every vertex
an order of incident edges around it and two drawings inducing the same order for every
vertex are called combinatorially equivalent. It is clear that two combinatorially equivalent
drawings have the same faces, which implies that they have the same topology since G is
connected. Note that being combinatorially equivalent is an equivalence relation and the
equivalence classes are called combinatorial embeddings of G. If G is disconnected, two
drawings with the same combinatorial embedding for each connected component can have
different topologies, as depicted in Figure 2.1a. To address this problem consider a planar
drawing of G consisting of two connected components C1 and C2; Figure 2.1b illustrates
this case. If we consider the faces of each connected component separately, then C1 is
drawn completely inside one face f2 of C2 and C2 is drawn completely inside one face f1 of
C1. Thus the drawing of G splits the plane into all the faces of C1 except for f1 plus all the
faces of C2 except for f2 plus the common face f = f1∩ f2 of the pair {C1, C2}. Note that
the drawing of G again has one unbounded face, the outer face. It is clear how to extend
this to arbitrary many connected components. Now the combinatorial equivalence can be
extended to the case where G has several connected components. Two planar drawings
of a possibly disconnected planar graph G are called combinatorially equivalent, if each
connected component has the same combinatorial embedding and every pair of connected
components share the same common face in both drawings. Again, being combinatorially
equivalent is an equivalence relation and the equivalence classes are called combinatorial
embeddings. A combinatorial embedding together with the choice of an outer face is a
planar embedding. In most cases we do no care about which face is the outer face, thus we
mean a combinatorial embedding by simply saying embedding.

Until now, each edge represented an undirected relation between a pair of vertices, but
edges can also be directed. Directed edges will be called arcs and an arc from the source u
to the target v is denoted by (u, v). A graph with directed edges is called directed graph.
Paths and cycles are defined as in the undirected case, however, in directed paths and
cycles the arcs can only be used from source to target. A directed graph G without any
directed cycles is called directed acyclic graph (DAG). Let u and v be vertices of a DAG
G such that there exists a directed path from u to v. Then u is called an ancestor of v
and v a descendant of u. If the arc (u, v) is contained in G, then u is a parent of v
and v is a child of u. A vertex v in a DAG G is called source (sink) if it does not have
parents (children). Note that this overloads the term source, but it will be clear from the
context which meaning is intended. A topological ordering of a DAG G is an ordering
of its vertices such that u occurs before v if G contains the arc (u, v). By saying that a
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2.2. Linear and Circular Orders and Permutations 13

DAG is processed top down (bottom up) we mean a traversal of its vertices according to
a (reversed) topological ordering. Let G be a DAG and let v be a vertex. The level of v,
denoted by level(v), is the length of the shortest directed path from a source to v. The
depth of v, denoted by depth(v), is the length of the longest directed path from a source to
v. Note that the level and the depth have in a sense contrary properties. Let v be a vertex
in G and let u be a parent of v. Then the depth of u is strictly smaller than the depth of v
whereas the level decreases by at most one: depth(u) < depth(v); level(u) ≥ level(v)− 1.
By the level and the depth of the DAG G itself we mean the largest level and depth a
vertex in G has, respectively.

An (unrooted) tree T is a connected graph without any cycles. It is clear that T contains
exactly one path between any two vertices. The degree-1 vertices are called leaves and
the other are inner vertices. A tree T together with a special vertex r, called the root of
T , is a rooted tree. A rooted tree can be seen as DAG by directing each edge toward the
leaves of the tree. Then the terms top down, bottom up, ancestor, descendant, child, and
parent can be defined as for DAGs. Note that a tree with n vertices has m = n− 1 edges.
However, in general, the ratio between the number of vertices (or edges) and the number
of leaves is unbound (consider a tree consisting of a single path). For the special case that
T contains no degree-2 vertices we obtain the following lemma.

Lemma 1. A tree with n1 leaves and without degree-2 vertices has at most n1 − 2 inner
vertices and at most 2n1 − 3 edges.

Proof. Let T be a tree with n1 leaves and the largest number of edges possible. Then
every inner vertex in T has degree 3, because a vertex with four incident edges e1, . . . , e4
could be split into two vertices with incident edges e1, e2 and e3, e4 respectively, plus an
additional edge connecting them. Of course T has also the largest possible number of inner
vertices for the fixed number of leaves n1. If we denote the number of vertices of degree 3
by n3 we have n = n1 + n3 where n is the total number of vertices. Since T is a tree we
have m = n− 1 for the number of edges m. Since every edge has two incident vertices we
obtain the equation 2m = n1 + 3n3, by counting the incident edges for every vertex. From
these three equations we obtain n3 = n1 − 2 and therefore m = 2n1 − 3.

2.2 Linear and Circular Orders and Permutations

Let L be a finite set (all sets we consider are finite). A sequence O of all elements in L
specifies a relation “≤” on L in the way that `1 ≤ `2 for `1 6= `2 ∈ L if and only if `2
occurs behind `1 in O. Such a relation is called linear order (or also total order) and is
identified with the sequence O specifying it. Let O1 and O2 be two linear orders on L
and let ` ∈ L be an arbitrary element. Let further O′i (for i = 1, 2) be the order that is
obtained from Oi by concatenating the smallest suffix containing ` with the largest prefix
not containing `. We call O1 and O2 circularly equivalent if O′1 and O′2 are the same linear
order. Not that this is a equivalence relation not depending on the chosen element `. The
equivalence classes are called circular orders. For example for L = {a, . . . , e} the orders
O1 = baedc and O2 = dcbae are circular equivalent and thus define the same circular order
since O′1 = O′2 = aedcb, if we choose ` = a. In most cases we consider circular orders.
Unless stated otherwise, we refer to circular orders by simply writing orders. Note that
a linear order can be seen as a graph with vertex set L consisting of a simple directed
path, whereas a circular order corresponds to a graph consisting of a simple directed cycle
containing L as vertices, see Figure 2.2a for an example. Let L be a set and let O be a
circular order of its elements. Let further S ⊆ L be a subset and let O′ be the circular
order on S that is induced by O. Then O′ is a suborder of O and O is an extension of O′.
Note that S does not really need to be a subset of L. Instead it can also be an arbitrary set
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Figure 2.2: (a) The interpretation of the linear and circular order dcbae as simple path
and simple cycle, respectively. (b) The permutation ϕ = (aec) ◦ (bfd) on the
left can be seen as as a clockwise rotation by 2 of the circular order abcdef ,
and thus is order preserving, whereas the permutation ϕ = (af) ◦ (be) ◦ (cd) in
the middle is order reversing. However, ϕ = (af) ◦ (be) ◦ (cd) is not only order
reversing but also order preserving (rotation by 3) with respect to the order
abcfed as shown on the right. The permutations ϕ are depicted as thin arrows
with empty arrowheads and the different permutation cycles are distinct by
solid, dashed and dotted lines.

together with an injective map ϕ : S → L. We overload the terms suborder and extension
for this case by calling an order O′ of S a suborder of O and O an extension of O′ if ϕ(O′)
is a suborder of O, where ϕ(O′) denotes the order obtained from O′ by applying ϕ to each
element.

In the following, we consider permutations on the set L and provide some basic properties
on how these permutations act on circular orders of L. Let L be a set and let ϕ : L→ L
be a permutation. The permutation ϕ can be decomposed into r disjoint permutation
cycles ϕ = (`1ϕ(`1) . . . ϕk1(`1)) ◦ · · · ◦ (`rϕ(`r) . . . ϕkr (`r)). We call ki the length of the
cycle (`iϕ(`i) . . . ϕki(`i)). Fixpoints for example form a permutation cycle of length 1. We
can compute this decomposition by starting with an arbitrary element ` and applying ϕ
iteratively until we reach ` again. Then we continue with an element not contained in any
permutation cycle so far to obtain the next cycle. Now consider a circular order O of the
elements in L. The permutation ϕ is called order preserving with respect to O if ϕ(O) = O.
It is called order reversing with respect to O if ϕ(O) is obtained by reversing O. Note
that for a fixed order O the order preserving and order reversing permutations are exactly
the rotations and reflections of the dihedral group, respectively (the dihedral group is the
group of rotations and reflections on a regular k-gon). If we interpret O as a graph as
mentioned above, that is, a graph with vertex set L consisting of a simple directed cycle,
we obtain that ϕ is order preserving with respect to O if it is a graph isomorphism on this
cycle, whereas the cycle is reversed if ϕ is order reversing with respect to O; Figure 2.2b
depicts this interpretation for an example. We say that ϕ is order preserving or order
reversing if it is order preserving or order reversing with respect to at least one order O.
In this setting the order is not fixed and we want to characterize for a given permutation
if it is order preserving or order reversing and additionally we want to find an order that
is preserved or reversed, respectively. Note that not fixing the order has for example the
effect, that the same permutation ϕ can be a rotation with respect to one order and a
reflection with respect to another, which means that it can be order preserving and order
reversing at the same time.

Lemma 2. A permutation ϕ on the set L is order preserving if and only if all its permu-
tation cycles have the same length.

Proof. Assume ϕ consists of r permutation cycles of length k, let `i be an element in the
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2.3. PQ-Trees 15

ith permutation cycle. Then ϕ is order preserving with respect to the following circular
order `1 . . . `r ϕ(`1) . . . ϕ(`r) . . . ϕk(`1) . . . ϕk(`k).

Assume we have a circular order O = `1 . . . `n such that ϕ(O) = O. We show that the
permutation cycles of two consecutive elements `i and `i+1 have the same size. This claim
holds if `i and `i+1 are contained in the same permutation cycle. Assume they are in
different permutation cycles with lengths ki and ki+1, respectively, such that ki < ki+1.
Then ϕki(`i+1) 6= `i+1 is not the successor of ϕki(`i) = `i in O. Thus, ϕki(O) cannot be the
same circular order O and hence ϕ is not order preserving, which is a contradiction.

Lemma 3. A permutation ϕ on the set L is order reversing if and only if all its permu-
tation cycles have length 2, except for at most two cycles with length 1.

Proof. Assume we have ϕ = (`1`′1) ◦ · · · ◦ (`r`′r), ϕ = (`) ◦ (`1`′1) ◦ · · · ◦ (`r`′r) or ϕ =
(`) ◦ (`′) ◦ (`1`′1) ◦ · · · ◦ (`r`′r). Then ϕ reverses the orders, `1 . . . `r`

′
r . . . `

′
1, `1 . . . `r``

′
r . . . `

′
1

and `1 . . . `r``
′
r . . . `

′
1`
′, respectively.

Now assume we have an order O such that ϕ is order reversing with respect to O, that is
it is a reflection in the dihedral group defined by O. Thus, ϕ2 is the identity yielding that
ϕ cannot contain a permutation cycle of length greater than 2. Furthermore, a reflection
has at most two fixpoints.

It is clear that the characterizations given in Lemma 2 and Lemma 3 can be easily checked
in linear time. Additionally, from the proofs of both lemmas it is clear how to construct
an order that is preserved or reversed if the given permutation is order preserving or order
reversing, respectively.

2.3 PQ-Trees

Given an unrooted tree T with leaves L having a fixed circular order of edges around
every vertex, that is, having a fixed combinatorial embedding, then the circular order of
the leaves is also fixed. In an unrooted PQ-tree for some inner nodes, the Q-nodes, the
circular order of incident edges is fixed up to reversal, for the other nodes, the P-nodes, this
order can be chosen arbitrarily. Hence, an unrooted PQ-tree represents a set of circular
orders of its leaves. Given a set L, a set of circular orders L of L is called PQ-representable,
if there is an unrooted PQ-tree with leaves L representing it. Formally, the empty set,
saying that no order is possible, is represented by the null tree, whereas the empty tree
has the empty set as leaves and represents the set containing only the empty order. A
simple example for an unrooted PQ-tree is shown in Figure 2.3a. Note that not every set
of orders is PQ-representable. For example a PQ-tree representing a particular order also
represents its reversal.

In the same way, we can define a rooted PQ-tree representing sets of linear orders by
replacing circular by linear and additionally choosing an inner node of the PQ-tree as root.
There is an equivalence between unrooted and rooted PQ-trees in the following sense. Let
T be an unrooted PQ-tree with leaves L, representing the set of circular orders L. If we
choose one leaf ` ∈ L to be the special leaf, every circular order in L can be seen as linear
order of L′ := L − ` by breaking the cycle at `. Since every circular order in L yields a
different linear order, we obtain a bijection to a set of linear orders L′. We can construct
a rooted PQ-tree T ′ with the leaves L′ representing L′ as follows. First, we choose the
special leaf ` to be the root of T . Then, for every Q-node we obtain a linear order from
the given circular order by breaking the cycle at the (unique) parent. Finally, we remove
` and choose its (unique) child as the new root. Hence, given an unrooted PQ-tree, we
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Figure 2.3: (a) An unrooted PQ-tree T with leaves L = {a, . . . , f}, where P- and Q-
nodes are drawn as circles and boxes, respectively. By choosing an order for
a, b, f and concatenating it with cde or edc, we obtain all circular orders in L.
(b) Choosing a as the special leaf yields the rooted PQ-tree T ′ with leaves
L′ = {b, · · · , f}. By choosing an arbitrary order for b,�, f where � stands for
cde or edc, we obtain all orders in L′. Note that this simply means to break
the cyclic orders in L at the special leaf a.

can work with its rooted equivalent instead, by choosing one leaf to be the special leaf; see
Figure 2.3 for an example. Conversely, rooted PQ-trees can be represented by unrooted
ones by inserting a single leaf. In most cases we can work with the unrooted version of a
PQ-tree representing circular sets of orders. Unless stated otherwise, we refer to circular
orders and unrooted PQ-trees if we write orders and PQ-trees, respectively.

PQ-trees were introduced by Booth and Lueker [BL76] in the rooted version. Let L be
a finite set and let S = {S1, . . . , Sk} be a family of subsets Si ⊆ L. Booth and Lueker
showed that the set L containing all linear orders in which the elements in each set Si
appear consecutively is PQ-representable. Note that L could be the empty set, since in no
order all subsets Si appear consecutively, then L is represented by the null tree. This result
can be easily extended to unrooted PQ-trees and circular orders in which the subsets S
appear consecutively, which will become clearer in a moment.

As mentioned above, not every set of orders L is PQ-representable, but we will see three
operations on sets of orders that preserve the property of being PQ-representable. Given
a subset S ⊆ L, the projection of L to S is the set of orders of S achieved by restricting
every order in L to S. The reduction with S is the subset of L containing the orders where
the elements of S appear consecutively. Given two sets of orders L1 and L2 on the same
set L, their intersection is simply L1 ∩ L2. That projection, reduction and intersection
preserve the property of being PQ-representable can be shown constructively. But first we
introduce the following notation, making our life a bit easier. Let T be a PQ-tree with leaf
set L, representing L, and let µ be an inner node with incident edges ε1, . . . , εk. Removing
εi splits T into two components. We say that the leaves contained in the component not
containing µ belong to εi with respect to µ, and we denote the set of these leaves by Lεi,µ.
In most cases it is clear which node µ we refer to, so we simply write Lεi . Note that the
sets Lεi form a partition of L.

Projection Let T be a PQ-Tree with leaves L, representing the set of orders L. The
projection to S ⊆ L is represented by the PQ-tree T ′ that is obtained form T by
removing all leaves not contained in S and simplifying the result, where simplifying
means, that former inner nodes now having degree 1 are removed iteratively and that
degree-2 nodes together with both incident edges are iteratively replaced by single
edges. We denote the tree resulting from the projection of T to S by T |S and we
often call T |S itself the projection of T to S.

Reduction Recall that the reduction with a set S reduces a set of orders to these orders
in which all elements in S appear consecutively. The reduction can be seen as the
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2.3. PQ-Trees 17

operation PQ-trees were designed for by Booth and Lueker [BL76]. They showed
for a rooted PQ-tree T representing the linear orders L that the reduction to S is
again PQ-representable and the PQ-tree representing it can be computed in O(|L|)
time. For an unrooted PQ-tree T we can consider the rooted PQ-tree T ′ instead
by choosing ` ∈ L as special leaf. Note that the reduction with S is equivalent to
the reduction with L \ S in the unrooted case. There are two possibilities, either
` is contained in S or it is not. If it is not, the reduction of T ′ with S yields the
reduction of T with S by simply reinserting ` and unrooting T ′. If ` ∈ S, we reduce
T ′ with L \ S instead. This shows for a family of subsets S = {S1, . . . , Sk} that the
set containing all circular orders in which each subset Si ⊆ L appears consecutively
can be represented by an unrooted PQ-tree T . Thus, applying a reduction with S
to a given PQ-tree T can be seen as adding the subset S to S. Therefore, we denote
the result of the reduction of T with S by T + S and we often call T + S itself the
reduction of T with S.

Intersection For an inner node µ, all leaves Lε belonging to an incident edge ε appear
consecutively in every order contained in L. Furthermore, if µ is a Q-node with two
consecutive incident edges ε and ε′, all leaves in Lε∪Lε′ need to appear consecutively.
On the other hand, if we have an order of L satisfying these conditions for every inner
node, it is contained in L. Hence, T can be seen as a sequence of reductions applied
to the set of all orders, which is represented by the star with a P-node as center.
Now, given two unrooted PQ-trees T1 and T2 with the same leaves, we obtain their
intersection by applying the sequence of reductions given by T1 to T2. Note that the
size of all these reductions can be quadratic in the size of T1. However Booth showed
how they can be applied consuming time linear in the size of T1 and T2 [Boo75]. We
denote the intersection of T1 and T2 by T1 ∩ T2.

Let T |S be the projection of T to S ⊆ L. The extension of an order of S represented by
T |S to an order of L represented by T is straight forward. An inner node in T is either
contained in T |S or it was removed in the simplification step. If a Q-node in T is also
contained in T |S , its orientation is determined by the orientation chosen in T |S and we
call it fixed, otherwise its orientation can be chosen arbitrarily and we call it free. For a
P-node not contained in T |S the order of incident edges can be chosen arbitrarily. If a
P-node is contained in T |S , every incident edge is either also contained, was removed or
replaced (and the replacement was not removed). The order of the contained and replaced
edges is fixed, and the removed edges can be inserted arbitrarily. We call the removed
edges (and the edges incident to removed P-nodes) free and all other edges fixed.

Let T +S be the reduction of a PQ-tree T with leaves L with the subset S ⊆ L. Choosing
an order in the reduction T + S of course determines an order of the complete leaf set L.
Hence, it determines the order of incident edges for every inner node in T . For every Q-
node µ in T there exists exactly one Q-node in T + S determining its orientation, we call
it the representative of µ with respect to the reduction with S and denote it by repS(µ),
where the index is omitted, if it is clear from the context. Note that one Q-node in T + S
can be the representative of several Q-nodes in T . For a P-node µ we cannot find such a
representative in T + S since it may depend on several nodes in T + S. However, if we
consider a P-node µ′ in T + S there is exactly one P-node µ in T that depends on µ′. We
say that µ′ stems from this P-node µ.

The considerations concerning a PQ-tree T with leaves L together with another PQ-tree
T ′ with leaves L′ ⊆ L that is a projection or a reduction of T can of course be extended to
the case where T ′ is obtained from T by a projection followed by a sequence of reductions.
This can be further generalized to the case where T and T ′ are arbitrary PQ-trees with
leaves L and L′ with an injective map ϕ : L′ → L. Note that the injective map ensures
that L′ can be treated as a subset of L. In this case, we call T ′ a child of T and T a parent
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Figure 2.4: We start with the PQ-tree T1 on the left and project it to L\{b, f, g, k} yielding
T2. There is one Q-node and one edge incident to a P-node, both drawn dashed,
that do not appear in T2 and hence are free. The trees T3 and T4 are obtained
by applying reductions with {`, j} and {c, d} to T2. Note that the arrows
(and even their transitive closure) can be interpreted as child-parent relation
between the PQ-trees. Every fixed Q-node has a representative depicted by
gray lines, whereas it is not so easy to find something similar for the P-nodes.

of T ′. Choosing an order for the leaves L of T induces an order for the leaves L′ of T ′,
whereas an order of L′ only partially determines an order of L. Now we are interested in
all the orders of the leaves L that are represented by T and additionally induce an order
for the leaves L′ that is represented by T ′. Informally spoken, we want to find orders
represented by T ′ and T simultaneously, fitting to one another. It is clear that T ′ can
be replaced by T ′ ∩ T |L′ without changing the possible orders, since each possible orders
of the leaves L′ is of course represented by the projection T |L′ of T to L′. Hence this
general case reduces to the case where T ′ is obtained from T by applying a projection
and a sequence of reductions. We can extend the notation of free and fixed nodes to this
situation as follows. An edge incident to a P-node in the parent T is free with respect to
the child T ′ if and only if it is free with respect to the projection T |L′ . If all edges are
free, the whole P-node is called free. Similarly, a Q-node is free with respect to T ′ if and
only if it is free with respect to T |L′ . Again, every fixed Q-node µ has a representative
rep(µ) in T ′ (which is also a Q-node). Figure 2.4 shows an example PQ-tree together with
a projection and a sequence of reductions applied to it.

2.4 SPQR-Trees

Consider a biconnected planar graph G and a split pair {s, t}, that is, G− s− t is discon-
nected. Let H1 and H2 be two subgraphs of G such that H1∪H2 = G and H1∩H2 = {s, t}.
Consider the following tree containing the two nodes µ1 and µ2 associated with the graphs
H1 + {s, t} and H2 + {s, t}, respectively. These graphs are called skeletons of the nodes
µi, denoted by skel(µi) and the special edge {s, t} is said to be a virtual edge. The two
nodes µ1 and µ2 are connected by an edge, or more precisely, the occurrence of the virtual
edges {s, t} in both skeletons are linked by this edge. Now a combinatorial embedding
of G uniquely induces a combinatorial embedding of skel(µ1) and skel(µ2). Furthermore,
arbitrary and independently chosen embeddings for the two skeletons determine an em-
bedding of G, thus the resulting tree can be used to represent all embeddings of G by
the combination of all embeddings of two smaller planar graphs. This replacement can of
course be applied iteratively to the skeletons yielding a tree with more nodes but smaller
skeletons associated with the nodes. Applying this kind of decomposition in a systematic
way yields the SPQR-tree as introduced by Di Battista and Tamassia [DT96a, DT96b].
The SPQR-tree T of a biconnected planar graph G contains four types of nodes. First,
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Figure 2.5: A biconnected planar graph on the left and its SPQR-tree on the right. The
Q-nodes are depicted as single letters, whereas µ1, µ3 and µ5 are P-nodes, µ2
is an R-node and µ4 is an S-node. The embeddings chosen for the skeletons
yield the embedding shown for the graph on the left.

the P-nodes having a bundle of at lest three parallel edges as skeleton and a combinatorial
embedding is given by any order of these edges. Second, the skeleton of an R-node is
triconnected having exactly two embeddings, and third, S-nodes have a simple cycle as
skeleton without any choice for the embedding. Finally, every edge in a skeleton represent-
ing only a single edge in the original graph G is formally also considered to be a virtual
edge linked to a Q-node in T representing this single edge. Note that all leaves of the
SPQR-tree T are Q-nodes. Besides from being a nice way to represent all embeddings of a
biconnected planar graph, the SPQR-tree has only linear size and Gutwenger and Mutzel
showed how to compute it in linear time [GM01]. Figure 2.5 shows a biconnected planar
graph together with its SPQR-tree.

2.5 Relation between PQ- and SPQR-Trees

Given the SPQR-tree of a biconnected graph, it is easy to see that the set of all possible
orders of edges around a vertex is PQ-representable. For a vertex v and a P-node in
the SPQR-tree containing v in its skeleton, every virtual edge represents a set of edges
incident to v that need to appear consecutively around v. For an R-node in the SPQR-
tree containing v, again every virtual edge represents a set of edges that needs to appear
consecutively, additionally the order of the virtual edges is fixed up to reversal. Hence,
there is a bijection between the P- and R-nodes of the SPQR-tree containing v and the P-
and Q-nodes of the PQ-tree representing the possible orders of edges around v, respectively.
Note that the occurrence of v in the skeleton of an S-node enforces the edges belonging to
one of the two virtual edges incident to v to appear consecutively around v. But since this
would introduce a degree-2 node yielding no new constraints, we can ignore the S-nodes.
We call the resulting PQ-tree representing the possible circular orders of edges around a
vertex v the embedding tree of v and denote it by T (v). Figure 2.6 depicts a planar graph
together with its SPQR-tree and the resulting embedding trees.

For every planar embedding of G, the circular order of edges around every vertex v is
represented by the embedding tree T (v), and for every order represented by T (v) we can
find a planar embedding realizing this order. However, we cannot choose orders for the
embedding trees independently. Consider for example the case that the order of edges
around v1 in Figure 2.6 is already chosen. Since the embedding tree T (v1) contains nodes
stemming from the P-nodes µ1 and µ3 and the Q-node µ2 in the SPQR-tree, the embedding
of the skeletons in these nodes is already fixed. Since every other embedding tree except
for T (v5) contains nodes stemming from one of these three nodes the order of the incident
edges around v2, v3 and v4 is at least partially determined. In general, every P-node µ
contains two vertices v1 and v2 in its skeleton, thus there are two embedding trees T (v1)
and T (v2) containing the P-nodes µ1 and µ2 stemming from µ. The order of virtual edges
in skel(µ) around v1 is the opposite of the order of virtual edges around v2 for a fixed
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Figure 2.6: The top row shows an example graph G together with its (unrooted) SPQR-
tree. The bottom row shows the embedding trees of the five vertices, where
the inner nodes are named according to the nodes in the SPQR-tree they stem
from.

embedding of skel(µ). Hence, in every planar embedding of G the edges around µ1 in
T (v1) are ordered oppositely to the order of edges around µ2 in T (v2). Similarly, all Q-
nodes in the embedding trees stemming from the same R-node in the SPQR-tree need to
be oriented the same, if we choose the orders induced by one of the two embeddings of
the skeleton as reference orders of the Q-nodes. On the other hand, if every two P-nodes
stemming from the same P-node are ordered oppositely and all Q-nodes stemming from
the same R-node are oriented the same, we can simply use these orders and orientations
to obtain embeddings for the skeleton of every node in the SPQR-tree, yielding a planar
embedding of G. Hence, all planar embeddings of G can be expressed in terms of the PQ-
trees T (v1), . . . , T (vn), if we respect the additional constraints between nodes stemming
from the same node in the SPQR-tree.
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3. Simultaneous PQ-Ordering

As described in Section 2.5, we can express all planar embeddings of a biconnected planar
graph G in terms of PQ-trees T (v1), . . . , T (vn), called the embedding trees, describing the
orders of incident edges around every vertex, if we respect some additional constraints
between the nodes in the embedding trees stemming from the same node in the SPQR-
tree. In this section, we show how to get completely rid of the SPQR-tree by providing a
way to express these additional constraints also in terms of PQ-trees.

The problem Simultaneous PQ-Ordering is defined as follows. Let D = (N,A) be a
DAG with nodes N = {T1, . . . , Tk}, where Ti is a PQ-tree representing the set of orders
Li on its leaves Li. Every arc a ∈ A consist of a source Ti, a target Tj and an injective
map ϕ : Lj → Li, and it is denoted by (Ti, Tj ;ϕ). Simultaneous PQ-Ordering asks
whether there are orders O1, . . . , Ok with Oi ∈ Li such that an arc (Ti, Tj ;ϕ) ∈ A implies
that ϕ(Oj) is a suborder of Oi. Normally, we want every arc to represent a projection
followed by a sequence of reductions, which is not ensured by this definition. Hence, we
say that an instance D = (N,A) of Simultaneous PQ-Ordering is normalized, if an
arc (Ti, Tj ;ϕ) ∈ A implies that Li contains an order Oi extending ϕ(Oj) for every order
Oj ∈ Lj . It is easy to see that every instance of Simultaneous PQ-Ordering can be
normalized. If there is an order Oj ∈ Lj such that Li does not contain an extension of
ϕ(Oj), then Oj cannot be contained in any solution. Hence, we do not loose solutions
by applying the reductions, given by Ti, to Tj . Applying these reductions for every arc
in A top down yields an equivalent normalized instance. From now on, all instances of
Simultaneous PQ-Ordering we consider are assumed to be normalized. In most cases
it is not important to consider the map ϕ explicitly, hence we often simply write (Ti, Tj)
instead of (Ti, Tj ;ϕ) and say that Oi is an extension of Oj instead of ϕ(Oj).

Note that we cannot measure the size of an instance D of Simultaneous PQ-Ordering
by the number of vertices plus the number of arcs, as it is usual for simple graphs, since
the nodes and arcs in D are not of constant size in our setting. The size of every node in
D consisting of a PQ-tree T is linear in the number of nodes in T or even linear in the
number of leaves by Lemma 1. For every arc (Ti, Tj ;ϕ) ∈ A we need to store the injective
map ϕ from the leaves of Tj to the leaves of Ti. Thus, the size of this arc is linear in the
number of leaves in Tj . Finally, the size of D, denoted by |D|, can be measured by the
size of all nodes plus the sizes of all arcs.

To come back to the embedding trees introduced in Section 2.5, we can now create a
PQ-tree consisting of a single Q-node as child of all embedding trees containing a Q-node

21



22 3. Simultaneous PQ-Ordering

stemming from the same R-node in the SPQR-tree. With the right injective maps this
additional PQ-tree ensures, that all these Q-nodes are oriented the same. Similarly, we
can ensure that two P-nodes are ordered the same, but what we really want is that two
P-nodes are ordered oppositely. Therefor we would need something like reversing arcs not
ensuring that an order is enforced to be the extension of the order provided by the child,
but requiring that it is an extension of the reversal of this order. To improve readability we
do not consider reversing arcs for now. We will come back to this in Section 3.5 showing
what changes if we allow reversing arcs.

Since Simultaneous PQ-Ordering is NP -hard, which will be shown in Section 3.1,
we will not solve it in general, but we will give a class of instances for that we can solve
it efficiently. In Section 3.2 we figure out the main problems in general instances and
provide an approach to solve Simultaneous PQ-Ordering for “simple” instances. In
Section 3.3 we make precise which instances we can solve and show how to solve them. In
Section 3.4 we give a detailed runtime analysis and in Section 3.5 we show that the results
on Simultaneous PQ-Ordering can be extended to the case where we allow “reversing
arcs”, that is, arcs ensuring that the order of the source is an extension of the reversed
order of the target.

3.1 N P-Completeness of Simultaneous PQ-Ordering

Let L = {`1, . . . , `n} be a set of elements and let ∆ = {(`11, `12, `13), . . . , (`d1, `d2, `d3)} be
a set of triples such that each triple (`i1, `i2, `i3) specifies a circular order for these three
elements. The problem Cyclic Ordering is to decide whether there is a circular order
of all elements in L respecting the circular order specified for every triple in ∆. Galil and
Megiddo proved that Cyclic Ordering is NP-complete [GM77].

Theorem 1. Simultaneous PQ-Ordering is NP-complete.

Proof. It is clear that Simultaneous PQ-Ordering is in NP since it can be tested
in polynomial time, if the conditions provided by the arcs are satisfied by given circular
orders. We show NP-hardness by reducing Cyclic Ordering to Simultaneous PQ-
Ordering. Let (L,∆) be an instance of Cyclic Ordering. We define the corresponding
instance D(L,∆) of Simultaneous PQ-Ordering as follows. We create one PQ-tree T
consisting of a single P-node with leaves L. For every triple (`i1, `i2, `i3) we create a PQ-tree
T (`i1, `i2, `i3) consisting of a single node (it does not matter if P- or Q-node) with leaves
{`i1, `i2, `i3} with an incoming arc (T, T (`i1, `i2, `i3); id), where id is the identity map. With
this construction it is still possible to choose an arbitrary order for each of the triples. To
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Figure 3.1: The instance D(L,∆) of Simultaneous PQ-Ordering corresponding to
the instance (L,∆) of Cyclic Ordering with L = {`1, . . . , `n} and ∆ =
{(`11, `12, `13), . . . , (`d1, `d2, `d3)}.

22



3.2. Critical Triples and the Expansion Graph 23

ensure that they are all ordered the same, we introduce an additional PQ-tree T× consisting
of a single node with three leaves 1, 2 and 3 and an incoming arc (T (`i1, `i2, `i3), T×;ϕ) with
ϕ(j) = `ij for every triple (`i1, `i2, `i3). Figure 3.1 illustrates this construction. It is clear
that the size of D(L,∆) is linear in the size of (L,∆). It remains to show that the instance
(L,∆) of Cyclic Ordering and the instance D(L,∆) of Simultaneous PQ-Ordering
are equivalent.

Assume we have a solution of (L,∆), that is, we have a circular order O of L such that
every triple (`i1, `i2, `i3) ∈ ∆ has the circular order `i1`

i
2`
i
3. The PQ-tree T in D(L,∆) has the

leaves L, thus we can choose O as the order of the leaves of T . For every triple (`i1, `i2, `i3)
there is an incoming arc from T to T (`i1, `i2, `i3) inducing the circular order `i1`

i
2`
i
3 on its

leaves. Furthermore, there is an outgoing arc to T× inducing the order 123. Since all
of these arcs having T× as target induce the same circular order 123, these orders are a
solution of the instance D(L,∆) of Simultaneous PQ-Ordering.

Conversely, assume we have a solution for D(L,∆). If the order of leaves in T× is 132,
we obtain another solution by reversing all orders. Thus, we can assume without loss
of generality that the leaves of T× have the order 123. Hence, the leaves of the tree
T (`i1, `i2, `i3) are ordered `i1`

i
2`
i
3 for every triple (`i1, `i2, `i3) implying that the order on the

leaves L of T , which is an extension of all these orders, is a solution of the instance (L,∆)
of Cyclic Ordering.

3.2 Critical Triples and the Expansion Graph

Although Simultaneous PQ-Ordering isNP-complete we give in this section a strategy
how to solve it for special instances. Afterwards, in Section 3.3, we show that this strategy
really leads to a polynomial time algorithm for a class of instances. Let D = (N,A) be an
instance of Simultaneous PQ-Ordering and let (T, T1) ∈ A be an arc. By choosing an
order O1 ∈ L1 and extending O1 to an order O ∈ L, we ensure that the constraint given by
the arc (T, T1) is satisfied. Hence, our strategy will be to choose orders bottom up, which
can always be done for a single arc since our instances are normalized. Unfortunately, T
can have several children T1, . . . , T`, and orders Oi ∈ Li represented by Ti for i = 1, . . . , `
cannot always be simultaneously extended to an order O ∈ L represented by T . We derive
necessary and sufficient conditions for the orders Oi to be simultaneously extendable to an
order O ∈ L under the additional assumption that every P-node in T is fixed with respect
to at most two children. We consider the Q- and P-nodes in T separately.

Let µ be a Q-node in T . If µ is fixed with respect to Ti, there is a unique Q-node
rep(µ) in Ti determining its orientation. By introducing a boolean variable xη for every
Q-node η, which is true if η is oriented the same as a fixed reference orientation and
false otherwise, we can express the condition that µ is oriented as determined by its
representative by xµ = xrep(µ) or xµ 6= xrep(µ). For every Q-node in T that is fixed
with respect to a child Ti we obtain such an (in)equality and we call the resulting set of
(in)equalities the Q-constraints. It is obvious that the Q-constraints are necessary. On the
other hand, if the Q-constraints are satisfied, all children of T fixing the orientation of µ
fix it in the same way. Note that the Q-constraints form an instance of 2-Sat that has
linear size in the number of Q-nodes, which can be solved in polynomial [Kro67] and even
linear [EIS76, APT79] time. Hence, we only need to deal with the P-nodes, which is not
as simple.

Let µ be a P-node in T . If µ is fixed with respect to only one child Ti, we can simply choose
the order given by Oi. If µ is additionally fixed with respect to Tj , it is of course necessary
that the orders Oi and Oj induce the same order for the edges incident to µ that are fixed
with respect to both, Ti and Tj . We call such a triple (µ, Ti, Tj), where µ is a P-node in T
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Figure 3.2: (a) We can find an order for the P-node µ extending the orders O1 and O2 if
and only if the commonly fixed edges a, b and g are ordered the same.
(b) Although for every pair {Oi, Oj} of orders out of the three orders O1, O2
and O3 the commonly fixed edges are ordered the same, we cannot extend all
three orders simultaneously.

fixed with respect to the children Ti and Tj a critical triple. We say that the critical triple
(µ, Ti, Tj) is satisfied if the orders Oi and Oj induce the same order for the edges incident
to µ commonly fixed with respect to Ti and Tj . If we allow multiple arcs, we can also
have a critical triple (µ, T ′, T ′) for two parallel arcs (T, T ′;ϕ1) and (T, T ′;ϕ2). Clearly,
all critical triples need to be satisfied by the orders chosen for the children to be able to
extend them simultaneously. Note that this condition is not sufficient, if µ is contained
in more than one critical triple, which is one of the main difficulties of Simultaneous
PQ-Ordering for general instances. However, the following lemma shows that satisfying
all critical triples is not only necessary but also sufficient, if every P-node is contained in
at most one critical triple, that is, it is fixed with respect to at most two children of T . See
Figure 3.2 for two simple examples, illustrating that satisfying critical triples is sufficient
if every P-node is contained in at most one critical triple, whereas the general case is not
as simple.

Lemma 4. Let T be a PQ-tree with children T1, . . . , T`, such that every P-node in T
is contained in at most one critical triple, and let O1, . . . , O` be orders represented by
T1, . . . , T`. An order O that is represented by T and simultaneously extends the orders
O1, . . . , O` exists if and only if the Q-constraints and all critical triples are satisfied.

Proof. The only if part is clear, since an order O represented by T extending the orders
O1, . . . , O` yields an assignment of true and false to the variables xη satisfying the Q-
constraints. Additionally, for every critical triple (µ, Ti, Tj) the common fixed edges are
ordered the same in O as in Oi and in Oj and hence (µ, Ti, Tj) is satisfied.

Now, assume that we have orders O1, . . . , O` satisfying the Q-constraints and every critical
triple. We show how to construct an order O represented by T , extending all orders
O1, . . . , O` simultaneously. The variable assignments for the variables stemming from Q-
nodes in each of the children T1, . . . , T` imply an assignment of every variable stemming
from a fixed Q-node in T , and hence an orientation of this Q-node. Since the Q-constraints
are satisfied, all children fixing a Q-node in T imply the same orientation. The orientation
of free Q-nodes can be chosen arbitrarily. For a P-node µ in T that is fixed with respect
to at most one child of T , we can simply choose the order of fixed edges incident to µ
as determined by the child and add the free edges arbitrarily. Otherwise, µ is contained
in exactly one critical triple (µ, Ti, Tj). We first choose the order of edges incident to µ
that are fixed with respect to Ti as determined by Oi. From the point of view of Tj , some
of the fixed edges incident to µ are already ordered, but this order is consistent with the
order induced by Oj , since (µ, Ti, Tj) is satisfied. Additionally, some edges that are free
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Figure 3.3: The P-node µ in the PQ-tree T is fixed with respect to the children T1 and
T2. We first project T1 and T2 to representatives of the common fixed edges
incident to µ and intersect the result to obtain T (µ, T1, T2). Note that the gray
shaded projections only illustrate an intermediate step, they are not inserted.

with respect to Tj are already ordered. Of course, the remaining edges incident to µ that
are fixed with respect to Tj can be added as determined by Oj , and the free edges can be
added arbitrarily.

Since testing whether the Q-constraints are satisfiable is easy, we concentrate on satisfying
the critical triples. Let µ be a P-node in a PQ-tree T such that µ is fixed with respect
to two children T1 and T2, that is, (µ, T1, T2) is a critical triple. By projecting T1 and
T2 to representatives of the common fixed edges incident to µ and intersecting the result,
we obtain a new PQ-tree T (µ, T1, T2). There are natural injective maps from the leaves
of T (µ, T1, T2) to the leaves of T1 and T2, hence we can add T (µ, T1, T2) together with
incoming arcs from T1 and T2 to our instance D of Simultaneous PQ-Ordering. This
procedure of creating T (µ, T1, T2) is called expansion step with respect to the critical
triple (µ, T1, T2), and the resulting new PQ-tree T (µ, T1, T2) is called the expansion tree
with respect to that triple; see Figure 3.3 for an example of the expansion step. We say
that the P-node µ in T is responsible for the expansion tree T (µ, T1, T2). Note that every
expansion tree has two incoming and no outgoing arcs at the time it is created.

We introduce the expansion tree for the following reason. If we find orders O1 and O2
represented by T1 and T2 that both extend the same order represented by the expansion
tree T (µ, T1, T2), we ensure that the edges incident to µ fixed with respect to both, T1
and T2, are ordered the same in O1 and O2, or in other words, we ensure that O1 and
O2 satisfy the critical triple (µ, T1, T2). By Lemma 4, we know that satisfying the critical
triple is necessary, thus we do not loose solutions by adding expansion trees to an instance
of Simultaneous PQ-Ordering. Furthermore, it is also sufficient, if every P-node is
contained in at most one critical triple (if we forget about the Q-nodes for a moment).
Hence, given an instance D of Simultaneous PQ-Ordering, we would like to expand
D iteratively until no unprocessed critical triples are left and find simultaneous orders
bottom up. Unfortunately, it can happen that the expansion does not terminate and
thus yields an infinite graph; see Figure 3.4 for an example. Thus, we need to define a
special case where we do not expand further. Let µ be a P-node of T with outgoing arcs
(T, T1;ϕ1) and (T, T2;ϕ2) such that (µ, T1, T2) is a critical triple. Denote the leaves of T1
and T2 by L1 and L2, respectively. If Ti (for i = 1, 2) consists only of a single P-node,
the image of ϕi is a set of representatives of the edges incident to µ that are fixed with
respect to Ti. Hence ϕi is a bijection between Li and the fixed edges incident to µ. If

25



26 3. Simultaneous PQ-Ordering

=̂ degree-3 P-node

Figure 3.4: Consider the instance of Simultaneous PQ-Ordering on the left, where
every PQ-tree consists of a single P-node with degree 3. The DAG in the
center shows the result after expanding three times. The so far processed
part is shaded gray and for the remaining part we are in the same situation
as before, hence iterated expansion would yield an infinite DAG. To prevent
infinite expansion we apply finalizing steps resulting in the DAG on the right.

additionally the fixed edges with respect to both, T1 and T2, are the same, we obtain a
bijection ϕ : L1 → L2. Assume without loss of generality that there is no directed path
from T2 to T1 in the current DAG. If there is neither a directed path from T1 to T2 nor
form T2 to T1, we achieve uniqueness by assuming that T1 comes before T2 with respect
to some fixed order of the nodes in D. Instead of an expansion step we apply a finalizing
step by simply creating the arc (T1, T2;ϕ). This new arc ensures that the critical triple
(µ, T1, T2) is satisfied if we have orders for the leaves L1 and L2 respecting (T1, T2;ϕ).
Since no new node is inserted, we do not run into the situation where we create the same
PQ-tree over and over again.

For the case that (µ, T ′, T ′) is a critical triple resulting from two parallel arcs (T, T ′;ϕ1)
and (T, T ′;ϕ2), we can apply the expansion step as described above. If the conditions for
a finalizing step are given, that is T ′ consists of a single P-node and both maps ϕ1 and
ϕ2 fix the same edges incident to µ, a finalizing step would introduce a self loop with the
permutation ϕ associated with it. We distinguish between the two cases that T ′ is an
expansion tree and that it was already contained in D. If it is an expansion tree, we do
nothing and mark the critical triple as processed. Otherwise, we apply an expansion step
having the effect that the resulting expansion tree again satisfies the conditions to apply
a finalizing step and additionally is an expansion tree. Note that doing nothing instead
of the finalizing step has the effect that the critical triple (µ, T ′, T ′) is not automatically
satisfied by choosing orders bottom up. We say that the two arcs (T, T ′;ϕ1) and (T, T ′;ϕ2)
form a critical double arc with the permutation ϕ belonging to it. Since we want to apply
Lemma 4 by choosing orders bottom up, it is a problem that the critical triple belonging to
a critical double arc is in general not satisfied. Fortunately, we can show for the instances
we want to solve that the target T ′ of a critical double arc is a sink and no further expansion
or finalizing steps can change that. Hence, we are free to choose any order for the leaves
of T ′ and we will use Lemma 2 (about order preserving permutations) to choose it in a
way satisfying the critical triple or decide that this is impossible.

To sum up, we start with an instance D of Simultaneous PQ-Ordering. As long as
D contains unprocessed critical triples (µ, T1, T2) we apply expansion steps (or finalizing
steps if T1 and T2 are essentially the same) and mark (µ, T1, T2) as processed. The resulting
graph is called the expansion graph of D and is denoted by Dexp. Note that Dexp is also
an instance of Simultaneous PQ-Ordering. Before showing in Lemma 7 that D and
Dexp are equivalent, we need to show that Dexp is well defined, that is, it is unique and
finite. Lemma 5 essentially states that the P-nodes become smaller at least every second
expansion step. We will use this result in Lemma 6 to show finiteness.

Lemma 5. Let D be an instance of Simultaneous PQ-Ordering and let Dexp be its
expansion graph. Let further T be a PQ-tree in Dexp containing a P-node µ. If µ is
responsible for an expansion tree T ′ containing a P-node µ′ with deg(µ′) = deg(µ), then µ′
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itself is not responsible for an expansion tree T ′′ containing a P-node µ′′ with deg(µ′′) =
deg(µ′) = deg(µ).

Proof. Since T ′ is created by first projecting a child of T to representatives of edges incident
to µ, it can contain at most deg(µ) leaves. Thus, if T ′ contains a P-node µ′ with deg(µ′) =
deg(µ), it contains no other inner node. Now assume that µ′ is responsible for another
expansion tree T ′′ containing a P-node µ′′ with deg(µ′′) = deg(µ′) = deg(µ) and let
(µ′, T1, T2) be the corresponding critical triple. Again T ′′ consists only of the single P-
node µ′′. Since T1 and T2 lie on a directed path from T ′ to T ′′ they also need to consist
of single P-nodes with deg(µ′) incident edges. Thus, T1 and T2 consist both of a single
P-node having the same degree and they fix the same, namely all, edges incident to µ′.
Hence we would have applied a finalizing step instead of creating the expansion tree T ′′;
a contradiction.

Lemma 6. The expansion graph Dexp of an instance D = (N,A) of Simultaneous PQ-
Ordering is unique and finite.

Proof. If we apply an expansion or a finalizing step due to a critical triple (µ, T1, T2),
where µ is a P-node of the PQ-tree T , the result does only depend on the trees T , T1 and
T2 and the arcs (T, T1) and (T, T2). By applying other expansion or finalizing steps, we of
course do not change these trees or arcs, thus it does not matter in which order we expand
and finalize a given DAG D. Hence, Dexp is unique and we can talk about the expansion
graph Dexp of an instance D of Simultaneous PQ-Ordering.

To prove that Dexp is finite, we show that level(Dexp) ≤ level(D) + 4 · (pmax + 1), where
pmax is the degree of the largest P-node in D. To simplify the notation denote pmax + 1
by p+

max. Recall that the level of a node in D was defined as the the shortest directed
path from a sink to this node and level(D) is the largest level occurring in D. Note
that all sources in Dexp are already contained in D, since every expansion tree has two
incoming arcs. Showing that the level of Dexp is finite is sufficient since there are only
finitely many sources in Dexp and no node has infinite degree. Assume we have a PQ-
tree T1 in Dexp with level(T1) > level(D) + 4 · p+

max. Then T1 is of course an expansion
tree and there is a unique P-node µ2 that is responsible for T1. Denote the PQ-tree
containing µ2 by T2. Since there is a directed path of length 2 from T2 to T1, we have
level(T2) ≥ level(T1) − 2 > level(D) + 4 · p+

max − 2. Due to its level, T2 itself needs to be
an expansion tree and we can continue, obtaining a sequence T1, . . . , T2·p+

max
of expansion

trees containing P-nodes µi, such that µi is responsible for Ti−1. Due to Lemma 5 the
degree of µi is larger than the degree of µi−2, hence deg(µ2·p+

max
) ≥ p+

max > pmax, which is
a contradiction to the assumption that the largest P-node in D has degree pmax.

Now that we know that the expansion graph Dexp of a given instance D of Simultaneous
PQ-Ordering is well defined, we can show what we already mentioned above, namely
that D and Dexp are equivalent.

Lemma 7. An instance D of Simultaneous PQ-Ordering admits simultaneous PQ-
orders if and only if its expansion graph Dexp does.

Proof. It is clear that D is a subgraph of Dexp. Hence, if we have simultaneous orders
for the expansion graph Dexp, we of course also have simultaneous orders for the original
instance D.

It remains to show that we do not loose solutions by applying expansion or finalizing
steps. Therefore, assume we have simultaneous orders for the original instance D. Since
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every expansion tree is a descendant of a PQ-tree in D, for which the order is already
fixed, there is no choice left for the expansion trees. Thus, we only need to show that for
every expansion tree all parents induce the same order on its leaves and that this order is
represented by the expansion tree. We first show this for the expansion graph without the
arcs inserted due to finalizing steps. Afterwards, we show that adding these arcs preserves
valid solutions.

Consider an expansion tree T (µ, T1, T2) introduced due to the critical triple (µ, T1, T2)
such that T1, T2 and the tree T containing µ are not expansion trees. By construction
T (µ, T1, T2) represents the edges incident to µ fixed with respect to T1 and T2. Since
the orders chosen for T1, T2 and T are valid simultaneous orders, T1 and T2 induce the
same order for the leaves of T (µ, T1, T2). Since T (µ, T1, T2) has no other incoming arcs,
we do not need to consider other parents. The induced order is of course represented
by the projection of T1 and T2 to the commonly fixed edges incident to µ, and hence it
is of course also represented by their intersection T (µ, T1, T2). For the case that T , T1
or T2 are expansion trees, we can assume by induction that the orders chosen for T , T1
and T2 are valid simultaneous orders, yielding the same result that T1 and T2 induce the
same order represented by T (µ, T1, T2). It remains to show, that the arcs introduced by
a finalizing step respect the chosen orders. Let T (µ, T1, T2) a critical triple such that T1
and T2 consist of single P-nodes both fixing the same edges in µ. It is clear that the order
chosen for µ induces the same order for T1 and T2 with respect to the canonical bijection ϕ
between the leaves of T1 and T2. Hence, adding an arc (T1, T2;ϕ) preserves simultaneous
PQ-orders.

For now, we know that we can consider the expansion graph instead of the original in-
stance to solve Simultaneous PQ-Ordering. Lemma 4 motivates that we can solve the
instance given by the expansion graph by simply choosing orders bottom up, if additionally
the Q-constraints are satisfiable. However, this only works for “simple” instances since sat-
isfying critical triples is no longer sufficient for a P-node that is fixed with respect to more
than two children. And there is another problem, namely that the expansion graph can
become exponentially large. In the following section we will define precisely what “simple”
means and additionally address the second problem by showing that the expansion graph
has polynomial size for these instances.

3.3 1-Critical Instances

The expansion graph was introduced to satisfy the critical triples simply by choosing orders
bottom up, which can then be used to apply Lemma 4, if the additional condition that
every P-node is contained in at most one critical triple is satisfied. Let D be an instance
of Simultaneous PQ-Ordering and let Dexp be its expansion graph. We say that D is
a 1-critical instance, if in its expansion graph Dexp every P-node is contained in at most
one critical triple. We will first prove a lemma helping us, to deal with critical double arcs.
Afterwards, we show how to solve 1-critical instances efficiently.

Lemma 8. Let D be a 1-critical instance of Simultaneous PQ-Ordering with expan-
sion graph Dexp. Let further (T, T ′;ϕ1) and (T, T ′;ϕ2) be a critical double arc. Then T ′

is a sink in Dexp.

Proof. Since T ′ consists only of a single P-node, there is exactly one P-node µ in T that
is fixed with respect to T ′. Due to the double arc, µ is contained in the critical triple
(µ, T ′, T ′). The tree T ′ is an expansion tree by construction, hence at the time T ′ is
created it has only the two incoming arcs (T, T ′;ϕ1) and (T, T ′;ϕ2) and no outgoing arc.
Assume that we can introduce an outgoing arc to T ′ by applying an expansion or finalizing
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step. Then T ′ needs to be contained in another critical triple than (µ, T ′, T ′) and since T
is its only parent and µ is the only P-node in T fixed with respect to T ′, this critical triple
must also contain µ. But then µ is contained in more than one critical triple, which is a
contradiction to the assumption that D is 1-critical.

Lemma 9. Let D be a 1-critical instance of Simultaneous PQ-Ordering with expan-
sion graph Dexp. In time polynomial in |Dexp| we can compute simultaneous PQ-orders or
decide that no such orders exist.

Proof. Due to Lemma 7, we can solve the instance Dexp of Simultaneous PQ-ordering
instead of D itself. Of course we cannot find simultaneous PQ-orders for the PQ-trees in
Dexp if any of these PQ-trees is the null tree. Additionally, Lemma 4 states that the Q-
constraints are necessary. We can check in linear time whether there exists an assignment
of true and false to the variables xµ, where µ is a Q-node, satisfying the Q-constraints
by solving a linear size instance of 2-Sat [EIS76, APT79]. Hence, if Dexp contains the null
tree or the Q-constraints are not satisfiable, we know that there are no simultaneous PQ-
orders. Additionally, we need to deal with the critical double arcs. Let (T, T ′;ϕ1) together
with (T, T ′;ϕ2) be a critical double arc. By construction, the target T ′ consists of a single
P-node fixing the same edges incident to a single P-node µ in T with respect to both edges.
Thus, ϕ1 and ϕ2 can be seen as bijections between the leaves L′ of T ′ and the fixed edges
incident to µ and hence they define a permutation ϕ on L′ with ϕ = ϕ−1

2 ◦ ϕ1. To satisfy
the critical triple (µ, T ′, T ′), we need to find an order O′ of L′ such that ϕ1(O′) = ϕ2(O′).
This equation is equivalent to ϕ1 ◦ ϕ(O′) = ϕ2 ◦ ϕ(O′), and hence also to ϕ(O′) = O′.
Thus, the critical triple (µ, T ′, T ′) is satisfied if and only if ϕ is order preserving with
respect to O′. Whether ϕ is order preserving with respect to any order can be tested in
O(|L′|) time by applying Lemma 2. Now assume we have a variable assignment satisfying
the Q-constraints, no PQ-tree is the null tree and every permutation ϕ corresponding to
a critical double arc is order preserving. We show how to find simultaneous PQ-orders for
all PQ-trees in Dexp.

Start with a sink T in Dexp. If T is the target of a critical double arc, it is a single P-
node and its corresponding permutation ϕ is order preserving by assumption and hence
we can use Lemma 2 to choose an order that is preserved by ϕ. Otherwise, orientate every
Q-node µ in T as determined by the variable xµ stemming from it. Additionally, choose
an arbitrary order for every P-node in T . Afterwards mark T as processed. We continue
with a PQ-tree T in Dexp for which all of its children T1, . . . , T` are already processed,
that is, we traverse Dexp bottom up. Since T1, . . . , T` are processed, orders O1, . . . , O` for
their leaves were already chosen. Consider a P-node µ in T contained in a critical triple
(µ, Ti, Tj). If there is the expansion tree T (µ, Ti, Tj), it guarantees that the edges incident
to µ fixed with respect to Ti and Tj are ordered the same in Oi and Oj and hence the
critical triple is satisfied. If we had to apply a finalizing step due to the critical triple
(µ, Ti, Tj), we have an arc from Ti to Tj (or in the other direction), again ensuring that Oi
and Oj induce the same order on the fixed edges incident to µ. In the special case that
(µ, Ti, Tj) corresponds to a critical double arc, we know due to Lemma 8 that Ti = Tj is
a sink. Then the critical triple is also satisfied, since we chose an order that is preserved
by the permutation ϕ corresponding to the critical double arc. Thus, all critical triples
containing P-nodes in T are satisfied. Additionally, the Q-constraints are satisfied and
since D is 1-critical every P-node µ in T is contained in at most one critical triple. Hence,
we can apply Lemma 4 to extend the orders O1, . . . , O` simultaneously to an order O
represented by T . This extension can clearly be computed in polynomial time and hence
Dexp can be traversed bottom up choosing an order for every PQ-tree in polynomial time
in the size of Dexp.
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As mentioned above, the expansion graph can be exponentially large for instances that
are not 1-critical, which can be seen as follows. Assume a P-node µ in the PQ-tree T is
fixed with respect to three children T1, T2 and T3. Then this P-node is responsible for
the three expansion trees T (µ, T1, T2), T (µ, T1, T3) and T (µ, T2, T3). So every layer can be
three times larger than the layer above, hence the expansion graph may be exponentially
large even if there are only linearly many layers. But if we can ensure that µ is fixed with
respect to at most two children of T , that is, it is contained in at most one critical triple,
it is responsible for only one expansion tree. Of course, the resulting expansion tree can
itself contain several P-nodes that can again be responsible for new expansion trees. We
first prove a technical lemma followed by a lemma stating that the size of the expansion
graph remains quadratic in the size of D for 1-critical instances.

Lemma 10. If µ is a P-node responsible for an expansion tree T containing the P-nodes
µ1, . . . , µk, the following inequality holds.

k∑
i=1

deg(µi) ≤ deg(µ) + 2k − 2

Proof. Let η1, . . . , η` be the Q-nodes contained in T and let n1 be the number of leaves
in T . Let further n and m denote the number of vertices and edges in T , respectively. We
obtain the following equation by double counting.

n1 +
k∑
i=1

deg(µi) +
∑̀
i=1

deg(ηi) = 2m (3.1)

Since T is a tree, we can replace m by n − 1 and due to the fact that every node in T is
either a leaf, a P-node or a Q-node, we can replace n further by n1 + k + `. With some
additional rearrangement we obtain the following from Equation (3.1).

k∑
i=1

deg(µi) = n1 + 2k − 2 + 2`−
∑̀
i=1

deg(ηi) (3.2)

The tree T has at most deg(µ) leaves since it is obtained by projecting some PQ-tree to
representatives of the edges incident to µ, yielding the inequality n1 ≤ deg(µ). Addition-
ally, we have the inequality 2` −

∑
deg(ηi) ≤ 0 since deg(ηi) ≥ 3. Plugging these two

inequalities into Equation (3.2) yields the claim.

Lemma 11. Let D be a 1-critical instance of Simultaneous PQ-Ordering. The size
of its expansion graph Dexp is quadratic in |D|.

Proof. We first show that the total size of all expansion trees is in O(|D|2). Afterwards,
we show that the size of all arcs that are contained in Dexp but not in D is linear in the
total size of all expansion trees in Dexp.

Every expansion tree T in Dexp has a P-node that is responsible for it. If this P-node is
itself contained in an expansion tree, we can again find another responsible P-node some
layers above. Thus, we finally find a P-node µ that was already contained in D, which is
transitively responsible for the expansion tree T . Every PQ-tree for which µ is transitively
responsible can have at most deg(µ) leaves, thus its size is linear in deg(µ) due to Lemma 1.
Furthermore, we show that µ can only be transitively responsible for O(deg(µ)) expansion
trees, and thus for expansion trees of total size O(deg(µ)2). With this estimation it is
clear that the size of all expansion trees is quadratic in the size of D. To make it more
precisely, denote the number of PQ-trees µ is transitively responsible for by resp(µ). We
show by induction over deg(µ) that resp(µ) ≤ 3 deg(µ)− 8.
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A P-node µ with deg(µ) = 3 can be responsible for at most one PQ-tree, thus resp(µ) ≤
3 deg(µ) − 8 is satisfied. If µ has deg(µ) > 3 incident edges, it is directly responsible for
at most one expansion tree T , since our instance is 1-critical. In the special case that T
consists of a single P-node µ′ with deg(µ′) = deg(µ), the PQ-tree for which µ′ is responsible
cannot again contain a P-node of degree deg(µ) due to Lemma 5. Otherwise, T contains k
P-nodes µ1, . . . , µk with deg(µi) < deg(µ). In the special case, resp(µ) = resp(µ′)+1 holds
and we show the inequality resp(µ) ≤ 3 deg(µ) − 8 for both cases by showing resp(µ) ≤
3 deg(µ)−9 for the second case. In the second case, µ is transitively responsible for T and
all the PQ-trees µ1, . . . , µk are responsible for, yielding the following equation.

resp(µ) = 1 +
k∑
i=1

resp(µi)

Plugging in the induction hypothesis resp(µi) ≤ 3 deg(µi)−8 yields the following inequality.

resp(µ) ≤ 1 + 3
k∑
i=1

deg(µi)− 8k

If k = 1, this inequality directly yields the claim resp(µ) ≤ 3 deg(µ) − 9 since deg(µ1) ≤
deg(µ) − 1. Otherwise, we can use Lemma 10 to obtain resp(µ) ≤ 3 deg(µ) − 5 − 2k.
This again yields the claim resp(µ) ≤ 3 deg(µ)− 9 since k > 1. Finally, we have that the
induction hypothesis holds for µ, and hence every P-node is transitively responsible for
O(deg(µ)) expansion trees of size O(deg(µ)).

For an arc that is contained in Dexp but not in D consider the critical triple (µ, T1, T2)
that is responsible for it. Since µ is not contained in another critical triple, it is only
responsible for the arcs (T1, T (µ, T1, T2)) and (T2, T (µ, T1, T2)) or (T1, T2) in the case of a
finalizing step. The size of these arcs is in O(deg(µ)) since the expansion tree contains at
most deg(µ) leaves and, if the finalizing step is applied, T1 and T2 are single P-nodes of
degree at most deg(µ). Hence, the size of newly created arcs in Dexp is linear in the size
of all PQ-trees in Dexp, which concludes the proof.

Putting Lemma 9 and Lemma 11 together directly yields the following theorem. For a
detailed runtime analysis see Section 3.4, showing that quadratic time is sufficient, which
is not as obvious as it seems to be.

Theorem 2. Simultaneous PQ-Ordering can be solved in polynomial time for 1-
critical instances.

Actually, Theorem 2 tells us how to solve 1-critical instances, which was the main goal of
this section. However, the characterization of the 1-critical instances is not really satisfying,
since we need to know the expansion graph, which may be exponentially large, to check
whether an instance is 1-critical or not. For our applications we can ensure that all
instances are 1-critical and hence do not need to test it algorithmically. But to prove for
an application that all instances are 1-critical, it would be much nicer to have conditions
for 1-criticality of an instance that are defined for the instance itself and not for some other
structure derived from it. In the remaining part of this section we will provide sufficient
conditions for an instance to be 1-critical that do not rely on the expansion graph.

Let D = (N,A) be an instance of Simultaneous PQ-Ordering. Let further T be a
PQ-tree with a parent T ′ and let µ be a P-node in T . Recall that there is exactly one
P-node µ′ in T ′ it stems from, that is, µ′ is fixed with respect to µ and no other P-node
in T ′ is fixed with respect to µ. Note that there may be several P-nodes in T stemming
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from µ′. Consider a P-node µ in the PQ-tree T ∈ N such that T is a source in D. We say
that the P-node µ is k-fixed if it is fixed with respect to k children of T . Alternatively, we
say that the fixedness of µ is k and denote it by fixed(µ) = k. We recursively extend this
definition to the case where T has parents T1, . . . , T` as follows. The P-node µ stems from
exactly one P-node µi in Ti, for every i = 1, . . . , `. Assume µ itself is fixed with respect
to k′ children of T . Then µ is defined to be k-fixed for k = k′ +

∑
(fixed(µi) − 1). The

motivation for this definition is that a P-node with fixedness k in D is fixed with respect
to at most k children in the expansion graph Dexp. We obtain the following theorem
providing sufficient conditions for D to be a 1-critical instance.

Theorem 3. Let D be an instance of Simultaneous PQ-Ordering, such that every
P-node in every PQ-tree in D is at most 2-fixed. Then D is 1-critical.

Proof. Let Dexp be the expansion graph of D. We need to show for every P-node µ in
Dexp that it is contained in at most one critical triple, that is, it is fixed with respect to at
most two children. We will show that separately for the cases where the tree T containing
µ is already contained in D and where T is an expansion tree.

Assume that T is already contained in D. It is clear that µ is fixed with respect to at most
two children in D, since it is at most 2-fixed, but it may happen that T has additional
children in Dexp. We will show by induction over the depth of the node T in Dexp that
µ has at most fixed(µ) children fixing it in Dexp. Recall that the depth of a node in a
DAG is defined as the length of the longest directed path from a source to this node.
For sources in D it is clear that the number of children fixing a P-node does not increase
by expanding D, which shows the base case. For the general case let T1, . . . , T` be the
parents of T and let µ1, . . . , µ` be the corresponding P-nodes µ stems from. Let further
µ be fixed with respect to k′ children of T in D. By the definition of fixedness we have
fixed(µ) = k′+

∑
(fixed(µi)−1). Note that fixed(µi) ≥ 1 for every i = 1, . . . , ` since µi is at

least fixed with respect to T and note further, that Ti has by induction at most fixed(µi)
children fixing µi. Thus, µi can be contained in at most fixed(µi) − 1 critical triples also
containing T , which means, that µi can be responsible for at most fixed(µi) − 1 children
of T in Dexp. Hence, T can have in Dexp at most k′+

∑
(fixed(µi)− 1) = fixed(µ) children

fixing µ. By the assumption that fixed(µ) ≤ 2 we obtain that µ is contained in at most
one critical triple in Dexp.

Now consider the case where T is an expansion tree with P-node µ. At the time T is
created, it has two incoming and no outgoing arcs, denote the parents by T1 and T2, and
the P-nodes µ stems from by µ1 and µ2, respectively. Again we show by induction over
the depth of T in Dexp that T has at most two children fixing µ. In the base case, T1 and
T2 are both already contained in D. As shown above, µ1 and µ2 can each be contained
in at most one critical triple, hence expansion can introduce at most two children fixing
µ. In the general case, a parent Ti for i = 1, 2 is either contained in D or an expansion
graph. In the first case it again can introduce at most one child fixing µ, in the second
case we can apply the induction hypothesis with the same result. Note that in a finalizing
step for one of the trees a new incoming arc is created instead of an outgoing arc. But
this incoming arc can itself of course be responsible for at most one outgoing arc, hence
the number of children fixing a P-node cannot become larger than two. Finally, we have
that every P-node in every PQ-tree in Dexp is fixed with respect to at most two children,
hence D is 1-critical.

Theorem 3 and Theorem 2 together provide a framework to solve problems that can be
formulated as instances of Simultaneous PQ-Ordering. We can use Theorem 3 to
prove that the instances our application produces are 1-critical, whereas Theorem 2 tells
us that we can solve these instances in polynomial time.
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3.4 Implementation Details

To solve an instance of Simultaneous PQ-Ordering, we first normalize the instance,
then compute the expansion graph and finally choose orders bottom up. As shown in
Lemma 11 the size of the expansion graph is quadratic in the size of D. All other steps
that need to be applied are simple, such as projection, intersection or the extension of an
order. All these steps run in linear time, but unfortunately linear in the size of the parent.
For example, in the normalization step the projection of a tree T to the leaves of its child
T ′ must be computed, consuming linear time in |T |. Since T can be a large PQ-tree with
many small children we need quadratic time. A similar problem arises when computing
an expansion tree due to a critical triple (µ, T1, T2). To compute T (µ, T1, T2) the trees T1
and T2 need to be projected to representatives of the commonly fixed edges incident to
µ, consuming O(|T1| + |T2|) time. Since the resulting expansion tree T (µ, T1, T2) can be
arbitrarily small, these costs cannot be expressed in terms of |T (µ, T1, T2)|. But since T1
and T2 can have linearly many expansion trees as children we potentially need quadratic
time for each PQ-tree in Dexp to compute the expansion graph, yielding an O(|D|4) time
algorithm. Another problem is the extension of orders bottom up. If a PQ-tree T has one
child T ′ with chosen order, it is easy to extend this order to T in |T | time. However, T can
have linearly many children, yielding an algorithm consuming quadratic time per PQ-tree
and thus overall again O(|D|4) time. However, if additionally the projection T |L′ of T
to the leaves L′ of T ′ is known, the order chosen for T ′ can be extended in O(|T ′|) time
to T |L′ . Furthermore, the extension of orders from several projections of T to T can be
done in time linear in the size of all projections, if some additional projection information
are stored. In this section we show how to compute the normalization in quadratic time,
which is straight forward. Afterwards, we give a more detailed estimation for the size of
the expansion graph of 1-critical instances. Then, we show that computing the expansion
graph for 1-critical instances actually runs in quadratic time. Furthermore, we show for
the normalization and the expansion that for every arc the projection of the parent to the
leaves of the child together with additional projection information can be computed and
stored without consuming additional time. This information can then be used to choose
orders bottom up in linear time in the size of the expansion graph. Altogether, this yields
a quadratic time algorithm to solve 1-critical instances of Simultaneous PQ-Ordering.

In the remaining part of this section let D = (N,A) be a 1-critical instance of Simultane-
ous PQ-Ordering with the expansion graph Dexp = (Nexp, Aexp). Let further |D|, |N |,
|A|, |Dexp|, |Nexp| and |Aexp| denote the size of D, N , A, Dexp, Nexp and Aexp, respectively.
Recall that the size of a node is linear in the size of the contained PQ-tree and the size of
an arc is linear in the size of its target, which is due to the injective map that needs to be
stored for every arc. Furthermore, let pmax be the degree of the largest P-node in D and
let #N denote the number of nodes in D.

Normalization

As mentioned above, we want to compute and store some additional information besides
computing the normalization. In detail, let (T, T ′) be an arc and let L′ be the leaves
of T ′. For every node in the projection T |L′ of T to the leaves of T ′ there is a node in T
it stems from and for every edge incident to a P-node in the projection there is an edge
incident to the corresponding P-node in T it stems from. We say that the arc (T, T ′)
has additional projection information, if T |L′ with a pointer from every node and edge
to the node and edge in T it stems from is known. Note that the arc (T, T ′) does not
become asymptotically larger due to additional projection information. In the following,
being a normalized instance of Simultaneous PQ-Ordering includes that every arc has
additional projection information. The following lemma is not really surprising.
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Lemma 12. An instance D = (N,A) of Simultaneous PQ-Ordering can be normalized
in O(#N · |N |) time.

Proof. To normalize an instance D of Simultaneous PQ-Ordering we need to project
T to the leaves of T ′ and intersect the result with T ′ for every arc (T, T ′) in D. The
projection can be done in O(|T |) time, while the intersection consumes O(|T ′|) time. Note
that the additional projection information can be simply stored directly after computing
the projection. Since T may have #N children all these projections consume O(#N · |T |)
time. Summing over all PQ-trees yields O(#N · |N |) for the normalization of D.

Size of the Expansion Graph

In Lemma 11 we already showed that the expansion graph of a 1-critical instance has
quadratic size. However, this can be done more precisely.

Lemma 13. Let D be a 1-critical instance of Simultaneous PQ-Ordering with the
expansion graph Dexp. It holds |Dexp| ∈ O(pmax · |N | + |A|), where pmax is the degree of
the largest P-node in D.

Proof. The proof of Lemma 11 shows that every P-node µ can be transitively responsible
for at most 3 deg(µ) − 8 expansion trees where each of these expansion trees has size
O(deg(µ)). Thus, µ is responsible for expansion trees of total size O(deg(µ)2). To compute
the total size of all expansion trees we need to sum over all P-nodes µ1, . . . , µ` that are
already contained in D. The following estimations show the claimed size of O(pmax · |N |).

∑̀
i=1

deg(µi)2 ≤ pmax ·
∑̀
i=1

deg(µi) ≤ pmax · |N |

As mentioned in the proof of Lemma 11 the size of all newly created arcs in Dexp is linear
in the size of all nodes in Dexp. Thus we obtain |Dexp| ∈ O(pmax · |N |+ |A|) for the whole
expansion graph.

Computing the Expansion Graph

When computing the expansion tree T (µ, T1, T2) due to the critical triple (µ, T1, T2) we
need to project T1 and T2 to the representatives of the commonly fixed edges incident
to µ. Let T denote the tree containing µ and let L1 and L2 be the leaves of T1 and T2,
respectively. First, we need to find the commonly fixed edges and a representative for each.
Assume that the projections T |L1

and T |L2
are stored as ensured by the normalization.

Then for every edge incident to µ it can be easily tested in constant time, if it is contained
in both projections, consuming O(deg(µ)) time overall. With a simple traversal of T |Li

(for i = 1, 2) representatives of these commonly fixed edges can be found in O(|Ti|) time
and the projection of Ti to these representatives can also be done in O(|Ti|) time. The
intersection of the two projections yields T (µ, T1, T2) in O(|T (µ, T1, T2)|) time, which can
be neglected. For the two newly created arcs (T1, T (µ, T1, T2)) and (T2, T (µ, T1, T2)) we
again need to ensure that the additional projection information are stored. However, this
projection was already computed and can simple be stored without additional running
time. Hence the total running time for computing the expansion tree T (µ, T1, T2) is in
O(deg(µ) + |T1| + |T2|). Thus, a superficial analysis yields quadratic running time in the
size of the expansion graph. However, we can do better, as shown in the following lemma.

Lemma 14. The expansion graph Dexp of an 1-critical instance D = (N,A) of Simulta-
neous PQ-Ordering can be computed in O(|N |2) time.
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Figure 3.5: Nodes in the original graph are shaded dark gray and expansion trees white.
Light gray is used where it does not matter. (a) The case where T1 is contained
in the original graph. (b) The case where T1 is an expansion graph but T
containing µ is not. (c) The case where neither T1 nor T are expansion graphs.

Proof. As mentioned above, computing the expansion tree T (µ, T1, T2) consumesO(deg(µ)+
|T1|+ |T2|) time. We consider this time as cost and show how to assign it to different parts
of D defining them to be responsible for this cost. The cost O(deg(µ)) can be simply
assigned to µ. Since every P-node µ is contained in at most one critical triple this can
happen at most once, yielding linear cost in total. Assume without loss of generality that
|T1| ≥ |T2|. In this case we only need to assign the cost O(|T1|). To do that, we consider
three cases.

If T1 ∈ N , that is, T1 is not an expansion tree, then we assign the cost O(|T1|) to T1.
This can happen at most as many times as T1 occurs in a critical triple. In each of these
critical triples there necessarily is a P-node that is contained in a PQ-tree in a parent of T1.
There can be O(|N |) of these P-nodes and since every P-node is contained in at most one
critical triple the total cost assigned to T1 is in O(|N | · |T1|). Note that no expansion tree
is responsible for any cost, thus by summing over all PQ-trees in D we obtain that the
total cost is in O(|N |2). Figure 3.5a illustrates this case.

If T1 6∈ N but µ ∈ T ∈ N , that is, T1 is an expansion tree, but the P-node µ is contained
in the original graph D. Then T1 has exactly two parents, like every other expansion tree,
and of course one of them is the tree T containing the P-node µ. Furthermore, there is a
P-node µ1 responsible for T1; let T ′1 be the PQ-tree containing µ1. Thus T1 was created
due to a critical triple containing µ1 and T , and T ′1 containing µ1 needs to be a parent of T
as depicted in Figure 3.5b. In this case we assign the cost O(|T1|) to T ′1 or more precisely
to µ1. Since T was already contained in the original graph, we also have T ′1 ∈ N , thus
again, only PQ-trees from the original graphs are responsible for any costs. Since T1 is
obtained by projecting T and its other parent to representatives of edges incident to µ1 we
have that |T1| ∈ O(deg(µ1)). Due to the fact that µ1 is contained in at most one critical
triple it is overall responsible for O(deg(µ1)) cost and hence we obtain only linear cost by
summing over all P-nodes in all PQ-trees in D.

If T1 6∈ N and µ ∈ T 6∈ N , that is, T1 is an expansion tree and µ is contained in an
expansion tree. In other words, we are somehow “far away” from the original graph. With
the same argument as before, we can find a P-node µ′ in a PQ-tree T ′ that is responsible
for the PQ-tree T containing µ and this PQ-tree needs to be a parent of the PQ-tree T ′1;
see Figure 3.5c. If T ′ again is an expansion tree, we can find a P-node responsible for it and
so on, until we reach a P-node µ′′ in the PQ-tree T ′′ that is transitively responsible for T
and T ′, such that T ′′ is already contained in the graph D. Then we assign the cost O(|T1|)
to T ′′ or more precisely to µ′′. Since T1 is a child of T its size needs to be linear in |T |.
Furthermore, since µ′′ is transitively responsible for T , we have |T | ∈ O(deg(µ′′)). Thus
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36 3. Simultaneous PQ-Ordering

we assign cost linear to deg(µ′′) to µ′′. As shown for Lemma 11 µ′′ can be transitively
responsible for at most 3 deg(µ′′) − 8 expansion trees, thus it is overall responsible for
O(deg(µ′′)2) cost. Note that again only PQ-trees in D are responsible for any costs. Thus
by summing over all P-nodes in all PQ-trees we obtain O(pmax · |N |).

To sum up, the costs from the first case are dominating, hence we obtain a running time
of O(|N |2) for computing the expansion graph Dexp of a 1-critical instance D = (N,A) of
Simultaneous PQ-Ordering.

Extending Orders

As shown in Lemma 9 Simultaneous PQ-Ordering can be solved for 1-critical instances
in time polynomial in the size of the expansion graph. There are three things to do, first
the Q-constraints need to be satisfied, which can be checked in linear time, second the
critical double arcs need to be satisfied, which again can be done in linear time if possible,
and finally orders for the edges around P-nodes need to be chosen bottom up. This is not
obviously possible in linear time. However, the additional projection information that is
stored for every arc makes it possible, which is shown in the following lemma.

Lemma 15. Let D be a 1-critical instance of Simultaneous PQ-Ordering with ex-
pansion graph Dexp. In O(|Dexp|) time we can compute simultaneous PQ-orders or decide
that no such orders exist.

Proof. The major work for this lemma was already done in the proof of Lemma 9. It
remains to show how orders for the P-nodes can be chosen bottom up in the expansion
graph in linear time.

Consider a PQ-tree T in the expansion graph Dexp having the PQ-trees T1, . . . , T` as
children. Assume further that orders O1, . . . , O` are already chosen for the children. The
obvious approach to extend these orders simultaneously to an order represented by T
would take O(` · |T |) time, yielding a worst case quadratic running time per PQ-tree in the
expansion tree. However, it can also be done in O(|T |+ |T1|+ · · ·+ |T`|) time, which can be
seen as follows. Let Ti be one of the children of T and let T ′i be the projection of T to the
leaves of Ti, which was stored for the arc (T, Ti) while normalizing and expanding. Since
T ′i has as many leaves as Ti, we can apply the order Oi to T ′i in O(|Ti|) time, inducing
an order of incident edges around every P-node of T ′i . Now let µi be a P-node of T ′i and
let µ be the P-node in T it stems from. Recall that we can find µ in constant time and
furthermore for an edge incident to µi we can find the edge incident to µ it stems from
in constant time. Thus, we can simply take the order of incident edges around µi and
replace each edge by the edge incident to µ it stems from. This order is then stored for µ.
Note that µ may store up to two orders in this way since it is fixed with respect to at
most two children. It is clear that this can be done in O(deg(µi)) time, thus processing
all nodes in Ti takes O(|Ti|) time. Now assume we have processed all children of T . Then
for the free P-nodes in T there is nothing stored, for a P-node µ fixed with respect to
one child there is one order given for a subset of edges incident to µ and for the P-nodes
fixed with respect to two children there are two such orders. In the first case, we can
simply choose an arbitrary order for the edges incident to µ, taking O(deg(µ)) time. In
the second case, the free edges are added in an arbitrary way to the already ordered edges,
which can again be done in O(deg(µ)) time. If we have two orders, these orders need to
be merged, which can clearly be done in linear time. Afterwards the free edges can be
added in an arbitrary way. This again consumes O(deg(µ)) time. Hence, we need for
each node in T linear time in its degree and hence O(|T |) for the whole tree. Altogether
we obtain the claimed O(|T | + |T1| + · · · + |T`|) running time for extending the orders
O1, . . . , O` to an order O represented by T . Recall, that |Ti| is linear in the size of the arc
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(T, Ti). Thus, extending orders bottom up in the expansion graph Dexp = (Nexp, Aexp)
takes O(|Nexp|+ |Aexp|) = O(|Dexp|) time.

Overall Running Time

For applications producing instances of Simultaneous PQ-Ordering it may be possible
that reconsidering the runtime analysis containing normalization, size and computation
time of the expansion graph and order extension yields a better running time then O(|N |2).
However, for the general case we obtain the following theorem by putting Lemma 12,
Lemma 13, Lemma 14 and Lemma 15 together. Note that the running time is dominated
by the computation of the expansion graph.

Theorem 4. Simultaneous PQ-Ordering can be solved in O(|N |2) time for a 1-critical
instance D = (N,A).

3.5 Simultaneous PQ-Ordering with Reversing Arcs

As mentioned in Section 2.5 we can express all embeddings of a biconnected planar graph
in terms of PQ-trees by considering the embedding tree T (v) describing all possible orders
of incident edges around v, if we additionally ensure that Q-nodes stemming from the same
R-node in the SPQR-tree T are oriented the same and pairs of P-nodes stemming from
the same P-node in T are ordered oppositely. Forcing edges to be ordered the same can be
easily achieved with an instance of Simultaneous PQ-Ordering by inserting a common
child. However, we want to enforce edges around P-nodes to be ordered oppositely and not
the same. Note that this cannot be achieved by simply choosing an appropriate injective
mapping from the leaves of the child to the leaves of the parent, since it depends on the
order if such a map reverses it.

To solve this problem we introduce Simultaneous PQ-Ordering with Reversing
Arcs, which is an extension of the problem Simultaneous PQ-Ordering. Again, we
have a DAG D = (N,A) with nodes N = {T1, . . . , Tk}, such that every node Ti is a PQ-
tree and every arc consists of a source Ti, a target Tj and an injective map ϕ : Lj → Li,
where Li and Lj are the leaves of Ti and Tj , respectively. In addition to that, every arc
can be a reversing arc. Reversing arcs are denoted by (Ti,−Tj ;ϕ), whereas normal arcs
are denoted by (Ti, Tj ;ϕ) as before. Simultaneous PQ-Ordering with Reversing
Arcs asks whether there exist orders O1, . . . , Ok such that every normal arc (Ti, Tj ;ϕ) ∈ A
implies that ϕ(Oj) is a suborder of Oi, whereas every reversing arc (Ti,−Tj ;ϕ) ∈ A implies
that the reversal of ϕ(Oj) is a suborder of Oi. As for Simultaneous PQ-Ordering,
we define an instance of Simultaneous PQ-Ordering with Reversing Arcs to be
normalized, if a normal arc (Ti, Tj ;ϕ) implies that Li contains an order Oi extending ϕ(Oj)
for every order Oj ∈ Li and a reversing arc (Ti,−Tj ;ϕ) implies that Li contains an order
Oi extending the reversal of ϕ(Oj) for every order Oj ∈ Lj , where Li and Lj are the sets
of orders represented by Ti and Tj , respectively. Since Li is represented by a PQ-tree, it
is closed with respect to reversing orders. Thus, if Li contains an order extending ϕ(Oj),
it also contains an order extending the reversal order of ϕ(Oj). Hence, we can normalize
an instance of Simultaneous PQ-Ordering with Reversing Arcs in the same way
we normalize an instance of Simultaneous PQ-Ordering by ignoring that some of the
arcs are reversing.

In the following we show how to adapt the solution for Simultaneous PQ-Ordering
presented in the previous sections to solve Simultaneous PQ-Ordering with Revers-
ing Arcs. To give a rough overview, the definitions of the Q-constraints and the critical
triples can be modified in a straight-forward manner, such that Lemma 4, stating that
satisfying the Q-constraints and the critical triples is necessary and sufficient to be able
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to extend orders chosen for several PQ-trees to an order of a common parent, is still true.
By declaring some of the created arcs to be reversing, the definitions of expansion and
finalizing step can be easily adapted such that the resulting expansion trees and the newly
created arcs ensure that the responsible critical triples are satisfied. Thus, again the only
critical triples that are not automatically satisfied by choosing orders bottom up corre-
spond to critical double arcs. Lemmas 5, 6 and 7 showing that the expansion graph is
well defined and equivalent to the original instance work in exactly the same way. For the
definition of 1-critical instances there is no need to change anything. Lemma 8 stating that
critical double arcs have a sink as target works as before. In Lemma 9 we showed how to
solve 1-critical instances by testing whether the Q-constraints are satisfiable and whether
we can choose orders for the critical double arcs satisfying the corresponding critical triple.
If this was the case, we simply chose orders bottom up. Testing the Q-constraints can now
be done in the same way. For the critical double arcs we can do the same as before if
both arcs are normal or both are reversing. If one of them is normal and the other is
reversing, we need to check if the corresponding permutation is order reversing instead
of order preserving, hence we use Lemma 3 instead of Lemma 2. Afterwards, it is again
ensured that every critical triple is satisfied, hence we can choose orders bottom up as
before. Lemma 11 stating that the expansion graph has quadratic size for 1-critical in-
stances works as before, since the only change in the definition of the expansion graph is
that some arcs are reversing arcs instead of normal arcs, which of course does not change
the size of the graph. Finally, we can put Lemma 9 and Lemma 11 together yielding that
Simultaneous PQ-Ordering with Reversing Arcs can be solved in polynomial time
for 1-critical instances as stated before in Theorem 2 for Simultaneous PQ-Ordering.
Theorem 3 providing an easy criterion that an instance is 1-critical works exactly the same
as before.

Let us start with the Q-constraints in more detail. Let µ be a Q-node in T that is fixed
with respect to the child T ′ of T and let rep(µ) be its representative in T ′. To ensure that
µ is ordered as determined by rep(µ), we introduced either the constraint xµ = xrep(µ) or
xµ 6= xrep(µ). Now if the arc (T, T ′) is reversing, we simply negate this constraint, ensuring
that µ is orientated oppositely to the orientation determined by rep(µ). Let µ be a P-node
in the PQ-tree T that is fixed with respect to two children T1 and T2 of T . Then µ, T1
and T2 together form again a critical triple. If both arcs (T, T1) and (T, T2) are normal
arcs, we denote this critical triple by (µ, T1, T2) as before. If (T,−Ti) is a reversing arc,
we symbolise that by a minus sign in the critical triple, for example if we have the arcs
(T, T1) and (T,−T2), we denote the critical triple by (µ, T1,−T2). Assume we have orders
O1 and O2 represented by T1 and T2, respectively. In the case that both arcs are normal
or both are reversing, we say that the critical triple is satisfied, if the edges incident to
µ fixed with respect to T1 and T2 are ordered the same in both orders O1 and O2, which
is the same definition as before. In the case that one of the arcs is normal and the other
is reversing, we define a critical triple to be satisfied if the order O1 induces the opposite
order than O2 for the commonly fixed edges incident to µ. With these straight-forwardly
adapted definitions it is clear that the proof of Lemma 4 works exactly as before. To
improve readability we cite this lemma here.

Lemma 4. Let T be a PQ-tree with children T1, . . . , T`, such that every P-node in T
is contained in at most one critical triple, and let O1, . . . , O` be orders represented by
T1, . . . , T`. An order O that is represented by T and simultaneously extends the orders
O1, . . . , O` exists if and only if the Q-constraints and all critical triples are satisfied.

This lemma implies that we can choose orders bottom up, if we ensure that the Q-
constraints and the critical triple are satisfied, which leads us to the definition of the expan-
sion graph. If we have a critical triple (µ, (−)T1, (−)T2), in general we apply an expansion
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step as before, that is, we project T1 and T2 to representatives of the commonly fixed edges
incident to µ and intersect the result to obtain the expansion tree T (µ, (−)T1, (−)T2). Ad-
ditionally, we add arcs from T1 and T2 to the expansion tree. The only thing we need
to change is that the arc from Ti (for i = 1, 2) to T (µ, (−)T1, (−)T2) is reversing if the
arc (T,−Ti) is reversing. Consider for example the critical triple (µ,−T1, T2). Then we
have the reversing arcs (T,−T1) and (T1,−T (µ,−T1, T2)) and the normal arcs (T, T2) and
(T2, T (µ,−T1, T2)). If we choose an order for the leaves of T (µ,−T1, T2) representing the
common fixed edges incident to µ, this order is reversed when it is extended to an order
O1 represented by T1 and it remains the same by extension to an order O2 represented by
T2. Hence, the edges incident to µ fixed with respect to T1 and T2 are ordered oppositely
in O1 and O2 implying that the critical triple (µ,−T1, T2) is satisfied. In other words by
extending an order represented by T (µ,−T1, T2) to an order of T containing µ it is reversed
twice over the path containing T1 yielding the same order as an extension over the path
containing T2 not reversing it at all. The other three configurations work analogously.
The finalizing step can be handled similarly. If for a critical triple (µ, (−)T1, (−)T2) both
PQ-trees T1 and T2 consist of a single P-node fixing the same edges incident to µ, we
obtain a bijection ϕ between the leaves of T1 and the leaves of T2. As before, we create an
arc from T2 to T1 with the map ϕ. This new arc is a normal arc if both arcs (T, (−)T1)
and (T, (−)T2) are normal or if both are reversing. If one is reversing and one is normal,
the new arc (T1,−T2;ϕ) is reversing. Again this new arc ensures that the critical triple
(µ, (−)T1, (−)T2) is satisfied if we choose orders bottom up. Note that we need to consider
the special case where we have a critical triple (µ, (−)T ′, (−)T ′) due to a double arc. As
before we apply expansion steps as if the children were different, ensuring that the critical
triple is satisfied. Again a finalizing step would introduce a self loop, thus we simply prune
expansion here (if T ′ is an expansion tree, otherwise we apply one more expansion step),
introducing an unsatisfied double arc. The only difference to the unsatisfied double arcs
we had before is that the arcs may be reversing.

For an instance D of Simultaneous PQ-Ordering with Reversing Arcs, we obtain
the expansion graph Dexp by iteratively applying expansion and finalizing steps. Denote
the expansion graph that we would obtain from D if we assume that all arcs are normal
by D′exp. It is clear that the only difference between Dexp and D′exp is that some arcs in
Dexp are reversing arcs. Hence, everything we proved for the structure of the expansion
graph of an instance of Simultaneous PQ-Ordering still holds if we allow reversing arcs.
Particularly, we have that the expansion graph is well defined (Lemma 5 and Lemma 6),
that the target of every unsatisfied double arc is a sink if D is 1-critical (Lemma 8), that
|Dexp| is polynomial in |D| if D is 1-critical (Lemma 11) and that D is 1-critical if it is
at most 2-fixed (Theorem 3). Furthermore, all the implementation details provided in
Section 3.4 still work. Note that we say that an instance D is 1-critical if every P-node in
every PQ-tree in Dexp is contained in at most one critical triple, which is exactly the same
definition as before.

It remains to show, that the instances D and Dexp are still equivalent (Lemma 7) and
that we can solve Dexp by checking the Q-constraints, dealing with the unsatisfied double
arcs and finally choosing orders bottom up, if D is 1-critical (Lemma 9). In the proof
of Lemma 7 we had to show that simultaneous PQ-orders for all PQ-trees in D induce
simultaneous PQ-orders for Dexp. That can be done analogously for the case where we
allow reversing arcs. Most parts of the proof for Lemma 9 can be adapted straight forwardly
since Lemma 4 still holds if we allow reversing arcs. The only difference is that the arcs in an
unsatisfied double arc can be reversing. Consider an unsatisfied double arc (T, (−)T ′;ϕ1)
and (T, (−)T ′;ϕ2) together with the corresponding permutation ϕ on the leaves of T ′. If
both arcs are normal or both are reversing, we need to check if ϕ is order preserving and
choose an order that is preserved by ϕ, which can be done due to Lemma 2. If, however,
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one of the arcs is normal and the other is reversing, we need to check if ϕ is order reversing
and then choose an order that is reversed. This is something we have not done before, but
it can be easily done by applying Lemma 3 instead of Lemma 2. Finally, Lemma 9 also
works if we allow reversing arcs and hence we obtain the following theorem analogously to
Theorem 4

Theorem 5. Simultaneous PQ-Ordering with Reversing Arcs can be solved in
O(|N |2) time for an 1-critical instances D = (N,A).

Now that we know that 1-critical instances of Simultaneous PQ-Ordering with Re-
versing Arcs can be solved essentially in the same way as 1-critical instances of Simul-
taneous PQ-Ordering we do not longer distinguish between these two problems. Thus,
if we create 1-critical instances of Simultaneous PQ-Ordering in our applications, we
allow them to contain reversing arcs.
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4. Applications

As mentioned in Section 2.5 and again in Section 3.5 to motivate why reversing arcs
are necessary, we want to express all combinatorial embeddings of a biconnected planar
graph in terms of PQ-trees or more precisely in terms of an instance of Simultaneous
PQ-Ordering. A detailed description of this instance is given in Section 4.1. This
representation is then used to solve Partially PQ-Constrained Planarity for bi-
connected graphs (Section 4.2) and Simultaneous Embedding with Fixed Edges for
biconnected graphs with a connected intersection (Section 4.3). Furthermore, we show in
Section 4.4 how Simultaneous PQ-Ordering can be used to recognize simultaneous
Interval graphs.

4.1 PQ-Embedding Representation

Let G = (V,E) be a planar biconnected graph and let T be its SPQR-tree. We want
to define an instance D(G) = (N,A) of Simultaneous PQ-Ordering called the PQ-
embedding representation containing the embedding trees representing the circular order
of edges around every vertex as defined in Section 2.5, such that it is ensured that every
set of simultaneous PQ-orders corresponds to an embedding of G and vice versa. For
every R-node η in T , we define the PQ-tree Q(η) consisting of a single Q-node with three
edges and for every P-node µ in T with k virtual edges in skel(µ) we define the PQ-tree
P (µ) consisting of a single P-node of degree k. The trees Q(η) and P (µ) will ensure
that embedding trees of different vertices sharing R- or P-nodes in the SPQR-tree are
ordered consistently, thus we will call them the consistency trees. The node set N of
the PQ-embedding representation contains the consistency trees Q(η) and P (µ) and the
embedding trees T (v) for v ∈ V . If we consider an R-node η in the SPQR-tree T , then
there are several Q-nodes in different embedding trees stemming from it and we need to
ensure that all these Q-nodes are oriented the same or in other words we need to ensure
that they are all oriented the same as Q(η), which can be done by simply adding arcs
from the embedding trees to Q(η) with suitable injective maps. Similarly, the skeleton of
every P-node µ in T contains two vertices v1 and v2. Thus, the embedding trees T (v1) and
T (v2) contain P-nodes µ1 and µ2 stemming from µ and every incident edge corresponds to
a virtual edge in skel(µ). We need to ensure that the order of incident edges around µ1 is
the reversal of the order of edges around µ2, or in other words, we need to ensure that the
order for µ1 is the same and the order for µ2 is the opposite to any order chosen for P (µ),
which can be ensured by a normal arc (T (v1), P (µ)) and a reversing arc (T (v2),−P (µ)).
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Figure 4.1: A biconnected planar graph and its SPQR-tree on the top and the correspond-
ing PQ-embedding representation on the bottom. The injective maps on the
edges are not explicitly depicted, but the starting points of the arcs suggests
which maps are suitable.

If we solve the PQ-embedding representation D(G) as instance of Simultaneous PQ-
Ordering we would choose orders bottom up. Thus, we would first choose orders for the
trees P (µ) andQ(µ), which corresponds to choosing orders for the P-nodes and orientations
for the R-nodes in the SPQR-tree. For the embedding trees there is no choice left, since
all nodes are fixed by some children, which is not surprising since the planar embedding is
already chosen. Hence, extending the chosen orders to orders of the embedding trees can
be seen as computing the circular orders of edges around every vertex for given embeddings
of the skeletons of every node in T . Figure 4.1 depicts the PQ-embedding representation
for the example we had before in Figure 2.6. Note that the size of the PQ-embedding
representation D(G) is obviously linear in the size of the SPQR-tree T of G, and thus
linear in the size of the planar graph G itself.

The PQ-embedding representation is obviously less elegant than the SPQR-tree, also rep-
resenting all embeddings of a biconnected planar graph. At least for a human, the planar
embeddings of a graph are easy to understand by looking at the SPQR-tree, whereas the
PQ-embedding representation does not really help. However, with the PQ-embedding
representation it is easier to formulate constraints concerning the order of incident edges
around a vertex, since these orders are explicitly expressed by the embedding trees.

4.2 Partially PQ-Constrained Planarity

Let G = (V,E) be a planar graph and let C = {T ′(v1), . . . , T ′(vn)} be a set of PQ-trees,
such that for every vertex vi ∈ V the leaves of T (vi) are a subset E′(vi) ⊆ E(vi) of edges
incident to vi. We call T ′(vi) the constraint tree of the vertex vi. The problem Partially
PQ-Constrained Planarity asks whether a planar embedding of G exists, such that
the order of incident edges E(vi) around every vertex vi induces an order on E′(vi) that
is represented by the constraint tree T ′(vi).

Given an instance (G,C) of Partially PQ-Constrained Planarity, it is straightfor-
ward to formulate it as an instance of Simultaneous PQ-Ordering if G is biconnected.
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Figure 4.2: The PQ-embedding representation from Figure 4.1 together with the constraint
trees provided by an instance of Partially PQ-Constrained Planarity.

Simply take the PQ-embedding representation D(G) of G and add the constraint trees
together with an arc (T (v), T ′(v); id) from the embedding tree to the corresponding con-
straint tree. Denote the resulting instance of Simultaneous PQ-Ordering by D(G,C).
Figure 4.2 depicts an example instance of Partially PQ-Constrained Planarity for-
mulated as instance of Simultaneous PQ-Ordering. Note that we can leave the orders
of edges around a vertex unconstrained by choosing the empty PQ-tree as its constraint
tree. To obtain the following theorem, we need to show that (G,C) and D(G,C) are
equivalent, which is quite obvious, and that D(G,C) is an at most 2-fixed instance of
Simultaneous PQ-Ordering.

Theorem 6. Partially PQ-Constrained Planarity can be solved in quadratic time
for biconnected graphs.

Proof. Consider (G,C) to be an instance of Partially PQ-Constrained Planarity
where G is a biconnected planar graph and C the set of constraint trees. Let further
D(G,C) be the corresponding instance of Simultaneous PQ-Ordering. Since D(G,C)
contains the PQ-embedding representation D(G), every solution of D(G,C) yields a planar
embedding of G. Additionally, this planar embedding respects the constraint trees since
the order of edges around every vertex is an extension of an order of the leaves in the
corresponding constraint tree. On the other hand, it is clear that a planar embedding of
G respecting the constraint trees yields simultaneous orders for all trees in D(G,C). Since
the size of D(G,C) is linear in the size of (G,C), we can solve (G,C) in quadratic time
using Theorem 4, if D(G,C) is 1-critical. We will show that the instance D(G,C) is at
most 2-fixed, and hence, due to Theorem 3 also 1-critical.

To compute the fixedness of every P-node in every PQ-tree in D(G,C), we distinguish
between three kinds of trees, the embedding trees, the consistency trees and the constraint
trees. If we consider a P-node µ in an embedding tree T (v), this P-node is fixed with
respect to exactly one consistency tree, namely the tree that represents the P-node in the
SPQR-tree µ stems from. In addition to the consistency trees, T (v) has the constraint
tree T ′(v) as child, thus µ can be fixed with respect to T ′(v). Since T (v) has no parents
and no other children, µ is at most 2-fixed, that is fixed(µ) ≤ 2. Consider a P-node
µ′ in a constraint tree T ′(v). Since T ′(v) has no children and its only parent is T (v)
containing the P-node µ that is fixed by µ′, we have by the definition of fixedness that
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fixed(µ′) = fixed(µ)−1. Since µ is a P-node in an embedding tree we obtain fixed(µ′) ≤ 1.
We have two kinds of consistency trees, some stem from P- and some from R-nodes in
the SPQR-tree. We need to consider only trees P (µ) stemming form P-nodes since the
consistency trees stemming from R-nodes only contain a single Q-node. Denote the single
P-node in P (µ) also by µ and let µ1 and µ2 be the two P-nodes in the embedding trees
T (v1) and T (v2) that are fixed with respect to P (µ). Since P (µ) has no child and only
these two parents, we obtain fixed(µ) = (fixed(µ1) − 1) + (fixed(µ2) − 1). Since µ1 and
µ2 are P-nodes in embedding trees this yields fixed(µ) ≤ 2. Hence, all P-nodes in all
PQ-trees in D(G,C) are at most 2-fixed, thus D(G,C) itself is 2-fixed. Finally, we can
apply Theorem 3 yielding that D(G,C) is 1-critical and thus can be solved quadratic time,
due to Theorem 4.

Since D(G,C) is a special instance of Simultaneous PQ-Ordering, which seems to be
quite simple, it is worth to make a more detailed runtime analysis, yielding the following
theorem.

Theorem 7. Partially PQ-Constrained Planarity can be solved in linear time for
biconnected graphs.

Proof. As figured out in Section 3.4 about the implementation details, there are four major
parts influencing the running time. First, a given instance needs to be normalized con-
suming quadratic time (Lemma 12), the expansion graph has quadratic size in worst case
(Lemma 13) and its computation consumes quadratic time (Lemma 14) and finally choos-
ing borders bottom up needs linear time in the size of the expansion graph (Lemma 15).

In an instance D(G,C) of Simultaneous PQ-Ordering stemming from an instance
(G,C) of Partially PQ-Constrained Planarity there are two kinds of arcs. First,
arcs from embedding trees to consistency trees, and second, arcs from embedding trees
to constraint trees. When normalizing an arc from an embedding tree to a consistency
tree there is nothing to do, since there is a bijection between the consistency tree and an
inner node of the embedding tree. The arcs from embedding trees to constraint trees can
be normalized as usual consuming only linear time, since each embedding tree has only
one consistency tree as child. Hence, normalization can be done in linear time. When
computing the expansion graph, the fixedness of the nodes is important. As seen in the
proof of Theorem 6, the P-nodes in embedding and consistency trees are at most 2-fixed,
whereas the P-nodes in constraint trees are at most 1-fixed. Note that every critical triple
(µ, T1, T2) in D(G,C) is of the kind that µ is contained in an embedding tree, T1 is a
constraint tree and T2 is a consistency tree. Thus, the expansion tree T (µ, T1, T2) created
due to such a triple has two parents where one of them is at most 1-fixed and the other
at most 2-fixed. Hence, by the definition of fixedness, T (µ, T1, T2) itself is at most 1-fixed.
After creating these expansion trees, all newly created critical triple must contain a P-
node µ in a consistency tree and two expansion trees. By creating expansion trees for
these critical triples no new critical triple are created and hence the expansion stops. It is
clear that the resulting expansion graph has only linear size and can be computed in linear
time. Choosing orders bottom up takes linear time in the size of the expansion graph, as
before. Hence we obtain the claimed linear running time.

4.3 Simultaneous Embedding with Fixed Edges

Let G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) be two planar graphs sharing a common subgraph
G = (V,E) with V = V 1 ∩ V 2 and E = E 1 ∩ E 2 . Simultaneous Embedding with
Fixed Edges asks, whether there exist planar drawings of G 1 and G 2 such that their
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intersection G is drawn the same in both. Jünger and Schulz show that this is equiva-
lent to the question whether combinatorial embeddings of G 1 and G 2 inducing the same
combinatorial embedding for their intersection G exist [JS09, Theorem 4].

Assume that G 1 and G 2 are biconnected and G is connected. Then the order of incident
edges around every vertex determines the combinatorial embedding, which is not the case
for disconnected graphs. Thus, we can reformulate the problem as follows. Can we find
planar embeddings of G 1 and G 2 inducing for every common vertex v ∈ V the same order
of common incident edges E(v) around v? Since both graphs are biconnected, they both
have a PQ-embedding representation and it is straight forward to formulate an instance
(G 1 , G 2 ) of SEFE as an instance D(G 1 , G 2 ) of Simultaneous PQ-Ordering. The
instance D(G 1 , G 2 ) contains the PQ-embedding representations D(G 1 ) and D(G 2 ) of
G 1 and G 2 , respectively. Every common vertex v ∈ V occurs as v 1 in V 1 and as v 2

in V 2 , thus we have the two embedding trees T (v 1 ) and T (v 2 ). By projecting these two
embedding trees to the common edges incident to v and intersecting the result, we obtain
a new tree T (v) called the common embedding tree of v. If we add the arcs (T (v 1 ), T (v))
and (T (v 2 ), T (v)) to the instanceD(G 1 , G 2 ) of Simultaneous PQ-Ordering, we ensure
that the common edges incident to v are ordered the same in both graphs. Note that this
representation is quite similar to the representation of an instance of Partially PQ-
Constrained Planarity. Every common embedding tree can be seen as a constraint
tree for both graphs simultaneously. To obtain the following theorem, we need to show
that the instances (G 1 , G 2 ) of SEFE and the instance D(G 1 , G 2 ) of Simultaneous
PQ-Ordering are equivalent and that D(G 1 , G 2 ) is at most 2-fixed.

Theorem 8. Simultaneous Embedding with Fixed Edges can be solved in quadratic
time, if both graphs are biconnected and the common graph is connected.

Proof. Let (G 1 , G 2 ) be an instance of SEFE with the common graph G such that G 1

and G 2 are biconnected and G is connected. Let further D(G 1 , G 2 ) be the corresponding
instance of Simultaneous PQ-Ordering as defined above. Since D(G 1 , G 2 ) contains
the PQ-embedding representations D(G 1 ) and D(G 2 ), every solution of D(G 1 , G 2 ) yields
planar embeddings of G 1 and G 2 . Furthermore, the common edges incident to a common
vertex v ∈ V are ordered the same in the two embedding trees T (v 1 ) and T (v 2 ) since both
orders extend the same order of common edges represented by the common embedding
tree T (v). Thus, the embeddings for G 1 and G 2 induced by a solution of D(G 1 , G 2 )
induce the same embedding on the common graph and hence are a solution of (G 1 , G 2 ).
On the other hand, if we have a SEFE of G 1 and G 2 , these embeddings induce orders
for the leaves of all PQ-trees in D(G 1 , G 2 ) and since the common edges around every
common vertex are ordered the same in both embeddings, all constraints given by arcs in
D(G 1 , G 2 ) are satisfied.

To compute the fixedness of every P-node in every PQ-tree in D(G 1 , G 2 ) we distinguish
between three kinds of trees, the embedding trees, the consistency trees and the common
embedding trees. The proof that fixed(µ) ≤ 2 for every P-node µ in every embedding
and consistency tree works as in the proof of Theorem 6. For a P-node µ in a common
embedding tree T (v) we have two P-nodes µ 1 and µ 2 in the parents T (v 1 ) and T (v 2 ) of
T (v) it stems from. Since T (v) has no other parents and no children, we obtain fixed(µ) =
(fixed(µ 1 )−1)+(fixed(µ 2 )−1) by the definition of fixedness. Since µ 1 and µ 2 are P-nodes
in embedding trees, we know that their fixedness is at most 2. Thus, we have fixed(µ) ≤ 2.
Hence, all P-nodes in all PQ-trees in D(G 1 , G 2 ) are at most 2-fixed, thus D(G 1 , G 2 ) itself
is 2-fixed.
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Figure 4.3: (a) Two interval graphsG 1 andG 2 with interval representations. The maximal
cliques are C 1
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3 , respectively.
(b) Interval representations of G 1 and G 2 such that common vertices are
represented by the same interval in both representations, in other words, a
simultaneous interval representation of G 1 and G 2 .

4.4 Simultaneous Interval Graphs

A graph G is an interval graph if each vertex v can be represented as an interval I(v) ⊂ R
such that two vertices u and v are adjacent if and only if their intervals intersect, that is,
I(u)∩I(v) 6= ∅. Such a representation is called interval representation of G; see Figure 4.3a
for two examples. Two graphs G 1 and G 2 sharing a common subgraph are simultaneous
interval graphs if G 1 and G 2 have interval representations such that the common vertices
are represented by the same intervals in both representations; see Figure 4.3b for an
example.

The first algorithm recognizing interval graphs in linear time was given by Booth and
Lueker [BL76] and was based on a characterization by Fulkerson and Gross [FG65]. This
characterization says that G is an interval graph if and only if there is a linear order of all its
maximal cliques such that for each vertex v all cliques containing v appear consecutively.
It is easy to see that an interval graph can have only linearly many maximal cliques thus
it is clear how to recognize interval graphs in linear time by using PQ-trees. Simultaneous
interval graphs were first considered by Jampani and Lubiw [JL10] who show how to
recognize them in O(n2 logn) time.

In Theorem 9 we give a proof of the characterization by Fulkerson and Gross that can then
be extended to a characterization of simultaneous interval graphs in Theorem 10. With
this characterization it is straightforward to formulate an instance of Simultaneous PQ-
Ordering that can be used to test whether a pair of graphs are simultaneous interval
graphs in linear time, improving the so far known result. The following definition simplifies
the notation. Let C1, · · · , C` be sets (for example maximal cliques) and let v be an element
contained in some of these sets. We say that a linear order of these sets is v-consecutive if
the sets containing v appear consecutively.

Theorem 9 (Fulkerson and Gross [FG65]). A graph G is an interval graph if and only
if there is a linear order of all maximal cliques of G that is v-consecutive with respect to
every vertex v.

Proof. Assume G is an interval graph with a fixed interval representation. Let C =
{v1, . . . , vk} be a maximal clique in G. It is clear that there must be a position x such
that x is contained in the intervals I(v1), . . . , I(vk). Additionally x is not contained in
any interval represented by another vertex since the clique C is maximal. By fixing such
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positions x1, . . . , x` for each of the maximal cliques C1, . . . , C` in G, we define a linear
order on all maximal cliques. Assume this order is not v-consecutive for some vertex v.
Then there are cliques Ci, Cj , Ck with xi < xj < xk such that v ∈ Ci, Ck but v /∈ Cj .
However, since v is in Ci and Ck its interval I(v) needs to contain xi and xk, and hence
also xj , which is a contradiction to the construction of the position xj . Hence the defined
linear order of all maximal cliques is v-consecutive with respect to every vertex v.

Now assume O = C1 . . . C` is a linear order of all maximal cliques of G that is v-consecutive
for every vertex v. Let v be a vertex and let Ci and Cj be the leftmost and rightmost cliques
containing v, respectively. Then define I(v) = [i, j] to be the interval representing v. With
this representation, we obtain all edges contained in the the maximal cliques C1, . . . , C`
at the natural numbers 1, . . . , `, since for each clique Ci = {v1, . . . , vk} the position i is
contained in all the intervals I(v1), . . . , I(vk). Furthermore, there is no vertex u /∈ Ci such
that I(u) also contains i, because such a vertex would need to be contained in a clique on
the left and in a clique on the right to Ci, which is a contradiction since the order O is
u-consecutive. Thus, at the integer positions 1, . . . , ` all edges in G are represented and no
edges not in G. Furthermore, all intervals I(v) containing a non integer position 1 < x < `
contain also dxe and bxc, yielding that no edge is defined due the position x which is not
already defined due to an integer position. Hence, this definition of intervals is an interval
representation of G showing that G is an interval graph.

We can extend this characterization of interval graphs to a characterization of simultaneous
interval graphs by using the same arguments as follows.

Theorem 10. Two graphs G 1 and G 2 are simultaneous interval graphs if and only if
there are linear orders of the maximal cliques of G 1 and G 2 that are v-consecutive with
respect to every vertex v in G 1 and G 2 , respectively, such that they can be extended to an
order of the union of maximal cliques that is v-consecutive with respect to every common
vertex v.

Proof. Assume G 1 and G 2 are simultaneous interval graphs and let for every vertex v be
I(v) the interval representing v. Assume C 1 = {C 1

1 , . . . , C
1

k } and C 2 = {C 2

1 , . . . , C
2

` } are
the maximal cliques in G 1 and G 2 respectively. When considering G 1 for itself, we again
obtain for every maximal clique C 1 = {v1, . . . , vr} a position x such that x is contained
in I(vi) for every vi ∈ C 1 but in no other interval representing a vertex in G 1 . The
same can be done for the maximal cliques of G 2 , yielding a linear order O of all maximal
cliques C = C 1 ∪ C 2 . It is clear that the projection of this order to the cliques in G 1 is
v-consecutive for every vertex v in G 1 due to Theorem 9 and the same holds for G 2 . It
remains to show that O is v-consecutive for each common vertex v. Assume O is not v-
consecutive for some common vertex v. Then there need to be three cliques Ci, Cj and Ck,
no matter if they are maximal cliques in G 1 or in G 2 , with positions xi, xj and xk such
that xi < xj < xk and v ∈ Ci, Ck but v /∈ Cj . However, since the interval I(v) contains xi
and xk it also contains xj , which is a contradiction to the construction of the position xj
for the clique Cj since v is a common vertex. Note that this is the same argument as used
in the proof of Theorem 9.

Conversely, we need to show how to construct an interval representation from a given
linear order of all maximal cliques. Assume we have a linear order O of all maximal
cliques satisfying the conditions of the theorem. Rename the cliques such that C1 . . . Ck+`
is this order, neglecting for a moment from which graph the cliques stem. Let v be a vertex
in G 1 or G 2 and let Ci and Cj be the leftmost and rightmost clique in O containing v.
Then we define the interval I(v) to be [i, j], as in the case of a single graph. Our claim
is that this yields a simultaneous interval representation of G 1 and G 2 . Again, it is easy
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to see that a non integer position x is only contained in intervals also containing dxe and
bxc. Thus we only need to consider the positions 1, . . . , k + `, let i be such an integral
position. Assume without loss of generality that Ci = {v1, . . . , vr} is a clique of G 1 .
Then i is contained in all the intervals I(v1), . . . , I(vr) by definition. The position i may
be additionally contained in the interval I(u) for a vertex that is exclusively contained
in G 2 but this does not create an edge between vertices in G 1 . However, there is no
vertex u /∈ Ci contained in G 1 such that i is contained in I(u) since this would violate
the u-consecutiveness either of the whole order or of the projection to the cliques in G 1 .
Since the same argument works for cliques in G 2 , all edges in maximal cliques of G 1 and
G 2 are represented by the defined interval representation and at the integer positions no
edges not contained are represented. Hence, this definition of intervals is a simultaneous
interval representation of G 1 and G 2 .

With this characterization it is straightforward to formulate the problem of recognizing
simultaneous interval graphs as an instance of Simultaneous PQ-Ordering. Further-
more, the resulting instance is so simple that it can be solved in linear time. Since we want
to represent linear orders instead of circular orders we need to use rooted PQ-trees instead
of unrooted ones. Note that this can be easily done by introducing an additional leaf, the
special leaf, as described in the preliminaries about PQ-trees (Section 2.3). The PQ-trees
mentioned in the remaining part of this section are assumed to be rooted, representing
linear orders.

Theorem 11. Whether two graphs G 1 and G 2 with a common subgraph are simultaneous
interval graphs can be tested in linear time.

Proof. Let C 1 = {C 1

1 , . . . , C
1

k } and C 2 = {C 2

1 , . . . , C
2

` } be the maximal cliques of G 1

and G 2 respectively and let C = C 1 ∪ C 2 be the set of all maximal cliques. We define
three PQ-trees T , T 1 and T 2 having C, C 1 and C 2 as leaves, respectively. The tree T is
defined such that it represents all linear orders of C that are v-consecutive with respect to
all common vertices v. The trees T 1 and T 2 are defined to represent all linear orders of
C 1 and C 2 that are v-consecutive with respect to all vertices v in G 1 and G 2 , respectively.
Note that T 1 and T 2 are the PQ-trees that would be used to test whether G 1 and G 2

themselves are interval graphs. By the characterization in Theorem 10 it is clear that G 1

and G 2 are simultaneous interval graphs if and only if we can find an order represented
by T extending orders represented by T 1 and T 2 . Hence G 1 and G 2 are simultaneous
interval graphs if and only if the instance D of Simultaneous PQ-Ordering consisting
of the nodes T , T 1 and T 2 and the arcs (T, T 1 ) and (T, T 2 ) has a solution. This can be
checked in quadratic time using Theorem 4 since D is obviously 1-critical. Furthermore,
normalization can of course be done in linear time and the expansion tree of linear size
can be computed in linear time since expansion stops after a single expansion step. Hence
the instance D of Simultaneous PQ-Ordering can be solved in linear time, which
concludes the proof.
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5. Conclusion

In this work we introduced a new problem called Simultaneous PQ-Ordering. It has
as input a set of PQ-trees with a child-parent relation (a DAG with PQ-trees as nodes) and
asks, whether for every PQ-tree a circular order can be chosen such that it is an extension
of the orders of all its children. This was motivated by the possibility to represent the
possible circular orders of edges around every vertex of a biconnected planar graph by a
PQ-tree. Unfortunately, Simultaneous PQ-Ordering turned out to be NP-complete
in general. However, we were able to find an algorithm solving Simultaneous PQ-
Ordering in polynomial time for “simple” instances, the 1-critical instances. To achieve
this result we showed that satisfying the Q-constraints and the critical triples is sufficient
to be able to extend orders of several children simultaneously to a parent, if each P-node
is contained in at most one critical triple. We were able to ensure that a critical triple is
automatically satisfied when choosing orders bottom up by inserting a new PQ-tree, the
expansion tree. Creating the expansion trees iteratively for every critical triple led to the
expansion graph that turned out to have polynomial size for 1-critical instances. Hence, we
are able to solve a 1-critical instance of Simultaneous PQ-Ordering in polynomial time
essentially by choosing orders bottom up in the expansion graph. With this framework we
were able to solve Partially PQ-Constrained Planarity for biconnected graphs and
Simultaneous Embedding with Fixed Edges for biconnected graphs with a connected
intersection in polynomial time (linear and quadratic, respectively), which were both not
known to be efficiently solvable. Furthermore, we are able to recognize simultaneous
interval graphs in linear time, which is an improvement to the so far known O(n2 logn)
algorithm. Note that all these results are really simple, once we have the algorithm for
Simultaneous PQ-Ordering.

However, several questions remain open. Since the PQ-embedding representation can only
represent the embeddings of biconnected planar graphs, our solutions for Simultaneous
PQ-Ordering and SEFE cannot handle graphs containing cutvertices. This restriction
is due to the fact that the set of possible orders of edges around cutvertices is not PQ-
representable. Thus, a question naturally raising from our results is whether such sets
of orders can be represented by a data structure similar to PQ-trees. For example the
possible orders of edges around a cutvertex v could be represented by a set of PQ-trees,
one PQ-tree for each block (maximal biconnected component) incident to v. Then orders
for all PQ-trees can be chosen arbitrarily and independently, while merging these orders
to one order is restricted as follows. Let a1 and a2 be leaves of a PQ-tree and let b1 and
b2 be two leaves of another PQ-tree. Then the suborder a1b1a2b2 must not appear. The
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Figure 5.1: An instance of SEFE with graphs G 1 and G 2 on the left. Although the
embeddings of G 1 and G 2 on the left induce for the common graph G the same
circular orders of edges around every vertex, they induce different combinatorial
embeddings and thus cannot be drawn simultaneously, as one can see on the
right.

main question for such a representation would be, whether something similar to Lemma 4
can be shown, that is, under which conditions chosen orders of children can be extended
simultaneously to an order represented by a parent.

If we keep the restriction that the graphs need to be biconnected, we could try to solve
SEFE for the case that the common graph does not need to be connected. Unfortunately,
the formulation of an instance (G 1 , G 2 ) of SEFE is not as straight forward if we allow the
common graph to be disconnected, although G 1 and G 2 are still biconnected. The differ-
ence is that we need to ensure that the circular orders of edges around every vertex chosen
for G 1 and G 2 really induce the same embedding on the common subgraph. Figure 5.1
shows two graphs that do not have a SEFE, although there are embeddings inducing
the same circular order of common edges around every vertex. That the two depicted
graphs do not have a SEFE is easy to see, since both graphs are triconnected (except
for a subdivision vertex) and hence have only two embeddings. An approach to solve this
problem could be of the following kind. Assume there are two edges e 1 and e 2 that belong
exclusively to G 1 and G 2 incident to the common vertex v. Assume further that there are
simple paths in G 1 and G 2 , not using any common edges, from v to a connected compo-
nent in G not containing v and starting with the edges e 1 and e 2 , respectively. Then e 1

and e 2 need to be embedded into the same face of the common graph G. In terms of the
circular order of edges around v this means that e 1 and e 2 need to be located between the
same pair of common edges in the circular order of common edges. Such a constraint can
be added to an instance of Simultaneous PQ-Ordering by introducing an additional
PQ-tree having the common edges incident to v as leaves plus one additional leaf. Then a
double arc from the embedding tree T (v) to this new PQ-tree associating the additional
leaf with e 1 for the first and with e 2 for the second arc ensures that e 1 and e 2 are em-
bedded into the same face. One can easily see that additional constraints of this kind are
not only necessary but also sufficient. However, the resulting instance of Simultaneous
PQ-Ordering is no longer 1-critical. There are two obvious approaches to address this
problem. First, one could try to find a different construction of SEFE as instance of
Simultaneous PQ-Ordering that is 1-critical. The second approach would be to find
algorithms solving Simultaneous PQ-Ordering for instances that are not 1-critical.
There are two major problems that need to be addressed, if a P-node µ is contained in
more than one critical triple. First, the expansion graph may become exponentially large
and second, satisfying critical triple is not sufficient to be able to extend orders of children
simultaneously, as depicted in Figure 3.2b. However, the second problem does not arise,
if all children fixing the P-node µ fix the same edges incident to µ up to a single edge that
is unique for each child, which is the case for the above mentioned construction. Hence,
there is the hope that Simultaneous PQ-Ordering can help to solve SEFE also for
the case where the intersection is disconnected.

50



Bibliography

[ADF+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jeĺınek, Jan Kra-
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Theory (Béla Bollobás, ed.), North-Holland Mathematics Studies, vol. 62,
North-Holland, 1982, pp. 75–80.

[dR85] Hubert de Fraysseix and Pierre Rosenstiehl, A characterization of planar
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