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Abstract

Precomputation of auxiliary data in an additional off-line step is a common approach
towards improving the query performance of shortest-path queries in large-scale
networks. Amongst others, one well-established technique based on this pattern
is provided by the arc-flags algorithm. Similar to most approaches aiming at an
improvement of query times for single-pair shortest path queries, it leaves a degree
of freedom in the implementation of the preprocessing step. Namely, a partition
of the underlying graph needs to be specified, which has a large impact on the
performance of on-line queries. To evaluate the quality of a certain partition, one
often considers the expected number of settled nodes in a random query. Filling
the mentioned degree of freedom optimally with respect to this measure is NP-hard
on graphs in general. In this thesis, we provide a theoretical analysis concerning
the computation of high-quality partitions for arc-flags. We examine the problem of
finding optimal partitions on several restricted graph classes and provide first steps
towards establishing a border of tractability. As a central result in this investigation,
we prove that computing an optimal solution remains NP-hard even on undirected
trees. Apart from that, we develop integer linear programs for finding optimal
partitions on arbitrary graphs. Different ILP approaches and possibilities for their
tuning are discussed. Finally, we introduce two novel greedy approaches that seek to
provide high-quality partitions of graphs. Besides an analysis of their complexities,
we show that neither of them provides a constant approximation-ratio. A brief
case study offers insights into the capability of these approaches on realistic graph
instances.

Deutsche Zusammenfassung

Ein bewährter Ansatz zur Verbesserung der Laufzeit von Kürzeste-Wege-Anfragen
auf großen Netzwerken ist die Nutzung einer zusätzlichen Vorberechnungsphase.
Eine bekannte Umsetzung dieses Vorgangs besteht in der Einführung so genannter
Arc-Flags. Wie bei vielen anderen, vergleichbaren Techniken gewährt das Verfahren
Freiheitsgrade in der konkreten Umsetzung der Vorberechnung, deren Ausfüllung
großen Einfluss auf die Performanz späterer Kürzeste-Wege-Anfragen haben kann.
Im Falle von Arc-Flags besteht dieser Freiheitsgrad in der Wahl einer gültigen Par-
tition des Eingabegraphen. Ein gängiges Maß zur Bewertung der Qualität einer
solchen Partition ist die Betrachtung der erwarteten Suchraumgröße einer zufälli-
gen Anfrage. Die Berechnung einer Partition, die den erwarteten Suchraum opti-
miert, ist im Allgemeinen NP-schwer. Ausgehend von diesem Resultat liegt der
Schwerpunkt der vorliegenden Arbeit auf einer ausführlichen theoretischen Unter-
suchung des Problems, zu einem gegebenen Graphen eine im Sinne des erwarteten
Suchraums späterer Anfragen qualitativ gute Partition zu finden. Zunächst wird
dazu der Einfluss verschiedener eingeschränkter Graphklassen auf die Schwierigkeit
der Berechnung einer optimalen Lösung untersucht. Insbesondere wird dabei gezeigt,
dass das Problem selbst auf Bäumen NP-schwer bleibt. Zudem werden ganzzahlige
lineare Programme zur Berechnung optimaler Partitionen entwickelt und diskutiert.
Anschließend werden zwei Polynomialzeit-Algorithem basierend auf dem Greedy-
Ansatz vorgestellt. Neben deren Analyse wird bewiesen, dass im Allgemeinen keiner
der Ansätze die optimale Lösung mit einem konstanten Faktor approximiert. In
einer Fallstudie wird das Potential der beiden Algorithmen auf kleinen, realistischen
Eingabeinstanzen beleuchtet.
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1. Introduction

In recent years, route planning has become a widely known application of algorithm en-
gineering. Algorithms for route planning are an integral part of everyday life ever since
navigation systems and on-line route planners have become popular. In addition to that,
the algorithmic field of routing in street networks is of rising importance in economic ar-
eas, such as public transportation and logistics. During the last decade, improvements of
algorithms that compute distances and shortest paths on large-scale networks have been
studied extensively. As a result, research in this field lead to vast speed-ups of shortest-path
queries compared to known approaches, in particular Dijkstra’s algorithm. In contrast to
common fast heuristics, these speed-up techniques also guarantee to maintain correctness
of any computed shortest path.

The typical data structure for the representation of road networks in computation are
weighted graphs. Although Dijkstra’s algorithm is of polynomial-time complexity on ar-
bitrary graphs, its performance on large realistic graphs is not acceptable for practical ap-
plications on current hardware. Speed-up techniques that yield improved query times are
based on the assumption that for typical large-scale networks, the network itself mostly re-
mains unchanged and rarely needs to be updated. This enables the opportunity to split the
work into two parts. First, in the off-line phase a precomputation step is executed on the
input graph to gain additional information about the underlying network. The retrieved
data is then used during the on-line phase to improve the performance of shortest-path
queries.

There are several approaches that implement the basic idea described above. One of these
techniques is the arc-flags algorithm. As a simple metaphor, one may think of arc-flags
as additionally provided sign posts in a graph. Just as sign posts would guide a human
when reaching an intersection, arc-flags enable Dijkstra’s algorithm to exclude single edges
from being part of a shortest path. To this end, the corresponding graph is partitioned
into a fixed number of regions, each of which is represented by a binary flag. Every edge
of the graph is then added a vector of flags that provides all necessary information about
whether or not the corresponding edge possibly leads to the target region. If this is not
the case, the edge does not have to be traversed by the query-algorithm.

Although the outstanding performance of shortest-path queries enriched by arc-flags has
been substantiated in many experimental studies, little is known about the theoretical
backgrounds concerning the arc-flags algorithm. In this thesis, we focus on the particular
aspect of preprocessing the arc-flags algorithm from a theoretical point of view. It is easy
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1. Introduction

to see that the choice of the partition of a graph has a large impact on query times obtained
in the on-line phase. Techniques used in practice to find partitions for given input graphs
are of purely heuristic nature. By contrast, we examine the problem of finding partitions
of graphs for which one can provide some sort of guarantee on its applicability for the
arc-flags algorithm.

1.1 Related Work

We provide a short review of publications related to the domain of this thesis. In the
not too distant past, many approaches have been introduced that attack the problem of
efficiently handling queries on road networks. For a survey of recent techniques including
arc-flags we refer to Delling et al. [DSSW09]. The methods presented there realize different
trade-offs that take into account the following aspects.

• Duration and space consumption of the precomputation.

• Query times induced by the preprocessing.

• Amount of space necessary to store the additional information.

In general, goal-directed and hierarchical approaches can be distinguished. Goal-directed
techniques aim at guiding the query into the right direction, for example by pruning edges
for which one can assure that they are not part of the sought shortest path. In hierarchical
approaches one tries to exploit the diverse relevance of road segments in a street network.
For instance, following a highway rather than a rural road would appear to be a good
choice on a long-distance query.

Arc-Flags

The idea of arc-flags was first introduced by Lauther [Lau97, Lau04]. Substantial ex-
periments concerning shortest-path queries based on arc-flags are given by Köhler et al.
[KMS05]. Möhring et al. discuss different ways to partition a given graph in the preprocess-
ing step of the arc-flags algorithm, including two-level partitions in which one recursively
divides the cells of a graph [MSS+05, MSS+06, Sch06]. Experimental results are presented
to evaluate the diverse proposed approaches. Hilger et al. present ways to efficiently obtain
correct arc-flags for a given partition [HKMS06, HKMS09]. In particular, so-called cen-
tralized shortest path trees are proposed as an efficient way to compute flags by handling
several nodes in one step. Furthermore, experiments are conducted regarding heuristically
obtained partitions. It turns out that multi-way arc separators [KK98] appear to be most
promising for generating high-quality partitions. Such tools are provided, for example, by
MeTiS [Kar07] and PARTY [MS04]. Another recently published approach that allows fast
computation of valid arc-flags provides a technique to efficiently compute shortest paths
between all pairs of nodes of a large-scale graph [DGNW11]. Finally, further experimental
evaluation of arc-flags is conducted by Lauther [Lau09].

Combinations With Other Techniques and Dynamic Graphs

There are several attempts to combine the plain arc-flags algorithm with other known
speed-up techniques. Three such combinations are presented by Bauer et al. [BDS+10].
In particular, arc-flags are joined with contraction hierarchies [GSSD08]. This approach
is based on contracting nodes of a given graph in a specified order while inserting shortcut
edges to maintain correct distances. For yet another technique, arc-flags are combined with
a speed-up technique based on reach [Gut04]. The latter involves computing a centrality
measure for each node that yields information about its relevance for long-distance queries.
Finally, an approach to use arc-flags within transit-node routing is presented [BFM+07,
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1.2. Contributions and Outline

BFSS07]. Transit-node routing involves the identification of nodes that are likely to be
settled during long-distance queries. Distances to these so-called transit nodes are then
computed in advance. Consequently, the query itself can be reduced to simple table
look-ups, which allows for very low query times. Yet another technique, called SHARC,
was first introduced by Bauer and Delling [BD09]. Again, arc-flags are combined with
contraction-based routing. The preprocessing phase consists of several steps that are
repeated iteratively. In the first step, nodes of the graph are contracted and corresponding
shortcuts are added. A following step involves the computation of arc-flags for the modified
graph. Brunel et al. propose a space-efficient variant of SHARC [BDGW10].

Routing in time-dependent networks is another related domain. In this scenario, edge
weights are functions rather than constant numbers. An edge weight represents the du-
ration it takes to pass that edge at different points in time. Methods to adapt arc-flags
to time-dependent graphs are introduced by Delling [Del09]. He also provides applica-
tions of SHARC for such graphs [Del08]. Delling et al. propose further adaptations of
the arc-flags approach to time-dependent networks [DPW09]. Experiments considering
time-dependent scenarios are conducted by Delling and Wagner [DW09]. It turns out that
in time-dependent graphs, the performance of SHARC is among the best of all speed-up
techniques originally designed for the static case, as pointed out by Bauer et al. [BDW11].
Berretini et al. provide another adaptation of arc-flags to a dynamic scenario, which allows
for modifications of edge weights during the on-line phase [BDD09].

Theoretical Results on Speed-Up Techniques

One important aspect of route-planning algorithms is the theoretical examination of their
performance. Most speed-up techniques succeeding in practice are based on intuitions
about the structure of realistic networks rather than theoretical analysis. A first approach
to achieve theoretical results in order to explain the great performance of route-planning
algorithms on large street networks is given by Abraham et al. [AFGW10]. In their work,
the notion of highway dimension is introduced to measure the applicability of a graph
for hierarchical speed-up techniques. Interestingly enough, a technique that outperforms
most known approaches on street networks was inferred starting from these observations
[ADGW11].

Another study investigates the preprocessing steps of common speed-up techniques from a
theoretical point of view. Bauer et al. [BCK+10, Bau10] prove NP-hardness of optimally
filling the degrees of freedom left in the preprocessing steps of many techniques. Further-
more, there are detailed theoretical studies concerning the speed-up techniques contraction
hierarchies [Col09] and ALT [Fuc10], the latter of which is a goal-directed approach based
on the A∗-algorithm [GH05, GW05].

1.2 Contributions and Outline

The precomputation phase of the arc-flags algorithm consists of two steps. At first, a par-
tition of the graph has to be determined. Although besides validity there are no necessary
conditions that must be met, the performance of the query is influenced by the suitability
of this partition. Afterwards, correct arc-flags are computed based on the retrieved parti-
tion. In this thesis, we present a theoretical study of the first step, in order to gain further
insights into its difficulties and to provide new approaches.

On the basis of known general hardness results, we examine several restricted classes of
graphs [BCK+10, Bau10]. Note that the graph obtained in the reduction used for the
proof by Bauer et al. has the following undesirable properties, which are not shared by
most realistic instances.
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1. Introduction

• The reduced graph contains a large cycle of nodes that is an inherent part of the
proof.

• Edge weights occurring in the graph substantially differ.

• The graph is not strongly connected, that is, there are certain unreachable nodes.

• The number of edges in the graph is quadratic in the number of nodes, rendering
the graph rather dense.

Clearly, this result leaves much room for a study of restricted classes of graphs that exclude
some or all of the these properties. First, we prove that an optimal partition can be
computed efficiently on directed and undirected paths. Afterwards, as a central result
we establish the hardness of this problem on undirected trees with uniform edge weights.
Hence, by providing this result we are able to eliminate all undesirable properties of the
known reduction. Moreover, we conjecture that NP-hardness holds for rooted directed
trees and directed acyclic graphs as well. In addition to that, we show first steps to extend
the proof of hardness to trees with a maximum degree of 3. This suggests that in general,
optimal partitions are efficiently computable only for graph classes that in some sense carry
a symmetric structure. As for cycles, we propose an algorithm that, given a reasonable
assumption about the structure of an optimal partition, computes an optimal solution in
polynomial time.

Integer linear programs for certain variants of the problem of finding an optimal partition
are introduced. This renders computation of optimal partitions feasible for small input
instances. Furthermore, we show how to significantly improve their performance by re-
ducing the number of constraints and the solution space. A dual ILP is inferred that may
serve as a starting point for further studies.

Additionally, we present two novel greedy algorithms that compute partitions suitable
for arc-flags. These algorithms substantially differ from known techniques to generate
partitions and hence provide completely new ideas to attack this problem. However, we
also prove that a constant bound on their approximation ratio exists for neither of them.
Their performances are compared on real-world instances in a brief case study.

Finally, by relaxing the original idea of arc-flags we deliver basic ideas for encoding the
shortest paths between all pairs of nodes of a given graph. In addition to that, we infer ways
to efficiently perform this task on restricted classes of graphs after a short precomputation
step, which to the best of our knowledge has not been examined before.

Below, the outline of the remainder of this work is summarized. We give a brief description
of the subject of each chapter.

Chapter 2. We provide foundations and terminology that is used throughout this the-
sis. In particular, we introduce notation from graph theory and present Dijkstra’s
algorithm as well as the concept of linear programming. Furthermore, we give a
definition of search-space size and prove basic lemmas that later on shall turn out to
be useful.

Chapter 3. In this chapter, we introduce the functionality of arc-flags and specify the
work of the preprocessing algorithm. We formally describe the problem of finding
optimal partitions for the arc-flags algorithm and study concepts that are used in
practice to heuristically cope with this problem.

Chapter 4. Knowing that the problem of finding an optimal partition on arbitrary graphs
is NP-hard, we examine certain restricted graph classes. In particular, undirected
paths and trees are studied. It turns out that an optimal partition can be computed
efficiently for paths, whereas this problem remains hard even for trees. Based on these
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1.2. Contributions and Outline

results, we present first steps towards the design of a polynomial-time algorithm for
cycles and the establishment of a border of tractability.

Chapter 5. In Chapter 5 we design linear programs that represent optimal partitions for
arc-flags. We first develop an integer linear program for a relaxed version of this
problem and subsequently extend this program to cope with the more challenging
task of the more complex original variant of the problem. Furthermore, we derive
a dual ILP that may be useful for establishing approximation guarantees for future
algorithms.

Chapter 6. We present two greedy approaches to receive partitions of high quality for
the arc-flags algorithm. We analyze their complexities and prove that there is no
approximation ratio guaranteed by any of these approaches. Finally, both algorithms
are compared and analyzed on small, realistic instances in a case study.

Chapter 7. Starting from an alternative definition of arc-flags, we develop a way to en-
code shortest paths between all pairs of nodes of a given graph. Inspired by this
approach, we investigate methods to efficiently provide a shortest path between any
pair of nodes in some restricted classes of graphs using linear space overhead.

Chapter 8. We close this thesis with final remarks. A summary of the achieved results
is given as well as an outlook of future work based on our gained insights and posed
questions.
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2. Preliminaries

This chapter provides the foundations of this thesis. We introduce basic terminology that
is used throughout the following chapters. The definitions presented here may thus serve
as a repetition of necessary backgrounds and to circumvent possible ambiguities regarding
certain notations. Furthermore, there are slight differences in part of the terminology es-
tablished here in comparison to its usage in common literature. Apart from the preliminar-
ies introduced in this chapter, we assume the reader to be familiar with basic foundations
from complexity theory, such as O-notation and the concept of NP-hardness. For more
backgrounds in this area, we refer to standard works on these topics [GJ79, CLRS01].

In all what follows, we shall denote mathematical operations and sets as given in the
subsequent listing.

N = {0, 1, 2, . . . } Set of natural numbers including zero
N+ = N \ {0} Set of strictly positive integers
R Set of real numbers
R+ = {x ∈ R | x > 0} Set of strictly positive real numbers
R≥0 = R+ ∪ {0} Set of non-negative real numbers
log Logarithm with respect to base two

The remainder of this chapter is arranged as follows. First, basic definitions from graph
theory are given in Section 2.1. Note that some of the terminology presented here slightly
differs from similar definitions in common literature. Problems in the topic of finding
shortest paths and Dijkstra’s algorithm are presented in Section 2.2. We also formally
introduce the notion of search-space size and summarize basic lemmas that we shall need
in subsequent chapters of this thesis. In Section 2.3, Integer Linear Programming as a
well-established technique for representing and solving problem instances is introduced.

2.1 Graph Theory

Directed and Undirected Graphs. A (weighted, directed) graph is a triple G =
(V,E, ω) of two finite sets V and E ⊆ V × V and a mapping ω : E → R+. Elements
of V are called nodes or vertices, elements of E are called edges or arcs. Given an edge
(u, v) ∈ E, we call v the head and u the tail of (u, v). Furthermore, we say that u and v
are incident to (u, v). Nodes u and v connected via an edge (u, v) are also called neighbors.
The function ω assigns a positive real number ω(e) to each edge e ∈ E. The value ω(e) is

7



2. Preliminaries

called the weight of an edge e. Here, we assume that all edge weights are strictly positive.
In what follows, the weight ω((u, v)) of an edge (u, v) is abbreviated as ω(u, v). We denote
the cardinalities of V and E by |V | = n and |E| = m, respectively. If the weight function ω
of a graph is not the matter of concern, we omit it from the notation and write G = (V,E)
instead.

An undirected graph is defined as a directed graph G = (V,E, ω) that satisfies the property
that for all (u, v) ∈ E there exists an (v, u) ∈ E such that ω(u, v) = ω(v, u). Note that this
convention differs from the notation of undirected graphs that is commonly used in graph
theory. Contrary to the general representation of an undirected edge by a two-element set
{u, v}, we shall consider edges of an undirected graph to be composed of two opposing
directed edges (u, v) and (v, u). This differentiation is necessary for an accurate analysis
of the arc-flags algorithm presented in Chapter 3, for its behavior may depend on the
direction in which an edge is passed.

Degrees. Let G = (V,E, ω) be a graph. The in-degree of a node v ∈ V is defined
as in(v) = |{(u, v) ∈ E}|. Accordingly, we say that the out-degree of v is out(v) =
|{(v, u) : E}|. If G is undirected, the in-degree of each node v ∈ V equals its out-degree
and we simply speak of the degree of v.

Subgraphs. Let G = (V,E, ω) and G′ = (V ′, E′, ω′) be graphs. Then, G′ is a subgraph
of G if and only if V ′ ⊆ V , E′ ⊆ E and for all e′ ∈ E′ it is ω′(e′) = ω(e′).

Backward Graphs. The backward graph G with respect to a given graph G = (V,E, ω)
is defined as G = (V,E, ω) with the reverse edges E = {(v, u) | (u, v) ∈ E} and the weight
function ω : E → R+, where ω(v, u) = ω(u, v) for all (v, u) ∈ E.

Paths, Cycles, Distances and Shortest Paths. Given a graph G = (V,E, ω), a
path P = 〈v1, . . . , vk〉 of size k is defined as a finite sequence of nodes in V such that
(vi, vi+1) ∈ E for all 1 ≤ i < k. By |P | ≤ k we denote the number of distinct nodes
that are included in the path. A path P is called simple if no node occurs repeatedly in
P , i.e., |P | = k. We say that an s-t-path is unique if it is simple and there exists only
one simple s-t-path in G. We write (vi, vi+1) ∈ P for any edge (vi, vi+1) corresponding
to a consecutive pair of nodes in P . The weight or length of a path P is defined to be
ω(P ) =

∑k−1
i=0 ω(vi, vi+1). If for a given path Z = 〈v1, . . . , vk〉 the condition v1 = vk holds,

we say that Z is a cycle.

The distance mapping dG(s, t) : V × V → R≥0 for pairs of nodes s and t of G is defined as

dG(s, t) =


0 if s = t,

∞ if there is no path 〈s, v2, . . . , vk−1, t〉 in G,

minP=〈s,v2,...,vk−1,t〉 ω(P ) otherwise.

Thus, the distance between two distinct nodes s and t is the minimum length of a path P
such that P = 〈s, v2, . . . , vk−1, t〉, provided that any path from s to t exists. Otherwise, the
distance between s and t is infinite. Note that for directed graphs, in general dG(s, t) 6=
dG(t, s) holds. A path P is called a shortest path from s to t if ω(P ) = dG(s, t). If
dG(s, t) < ∞, we say that t is reachable from s. As long as the associated graph is clear
from the context, we omit the index G and write d(s, t) instead.

Connectivity. We say that a graph G = (V,E, ω) is strongly connected if for all u, v ∈ V
it is d(u, v) < ∞. In other words, a graph is strongly connected if any target node is
reachable from any source node. A graph G is connected if the graph G′ = (V,E ∪ E) is
strongly connected, i.e., if for every pair of nodes there exists a path connecting them if
one ignores edge directions.

8



2.2. The Shortest-Path Problem

Partitions. A partition of a set V into a set C ⊆ 2V of cells denotes the division of V
into disjoint subsets C ∈ C such that

⋃
C∈C = V . We shall refer to the sets C as cells of

G if G = (V,E, ω) is a graph and C is a partition of its nodes. We say that a cell C is
(strongly) connected if the graph (C,E ∩ (C × C)) is (strongly) connected.

Trees, Shortest-Path Trees, Directed Acyclic Graphs. We say that a graph T =
(V,E, ω) is an (undirected) tree if T is an undirected graph that is strongly connected
and the number of edges is m = 2(n − 1). Note that due to our definition of undirected
graphs stated above, we are forced to allow for two single directed edges per undirected
connection. Leaving aside these formal details, the definition of undirected trees given
here is similar to the usual one.

A graph G = (V,E, ω) is called a directed acyclic graph if G contains no cycles. We define
as directed tree rooted at node s any graph T = (V,E, ω) such that s ∈ V , d(s, v) <∞ for
all v ∈ V and the number of edges is m = n− 1. If T is a subgraph of an arbitrary graph
G = (V ′, E′, ω′) and we have V = {v ∈ V ′ : dG(s, v) < ∞} plus dT (s, v) = dG(s, v) for all
v ∈ V , T is called a shortest-path tree of s in G.

Given a directed or undirected tree T = (V,E, ω), a node v ∈ V is called a leaf of V if
in(v) = 1. The height of a node u ∈ V is h(u) = maxP=〈u,...,v〉,in(v)=1 |P | − 1. The height
of a rooted tree is the height of its root node.

2.2 The Shortest-Path Problem

Now, we consider the task of finding shortest paths between given nodes of a directed,
weighted graph. There are three particular problems that typically occur in this matter,
which are specified below.

1. The single-pair shortest path (SPSP) problem is to find for a given graph G =
(V,E, ω) and nodes s and t the distance d(s, t).

2. The single-source shortest path (SSSP) problem is to find for a given graph G =
(V,E, ω) and a node s the distances d(s, v) for all v ∈ V .

3. The all-pairs shortest path (APSP) problem is to find for a given graph G = (V,E, ω)
the distances d(u, v) for all pairs of nodes u, v ∈ V .

In the context of this work, we are interested in efficiently solving the SPSP problem.
In what follows we present Dijkstra’s Algorithm as the basis for later extensions. In
addition to that, we introduce the search-space size as a simple theoretical measure to
estimate running times of shortest-path queries. Finally, basic lemmas for later studies are
established, concerning the search-space size induced by Dijkstra’s algorithm on strongly
connected graphs and the sum of the sizes of subpaths of a given path.

2.2.1 Dijkstra’s Algorithm

Probably the most well-known algorithm for computing shortest paths is Dijkstra’s algo-
rithm [Dij59]. It solves the single-source shortest path problem on directed graphs with
non-negative edge weights. Algorithm 2.1 depicts pseudo code for a variant of Dijkstra’s
algorithm that not only computes the demanded distances, but additionally outputs a
shortest-path tree that covers shortest paths from the source node to any reachable node
in the graph.

The algorithm’s interface works as follows. It requires as input a weighted directed graph
G and a source node s. The output consists of two arrays d(·) and pred(·), both of which
are of size n. After the execution of Algorithm 2.1, the value of d(v) for each node v equals
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Algorithm 2.1: Dijkstra

Input: Graph G = (V,E, ω), source node s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0

// Main loop

6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if d(u) + ω(u, v) < d(v) then

10 d(v)← d(u) + ω(u, v)
11 pred(v)← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, d(v))

14 else
15 Q.insert(v, d(v))

the distance from s to v. For any reachable target node t, the algorithm also computes
and outputs an actual shortest path that starts at node s. More precisely, the output
given by vector pred(·) encodes a shortest-path tree with root s. After execution of the
algorithm, pred(v) contains for each node v 6= s its parent node in a shortest-path tree
if v is reachable from s, otherwise it contains a distinct value null. Thus, the graph
T = (V ′, E′), with V ′ = {v ∈ V | d(s, v) < ∞} being the set of all nodes reachable from
s and E′ = {(pred(v), v) | s 6= v ∈ V ′} being the edges determined by the vector pred(·)
returned by Dijkstra’s algorithm, is the desired shortest-path.

Description of the Algorithm

The algorithm makes use of a priority queue that manages pairs (o, i) of objects and integer
keys. Although we do not specify the implementation of the priority queue, it is expected
to provide the following operations.

• insert(v, i) inserts the object v with key i into the priority queue.

• deleteMin() returns the object with the minimum key value and removes it from
the queue.

• contains(v) returns a boolean value, which is true if and only if object v is held
in the queue.

• decreaseKey(v, i) sets the key of object v to i. The input parameters are valid
only if v is contained in the queue and i is not greater than its current key.

In our context, the priority queue maintains nodes with tentative distance labels as keys.
With a suitable priority queue implementation in place, Dijkstra’s algorithm works as
described below. At first, the necessary data structures are initialized. All tentative
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distance labels d(·) except for d(s) are initialized at infinity. The source distance label
is set to d(s) = 0. Then, the source node s is inserted into the priority queue. After
this initialization phase, the main phase of the algorithm starts. As long as there are
unprocessed nodes, i.e., the priority queue contains at least one more node, a node u
with minimum tentative distance label d(u) is extracted from the queue. We say that a
node is settled once that it is removed from the queue. In the next step, any edge (u, v)
outgoing from u is checked for whether it provides a path to v that is shorter than the
shortest distance d(v) found so far. If this is the case, the according edge is relaxed, i.e.,
the tentative distance of v is set to d(u) + ω(u, v) and u is made the parent node of v in
the shortest-path tree. The queue entry of v is decreased if it exists, or v is enqueued with
key d(v) if it is not contained in the queue yet. This main loop is repeated until no nodes
are left in the queue.

Asymptotic Complexity of Dijkstra’s Algorithm

The correctness of Dijkstra’s algorithm is based on the provable fact that d(s, v) = d(v)
as soon as the node v is settled. The running time of Dijkstra’s algorithm depends on the
implementation of the priority queue. A naive implementation with delete operations
that have a time complexity linear in the number of elements in the queue yields a running
time of O(n2). Using more sophisticated Fibonacci heaps [TF87], the time complexity of
Dijkstra’s algorithm can be reduced to O(m+n·log n). For a detailed analysis of Dijkstra’s
algorithm and its complexity see the chapter on the single-source shortest path problem
in the book by Cormen et al. [CLRS01].

Breaking Ties in the Priority Queue

A matter that has not been dealt with so far is the behavior of the priority queue when
the minimum key of the object to be deleted cannot be uniquely determined, i.e., there
exist two or more nodes in the queue with the minimum key. Dijkstra’s algorithm remains
correct regardless of the order in which nodes are returned in this case. However, in all
what follows we shall assume that there is a fixed total order ≺ on any regarded set of
nodes V , such that a node u in the priority queue is extracted on calling deleteMin() if
and only if for all v in Q it is either d(u) < d(v) or d(u) = d(v) and additionally u ≺ v.
Furthermore, we denote by u � v that u ≺ v or u = v. We simply assume that the order
≺ is induced by increasing node indices encoded in a given input graph G = (V,E, ω).

The Stopping Criterion for Dijkstra’s Algorithm

As mentioned above, Dijkstra’s algorithm solves the SSSP problem on a given graph.
Though, in the subsequent chapters of this work we are interested in a query algorithm
that solves the SPSP problem. Clearly, the algorithm described above can be used to
handle such queries for a given source node s and a target node t. However, since we are
only interested in one particular shortest path, Dijkstra’s algorithm may possibly perform
more work than necessary. A simple modification of Algorithm 2.1 in order to gain a
first speed-up works as follows. The so-called stopping criterion permits to abort the
computation as soon as the target node t is extracted from the priority queue. Since
we know that d(t) = d(s, t) holds once that t is settled, this can safely be done without
violating correctness. The stopping criterion can be applied independent of the arc-flags
approach presented below and may thus be used in any SPSP query based on Dijkstra’s
algorithm. Although the stopping criterion does not improve the asymptotic running time
of the algorithm, it is commonly used in practice, because it can greatly reduce query
times.
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2.2.2 Search-Space Size

Despite the fact that Dijsktra’s algorithm has a polynomial asymptotic running time, its
performance on large-scale networks is still impractical on modern hardware. Although
there are no established superior bounds for most speed-up techniques used in practice,
they all outperform from Dijkstra’s algorithm in terms of query times. Furthermore, for
practical concerns, constant factors can be of vast significance. Hence, it appears useful
to introduce more accurate measures for the time complexity of speed-up techniques.
Considering Dijkstra’s algorithm, one finds that its running time is dominated by the
operations performed in its main loop. Regardless of the concrete hardware of a machine
that would execute the algorithm, query times should be proportional to the number of
settled nodes and inspected edges. Let the search space of a distinct query be the set
U ⊆ V of nodes that are settled by Dijkstra’s algorithm. Then the size |U | of this set can
be interpreted as an abstract measure of the hypothetical running time of this query. A
formal definition to embody this idea is given below.

Definition 2.1 (Dijkstra Search-Space Size). Let G = (V,E, ω) be a graph and s, t ∈ V
two nodes in G. The search-space size SDij(G, s, t) is defined as the number of nodes settled
by Dijkstra’s algorithm in a query with source node s and target node t when the stopping
criterion is applied. Accordingly, S+

Dij(G, s, t) denotes the number of settled nodes if the
stopping criterion is not in use. Furthermore, we define SDij(G) =

∑
s,t∈V SDij(G, s, t) and

S+
Dij(G) =

∑
s,t∈V S+

Dij(G, s, t).

If the underlying graph G is clear from the context, we shall omit it from the notation and
instead simply write SDij(s, t) and S+

Dij(s, t), respectively. As a simple example, imagine
the search-space size of a query between an arbitrary pair of nodes s and t of a given graph
G = (V,E, ω). Assuming that the stopping criterion is in place and recalling that there is
an order ≺ that determines the sequence in which nodes with the same distance label are
extracted, we get a search-space size

SDij(G, s, t) = |{v ∈ V | d(s, v) < d(s, t) ∨ (d(s, v) = d(s, t) ∧ v � t)}| .

One could argue that the number of edges that must be inspected in a query may in fact
dominate the running time. In the following, we provide reasons to prefer the investigation
of the search-space size induced by nodes rather than edges, as defined above.

• Established hardness results on preprocessing of speed-up techniques use the search-
space size stated in Definition 2.1. Hence, we can use these known facts as the
starting point of our work, whereas an alternative notion would force us to start
from scratch.

• Many graphs that occur in practice are sparse, i.e., for the number of edges of such
graphs it is m ∈ O(n). Especially, this assumption can safely be made in road
networks, which are the main application of the speed-up techniques considered here
and the arc-flags algorithm in particular.

• The search space is a rather complex structure that involves the detailed behavior
of Dijkstra’s algorithm. Taking account of edges rather than nodes would possibly
even increase complexity and render a formal analysis less clear and understandable.

Altogether, it appears reasonable to consider the search-space size as introduced in Defini-
tion 2.1. Guided by this argumentation, we stick to this node-based definition in all what
follows.

12



2.2. The Shortest-Path Problem

2.2.3 Basic Lemmas

The following two lemmas provide basic statements that are going to be useful throughout
the subsequent chapters. At first, we investigate the search-space size of Dijkstra’s Algo-
rithm on an arbitrary strongly connected graph. Somewhat surprising at first glance, the
search-space size only depends on the size of the considered graph in this case.

Lemma 2.2. Let G = (V,E, ω) be a strongly connected graph. Then the search-space sizes
of Dijkstra’s Algorithm with respect to G are S+

Dij(G) = n3 and SDij(G) = n2(n+ 1)/2.

Proof. To begin with, we examine the case where the stopping criterion of Dijkstra’s
algorithm is omitted. Consider an arbitrary s-t-query on G. Because the graph is strongly
connected, every node of V eventually gets extracted from the priority queue. Thus, the
number of settled nodes of an arbitrary s-t-query is S+

Dij(s, t) = n. Since there are exactly

n2 distinct pairs of nodes s and t in V , we immediately obtain

S+
Dij(G) =

∑
s,t∈V

S+
Dij(G, s, t) = n3. (2.1)

Now consider a fixed node s in V and assume that the stopping criterion is applied. Then
the query is aborted once that the target node t is reached in an s-t-query. Since the order
in which the nodes get extracted from the queue in any query from s is independent of t,
we can assign a rank i ranging from 1 to n to each node of the graph that represents its
position in this order. Then there are n possible target nodes for a query starting at s and
each of them has a distinct rank in {1 . . . n}. This yields the search-space size regarding
all queries with the source node s given below.

∑
t∈V

SDij(G, s, t) =
n∑
i=1

i =
n(n+ 1)

2

Since this holds for any of the n possible source nodes, we get the overall search-space size
of G for the algorithm Dijkstra.

SDij(G) =
∑
s,t∈V

SDij(G, s, t) = n · n(n+ 1)

2
(2.2)

Given Equations 2.1 and 2.2, the proof is complete.

The next lemma summarizes the sizes of all distinct paths contained in a graph that
consists of a single chain of nodes. This lemma is used in Chapters 4 and 6.

Lemma 2.3. Let P = (V,E, ω) be a graph where the sets of nodes and edges are V =
{v1, . . . , vn} and E = {(vi, vi+1), (vi+1, vi) | 0 < i < n}, respectively. For arbitrary u, v ∈
V , let Pu,v denote the unique path from u to v. The sum of all distinct path sizes in P is∑

u,v∈P |Pu,v| = n3/3 + n2 − n/3.

Proof. For a given graph P that consists of a single undirected path, we enumerate the
sizes of all distinct paths as follows. There are exactly two paths of size n, namely the paths
〈v1, . . . , vn〉 and 〈vn, . . . , v1〉. Analogously, we have exactly the four paths 〈v1, . . . , vn−1〉,
〈v2, . . . , vn〉, 〈vn−1, . . . , v1〉, 〈vn, . . . , v2〉 of size (n − 1) and so forth. Finally, we have to
account for 2(n − 1) paths of size 2. In addition to that, there are n paths of size 1,
i.e, paths where source and target node are identical. Note that the latter case forms an
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exception, because we do not have to distinguish two directions. The sum of all these path
sizes is summarized below.

∑
u,v∈C

|Pu,v| = n+ 2
n−1∑
i=1

(n− i)(i+ 1)

= n+ 2

(
n
n−1∑
i=1

i+
n−1∑
i=1

n−
n−1∑
i=1

i2 −
n−1∑
i=1

i

)

= n+ n3 − n2 + 2n2 − 2n− 1

3

(
2n3 − n2 − 2n2 + n

)
− n2 + n

=
1

3
n3 + n2 − 1

3
n

This is what we claimed in the lemma.

2.3 Linear Programming

A well-established approach for solving hard problems is the translation of given problems
into linear programs, hereafter abbreviated as LP. The two main reasons for widespread
use of this approach are that on one hand many problems can be naturally expressed as
linear programs and on the other hand much effort has been spent to develop and engineer
solvers for linear programs. In many cases, these solvers provide practically tractable
running times for exact solutions or high quality approximations for input instances of
moderate size. This section provides a brief problem definition of linear programming.
For a more detailed analysis of linear programming and its complexity see, for example,
the books of Nemhauser and Wolsey [NW88] or Schrijver [Sch86].

Specification of a Linear Program

Linear programming is an optimization problem in which one has to minimize an objective
function under certain constraints. The goal is described by a linear objective function of
the following form, where c = (c1, . . . , cn)> ∈ Rn is a vector of constant coefficients and
x = (x1, . . . , xn)> is a vector of variables.

minimize c> · x

Minimizing the given objective has to be done subject to a number of constraints expressed
by inequalities of the form given below, with a matrix A ∈ Rm×n of constants and a vector
b = (b1, . . . , bn)> ∈ Rn of constants.

A · x ≥ b
x ≥ 0

Constraints of the form a · x ≤ b can be easily constructed if necessary by multiplying
a whole inequality by −1. Furthermore, a constraint a · x = b can be expressed by two
constraints a · x ≥ b and a · x ≤ b. The range of values that feasible solutions of the vector
x may take determines the hardness of a linear program. If x is allowed to be any vector
in Rn, the linear program is solvable in polynomial time. However, if some or all of the
coefficients of x are required to be integers, optimizing the LP is NP-hard in general. If
all variables in x are integers, the LP is called an integer linear program (ILP). If some
coefficients of x are restricted to be in Z, while others are allowed to be in R, the LP is
called a mixed integer linear program (MILP).
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Duality of Linear Programs

Given a linear program in the form shown above with the vector b of constants, its dual
linear program is defined by the objective function given below, where y = (y1, . . . , ym)> ∈
Rm is a new vector of variables.

maximize b> · y

The objective function is maximized subject to the following constraints, where A is the
constant matrix and c the coefficient vector from the primal LP defined above.

A> · y ≤ c
y ≥ 0

The dual program of an arbitrary LP has the property that all its feasible solutions are
smaller or equal than all feasible solutions to the primal one. Furthermore, if there exists
an optimal solution it is equal for both of them. These facts can be useful in the analysis
of a problem and the design of approximation algorithms for hard problems [Vaz03].
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One successful method for improving the performance of shortest-path queries is the ad-
dition of a vector of so called arc flags to every edge of the graph. When searching for
a certain target node, arc-flags provide auxiliary information about whether a given edge
might be part of a shortest path to that target.

The layout of this chapter is organized as follows. The following Section 3.1 provides a
formal introduction of the arc-flags algorithm. At first, a brief description of the general
ideas and conditions of speed-up techniques in general is given. Thereafter, we formally
introduce the arc-flag based approach as an enhancement of Dijkstra’s algorithm. Since
arc-flags constitute additional information that is not part of the original input graph, they
must be computed in advance. A simple way to determine valid arc-flags in a preprocessing
step is explained. We finally state in Section 3.2 the problem of filling one crucial degree of
freedom during this preprocessing, in order to achieve best possible average search-space
sizes during the query phase.

3.1 The Arc-Flags Algorithm

We consider the following realistic scenario. We are given a large, static input graph and
assume that the SPSP problem has to be solved many times for yet unknown different
pairs of source and destination nodes of this graph. In the following, we describe a general
concept for attacking this problem.

Scenario

Although Dijkstra’s algorithm can solve the SPSP problem and has sub-quadratic asymp-
totic time complexity on arbitrary graphs, its running time on large realistic graphs is
prohibitive for practical applications. We thus split the routing algorithm into two parts.
We allow for a possibly expensive precomputation phase that enables us to enrich the
graph by some additional information before pairs of source and target nodes are known.
In the subsequent query phase, this data can be used in any query to improve the per-
formance of the underlying algorithm. Methods that implement this approach are called
speed-up techniques. Note that this scenario in fact facilitates breaking the barrier of the
asymptotic run-time of Dijkstra’s algorithm considering single queries. For example, given
a certain graph we could easily achieve query times in O(1) if we simply precomputed all
distances d(s, t) and one shortest path for each pair of nodes in advance. However, this

17



3. Problem Statement

would require an amount of storage that is at least quadratic in the number of nodes and
thus impractical on large graphs containing several millions of nodes and edges. Instead,
one wants to find a compromise that delivers a fair trade-off between the following generic
parameters.

• The precomputation time must be practicable.

• The memory consumption necessary to store the auxiliary information should be
linear in the number of nodes and edges of the graph.

• The achieved query times should be low.

One speed-up technique that yields such a trade-off is realized by the addition of so-called
arc-flags to every edge of the graph. The functionality of this approach is presented in the
following.

3.1.1 Arc-Flag Based Queries

Arc-Flags provide a speed-up technique based on Dijkstra’s algorithm that is used for
SPSP queries on undirected and directed graphs as specified in Chapter 2.1. It was first
introduced by Lauther [Lau97, Lau04] and has ever since been studied and revised several
times, as summarized in Chapter 1.1. The original approach designed for large, static
graphs is described below.

Introduction of Binary Flag Vectors

The graph is initially partitioned into a fixed number of k cells. An example of a graph
partition into four cells is shown in Figure 3.1. In an s-t-query, we shall refer to the cell
that the target node belongs to as the target cell. The basic idea behind this approach
is to provide information for every edge of the graph that enables the query algorithm to
decide whether this edge may possibly be part of a shortest path to any node of the target
cell. If this is not the case, the corresponding edge is ignored by the algorithm.

C1 C2

C3 C4

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10
v11

v12

Figure 3.1: A simple example of a graph partition. The graph is divided into four cells
C1 = {v1, v2, v3}, C2 = {v4.v5, v6, v7}, C3 = {v8, v9} and C4 = {v10, v11, v12}.

Given a graph G = (V,E, ω) and a partition C = {C1, . . . , Ck} of G, we assign a distinct
number in {1, . . . , k} to each cell and define a mapping c : V → {1, . . . , k} such that c(v)
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is the number of the cell that v belongs to. Storing this information clearly requires space
linear in n. Furthermore, we enrich each edge e of the graph by a vector Fe(·) of k binary
flags construed as boolean values. Thus, the additional memory consumption necessary
for these arc-flags amounts to k ·m bits and therefore is linear in m. We interpret that
F(u,v)(c(t)) = 1 means that the edge (u, v) might be important in any query with the
target node t. Let SPs,t denote the set of all shortest s-t-paths in a given graph. Every
flag is then supposed to fulfill the following property to retain correctness of the query
algorithm.

∀s, t ∈ V : SPs,t 6= ∅ ⇒ ∃P ∈ SPs,t : ∀(u, v) ∈ P : F(u,v)(c(t)) = 1 (3.1)

By satisfying this expression we ensure that for any pair of source and target nodes, there
exists at least one shortest path for which the flags corresponding to the target cell are
set to 1 on all of its edges. We say that flags fulfilling this property are correct. Figure
3.2 shows an example of correct flags for the cell assignment of the graph depicted in
Figure 3.1. There is a vector of four binary flags added to each edge of the graph with the
values according to the cells C1 to C4 from left to right. A flag value of 1 for a cell Ci at
an edge e is equivalent to the boolean value true, a value of 0 represents the value false.

C1 C2

C3 C4

v1

v2

1 0 0 0

v3

1
1
1
1

1
1

1
1

v4
0 1 0 0

v5

0 1 0 0

v6

1
1

1
1

0
1
1
1

1 1 0 0 v7

v8

1
0

0
0

1
1

0
1

v9

0
0
1
1

v101 1 1 0

0
0

1
1

0
1

1
1

0
1
0
1

v11

1 1 1 1

1
1

1
1

v12

0 0 0 1
0
0
0
1

Figure 3.2: The example graph from Figure 3.1 with correct arc-flags, provided that edge
weights are uniform.

The Query Algorithm

Provided that correct arc-flags are given for an input graph, the arc-flag based query
algorithm is a simple modification of Dijkstra’s algorithm. Algorithm 3.1 depicts pseudo
code of a version of the arc-flags algorithm that additionally makes use of the stopping
criterion introduced in Chapter 2.2 to further reduce the execution time. The algorithm
works analogous to the plain version Dijkstra, with only one important modification.
Before an edge is relaxed, we check if its flag corresponding to the target cell is set. If it
is not, we may safely omit that edge and continue with the next step of the algorithm.
Equation 3.1 ensures that a shortest path is still found. So, Algorithm 3.1 always returns
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the correct distance from s to t. Note that distance labels other than d(t) may hold
incorrect distances after execution of the algorithm. This is due to the fact that certain
edges are possibly skipped as well as the termination of the algorithm once that t is settled.

Algorithm 3.1: ArcFlags

Input: Graph G = (V,E, ω), cell assignment c(·), source node s, target node t
Data: Priority queue Q
Output: Distance d(s, t) given by d(t), shortest path from s to t given by pred(·)
// Precondition: Correct flags are known for all edges.

// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0

// Main loop

6 while Q is not empty do
7 u← Q.deleteMin()
8 if u = t then
9 return

10 forall (u, v) ∈ E do
11 if F(u,v)(c(t)) = 1 ∧ d(u) + ω(u, v) < d(v) then

12 d(v)← d(u) + ω(u, v)
13 pred(v)← u
14 if Q.contains(v) then
15 Q.decreaseKey(v, d(v))

16 else
17 Q.insert(v, d(v))

To construct the shortest s-t-path, starting at t one simply has to follow all parents given
by pred(·) until s is reached. Note that Equation 3.1 leaves a degree of freedom in the
concrete choice of flags, so that in case of multiple shortest paths, the path found by
Algorithm 3.1 may differ from that returned by plain Dijkstra.

3.1.2 The Preprocessing Step

The preprocessing algorithm must ensure that, given a partition C, Equation 3.1 is satisfied.
The easiest way to do so would be to simply set all flags to true. Obviously, this would not
yield any speed-up. Instead, one would like to set as many flags as possible to false, so that
Algorithm 3.1 would skip many edges while Equation 3.1 is still preserved. As mentioned
above, whenever there exists more than one shortest path between any pair of nodes,
Equation 3.1 leaves a degree of freedom in the choice of the path for which flags should be
set to maintain correctness. The problem of filling this degree of freedom optimally, i.e.,
assigning correct flags to edges for a given partition of the graph such that the expected
search-space size of Algorithm 3.1 is minimized, is NP-hard [BCK+10, Bau10]. However,
this problem is not a matter of concern in our context, so we are rather interested in a
simple preprocessing algorithm that yields appropriate arc-flags.

There are several approaches for precomputing correct arc-flags. The basic idea is to
compute all shortest paths to each distinct nodes of a cell in order to determine the flags
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C3

v8

(a) Backward-shortest-path tree with root v8

C3 v9

(b) Backward-shortest-path tree with root v9

Figure 3.3: The backward-shortest-path trees that determine the flags for the cell C3 of
Figure 3.1 if all edge weights are assumed to be uniform. Edges drawn in bold
are part of the corresponding tree.

that must be set to maintain correctness. For an overview of different approaches see a work
of Hilger et al. [HKMS09]. Another recently published approach named PHAST yields
a method for practically tractable computation of all-pairs shortest paths [DGNW11]. In
general, preprocessing algorithms used in practice are sophisticated procedures which aim
at a reduction of the preprocessing time.

Since we do not focus on preprocessing time in this thesis, we present a very simple
procedure. Throughout this work, we shall assume that arc-flag vectors of all encountered
graphs were computed this way. The basic idea of our preprocessing algorithm is as follows.
Given an input graph G = (V,E, ω), we run Dijkstra’s algorithm on the backward graph
G once for each node t ∈ V . After each run, for every edge (v, u) of the backward-
shortest-path tree computed by Dijkstra we set F(u,v)(c(t)) = 1 for the corresponding
edge (u, v) of the original graph. This yields correct flags which guarantee to cover at least
one shortest path for each pair of nodes. For an example see Figure 3.3. The drawings
show the backward-shortest-path trees rooted at nodes v8 and v9, respectively. Any edge
that is part of at least one of these trees has the flag for the cell C3 set to true in the
query algorithm, see also Figure 3.2.

3.2 The Problem ArcFlagsPartition

In the preprocessing procedure presented in Section 3.1.2, it was assumed that a certain
partition is given. However, the choice of the partition has a major influence on the
expected running times of the queries performed later. For example, assigning every node
of the graph to the same cell yields a valid partition. Obviously, using this partition would
create approximately no gain from using arc-flags at all, since only those edges that never
belong to a shortest path would be skipped in the query phase. Assigning each node to
its own cell would lead to a contrary result. In this case, the preprocessing algorithm
explained above ensures that the only edges visited by the query algorithm would be those
actually belonging to one shortest path from s to t. Using n cells this way can be viewed as
encoding a solution of the APSP problem. However, the existence of n cells would imply
a memory consumption of m · n bits, which is prohibitive for large graphs. We therefore
assumed that the number of cells is limited by a fixed number k in Section 3.1.1.
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3. Problem Statement

3.2.1 Optimizing Partitions for Arc-Flags

The task is to find a good partition of a given graph when the number of cells is limited by
a positive integer k. Finding a good partition means to find a cell assignment that yields
low search-space sizes. Note that so far we have only defined the search-space size with
respect to Dijkstra’s algorithm. In the following, we formally specify the search-space size
of ArcFlags. Along the lines of Definition 2.1, we introduce two different notions for
both Algorithm 3.1 and a variant of it that does not use the stopping criterion.

Definition 3.1 (Arc-Flags Search-Space Size). Let G = (V,E, ω) be a graph, C a partition
of G and s, t ∈ V two nodes in G. The search-space size SAF(G, C, s, t) is defined as the
number of nodes settled by the arc-flags algorithm in a query with source node s and target
node t when the stopping criterion is applied. Accordingly, S+

AF(G, C, s, t) denotes the
number of settled nodes if the stopping criterion is not in use. Furthermore, we define
SAF(G, C) =

∑
s,t∈V SAF(G, C, s, t) and S+

AF(G, C) =
∑

s,t∈V S+
AF(G, C, s, t).

Again, in the case of the underlying graph G or the partition C being clear from the
context, we may omit both from the notation and instead write SAF(s, t) and S+

AF(s, t),
respectively. Compared to the search-space size according to Dijkstra’s algorithm, things
become be little more complicated with regard to arc-flags. Since edges are skipped if their
target cell flag is set to 0, we can interpret the query as a plain Dijkstra that runs on
a modified, cell-dependent graph GC . Given the input graph G = (V,E, ω), all original
edges of E without the set target flag are removed in GC . Hence, we may define the graph
Gc(t) = (V,Ec(t), ω) induced by the target cell c(t) using the following set Ec(t) of edges.

Ec(t) = {e ∈ E | Fe(c(t)) = 1)}

Note that we abuse notation here, because c(t) is a number, whereas C denotes a set of
nodes. Formally, we define GC as the graph Gc(t) for an arbitrary node t ∈ C. This
enables us to describe the total search-space size of the arc-flags algorithm when a certain
cell assignment is given. The search-space size of an s-t-query then is

SAF(G, C, s, t) = SDij(Gc(t), s, t).

Retrieving an Optimal Partition

In what follows, we concentrate on the problem of minimizing SAF(G, C, s, t) by choosing
a partition C for a given graph G. As we discussed before, the number of nodes the arc-
flags algorithm extracts from the queue until the target is reached has a large influence on
the running time of the query. Therefore, we interpret the search-space size as a simple
measure of the algorithm’s actual running time. Thus, when aiming for a partition that
yields good performance, we are looking for a partition such that SAF(G, C, s, t) is as small
as possible for any pair s, t. Here, we shall focus on minimizing the average search-space
size. Assuming that source and target nodes s and t are picked uniformly at random, the
expected search-space size apparently is

E(SAF(G, C, s, t)) =
SAF(G, C)

n2
.

Consequently, minimizing the expected search-space size of a random query is equal to
minimizing SAF(G, C, s, t). Similar observations hold for all different kinds of search-
space sizes introduced in Definitions 2.1 and 3.1. For an example, recall the arc-flags
depicted in Figure 3.2 based on a given underlying partition C. The total search-space
size when using this partition sums up to SAF(C) = 532 if ties are broken according to the
node indices. When aiming at minimal search-space size, a better partition is given by
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Copt = {{v1, v3, v6, v8}, {v2, v4, v5}, {v7, v10, v11}, {v9, v12}}. This yields a search-space size
of SAF(Copt) = 469. As long as the number of cells is restricted to 4, this is the best we
can get. Below, we formalize the problem of minimizing the average search-space size.

Problem ArcFlagsPartition. Given a graph G = (V,E, ω) and a positive integer k,
find a partition C of G such that |C| ≤ k and SAF(G, C) is minimized.

We call such a partition that minimizes the search-space size of Algorithm 3.1 optimal or
search-space optimal. The remainder of this work is essentially devoted to the problem
ArcFlagsPartition and its complexity.

3.2.2 Investigating Approaches From Practice

The problem ArcFlagsPartition is known to be NP-hard [BCK+10, Bau10]. Prepro-
cessing algorithms used in practice therefore solve this problem heuristically. Möhring et
al. examine different strategies to obtain partitions that yield proper query times, some
of which require or generate a two-dimensional layout of the graph [MSS+05]. Besides
the demand of an efficient procedure to compute a useful partition, these heuristics follow
some intuitive ideas of what such a partition should look like. These ideas are summarized
below. For a more detailed description see Hilger et al. [HKMS09].

• All cells should contain approximately the same number of nodes.

• Cells should be connected subgraphs.

• Connections between cells are supposed to be sparse. This allows an efficient com-
putation of correct arc-flags.

• The number of flags set to 1 should be as small as possible.

Although following these guidelines yields feasible cell assignments for common instances
appearing in practice, none of these intuitions can guarantee to imply an optimal solution.
In fact, the optimal solution may differ substantially in any of the criteria listed above.
Figure 3.4 yields four examples of such graphs. Their optimal solutions each inevitably
violate one of the properties listed above. Below, we examine these examples.

G1 G2 G3

(1, 0)

(1, 1)

(1, 0)

(0, 1)

G4

Figure 3.4: Four graphs with their search-space optimal partitions when the number of
cells is restricted to 2.

First of all, we see a large difference in the cell sizes of the optimal partition of G1. Note
that even if the size of the cycle is increased arbitrarily, one of the cells in the optimal
partition always consists of the central node only. This is due to the fact that the search-
space size within the directed cycle cannot be reduced by the addition of arc-flags, see
also Chapter 4. The graph G2 shows an optimal partition that contains a cell that is not
strongly connected. In graph G3, the set of edges connecting nodes of different cells in
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the optimal partition even contains all edges of the graph. The optimal cells of G4 induce
a total number of five flags that are 1, whereas assigning all nodes of the graph to the
same cell would lead to a worse search-space size with only four flags set to 1. As already
mentioned for the graph G1, one can construct similar examples in all cases including
graphs of arbitrary size. Hence, optimizing any of the criteria listed above alone is not
fruitful in general. Furthermore, without giving examples, we note that one can construct
graphs in which an optimal partition must even violate several of the criteria listed above.
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4. Search-Space Optimal Cells on
Restricted Graph Classes

The problem of finding search-space optimal cells on arbitrary graphs is known to be NP-
hard [BCK+10, Bau10]. A logical next step thus is to investigate the problem of computing
optimal cells if we restrict the set of admissible input instances. In particular, after a few
preliminary steps provided in the following Section 4.1, we show how to optimally assign
cells on graphs that consist of a single path of arbitrary size in Section 4.2. Afterwards, we
turn to the problem of finding optimal cells on undirected trees in Section 4.3. The main
result is the NP-hardness of the problem ArcFlagsPartition even if input graphs are
restricted to undirected trees. The chapter is then completed by a short review of other
restricted graph classes and concluding remarks in Section 4.4.

4.1 Fundamentals for this Chapter

Before turning to the problem of finding search-space optimal cells on graphs with spec-
ified properties, we establish some lemmas that turn out to be useful throughout this
chapter. Afterwards, we introduce specific terminology that is going to be helpful in our
investigations.

Basic Lemmas on Convex Functions

In the upcoming sections, the problem of distributing a given number of nodes to cells
will occur repeatedly. We know from Lemma 2.2 that the search-space size is at least
quadratic in the number of nodes of the graph. We are going to face many other situations
in which the search-space sizes can be expressed by a polynomial function of the cell sizes.
Therefore, we substantiate some claims that are going to be useful in these situations.
First of all, recall that a convex function is defined as follows.

Definition 4.1. A function f : I → R defined on an interval I ⊆ R is convex, if for all
x1, x2 ∈ I and for λ ∈ [0, 1], it is f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

Moreover, we say that a given function f : I → R is increasing on I ⊆ R if for all x1 ≥
x2 ∈ I it is f(x1) ≥ f(x2). Lemma 4.2 states a basic fact for convex functions that in turn
is helpful for the proof of the subsequent Lemma 4.3.

Lemma 4.2. Let f : R≥0 → R be a function that is convex on R≥0. Then the difference
quotient (f(x0 + h)− f(x0))/h of f is non-decreasing in x0 for any fixed h.
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4. Search-Space Optimal Cells on Restricted Graph Classes

Proof. If a function f : R≥0 → R is convex, the following inequation holds for all x1 <
x2 < x3 ∈ R≥0.

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2

A formal proof of this fact can be found, for example, in a book by Browder [Bro96].
Setting x2 = x1 + h and x3 = x2 + h, we immediately obtain

f(x1 + h)− f(x1)

h
≤ f(x2 + h)− f(x2)

h

for any x1 < x2 ∈ R≥0. This proves our claim.

The following lemma provides a crucial statement about the sum of several functional
values of a convex function. Later on, this function shall represent search-space sizes
induced by a set of cells. Furthermore, Lemma 4.3 immediately implies the statement of
Corollary 4.4, which follows next.

Lemma 4.3. Let f : R≥0 → R≥0 be a cost function that is convex and increasing on R≥0.
Let x and n be two fixed positive integers. Furthermore, let X = {x1, . . . , xn} be a set
of positive integers subject to

∑n
i=1 xi = x. Then the total cost Γ =

∑n
i=1 f(xi) is non-

decreasing if the values xi are modified subject to one of the following rules while main-
taining the constraints

∑n
i=1 xi = x and xi ≥ 0 for all xi ∈ X.

1. Two arbitrary values xi and xj are swapped.

2. Given two integers xi, xj with xi ≥ xj and a number d ∈ N+, the value xi is increased
by d while xj is decreased by d.

Proof. Clearly, swapping two elements of X has no influence on the cost Γ. Thus, we can
concentrate on the latter case.

For the second case, assume we are given two values xi, xj such that xi ≥ xj holds.
Obviously, the resulting cost after increasing xi and decreasing xj by the same value
d ∈ N+ is equal to

Γ′ = Γ + f(xi + d)− f(xi) + f(xj − d)− f(xj).

Since f is increasing in R≥0, we know that we have f(xi + d) − f(xi) ≥ 0 and similarly
f(xj − d)− f(xj) ≤ 0. Consequently, all we need to show is that

|f(xi + d)− f(xi)| ≥ |f(xj)− f(xj − d)|

holds for any xi ≥ xj . This, however, is clear because we demanded that f is convex and
thus the difference quotient

g(x) =
f(x+ h)− f(x)

h

is non-decreasing in x for fixed h. We set h = d and x = xi or x = xj−d, respectively. Since
xi ≥ xj implies g(xi) ≥ g(xj − d) and due to the constraints of the lemma g(xj − d) ≥ 0
holds, we obtain the following desired result.

|f(xi + d)− f(xi)| = d · g(xi) ≥ d · g(xj − d) = |f(xj)− f(xj − d)|

This completes the proof.
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Assume we are given a set X = {x1, . . . , xn} of natural numbers with xi ∈ {bx/nc , dx/ne}
for all xi ∈ X such that their sum equals x and a cost function Γ as in Lemma 4.3. Using
steps 1 and 2 from the lemma, we can create any set of values xi that fulfills the constraint∑n

i=1 xi = x. In each of these steps, the overall cost is non-decreasing. Hence, we minimize
a given convex, increasing cost function if all values xi are as close to bx/nc as possible.
Corollary 4.4 follows directly from this observation. It turns out to be useful in Sections
4.2 and 4.3.

Corollary 4.4. Let f : R≥0 → R≥0 be an increasing, convex function and x and n two
positive integers. For any set X containing n positive integers xi subject to the constraint∑n

i=1 xi = x, the cost
∑n

i=1 f(xi) is minimized if xi = dx/ne for i ≤ x mod n and xi =
bx/nc for i > x mod n.

Additional Terminology

In the proofs of the sections below we are going to make use of an alternative notion of
the search-space size. The following definition therefore introduces the penalty of a query.

Definition 4.5 (Penalty). Let G = (V,E, ω) be a graph such that for all s, t ∈ V there
is exactly one simple path from s to t and let Ps,t denote this path. Furthermore, let C
be a partition of G. We say that the penalty of a tuple (s, t) ∈ V × V is penC(s, t) =
SAF(G, C, s, t)− |(Ps,t)|.

The path Ps,t in Definition 4.5 denotes the unique shortest path from s to t. Consider an
s-t-query of the algorithm ArcFlags. We know that the algorithm must at least settle
all nodes on the path from s to t, and consequently the value of |Ps,t| yields a tight lower
bound on SAF(C, s, t). Thus, we know that penC(s, t) ≥ 0 holds and the value penC(s, t)
yields an upper bound on the number of settled nodes that could possibly be saved in
the corresponding query by changing its underlying partition. Furthermore, since the
sum

∑
s,t∈P |Ps,t| of all path sizes of a graph is a constant, minimizing SAF(C) is equal to

minimizing
∑

s,t∈P penC(s, t). Also note that we are only dealing with undirected paths
and trees in the subsequent Sections 4.2 and 4.3 and hence penalties are well-defined for
all pairs of nodes we encounter.

In many situations to follow, we distinguish inter-cell queries and intra-cell queries. Given
a graph G = (V,E) and a partition C of V into cells, we call an s-t-query an inter-cell query
if s and t belong to different cells, i.e. c(s) 6= c(t). We say that the inter-cell search-space
size of the graph G is given by ∑

s,t∈V
c(s)6=c(t)

SAF(G, C, s, t).

If conversely c(s) = c(t), we say that the s-t-query is an intra-cell query. Note that in
an intra-cell query, nodes from other cells may still get settled. Moreover, we define the
intra-cell search-space size to be ∑

s,t∈V
c(s)=c(t)

SAF(G, C, s, t).

4.2 Search-Space Optimal Partitions for Paths

We examine the effect of partitions for the arc-flags algorithm on graphs that are of the
form P = (V,E, ω) with V = {v1, . . . , vn} and E = {(vi, vi+1), (vi+1, vi) | 1 ≤ i < n} for
an arbitrary n ∈ N+. We shall refer to such a graph as a path. Note that we can interpret
the index i of a node vi as its position on the path. The order induced by these indices is
not to be confused with the total order ≺ which we introduced in Chapter 2 to break ties
in the priority queue of Dijkstra’s algorithm.
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4.2.1 Connectivity of Cells and Independence of Weights

The goal of this section is to determine search-space optimal partitions for paths. We
first present two preparatory lemmas that will make the proof of the final theorem in
Section 4.2.2 easier. Assume we are given a graph G = (V,E) and a partition C =
{C1, . . . , Ck} of G. We show that if P is a path, there is an optimal partition of P such
that all cells of the partition are strongly connected. Recall that a cell Ci is called strongly
connected if the graph (Ci, E ∩ (Ci × Ci)) is strongly connected.

Lemma 4.6. Let P = (V,E, ω) be a path and C = {C1, . . . , Ck} a partition of P . Let there
be at least one cell Ci ∈ C that is not strongly connected. Then there exists a partition
C′ = {C ′1, . . . , C ′k} of P such that all cells in C′ are strongly connected and SAF(G, C′) ≤
SAF(G, C).

Proof. Assume we are given a path P = (V,E, ω) and a partition C = {C1, . . . , Ck} of P
such that at least one of these cells is not strongly connected. Based on C, we construct
a partition C′ that only contains strongly connected cells. We then show that the total
search-space size induced by C′ is not greater than the total search-space size for C.

Given partition C = {C1, . . . , Ck}, the construction of C′ = {C ′1, . . . , C ′k} works as fol-
lows. Starting at node v1, we assign subsequent nodes of the path to ascending cell
indices while retaining the cell sizes of C. More formally, we set C ′1 = {v1, . . . , v|C1|},
C ′2 = {v|C1|+1, . . . , v|C1|+|C2|} and so forth. For an illustration of the cell construction
see Figure 4.1. The upper path shows the original cell assignment with three different
cells. The lower path depicts the constructed partition. Clearly, this method yields a valid
partition of the underlying graph P .

 C1  C2  C1 C2  C3  C1  C3



C1



C2



C3

Figure 4.1: Functionality of the procedure for creating strongly connected cells from an
arbitrary partition while preserving the cell sizes.

We now show that
∑

s,t∈P penC′(s, t) ≤
∑

s,t∈P penC(s, t) holds, which implies the lemma.
To this end, we distinguish the penalties of inter-cell queries and intra-cell queries on P .

1. Inter-cell queries. Let s and t be nodes of different cells, i.e. c(s) 6= c(t). Since all
cells in C′ are strongly connected subgraphs, only edges that actually point at the
target cell have the corresponding flag set. This situation is depicted in Figure 4.2.
Therefore, it is easy to see that the query algorithm starts at s and then settles only
nodes in Ps,t until the target cell is reached. This is due to the fact that edges pointing
into the opposite direction do not have the target flag set to 1. Moreover, once the
target cell is entered we know that due to the stopping criterion, the query is aborted
as soon as the target node t is reached. Hence, all nodes that are settled during the
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query belong to the unique shortest s-t-path Ps,t. We therefore get penC′(s, t) = 0
for all inter-cell queries, which clearly is the best we can get.

C

Figure 4.2: Schematic flags of a cell that contains the white nodes. Only edges that have
the flag for cell C set to 1 are depicted.

2. Intra-cell queries. First of all, observe that the partitions minimizing the intra-cell
penalty and the intra-cell search-space size, respectively, may in fact differ. This is
due to the fact that when restricting ourselves to intra-cell queries, the sum of all
path sizes corresponding to these queries is no longer a constant but depends on the
chosen partition. Consequently, since we considered penalties in the first case, we
must stick to penalties for intra-cell queries as well.

We know that the size of each cell in C is preserved in the corresponding cell in C′,
i.e., |Ci| = |C ′i| for all i ∈ {1, . . . , k}. Hence, the total number of intra-cell queries is
identical for both partitions. We consider an arbitrary isolated pair of corresponding
cells Ci and C ′i of both partitions and show that the sum of all intra-cell penalties
cannot increase for the cell C ′i.

Assume we are given certain cells Ci and C ′i for an i ∈ {1, . . . , k}. Furthermore, let
Ci = {vr1 , . . . , vrc} and C ′i = {vs1 , . . . , vsc}. We compare the sum of all penalties
of intra-cell queries starting at a node vrj to those starting at vsj . By showing
that

∑
t∈C′i

penC′(vsj , t) ≤
∑

t∈Ci penC(vrj , t) for all j ∈ {1, . . . , c} and for all i ∈
{1, . . . , k} of the graph, we prove that the overall intra-cell penalty induced by C′ is
not greater than the one induced by C.

Since each cell in C′ is strongly connected and the corresponding flags are set as
outlined in Figure 4.2, we can interpret any intra-cell query as a plain Dijkstra that
uses the stopping criterion and runs on a cell-induced subgraph (C ′i, E ∩ C ′i × C ′i) of
P . For any source node vsj in C ′i, we then get the following search-space size.

∑
t∈C′i

SAF(P, C′i, vsj , t) =

|C′i|∑
z=1

z =
|C ′i| · (|C ′i|+ 1)

2

To obtain the corresponding penalties, we consider the sizes of all paths Pvsj ,t from

vsj to any t ∈ C ′i. Since the cell is strongly connected, we know that the cell-induced
subgraph contains exactly j − 1 nodes with an index lower than sj and c− j nodes
with an index greater than sj . If we divide all of the intra-cell targets into the sets
{vsx | x < j} and {vsx | x ≥ j}, we immediately obtain the following term that
summarizes the path sizes of paths from vsj to all nodes within the same cell.

∑
t∈C′
|Pvsj ,t| =

j∑
z=2

z +

|C′i|−j+1∑
z=1

z
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If we sum up the penalties of all intra-cell queries corresponding a fixed source node
vsj of the cell C ′i, we obtain the following total penalty.

∑
t∈C′i

penC′(vsj , t) =
|C ′i| · (|C ′i|+ 1)

2
−

 j∑
z=2

z +

|C′i|−j+1∑
z=1

z


Conversely, when analyzing all queries that start at the corresponding source vsj of
the original partition C, we have to take into account that nodes in other cells may get
settled. Let Xz denote the set of nodes outside cell Ci that get additionally settled
in the unique query that settles exactly z nodes in Ci. Note that this specification
is unambiguous because the number of nodes settled in Ci ranges from 1 to |Ci| and
each quantity is taken precisely once. Hence, we obtain |Ci| sets X1, . . . , Xc. Let
further XL

z for 1 ≤ z ≤ j − 1 denote the set of nodes not in cell Ci that are part of
the path from vrj to vrj−z . Similarly, we define XR

z , 1 ≤ z ≤ c− j, for nodes outside
Ci on the path from vrj to vrj+z . In total, we get c− 1 sets XR

z and XL
z .

v1 v2 s v5 v6 v8

 X2

 X3
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Figure 4.3: Additional penalty for intra-cell queries from a single node when cells are not
strongly connected. Edge weights are assumed to be proportional to their
length in the illustration and the leftmost node is settled first in case of a tie.

Figure 4.3 shows an exemplary situation. Consider queries from s to all nodes of
the same cell drawn white. The sets Xz, X

L
z and XR

z contain all black nodes below
or above their according curly braces. Hence, we have X1 = ∅, X2 = {v5}, X3 =
{v2, v5, v6}, X4 = {v1, v2, v5, v6, v8}, XL

1 = ∅, XR
1 = {v5, v6} and XR

2 = {v5, v6, v8}.
It is XL

1 ⊆ X2, X
R
1 ⊆ X3 and XR

2 ⊆ X4. Generally speaking, the according penalty
turns out to be as follows if we further set XR

0 = ∅.

∑
t∈Ci

penC(vrj , t) =

|Ci|∑
z=1

(z + |Xz|)−

 j∑
z=2

(
z +

∣∣XL
z−1
∣∣)+

|Ci|−j+1∑
z=1

(
z +

∣∣XR
z−1
∣∣)

=

|C′i|∑
z=1

z −

 j∑
z=2

z +

|C′i|−j+1∑
z=1

z

+

|Ci|∑
z=1

|Xz| −

j−1∑
z=1

∣∣XL
z

∣∣+

|Ci|−j∑
z=1

∣∣XR
z

∣∣
=
∑
t∈C′i

penC′(vsj , t) +

|Ci|∑
z=1

|Xz| −

j−1∑
z=1

∣∣XL
z

∣∣+

|Ci|−j∑
z=1

∣∣XR
z

∣∣
︸ ︷︷ ︸

α

(4.1)

First of all, note that X1 is always empty. The remaining sets Xz can be divided
into two subsets such that each subset corresponds to queries from vrj to nodes with
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4.2. Search-Space Optimal Partitions for Paths

lower or greater index, respectively. Since a query must settle any node that belongs
to the actual path from source to target, it is clear that for each set Xz one can find
a distinct set XL

z′ or XR
z′ that is a subset of Xz, such that both sets correspond to

the query with the same target. See also Figure 4.3 for an illustration. Hence the
term α in Equation 4.1 must be non-negative.

We have shown that for both the total inter-cell penalty and the total intra-cell penalty the
partition C′ yields a solution that is at least as good as C. Hence, the proof is completed.

Given Lemma 4.6, we know that when looking for optimal partitions of paths, it is suffi-
cient to restrict the search to partitions that exclusively contain strongly connected cells.
Lemma 4.7 shows that provided with this information, we can also ignore edge weights for
our purposes.

Lemma 4.7. Let P = (V,E, ω) be a path and C = {C1, . . . , Ck} a partition of P such
that all cells Ci of C are strongly connected. Then, the total search-space size SAF(C, G) is
independent of the weight function ω.

Proof. Again, we distinguish intra-cell queries and inter-cell queries. Since all cells of C are
strongly connected, we know from the proof of Lemma 4.6 that the inter-cell search spaces
cover exactly the shortest paths from the source node to the target node. Intra-cell search
spaces, however, were shown above to be equal to the search spaces of a plain Dijkstra
that runs on the corresponding cell. From Theorem 2.2 we know that the search-space size
of Dijkstra’s algorithm only depends on the cell size. So neither the inter-cell search-space
size nor the intra-cell search-space size depend on the edge weights.

4.2.2 Optimal Cell Assignments on Paths

With Lemmas 4.6 and 4.7 in place, we can finally establish optimal partitions on paths. We
show that cells of uniform size such that each cell is strongly connected yield an optimal
solution.

Theorem 4.8. Let P = (V,E, ω) be a path as specified above and k a positive integer.
Assume that starting at v1, nodes are assigned to cells Ci, 1 ≤ i ≤ k, in ascending order
such that |Ci| = dn/ke for 1 ≤ i ≤ n mod k and |Ci| = bn/kc for n mod k < i ≤ k. The
partition C = {C1, . . . , Ck} yields a search-space optimal partition if the number of cells is
limited by k.

Proof. We are given a path P = (V,E, ω) and a positive integer k that indicates the
maximum number of allowed cells. Our objective is to find a partition C such that the
total penalty

∑
s,t∈P penC(s, t) is minimized. From Lemma 4.6 we know that we can safely

assume that there is an optimal partition such that all cells are strongly connected. We
have seen in the proof of Lemma 4.6 that, provided all cells are strongly connected, the
overall inter-cell penalty is 0. Thus, we only have to minimize the intra-cell penalty of all
cells. The sum of all path sizes of a cell C is exactly |C|3 /3 + |C|2− |C| /3 due to Lemma
2.3. Hence, we obtain the following total penalty.

∑
s,t

penC(s, t) =
∑
C∈C

 ∑
u,v∈C

SAF(u, v)−
∑
u,v∈C

|Pu,v|


=
∑
C∈C

(
|C|2 · (|C|+ 1)

2
− 1

3
|C|3 − |C|2 +

1

3
|C|

)

=
∑
C∈C

(
1

6
|C|3 − 1

2
|C|2 +

1

3
|C|
)

(4.2)
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This implies we can assign a penalty p(x) = x3/6−x2/2 +x/3 to a cell of cardinality x. If
we interpret the polynomial p as a continuous function with the cell size as a parameter,
we attain a cost function that is non-negative, increasing and convex on R≥0. From
Corollary 4.4 we know that the total penalty of P then is minimized if we have n mod k
cells of size dn/ke and n − (n mod k) cells of size bn/kc. Together with the demand for
strongly connected cells, the partition C stated in the lemma fulfills this requirement and
hence yields a minimum penalty for P .

4.3 Hardness on Undirected Trees

A natural next step after finding a way to attain optimal cells for paths is to concentrate
on trees. Unfortunately, we are going to find that provided P 6= NP, there is no efficient
algorithm that can guarantee to find optimal cell assignments on undirected trees. The
focus of this section hence is on proving that solving ArcFlagsPartition on undirected
trees is NP-hard.

4.3.1 Introductory Notes

Before we turn to the hardness result itself, we shortly examine the different influences on
the total penalty induced by a partition if the underlying graph is an undirected tree.

Penalties on Undirected Trees

Our goal in this passage is to give a rough idea of what causes the query algorithm to
settle additional nodes when searching for a specific target node. To this end, imagine
an arbitrary cell C on an undirected tree T = (V,E, ω). We know that the cell C does
not have to be strongly connected. In contrast to the situation we faced when we studied
paths, it may in fact be necessary for a search-space optimal partition to include a cell
that is not strongly connected. As a simple example of such a situation imagine a star
such as the one given in Figure 3.4 at the end of Chapter 3.

Figure 4.4: A sketch of a minimal set of nodes inducing a strongly connected subtree.
Triangles drawn in gray represent all nodes that belong to a certain cell C.
Edge directions represent set flags for the cell C.

So assume we are given a cell assignment where at least one cell C is not strongly connected.
We know that since we are working on trees, there must be a unique minimal set of nodes

32



4.3. Hardness on Undirected Trees

U such that C ∪ U induces a strongly connected subgraph of T . See Figure 4.4 for an
example. Here, all nodes drawn white belong to the set U . Imagine an inter-cell query
with a target node in C. The query algorithm only settles nodes that actually belong
to the shortest path from s to t until the first node in C ∪ U is settled. Once this has
happened, there may be a penalty that depends on the number and the depth of branches
that occur on the remaining part of the query to t.

v

Figure 4.5: An undirected tree and its search-space optimal partition for two cells.

For intra-cell queries, the sizes of C and U mainly determine the search-space size. If U
is empty, the intra-cell search-space size of C equals the search-space size of Dijkstra’s
algorithm on strongly connected graph with |C| nodes. To obtain the penalty of the intra-
cell queries, we have to subtract the sizes of all paths with s and t in C. Thus, the intra-cell
penalty is minimized if the cell consists of a long path and in turn becomes greater the
more branches the cell contains. To see that this in fact may have an influence on the
optimal partition, view the tree depicted in Figure 4.5. Although reassigning node v could
balance the cell sizes, it would cause a larger search-space size. This is due to the fact that
the smaller cell contains more branches. Summarily, to minimize the search-space size one
has to consider the following influences.

• The size of a cell mainly determines the intra-cell search-space size. Since the intra-
cell search-space size grows at least quadratically in the cell size, the cell sizes of the
partition should be in balance.

• The number of nodes from other cells that connect components of a cell should be
kept low, because these nodes may additionally get settled in both intra-cell and
inter-cell queries without belonging to the shortest path.

• The number of branches within a single cell should be small.

Unfortunately, this information cannot help us in designing an efficient algorithm that gen-
erates search-space optimal partitions on trees. However, it might be useful for developing
approximative or heuristic approaches that are dedicated to trees.

Hardness Result in the Strong Sense

The remainder of this section is devoted to the proof of NP-hardness of ArcFlagsParti-
tion on undirected trees. To establish this claim, we prove the existence of a polynomial-
time reduction from an NP-complete decision problem to the decision variant of the opti-
mization problem ArcFlagsPartition. The decision variant of a minimization problem
is to decide whether for a given instance there exists a feasible solution that falls below a
given threshold value.

The reduction is made from the problem 3-Partition, which was originally shown to be
NP-hard by Garey and Johnson [GJ75]. The task is to separate a given set of weighted
elements into triples such that the total weight of each subset equals a given positive
integer. This problem is strongly NP-complete and thus remains NP-complete even
if all input numbers are polynomial in the number of elements of the input instance.
Since the reduction used in our proof only creates numbers of polynomial size relative to
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the numbers occurring in 3-Partition, this immediately implies strong NP-hardness of
ArcFlagsPartition.

Problem 3-Partition. Given a set S = {s1 . . . s3m} of 3m elements, a positive integer
B and a weight function ω : S → {0 . . . B} with

∑3m
i=1 ω(si) = mB, decide whether there is

a partition of S into m subsets Si, i ∈ {1 . . .m}, such that for all i it is |Si| = 3 and the
total weight of each subset is B, i.e.,

∑
s∈Si ω(s) = B.

The problem remainsNP-complete if one restricts all weights ω(si) to B/4 < ω(si) < B/2.
We ignore this restriction here for the sake of simplicity. The basic idea of the proof of
hardness of ArcFlagsPartition is to transform an input instance of 3-Partition into
an undirected tree that requires optimal cells to always cover exactly the graph compo-
nents that correspond to three elements of S each. To each component of the graph that
represents an element si of S we attach a number of nodes that equals the weight ω(si)
of the according element. Since the cell size has a large impact on the resulting search-
space size, the total search-space size then is minimized if the cell sizes are as balanced as
possible, that is, there exists a partition into triples of equal weights.

4.3.2 A Preliminary Tool for the Proof of Hardness

Before we begin with the formal proof of NP-hardness, we present and examine a helpful
tool. We formally define (m,B, x)-Trees that shall later serve for the transformation of
instances of 3-Partition into undirected trees.

Definition 4.9 ((m,B, x)-Tree). Let m,B, x be positive integers. An undirected tree T =
(V,E, ω) is called (m,B, x)-tree if it fulfills the following properties.

1. There are 3m distinct chains of nodes vi1 , . . . , vix in V with the connecting edges
{(vij , vij+1), (vij+1 , vij )} ⊆ E for all 1 ≤ i ≤ 3m and 1 ≤ j < x.

2. There is a root node r ∈ V with {(r, vi1), (vi1 , r)} ⊆ E for all 1 ≤ i ≤ 3m.

3. The last node vix of each of the 3m chains has Bi ≤ B leaves vix,k attached to it,
i.e., vix,k ∈ V and {(vix , vix,k), (vix,k, vix)} ⊆ E for 1 ≤ k ≤ Bi for all 1 ≤ i ≤ 3m.

4. The total number of attached leaves is |{vix,k ∈ V : 1 ≤ i ≤ 3m, 1 ≤ k ≤ Bi}| = mB.

5. It is ω(e) = 1 for all e ∈ E.

6. T has no additional nodes or edges.

Figure 4.6 depicts a simple example of an (m,B, x)-tree. The defined (m,B, x)-trees are
later used to create undirected trees out of arbitrary instances of the problem 3-Partition.
We create one chain of length x for each element in S. A chain that corresponds to a given
s ∈ S then has ω(s) nodes attached its end. The length x of the chains is specified
later. We shall refer to the chains including all additionally attached leaves as limbs of
the (m,B, x)-tree. Furthermore, when speaking of leaves of an (m,B, x)-tree, we refer to
the m ·B additionally attached nodes only and exclude any node vix at the end of a limb
with Bi = 0. Hence, the node v in Figure 4.6 would not be counted as a leaf, for instance.
In all what follows, we assume that the root r has the least node index according to the
order ≺ that is used for tie breaking in the query algorithm.

Towards an Optimal Partition of (m,B,x)-Trees

Suppose we are given an (m,B, x)-tree T = (V,E) and our goal is to find a search-space
optimal partition with m cells. We shall now prove the following claim. If we set the
length x of each limb to 4mB2, there always exists a search-space optimal partition of the
corresponding (m,B, x)-tree such that each cell covers exactly three limbs of the tree. We
call an according partition limb-balanced.
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Figure 4.6: An (m,B, x)-tree with m = 2, B = 5, x = 4.

Lemma 4.10. Let T = (V,E) be an (m,B, 4mB2)-tree with m ≥ 33. There exists a
search-space optimal partition C = {C1, . . . , Cm} of T such that each partition Ci ∈ C
contains the nodes of exactly three entire limbs of T .

Proof. In what follows, we say that a limb is monochromatic if all its limbs are assigned to
the same cell. The lemma follows from four basic claims. We show that the search-space
size is dominated by long distance queries that pass the root node r. Since the major
penalty of such queries stems from the 3m branches originating at r, one can observe
that it is optimal for these queries to divide the limbs equally among the cells. We then
claim that following from this observation there must be a limb-balanced partition such
that its inter-cell queries cannot be improved. The basic idea is that an inter-cell query
in a limb-balanced partition settles only nodes on the shortest s-t-path until r is reached.
The remaining query than works analogous to a query starting at r. Provided with this
information, we can show that the search-space size of intra-cell queries of a balanced
partition cannot be reduced by splitting cell assignments within a single limb without
causing a larger change for the worse concerning the former inter-cell queries. Finally, we
show that once that all limbs are monochromatic, a limb-balanced partition that minimizes
the search-space size must exist.

Claim 1. There is a limb-balanced partition such that the search-space size
∑

t∈V SAF(r, t)
is minimized. In what follows, we study the search-space size of all queries to a fixed target
cell C starting at the root node r. To this end, we examine the search-space size of all
queries from r to nodes at a fixed distance d separately and denote this value by

SdC(r) =
∑
v∈C

d(r,v)=d

SAF(r, v).

We denote the total search-space size of all queries from r to targets in C by SC(r).
Obviously, SC(r) equals the sum of the search-space sizes SdC(r) for all distances 1 ≤ d ≤
x+ 1, where x = 4mB2. Let furthermore `C,d be the number of limbs for which the node
at distance d from r is assigned to the target cell C. Similarly, we denote by `C,≥d the
number of limbs that possess a node in cell C at a distance from r that is greater or
equal d. For instance, in Figure 4.7 we have `C,3 = 3 and `C,≥3 = 4 if C represents the cell
that contains all nodes filled white.

Next, we first examine queries from r to inner nodes of a limb, before we turn to queries
where the target nodes are leaves of a limb. So, consider a query from r to a node v at
a fixed distance d = d(r, v) ≤ x. For a demonstration of the following explanations see
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r

u

w

v

Figure 4.7: A schematic example of the search space induced by the root node. All nodes
drawn white are supposed to belong to the considered target cell.

again Figure 4.7. There, all solid edges have the corresponding flag set to 1. The gray
box contains a superset of all settled nodes in a query from r to any node at distance
d = 3 from the target cell. The actual number of settled nodes at distance 3 depends on
the node indices that induce the total order ≺ for tie breaking. Generally speaking, the
search space to a node at distance d includes all nodes at distances smaller than d where
the containing limb holds a node at distance d or greater that is assigned to C. We know
that there are exactly `C,≥d such limbs. We further have `C,d distinct target nodes t ∈ C
at distance d. Hence, the search space of all queries from r to nodes in C at distance d
includes at least (d− 1) · lC,≥d · lC,d nodes. In addition to that, there may be certain nodes
that belong to a limb which itself holds a node in cell C only at a distance smaller than
d. Let A be the set of nodes added to the search space for this reason. In Figure 4.7 we
then get A = {v, w}. We have now summarized all settled nodes t with d(r, t) < d.

Finally, the number of settled nodes at a distance of precisely d in a query depends on
the index of the target node t. Summing up the queries to all nodes in C at distance d,

at least
∑lc,d

i=1 i nodes are added to the search space. In addition to that, more nodes may
be included in the search space that belong to a limb having a node at a distance greater
than d assigned to C, whereas the node at distance d is not. Let Bt denote the set of
nodes added to the search space of an r-t-query for this reason. Regarding Figure 4.7, we
see that Bt ⊆ {u} in our example. We can now bound the search-space size SC of queries
from r to all nodes in C at distance d as follows.

SdC(r) = (d− 1) · `C,≥d · `C,d + `C,d · |A|+
`C,d · (`C,d + 1)

2
+
∑
t∈C

d(r,t)=d

|Bt|

≥ (d− 1) · `2C,d +
`C,d · (`C,d + 1)

2
(4.3)

The relation in Equation 4.3 becomes an equality if and only if for every limb all nodes
belong to the same cell. Therefore, let us assume now we are given a partition in which
every limb is monochromatic. Then the optimal number of limbs per cell can be obtained
as follows. We can interpret the search-space size SdC(r) as a convex polynomial function in
the variable `C,d. From Corollary 4.4 we know that the sum of all m distinct search-space
sizes SC(r) then is minimized if the values of `2C,d are distributed equally for all 1 ≤ d ≤ x.
Hence, assigning three entire limbs per cell yields an optimal solution for 3m limbs and m
cells.
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So far we have not considered queries from r to nodes at distances d = x+ 1. Let nC,x+1

denote the number of nodes at distance x + 1 from r assigned to C, that is, the number
of leaves in C. Recall that on the other hand, `C,x+1 is the number of limbs that have at
least one leaf assigned to cell C. Along the lines of the previous discussion, we obtain the
following search-space size for nodes at distance x+ 1, where A has the same meaning as
in Equation 4.3.

Sx+1
C (r) = x · nC,x+1 · `C,x+1︸ ︷︷ ︸

α

+`C,d · |A|+
nC,x+1 · (nC,x+1 + 1)

2︸ ︷︷ ︸
β

(4.4)

At first, we examine the term α from Equation 4.4. To minimize α, the number of limbs
`C,x+1 that have to be settled entirely in every query to a leaf of the cell C could possibly
be decreased if one rearranged cell assignments cleverly. However, it is clear that `C,x+1

is at least 1 if C has any leaf assigned, i.e., if nC,x+1 > 0. Moreover, we have `C,x+1 = 3
in the balanced partition and the total number of leaves is exactly mB, so the maximum
gain from rearranging cells is bounded by

∆−S(r) ≤
∑
C∈C

3x · nC,x+1 −
∑
C∈C

x · nC,x+1

= 2xmB. (4.5)

Reassigning nodes to different cells would also have an effect on the search-space size
caused by queries from r to inner nodes of the limbs. This search-space size was covered in
Equation 4.3. Assume we are given a limb-balanced partition that minimizes the search-
space size in Equation 4.3 and we would like to modify this partition in order to decrease
α. It is easy to see that splitting cell assignments of nodes belonging to the same limb is
not helpful in this context, for this can only increase the values |A| and `C,x+1. Hence,
one would always reassign the nodes of a whole limb at once to minimize α. Assume we
adjusted the cells in this manner, obtaining a partition that is not limb-balanced anymore.
To obtain the new value of α, we have to update the resulting values of all `C,x+1. If this
was done in iterative steps, one would simultaneously increment an `C′,d and decrement
another `C′′,d each time. From Lemma 4.3 we know that the search-space size given in
Equation 4.3 is non-decreasing regarding all cells for each of these steps. Furthermore,
there must be at least one step in which a limb is reassigned starting from a balanced
partition with three limbs per cell. This results in the increase of one `C′,d to 4 and the
decrease of another `C′′,d to 2 for all 1 ≤ d ≤ x. Consequently, we get at least the following
additional penalty in the search-space size that was summarized by Equation 4.3.

∆+
S(r) ≥

x∑
d=1

(d− 1) · 42 +
x∑
d=1

(d− 1) · 22 − 2
x∑
d=1

(d− 1) · 32

= 2
x(x− 1)

2
(4.6)

Taking into account that we have x = 4mB2, the change in the search-space size we receive
from Equations 4.5 and 4.6 is always non-negative, as shown below.

∆S(r) = ∆+
S(r) −∆−S(r)

≥ 4mB2(4mB2 − 1)− 8m2B3

≥ 0 (4.7)

Now, consider the term summarized by β in Equation 4.4. Here, the represented search-
space size would be minimized if we could keep each limb of the (m,B, x)-tree monochro-
matic while leveling the cell sizes. However, the number of leaves that are attached at the
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end of a limb can have any value between 0 and B. Therefore, we cannot guarantee that
the number of nodes at distance x + 1 can be perfectly balanced over all cells as long as
we stick to the limb-balanced partition. We know however, that the total number of nodes
at distance x + 1 is exactly mB. To obtain an upper bound on the possible saving, we
maximize the terms β over all cells in C following Lemma 4.3. Starting at an arbitrary
distribution of the numbers nC,x+1 over the cells of the tree, we iteratively apply one of
the two steps from Lemma 4.3, until we reach nC,x+1 = mB for a C ∈ C and nC′,x+1 = 0
for all C ′ 6= C. We can transform an aribtrary configuration this way and the sum over all
values β is always non-decreasing. Summing up the values of the terms β for all cells thus
cannot yield a number larger than mB(mB + 1)/2. The maximum amount of penalty we
can save for the whole search-space size S(r) =

∑
C∈C SC(r) caused by queries from r is

thus bounded by

∆−S(r) ≤
mB(mB + 1)

2
. (4.8)

The only way to reduce the values of the terms β in queries from r to the leaves of an
(m,B, x)-tree in comparison to a limb-balanced partition is to divide the leaves of at least
one limb into more than one cell. However, splitting the cell assignments at the end of
any limb into two or more cells must result in at least one cell C ′ for which we produced
an additional limb that has the flag of C ′ set to 1 on all x edges leading to the leaves
of the according chain. Thus, the corresponding value `C′,d must be incremented by 1 in
Equation 4.3 for all 1 ≤ d ≤ x. Hence, we create a growth of the search-space size that is
at least

∆+
S(r) ≥

x∑
d=1

(d− 1) =
x(x− 1)

2
. (4.9)

Setting x = 4mB2 and taking into account that m and B are natural numbers, the total
change in the search-space size S(r) regarding Equations 4.8 and 4.9 is as follows.

∆S(r) = ∆+
S(r) −∆−S(r)

≥ 2mB2(4mB2 − 1)− mB(mB + 1)

2

= 8m2B4 − 2mB2 − 1

2
m2B2 − 1

2
mB

≥ 4m2B4 (4.10)

As a result, Equations 4.7 and 4.10 show us that the search-space size S(r) cannot be
decreased by choosing cell assignments other than the limb-balanced one that we proposed.

Claim 2. There exists a limb-balanced partition for which the search-space size of all inter-
cell queries cannot be reduced. We apply the above reasoning to any s-t-path that passes the
root node r. If r is part of the unique path Ps,t from s to t, the search space corresponding
to an s-t-query must include all nodes from SC(r) and we clearly have SAF(s, t) ≥ SAF(r, t).
Hence, there is a limb-balanced partition that yields an optimal partition as soon as the
query algorithm has settled r. However, we have to take account of the search-space size
caused by the query from s to r. But if s and t belong to different cells, i.e., c(s) 6= c(t),
the penalty of this part of the query is zero in the limb-balanced partition, because flags
are only set for edges that head towards the root node r. Consequently, only nodes that
belong to the actual path Ps,t are settled until r is reached and we cannot improve the
search-space size by changing the underlying partition.

We have seen above that there must be a limb-balanced partition such that we cannot
improve the search-space size induced by its inter-cell queries. However, the search space

38



4.3. Hardness on Undirected Trees

of intra-cell queries according to the balanced partition might be improved if we adjust
the partition. In what follows, we show that any improvement obtained by changing the
underlying partition is outweighed by the penalty it must entail for queries that pass the
root node.

Claim 3. There is an optimal partition such that all its limbs are monochromatic. We
analyze the limbs of the tree separately. For each limb, we consider all queries for which
the source or target node lies in the given limb. Let C be a best possible limb-balanced
partition that serves as our benchmark. We then have to show that splitting the cells of
the considered limb does not improve the corresponding search-space size compared to the
balanced partition. To achieve this goal, we first derive lower bounds on the increase of
the search-space size compared to a limb-balanced partition. Afterwards, we obtain upper
bounds on the savings that can be created relative to this partition. By comparing these
bounds, we prove the claim.

Assume we are given an arbitrary limb of the tree. Let the nodes of its chain be v1, . . . , vx,
where the distance of r to vi is exactly i for any 1 ≤ i ≤ x. Furthermore, assume the
leaves of the limb are given by vx+1, . . . , vx+β with β ≤ B. We know that compared to an
optimal limb-balanced partition C, we can only hope for improving those queries that are
intra-cell queries in C. In order to achieve such improvements, one could divide the nodes
of the limb into two or more cells. Then, there must be a cell C for which there is a node
vi that has the largest distance d(r, vi) = min{i, x + 1} occurring for any node in C that
belongs to this limb and there is at least one node vj with j > i left in the limb. Given this
value i, let x1 = |{vj | i < j ≤ x}| and x2 = |{vj | vj ∈ C ∨ i ≥ j}|. In other words, x2 is
the number of nodes in the considered limb that are reachable from r in the cell-dependent
graph TC . Figure 4.8 depicts an example. Below, we distinguish the following cases. If C
contains only nodes vj with j < x, we have x1 + x2 = x and x1, x2 ≥ 1. Alternatively, the
cell C may also contain the node vx or an arbitrary number of leaves of the limb. In this
case we obtain x1 = 0 and x ≤ x2 ≤ x+B.

vx v5 r



x1



x2

Figure 4.8: Notation for the parts of a limb when v5 is the farthest node from r in this
limb of a certain cell that contains all nodes filled white.

First, we derive lower bounds on the additional penalty caused by splitting a limb into
two or more cells. Note that we do not make any assumptions about the cell assignments
of other limbs in the tree. Instead, we seek to establish a bound independent of these
assignments that provides us with the costs of splitting a limb into several cells. Observe
that a monochromatic limb has only one flag set to 1 on all its edges that head towards
the leaves. Conversely, a cell C that contains only a subset of the nodes {v1, . . . , vi} of
the given chain causes the i innermost edges of the corresponding limb to have at least
two flags set to 1. Below, we minimize the growth in the search-space size SC(r) given
by Equations 4.3 and 4.4 with respect to these changes. We derive lower bounds on the
change in this search-space size subject to the only additional condition of setting the flag
for C on at most x2 inner edges of the given limb. This yields a lower bound on the costs of
splitting a limb at the node vx2 , regardless of the actual cell assignments of the remaining
limbs. Depending on the value of x2, we distinguish three different cases.

1. x1 ≥ x2 ≥ 1. Recall that in Equation 4.3, A denotes the set of nodes settled due to a
certain cell containing nodes only at a distance smaller than the considered distance
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d. For queries to nodes t in C with d(r, t) > x2, we then have |A| ≥ x2. Hence, for
d > x2 the bound given by Equation 4.3 becomes

SdC(r) ≥ (d− 1) · `2C,d + `C,d · x2 +
`C,d · (`C,d + 1)

2
.

The search-space size of queries from r to all nodes at a distance greater than x2
is then minimized if all limbs are assumed to be balanced on all but their x2 inner
nodes. This is due to the fact that an imbalanced partition would inevitably increase
the sum

∑
C′∈C `

2
C′,d by at least one, as we observed before. This leads to an increase

of d − 1 ≥ x1 in the corresponding bound of some cell. However, using a limb-
balanced partition implies that we have at least 3x1 distinct target nodes t ∈ C such
that an r-t-query encounters an additional penalty of x2. We can charge this penalty
for the inter-cell penalty of (3m− 1)x source nodes s, regarding all but the modified
limb. Hence, we obtain the following bound on the change in the search-space size.
Recall that we have requested m ≥ 33 in the lemma and thus we can safely assume
that (3m− 1) ≥ 98.

∆+ ≥ (3m− 1)x · 3x1x2
≥ 26xx1x2

2. x2 > x1 ≥ 1. In this case, we consider queries to nodes in C at a distance d ≤ x2
from r. Since in the examined limb we have the flags for an additional cell set on its
x2 inner nodes, the value `C,≥d must increase for C in the search-space size stated in
Equation 4.3. Again, the best case occurs if we assume that all limbs are balanced
on their x2 inner limbs, which leaves us with `C,d ≤ 4 and A = B = ∅ for all d ≤ x2.
However, there must be at least one `C′,d ≥ 4 for some cell C ′. Hence, every query
to a node in C ′ at a distance d ≤ x2 from r pays additional costs of at least d − 1
and we get a penalty that is at least

∆+ ≥ (3m− 1)x · 3
x2∑
d=1

(d− 1)

≥ (3m− 1)x · 3x2(x2 − 1)

2
≥ 27xx2(x2 − 1)

≥ 26xx22.

3. x2 ≥ x. The cell C now includes some or all leaves of the limb or the last node vx
of the chain. Furthermore, we know that at least one of these nodes is assigned to a
different cell. The overall penalty of queries starting at r in comparison to a limb-
balanced partition when a limb has two set flags on all edges of its chain is bounded
by 4m2B4 = x2/4 in Equation 4.10. But the same penalty can be assigned to any
source node that belongs to one of the (3m−1) remaining limbs. Since each of them
contains at least x nodes and we have m ≥ 33, we obtain the following penalty.

∆+ ≥ (3m− 1)x · x
2

4
≥ 24x3

Note that we can charge these penalties independently for all added cells of the limb,
because each of them is responsible for a different flag that must additionally be set to
1 on its inner edges. Moreover, the overall penalty of several limbs that are multicolored
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must be at least as large as the sum of their penalties obtained above. This is due to the
fact that each of them sets x2 new flags that additionally get settled in queries starting at
r, and hence we can assign the lower bounds on the cost corresponding one of the three
cases described above to each of them.

Next, we bound the gain that is the result of a partition dividing a single limb into several
cells. Namely, we investigate all queries either starting in the modified limb or searching
for any node inside it. Assume we are given a fixed cell C such that C does not cover
all nodes of the limb. Regardless of the cell assignment of r we know that S(r) cannot
be improved, so it is ignored here. We also know that queries cannot be improved once
that they passed the root node r. Hence, we only consider those parts of queries that take
place within a single limb. Let X1 and X2 denote the sets of all up to x1 +B outer and x2
inner nodes of the limb, respectively, according to the cell C as in Figure 4.8. Note that
X1 also contains the leaves of the corresponding limb. First of all, we study queries that
aim at one of the x2 inner nodes, some of which belong to the cell C. We know that we
cannot improve the search-space size for queries that were inter-cell queries in the balanced
partition. However, improvements are possible for former intra-cell queries.

Considering source nodes in other limbs, the assignment of nodes to C may prevent former
intra-cell queries from settling nodes that belong to the limb of the source node but not to
the unique s-t-path. We know that there are two limbs containing up to 2(x+B) nodes in
a balanced partition for which this may occur. Hence, for up to x2 targets at most (x+B)
settled nodes are saved. We distinguish penalties according to the three cases studied
above. Note that x1 ≥ x2 implies x1 ≥ x/2 ≥ B2 and x2 > x1 implies x2 ≥ x/2 ≥ B2.

∆−V \(X1∪X2)→X2
≤ 2(x+B) · (x+B) · x2
= 2x2x2 + 4xx2B + 2x2B

2

≤


4xx1x2 + 4xx1x2 + 2xx2, if x1 ≥ x2
4xx22 + 4xx22 + 2xx2, if x > x2 > x1

8x3, if x1 = 0, x2 ≤ x+B

(4.11)

On the other hand, queries starting in X2 that head for former intra-cell targets that
belong to a different limb may possibly be prevented from settling nodes in X1. Below,
we account for the savings due to this change. Terms bounding the gain are obtained by
transformations similar to Equation 4.11. We omit listing them explicitly here for brevity.

∆−X2→V \(X1∪X2)
≤ x2 · 2(x+B) · x1
= 2xx1x2 + 2xx2B (4.12)

A query from a source node s ∈ X1 to a target t ∈ X2 may not need to settle nodes in X1

that do not belong to the s-t-path. Hence, there are at most x1 +B distinct source nodes
saving up to x1 +B nodes on a query to each of x2 possible target nodes.

∆−X1→X2
≤ x2 · (x1 +B)2

= x21x2 + 2x1x2B + x2B
2 (4.13)

Compared to a limb-balanced partition, queries from a source s ∈ X2 to a target t ∈ X2

could save nodes in X1, so we get the following bound on the gain.

∆−X2→X2
≤ (x1 +B) · x22
= x1x

2
2 + x22B (4.14)

Now, we consider queries where the target is any of the nodes in X1. Note that we
did not explicitly specify the number of cells occurring in X1. Depending on their cell
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assignments, compared to intra-cell queries in the balanced partition incoming from other
limbs one may save settled nodes just as in the case of ∆V ′→X2 . However, note that this
gain is independent of the presence of the cell C. Hence, we obtain the same gain if we
assign the nodes in C to any other cell that is present in X1. Since we investigate the gain
induced by C, we can omit the gains described above. Instead, we examine how C may
actually improve the search-space size of queries into X1. First of all, queries with both
their source and target node in X1 could possibly save settled nodes in X2.

∆−X1→X1
≤ (x1 +B)2 · x2
= x21x2 + 2x1x2B + x2B

2 (4.15)

In addition to that, arbitrary queries from X2 to X1 need to be credited for. There are
at most x2 distinct source nodes in X2 and at most (x1 + B) distinct targets in X1. In a
balanced partition, these queries are forced to possibly check all nodes in X2, so at most
x2 nodes can be saved.

∆−X2→X1
≤ x22 · (x1 +B)

= x1x
2
2 + x22B (4.16)

The total gain achieved by assigning some of the nodes of the certain limb to the cell C
can be bounded by the sum of all terms given in Equations 4.11 to 4.16. However, the
overall penalties found above are greater or equal to their sum in any case. Since we can
argue this way for any cell introduced into the limb, there must be a partition in which
this limb is monochromatic that induces a lower or equal search-space size.

Claim 4. For any partition C containing only monochromatic limbs, there is a limb-balanced
partition C′ such that SAF(T, C′) ≤ SAF(T, C). To complete the proof, we have to show that
given all limbs are required to be monochromatic, a limb-balanced partition exists that
minimizes the search-space size. We already know that this is true for inter-cell queries.
For intra-cell queries, it is clear that cells are almost strongly connected. The only node
that possibly gets settled in an intra-cell query even though it does not belong to that
cell is the root node r. Hence, we can bound the intra-cell search-space size of a cell C
consisting of i limbs as follows.

(ix)2
(ix+ 1)

2
≤
∑
s,t∈C

SAF(s, t) ≤ (i(x+B) + 1)2
i(x+B) + 2

2
(4.17)

We can interpret both bounds as convex functions in i. Hence, starting from a balanced
partition with three limbs per cell, we can adjust these numbers to match any non-balanced
partition using the rules stated in Lemma 4.3. The bounds given in Equation 4.17 are non-
decreasing in each of these steps and there is one step in which we have two cells containing
four and two entire limbs, respectively. We thus know that the change in the search-space
size is at least

∆+ = 16x2
(4x+ 1)

2
+ 4x2

(2x+ 1)

2
− 2 · (3(x+B) + 1)2

3(x+B) + 2)

2
= 9x3 −

(
26x2 + 81x2B + 81xB2 + 72xB + 15x+ 27B3 + 36B2 + 15B + 2

)
≥ 9x3 − 355x2B.

Setting x = 4mB2, we obtain a bound that is increasing for m,B > 0. Furthermore,
setting m ≥ 33 yields a positive penalty. Hence, we minimize the search-space size if the
partition is balanced. Together with Claims 1, 2 and 3, this finishes the proof.

Note that the requirement of m ≥ 33 is rather a convenient tool to simplify the proof than
a necessary condition. We conjecture that Lemma 4.10 holds for any m ∈ N+. However,
a more sophisticated analysis would be necessary to prove this and the constant bound
provided above suffices for our purposes.
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4.3.3 Examining the Search-Space Size of an (m,B,x)-Tree

Before we turn to the proof of hardness on undirected trees in general, we inspect the
search-space size of a partition of an (m,B, x)-tree with m cells. We know from Lemma
4.10 that for any sufficiently large (m,B, x)-tree there is a search-space optimal partition
where each cell holds three entire limbs. Since we are interested in search-space optimal
partitions only, we concentrate on a formal description of the search-space size of such
partitions.

Our aim is to find both an upper bound and a lower bound on the optimal search-space
size SAF(T, C) of an (m,B, x)-tree T = (V,E) if we are given the parameters m and B and
a limb-balanced partition C = {C1, . . . , Cm}. Furthermore, we assume that the number
of leaves that each cell possesses is known and denote by Bi the number of leaves of the
cell Ci. We shall divide the search space of T into three independent components for
convenience. First of all, we consider the search-space size of all inter-cell queries, where
neither the source nor the target node is the root node r. The second component consists
of the intra-cell queries, again ignoring queries where r is the source or the target of the
query. Finally, we complete the examination by investigating the search-space size of all
queries that either start or end at r.

Inter-Cell Search-Space Size of (m,B,x)-Trees

At first, we study the search-space size of inter-cell queries in T . In particular, we take into
account any s-t-query where c(s) 6= c(t) with s 6= r, t 6= r. Basically, we can divide such
a query into two parts. The first part begins when the query algorithm settles s and ends
when the root r is settled, excluding r from the search space. We shall refer to this part as
the front-query. The second part then covers the search after r has been settled until the
target node t is reached, including r. We shall call this part the rear-query. We know that
s and t belong to different cells and consequently are not part of the same limb. Thus, the
query starts at s and settles exactly the nodes on the path from s to r, because flags for
the target cell are only set for edges that lead into this direction. We summarize the front
part of the search space for a fixed target node t and count all possible source nodes of an
arbitrary cell Ci that is not the target cell. In each of these front-queries we get d(s, r)
settled nodes for a source node that is part of the chain, resulting in

∑x
z=1 z = x(x+ 1)/2

settled nodes per limb, which in total yields 3x(x+1)/2 for all three limbs of Ci. In addition
to that, there are x+ 1 settled nodes for any of the Bi leaves of cell Ci. Depending on the
number of leaves Bi, we get the following inter-cell search-space size for the cell Ci when
regarding only the front-part.

s1[Bi] = 3
x(x+ 1)

2
+Bi(x+ 1) (4.18)

The number of distinct inter-cell target nodes t that correspond to this search-space size
equals the number of all nodes that do not belong to the considered cell Ci holding the
source nodes s. Since we ignore the root node r as a possible target for now, we must
count all nodes in other limbs including the remaining leaves. Since the number of limbs
in T is exactly 3m and the total number of leaves is mB, the number of inter-cell targets
sums up to the following term.

n1[Bi] = (3m− 3)x+mB −Bi (4.19)

Now, we allow for the second part of the search space that consists of all nodes that are
settled once the root node is reached. We know that a fixed target cell Cj with j 6= i has
exactly 3x+Bj nodes. The nodes of the target cell Cj are settled in a deterministic order.
Furthermore, the root node is settled in any of these queries, accounting for an increase of
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1 per query. For a fixed source node s, the search-space size of all rear-queries considering

one target cell therefore becomes
∑

t∈Cj SAF(s, t) =
∑(3x+B+1)

z=2 z. The total search-space
size of queries from one source node to all inter-cell targets is obtained if one sums up the
search-space sizes of all distinct target cells.

s2[Bi] =
∑
j 6=i

(
(3x+Bj + 1)(3x+Bj + 2)

2
− 1

)
(4.20)

It is also known that there are 3x+Bi possible source nodes s in the cell Ci, each of which
causes the rear search-space size given in Equation 4.20.

n2[Bi] = 3x+Bi (4.21)

Moreover, we know that there are m cells in total, and each cell Ci generates the search-
space size in Equations 4.18 and 4.20 for a number of target nodes given in Equation 4.19
and a number of source nodes given in Equation 4.21, respectively. The total inter-cell
search-space size for all pairs of nodes s, t 6= r with c(s) 6= c(t) then sums up as stated
below. ∑

s,t 6=r
c(s) 6=c(t)

S(s, t) =
m∑
i=1

(n1[Bi] · s1[Bi] + n2[Bi] · s2[Bi]) (4.22)

Intra-Cell Search-Space Size of (m,B,x)-Trees

We can now turn to the intra-cell search space of the given (m,B, x)-tree. Again, we
ignore all queries where the root node r is the source or target node of the query. If we
furthermore ignore for now that the root node may be settled within an intra-cell query
with source s 6= r and target t 6= r, we can consider the intra-cell search-space size to be
equal to the search-space size of Dijkstra’s algorithm stated in Lemma 2.2. Then, we get
the following intra-cell search-space size for each cell Ci.

s3[Bi] =

(
(3x+Bi)

2(3x+Bi + 1)

2

)
(4.23)

To preserve the correct value of the intra-cell search-space size of a cell Ci, we certainly
have to take account of the root node as well. Therefore, we now cover all s-t-intra-cell
queries with s 6= r and t 6= r in which the root node is settled. Clearly, for every such query
we have to increase the search-space size given in Equation 4.23 by 1. For this reason, we
count all intra-cell queries in which r is settled and add the corresponding number to the
intra-cell search-space size given in Equation 4.23. Remember that we required the root r
to have the least index according to the order ≺. Thus, the node r is settled first whenever
it is enqueued and has the lowest index within the queue.

First of all, the root node is certainly settled in any intra-cell query where s and t belong
to different limbs of the (m,B, x)-tree, because r is then part of the unique s-t-path. Let
Bij for j ∈ {0, 1, 2} denote the number of leaves in the (j + 1)-th limb of the cell Ci. To
account for the mentioned queries, we multiply the number of source nodes of each limb
by the number of intra-cell targets in the remaining limbs of the corresponding cell.

s4[Bi] =

2∑
j=0

(
x+Bij

)
·
(

2x+Bi(j+1) mod 3
+Bi(j+2) mod 3

)

= 6x2 + 4x (Bi0 +Bi1 +Bi2) + 2Bi0Bi1 + 2Bi0Bi2 + 2Bi1Bi2

= 6x2 + 4xBi + 2 (Bi0Bi1 +Bi0Bi2 +Bi1Bi2)︸ ︷︷ ︸
γ

(4.24)
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Since we are interested in a formulation of the search-space size that is independent of
the values Biz , we would like to find bounds on the term γ rather than the exact value in
Equation 4.24. Obviously, we minimize γ if we set Bi0 = Bi and Bi1 = Bi2 = 0, which
yields a lower bound of

γL = 0.

Conversely, we maximize γ as a next step. For the sake of simplicity we assume that
Bi = 3a for some a ∈ N. We show that γ then is maximized if Bij = Bi/3 for j ∈
{0, 1, 2}. To see that this indeed yields a maximum, consider arbitrary values B′ij with∑2

j=0B
′
ij

= Bi. We can iteratively construct B′ij from the corresponding Bij if in every

step we simultaneously increment a Bip < B′ip while decrementing another Biq > B′iq by

1 each, until Bij = B′ij holds for all j ∈ {0, 1, 2}. Consider one of these steps and without
loss of generality assume that Bi0 is incremented and Bi1 is decremented. This step then
corresponds to the following change in the search-space size

∆s4 [Bi] = 2 ((Bi0 + 1) (Bi1 − 1) + (Bi1 − 1)Bi2 + (Bi0 + 1)Bi2)− γ
= 2 (Bi0Bi1 −Bi0 +Bi1 − 1 +Bi1Bi2 −Bi2 +Bi0Bi2 +Bi2)− γ
= 2Bi1 − 2Bi0 − 2

Moreover, we know that Bi0 ≥ B/3 and Bi1 ≤ B/3. This implies that ∆s4 is negative
and consequently setting Bij = Bi/3 for j ∈ {0, 1, 2} maximizes γ for the case of Bi being
divisible by 3 without remainder. But then it is clear that Bij = dBi/3e for j ∈ {0, 1, 2}
yields a feasible upper bound on γ for arbitrary values of Bi. Hence, we obtain an upper
bound on s4[Bi] if we use the following value γU in Equation 4.24.

γU = 2

(
Bi0

⌈
Bi
3

⌉
+Bi2

⌈
Bi
3

⌉
+Bi1

⌈
Bi
3

⌉)
= 2Bi

⌈
Bi
3

⌉
The obtained values γL and γU induce a lower bound sL4 [Bi] and an upper bound sU4 [Bi]
on s4[Bi], respectively.
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Figure 4.9: Enumeration of queries within limbs for which the root node gets settled. La-
bels denote the number of queries with the corresponding node as source node
in which r is settled.

Finally, intra-cell queries that settle the root node when s and t belong to the same limb
must be accounted for. We consider a fixed node s and inspect all queries to target nodes
t inside the same limb. Clearly, the root node is only settled if s is located between t and
r, because otherwise the stopping criterion ensures that r is never settled. Instead, assume
that d(s, r) < d(t, r) holds. The root node r is then settled in queries where d(s, r) ≤ d(s, t)
holds. Remember that r has the least index of all nodes and that x is an even number.
If s is a leaf of the limb or belongs to the x/2 outer nodes of the limb, r is never settled
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in a query to a target inside the same limb. If s belongs to the inner x/2 nodes, the
root node is settled for exactly x− 2d(s, r)− 1 targets inside the chain of the same limb.
Furthermore, the root then gets settled on all queries to a leaf of the tree. See also Figure
4.9 for an illustration. Since we have three limbs and Bi leaves in total, we obtain the
following search-space size.

s5[Bi] = 3

x/2∑
z=1

(2z − 1 +Bi)

= 3 · 2
x
2

(
x
2 + 1

)
2

− 3
x

2
+
x

2
Bi

=
3

4
x2 +

x

2
Bi (4.25)

Still omitting queries with r as source or target, we obtain the total intra-cell search-space
size if we add up the results stated in Equations 4.23 4.24 and 4.25. This yields the
following lower bound.

∑
s,t 6=r

c(s)=c(t)

S(s, t)L =
m∑
i=1

(
s3[Bi] + s4[Bi]

L + s5[Bi]
)

=
m∑
i=1

(
(3x+Bi)

2(3x+Bi + 1)

2
+

27

4
x2 +

9

2
xBi

)
(4.26)

Analogously, the corresponding upper bound on the intra-cell search-space size apart from
the search space caused by queries starting at r or searching for r is as follows.

∑
s,t 6=r

c(s)=c(t)

S(s, t)U =

m∑
i=1

(
s3[Bi] + s4[Bi]

U + s5[Bi]
)

=

m∑
i=1

(
(3x+Bi)

2(3x+Bi + 1)

2
+

27

4
x2 +

9

2
xBi + 2Bi

⌈
Bi
3

⌉)
(4.27)

Search-Space Size of (m,B,x)-Trees Caused by the Root Node

As a last step, we now make up for all possible queries in T in which r is either the start
or the target node. The search-space size caused by the queries from r to the nodes of a

fixed cell Ci is
∑(3x+Bi+1)

z=2 z according to the cell-dependent graph GCi , adding 1 in each
query to account for r. For Ci we then get the following search-space size.

s6[Bi] =

(
(3x+Bi + 1)(3x+Bi + 2)

2
− 1

)
(4.28)

We also have to consider all queries in which the target node is r. The search space of
any query to the root node at least covers the path from the source node s to the target
r. For each cell Ci we have three limbs with x paths of a length ranging from 2 to x + 1
each and Bi paths of length x + 2. So the corresponding search-space size for the whole
graph T is as follows.

s7 = m

(
3

(
(3x+ 1)(3x+ 2)

2
− 1

))
+mB(x+ 2) (4.29)

For inter-cell queries with target node r, only the nodes on the path from the source node
s to r are visited. Consequently, these queries are covered by Equation 4.29. However,
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

Additionally settled
nodes in an s-r-query.

s

2 3 4 5 3 2 1 0

r

1

1

Figure 4.10: Additionally settled nodes on intra-cell queries to the root node. Labels de-
note the penalty of the corresponding node as source node for the target r.

there is exactly one cell for which the queries from its interior nodes to r are intra-cell
queries and these queries produce a search space that additionally may hold nodes that do
not belong to the direct path from source to destination. In what follows, we take these
nodes into account. Below, let Cir be the corresponding cell that contains r.

If the source node s belongs to the chain of the limb, the number of additionally settled
nodes depends on its position. If s lies on the inner half of the limb, i.e., d(s, r) ≤ x/2,
the number of settled nodes that are not on the s-r-path is exactly d(s, r)− 1. Figure 4.10
demonstrates this situation. Recall that r was assigned the least index and is thus always
taken first from the queue in case of a tie. Summarized for all nodes with d(s, r) ≤ x/2 of

a single limb, this yields a penalty of
∑x/2

z=1(z − 1). Conversely, if the source node s is on
the outer half and consequently d(s, r) > x/2, every node of the limb must be settled in an
s-r-query. Since the number of remaining nodes not on the s-r-path is exactly x−d(s, r)−1
plus the number of leaves Birj of the limb with index j ∈ {0, 1, 2} of cell Cir , the penalty

charged for this part of the limb becomes
∑x/2

z=1(z − 1) + (x/2)Birj .

Finally, we have to consider the case where the source node is a leaf of the limb. In this case,
the shortest path from s to r covers all nodes of the chain. The query algorithm additionally
settles the remaining leaves of the current limb. This leads to Birj (Birj − 1) settled nodes
for the j + 1-th limb of the cell Cir . Lemma 4.3 implies that this is maximized for the
whole cell by Bir(Bir − 1), because any other distribution of leaves can be transformed
into this one in steps of non-decreasing overall numbers of settled nodes. As a feasible
lower bound we take a number of 0 settled leaves. The two bounds obtained here are not
independent of those given in Equations 4.26 and 4.27. Hence, the total bound on the
search-space size we obtain is actually not tight, but it suffices for our purposes. Adding
1 to account for the search-space size SAF(r, r), a lower bound on the total penalty that
corresponds to intra-cell queries targeting at r is as follows.

sL8 = 6

x
2∑

z=1

(z − 1) +
x

2
·Bir + 1 (4.30)

The corresponding upper bound on the penalty is obtained by simply inserting the corre-
sponding maximum number of settled leaves, as discussed above.

sU8 = 6

x
2∑

z=1

(z − 1) +
x

2
·Bir +Bir · (Bir − 1) + 1 (4.31)

With X ∈ {U,L} we get the following bounds on the root-induced search-space size by
summing up the results from Equations 4.28 and 4.29 and the bounds from Equations 4.30
and 4.31. ∑

s=r,
t=r

S(s, t)X =

m∑
i=1

s6[Bi] + s7 + sX8 (4.32)
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We have now reached our goal to find both a valid upper and lower bound on the search-
space size of an arbitrary (m,B, x)-tree with a given limb-balanced partition. Taking
Equations 4.22, 4.26, 4.27 and 4.32, we get the following bounds SL and SU on the search-
space size with X ∈ {U,L}.

SX =
∑
s,t 6=r

c(s)6=c(t)

S(s, t) +
∑
s,t 6=r

c(s)=c(t)

S(s, t)X +
∑
s=r,
t=r

S(s, t)X (4.33)

4.3.4 Proof of Hardness

With the bounds presented above in place, we can now prove hardness of preprocessing the
arc-flag algorithm on trees. We work out a polynomial-time reduction from 3-Partition
to the problem of deciding whether an instance of ArcFlagsPartition goes below a
certain bound by reducing a given instance of 3-Partition to an (m,B, x)-tree. Using the
observations made above, we develop bounds on the search-space sizes that correspond to
the (m,B, x)-trees of satisfiable and unsatisfiable instances of 3-Partition, respectively.
To complete the proof, we then have to show that the corresponding upper bound related
to satisfiable instances is always smaller than the lower bound on the search-space size of
an unsatisfiable instance.

Theorem 4.11. The Problem ArcFlagsPartition is NP-hard on undirected trees.

Proof. Given an input instance (S,B, ω) of 3-Partition with |S| = 3m, we create an
instance (T, k) of ArcFlagsPartition where T is an undirected tree and k denotes the
number of allowed cells. First of all, if m < 33, we either solve the problem via brute force
or fill the input instance with triples {0, 0, B} that maintain satisfiability until m = 33.
Given an instance with m ≥ 36, we set the number of cells to be k = m. The graph T
we define as an (m,B, 4mB2)-tree, where ω(si) leaves are attached to the i-th limb of the
tree. Since the total number of nodes of such a tree is 1 + 3m · 4mB2 +mB ∈ O

(
m2B2

)
,

this reduction can be realized in polynomial time.

We know from Lemma 4.10 that we can limit ourselves to an inspection of partitions with
three limbs per cell. We use this knowledge now to obtain an upper bound on the optimal
search-space size if the given input instance of 3-Partition is satisfiable. Afterwards, we
show that any instance of 3-Partition that is not satisfiable is reduced to a tree such that
its optimal search-space size cannot fall below this bound.

For now, assume we are given a satisfiable instance (S,B, ω) of 3-Partition. Then, we
know that there exists a partition of S = {s1, . . . , s3m} into m sets {si1 , si2 , si3} such
that

∑3
j=1 ω(sij ) = B for all i ∈ {1, . . . ,m}. This implies that we can find a limb-

balanced partition of the corresponding graph T of ArcFlagsPartition such that each
cell contains exactly three entire limbs and the number of leaves per cell is exactly B.
Now, we work out an upper bound SUyes on the search-space size of such a partition.

Assume we are given a partition of the given tree such that each cell consists of three
limbs of a total size of exactly 3x+B. Then we can derive an upper bound on the optimal
search-space size of a tree that corresponds to a satisfiable instance of 3-Partition as
follows. First, the inter-cell search-space size given in Equation 4.22 can be bounded.

SU1 = m (n1[B] · s1[B] + n2[B] · s2[B]) (4.34)

Analogously, we consider the intra-cell search-space size stated in Equation 4.35, which
becomes the following term.

SU2 = m
(
s3[B] + s4[B]U + s5[B]

)
(4.35)
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Finally, the upper bound on the root-induced search-space size in Equation 4.36 yields the
term stated below.

SU3 = m · s6[B] + s7 + sU8 (4.36)

Using Equations 4.34, 4.35 and 4.36 in Equation 4.33, we obtain an upper bound on
the search-space size of an (m,B, x)-tree that corresponds to a satisfiable instance of 3-
Partition. We use the bound SUyes as the input for the decision variant of ArcFlagsPar-
tition.

SUyes = SU1 + SU2 + SU3 (4.37)

What remains to show is that SUyes is a feasible bound. Obviously, the optimal search-
space size of a tree goes below this bound if the corresponding instance of 3-Partition is
satisfiable. Next, we cover the trees of unsatisfiable instances. We show that the search-
space size obtained in Equation 4.33 yields a convex function in a real-valued parameter
Bi. This implies that the search-space size is minimized if the values Bi are balanced. We
then derive a lower bound SLno that corresponds to unsatisfiable instances of 3-Partition
and compare it to SUyes.

To prove the point, we first try to derive a convex and increasing function that assigns
costs to each cell Ci of the partition depending on the number Bi of leaves belonging to
that cell. Then we can apply Lemma 4.3 to derive lower bounds on the search-space size
of an (m,B, x)-tree that corresponds to an unsatisfiable instance of 3-Partition. So,
we would like to reformulate the search-space size in order to derive a convex function f
in Bi such that the total search-space size equals the sum over all f(Bi) for 1 ≤ i ≤ m.
Again, we study the different components of the search space separately. At first, we look
at the inter-cell search-space size that we stated in Equation 4.22. Since all we need to
show is that the created cost function is convex, we summarize all constant terms, i.e.,
terms which are independent of Bi. Taking into account that we have n2[Bi] = 3x+Bi in
Equation 4.21, we distinguish the following components of the inter-cell search space size.

∑
s,t 6=r

c(s) 6=c(t)

S(s, t) =

m∑
i=1

(n1[Bi] · s1[Bi] + n2[Bi] · s2[Bi])

=
m∑
i=1

n1[Bi] · s1[Bi]︸ ︷︷ ︸
σ1

+

m∑
i=1

3x · s2[Bi]︸ ︷︷ ︸
σ2

+

m∑
i=1

Bi · s2[Bi]︸ ︷︷ ︸
σ3

) (4.38)

First, we consider the search-space size σ1 according to Equation 4.38, which is examined
below.

σ1 =

m∑
i=1

n1[Bi] · s1[Bi]

=

m∑
i=1

(
((3m− 3)x+mB −Bi)

(
3
x(x+ 1)

2
+Bi(x+ 1)

))

=

m∑
i=1

(
−(x+ 1)B2

i +

(
(3m− 3)x(x+ 1) +mB(x+ 1)− 3

x(x+ 1)

2

)
Bi + const

)
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The next step is to inspect the search-space size σ2, which again can be expressed as a
sum of polynomials in Bi in a straightforward manner.

σ2 =

m∑
i=1

3x ·
∑
j 6=i

(
(3x+Bj + 1)(3x+Bj + 2)

2
− 1

)

=

m∑
i=1

3x ·
∑
j 6=i

(
1

2
B2
j +

(
3x+

3

2

)
Bj +

9

2
x2 +

9

2
x︸ ︷︷ ︸

const

)

= (m− 1)

m∑
i=1

(
3

2
xB2

i +

(
9x2 +

9

2
x

)
Bi + const

)
Our final aim is to achieve an analogous formulation for the term σ3 according to Equa-
tion 4.38. This task is approached in the following.

σ3 =

m∑
i=1

Bi ·
∑
j 6=i

(
(3x+Bj + 1)(3x+Bj + 2)

2
− 1

)

=
m∑
i=1

Bi ·
∑
j 6=i

(
1

2
B2
j +

(
3x+

3

2

)
Bj +

9

2
x2 +

9

2
x

)

=
1

2

m∑
i=1

Bi
∑
j 6=i

B2
j +

(
3x+

3

2

) m∑
i=1

Bi
∑
j 6=i

Bj +
m∑
i=1

Bi
∑
j 6=i

(
9

2
x2 +

9

2
x

)

=
1

2

m∑
i=1

B2
i

∑
j 6=i

Bj +

(
3x+

3

2

) m∑
i=1

Bi
∑
j 6=i

Bj + (m− 1)

m∑
i=1

Bi

(
9

2
x2 +

9

2
x

)

=
1

2

m∑
i=1

B2
i (mB −Bi) +

(
3x+

3

2

) m∑
i=1

Bi(mB −Bi) +
m∑
i=1

Bi(m− 1)

(
9

2
x2 +

9

2
x

)

=
m∑
i=1

(
−B

3
i

2
+

(
mB

2
− 3x− 3

2

)
B2
i +

((
3x+

3

2

)
mB + (m− 1)

(
9

2
x2 +

9

2
x

))
Bi

)
Next, we turn to the intra-cell search space and proceed with an analogous approach.
Remember that we want to derive a lower bound and therefore consider the search-space
size in Equation 4.26. Again, we split the work for convenience and examine the following
two components.

∑
s,t 6=r

c(s)=c(t)

S(s, t)L =

m∑
i=1

(3x+Bi)
2(3x+Bi + 1)

2︸ ︷︷ ︸
σ4

+

m∑
i=1

(
27

4
x2 +

9

2
xBi

)
︸ ︷︷ ︸

σ5

(4.39)

We start with the search-space size σ4 in Equation 4.39, which can simply be transformed
in the following way. Again, we obtain a sum of polynomials in the values Bi.

σ4 =

m∑
i=1

(3x+Bi)
2 (3x+Bi + 1)

2

=

m∑
i=1

(
1

2
B3
i +

(
9

2
x+

1

2

)
B2
i +

(
27

2
x2 + 3x

)
Bi +

27

2
x3 +

9

2
x2︸ ︷︷ ︸

const

)

Clearly, the term σ5 already has the desired form and thus requires no further transfor-
mations. Finally, we have to examine the search-space size that is caused by queries that
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include the root node r as source or target node. We investigate each of the following
components of the lower bound presented in Equation 4.32 separately.

∑
s=r,
t=r

S(s, t)L =

m∑
i=1

s6[Bi]︸ ︷︷ ︸
σ6

+ s7 + 6

x
2∑

z=1

(z − 1) + 1︸ ︷︷ ︸
σ7

+
xBir

2
(4.40)

We reformulate σ6 given in Equation 4.40 and obtain its desired form after a few straight-
forward transformations.

σ6 =
m∑
i=1

(
(3x+Bi + 1) (3x+Bi + 2)

2
− 1

)

=
m∑
i=1

(
1

2
B2
i +

(
3x+

3

2

)
Bi +

9

2

(
x2 + x

)
︸ ︷︷ ︸

const

)

The addend σ7 contains the parts of s7 and s8 that do not contain the value Bi, as can be
seen in Equations 4.29 and 4.30. We can thus treat σ7 as a constant. Furthermore, let us
ignore the remaining term x ·Bir/2 of Equation 4.40 for now.

We have seen that each of the sums σ1 to σ6 presented in Equations 4.38, 4.39 and 4.40 can
be reformulated as a sum that iterates over the m values Bi. Thus, we can derive a cost
function f(Bi) for each Bi by taking the corresponding addend from σz for z ∈ {1 . . . 6}.
To account for the term σ7 we finally add the constant σ7/m to f . In this way we equally
divide the corresponding search-space size over all Bi. We now show that the cost function
f is increasing and convex. Afterwards, we apply Lemma 4.3 which tells us that the total
search-space size increases in the differences of all Bi from the constant value B.

To see that f is monotonically increasing and convex, we assume for now that the param-
eters of f can have any real in R≥0. We show that f is a polynomial of the form

f(Bi) = aB2
i + bBi + c

with a > 0 and b > 0, which implies the desired properties of f . First of all, note that
there are exactly two terms in all σz given in Equations 4.38, 4.39 and 4.40 that contain a
factor Bk

i with k ≥ 3. Those are the terms −B3
i /2 in σ3 and B3

i /2 in σ4, which eliminate
each other. Thus f contains only variables Bi to the power at most two. Next, we prove
that a > 0 by summing up all terms that have a factor B2

i in any of the equations stated
above. This yields the following value for a in the cost function f .

a =
3

2
(m− 1)x+

9

2
x+

1

2
+

1

2
+

1

2
mB − (x+ 1)− 3x− 3

2

=
1

2
mB +

3

2
mx− x− 3

2

We can safely assume that m and B are strictly positive, which implies that we always
have a > 0. If we sum up the terms for b in the same way, we see that there is only one
negative term −3x(x+1)/2 = −3x2/2−3x/2 that occurs in σ1. We simply add 27x2/2+3x
given in σ4 to this term and obtain a positive result. Having in mind that m,B ≥ 1, it is
clear that all other terms that occur in b must be non-negative and we get b > 0.

Given a > 0 and b > 0, we immediately conclude that the cost function f is convex and
increasing on R≥0. Furthermore, we have seen that f covers most of the search-space size
of a certain cell of the (m,B, x)-tree. However, we left out the search-space size of the
term x ·Bir/2 stated in Equation 4.40. The value x ·Bir/2 depends only on Bir , and hence
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we cannot distribute it over all cells. However, Lemma 4.3 tells us that as long as we only
take f into account, the search-space size is non-decreasing if we increment |Bi −B| for
any 1 ≤ i ≤ m. Since we look for a lower bound SLno of the search-space size of trees that
correspond to unsatisfiable instances of 3-Partition, we are interested in the case when
there exists no partition such that each cell has exactly B leaves. Obviously, the best case
according to f then occurs if there exists a partition into cells such that that there are
cells Cj , Ck with Bj = B − 1, Bk = B + 1 and Bi = B for all other cells Ci 6= Cj , Ck.

With this information in mind, we account for the term x ·Bir/2 that occurs in Equation
4.40 and has not yet been dealt with. Since we want to minimize the search-space size,
this last component is optimized if the cell that contains the root node has as few leaves as
possible. Thus, we set Bir = B − 1 which clearly is the best solution under the constraint
of minimizing the distances |B −Bi|. Proving that further reducing the size of the cell
that contains r is not helpful is postponed for now. Instead, we first provide a lower bound
on the search-space size of a partition with Bir = B − 1, Bj = B + 1 and Bi = B for all
i 6= ir, j. To complete the proof, we show thereafter that this partition indeed yields the
best case of an unsatisfiable input instance. In other words, further reducing the size of
the cell that contains the root node cannot break the lower bound we are going to infer
next.

In Equation 4.37, we derived an upper bound SUyes on the optimal search-space size if the
corresponding instance of 3-Partition is satisfiable. Now, we examine the lower bound
SLno on a partition of an instance if there are cells Cj , Ck with Bj = B − 1, Bk = B + 1
and Bi = B for all Ci 6= Cj , Ck. We also show that SLno − SUyes > 0. By proving that a
modification of the term x ·Bir/2 in Equation 4.40 cannot further reduce the search-space
size, we eventually confirm that SLno is indeed a feasible lower bound.

Again, we distinguish the different components of the search space of a limb-balanced
partition of an (m,B, x)-tree. Our goal is to obtain components SL1 , SL2 , SL3 with SLno =
SL1 + SL2 + SL3 along the lines of the analysis of SUyes given by Equation 4.37. Without
loss of generality, let B1 = B − 1, B2 = B + 1 and Bi = B for all 3 ≤ i ≤ m. First, we
inspect the inter-cell search-space size of the corresponding partition. In the subsequent
equations, we shall make use of the abbreviation

φ[Bi] =
(3x+Bi + 1)(3x+Bi + 2)

2
− 1.

Note that φ[Bi] corresponds to the addends of s2[Bi] in Equation 4.20. In our partition,
we have m− 2 cells with B leaves. These account for the following search-space size.

SL11 = (m− 2) (n1[B] · s1[B] + n2[B] · ((m− 3) · φ[B] + φ[B + 1] + φ[B − 1]))

Moreover, the partition contains one cell that has exactly B + 1 leaves. The inter-cell
search-space size caused by this cell is as follows.

SL12 = (n1[B + 1] · s1[B + 1]︸ ︷︷ ︸
λL12

+n2[B + 1] ((m− 2) · φ[B] + φ[B − 1])︸ ︷︷ ︸
µL12

On the other hand, we have to account for the search-space size induced by the last re-
maining cell that holds B−1 leaves. This search-space size is constituted in the subsequent
equation.

SL13 = n1[B − 1] · s1[B − 1]︸ ︷︷ ︸
λL13

+n2[B − 1] ((m− 2) · φ[B] + φ[B + 1])︸ ︷︷ ︸
µL13
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Clearly, SL11 summarizes the inter-cell search-space size that is caused by m−2 cells, while
SL12 and SL13 are responsible for one cell each. Altogether, SL11, S

L
12 and SL13 summarize the

inter-cell search-space size of the given partition, which we denote by SL1 = SL11+SL12+SL13.

Analogously, we split SU1 given in Equation 4.34 into a component

SU11 = (m− 2) (n1[B] · s1[B] + n2[B] · s2[B])

that accounts for the inter-cell search-space size produced by m− 2 cells and the following
two components that cover one of the remaining cells each.

SU12 = SU13 = n1[B] · s1[B]︸ ︷︷ ︸
λU

+n2[B] · s2[B]︸ ︷︷ ︸
µU

Clearly, we have SU1 = SU11 + SU12 + SU13. To examine the difference of the inter-cell search-
space sizes SL1 and SU1 , we separately compare the three addends we divided them into.
At first, consider the search-space sizes that correspond to m − 2 cells holding B leaves
each. The following difference is obtained after a few elementary steps.

SL11 − SU11 = (m− 2)(3x+B) (φ[B + 1] + φ[B − 1]− 2φ[B])︸ ︷︷ ︸
=1

= (m− 2)(3x+B) (4.41)

The next step consists of the comparison of the component SL12 that represents the cell with
B + 1 leaves to SU12. For the sake of transparency and legibility, we first restrict ourselves
to the terms λL12 and λU as denoted above. If we consider the definitions of n1 and s1 in
Equations 4.18 and 4.19, it is clear that incrementing B to B + 1 adds (3m− 3)x(x + 1)
and subtracts 3x(x+1)/2 from the corresponding search-space size. Furthermore, we have
to add a difference that is the result of the multiplication of Bi(x + 1) by (mB − Bi) for
Bi = B − 1 and Bi = B, respectively. The obtained result is

((m− 1)B − 1)(B + 1)(x+ 1)− (m− 1)B2(x+ 1) = mBx+mB − 2Bx− 2B − x− 1.

Summarizing these observations, the difference between λL12 and λU is derived in the fol-
lowing term.

λL12 − λU = (3m− 3)x(x+ 1)− 3x(x+ 1)

2
+mBx+mB − 2Bx− 2B − x− 1 (4.42)

The difference between the terms µL12 and µU turns out to be as below after a few basic
transformations.

µL12 − µU = (m− 2) · φ[B] + (3x+B + 1) · φ[B − 1]− (3x+B) · φ[B]

= −9

2
x2 − 3xB − 3

2
x− 1

2
B2 − 1

2
B − 1 (4.43)

This completes the change in the search-space size that is expressed by SL12−SU12. Finally,
we have to examine the search-space size of the last remaining cell, which contains B − 1
leaves. Just as we did before, we compare λL13 and λU first. Along the lines of the approach
that lead to Equation 4.42, we obtain the following result.

λL13 − λU = −(3m− 3)x(x+ 1) +
3x(x+ 1)

2
−mBx−mB + 2Bx+ 2B − x− 1

Inspecting the difference between µL13 and µU , we get the result shown below. This com-
pletes the examination of the difference SL13 − SU13.

µL13 − µU = (m− 2) · φ[B] + (3x+B − 1) · φ[B + 1]− (3x+B) · φ[B]

=
9

2
x2 + 3xB − 3

2
x+

1

2
B2 − 1

2
B − 2 (4.44)
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The overall difference encountered so far accounts for the bounds on the search-space size
of inter-cell queries. We summarize the results provided by Equations 4.41 to 4.44 and
obtain the following change in the inter-cell search-space size.

∆1 = SL1 − SU1
= SL11 − SU11 + λL12 − λU + µL12 − µU + λL13 − λU + µL13 − µU

= 3mx+mB − 11x− 3B − 5 (4.45)

For the intra-cell search space, we again study the cells of different sizes consecutively.
The intra-cell search spaces of m − 2 cells with B attached leaves are unaffected by the
cell sizes of other cells, but we must compare the lower bound to the upper bound on the
corresponding search-space size. Hence, we obtain the following difference according to
the intra-cell search-space size of the m− 2 cells with B leaves.

SL21 − SU21 = −2(m− 2)B

⌈
B

3

⌉
(4.46)

Along the lines of the above discussion, let SL22 denote the lower bound on the intra-
cell search-space size induced by the cell with B + 1 leaves and SU22 the upper bound on
the intra-cell search-space size of a cell with B leaves. Clearly, we obtain the following
difference due to Equations 4.26 and 4.27.

SL22 − sU22 = s3[B + 1] + sL4 [B + 1] + s5[B + 1]− s3[B]− sU4 [B]− s5[B]

=
(3x+B + 1)2(3x+B + 2)

2
− (3x+B)2(3x+B + 1)

2
+

9

2
x− 2B

⌈
B

3

⌉
=

27

2
x2 + 9xB + 12x+

3

2
B2 +

5

2
B + 1− 2B

⌈
B

3

⌉
(4.47)

Next, we turn to the intra-cell search-space size of the remaining cell with B − 1 leaves.
Denoting by SL23 the corresponding search-space size and by SU23 the upper bound for a
single cell with B leaves, we get the difference shown below.

SL23 − SU23 = s3[B − 1] + sL4 [B − 1] + s5[B − 1]− s3[B]− sU4 [B]− s5[B]

=
(3x+B − 1)2(3x+B)

2
− (3x+B)2(3x+B + 1)

2
− 9

2
x− 2B

⌈
B

3

⌉
= −27

2
x2 − 9xB − 3x− 3

2
B2 +

1

2
B − 2B

⌈
B

3

⌉
(4.48)

We have provided a lower bound on the intra-cell search-space size SL2 = SL21 + SL22 + S23
that represents the best case corresponding to a reduction from an unsatisfiable instance
of 3-Partition. Furthermore, we have the bound SU2 = SU21 + SU22 + SU23 for the case of B
leaves per cell. According to Equations 4.46, 4.47 and 4.48, we get a lower bound on the
total change in the intra-cell search-space size that sums up to the following term.

∆2 = SL2 − SU2
= SL21 − SU21 + SL22 − SU22 + SL23 − SU23

= 9x+ 3B + 1− 2mB

⌈
B

3

⌉
(4.49)

Ultimately, we turn to the search-space size that is induced by the root node r. Remember
that we assigned r to the cell with the fewest leaves to minimize the overall search-space
size. Furthermore, we have s6[Bi] = φ[Bi] according to Equation 4.28. We would like
to compare the bound SU3 as given in Equation 4.36 to a lower bound SL3 for the case of

54



4.3. Hardness on Undirected Trees

an unsatisfiable instance of 3-Partition. Let SL31 and SU31 denote the search-space sizes
according to s6 given in Equation 4.28. We obtain the difference stated below.

SL31 − SU31 = φ[B + 1] + φ[B − 1]− 2φ[B]

= 1 (4.50)

Moreover, we have to take account of the fact that the cell containing the root node
holds B − 1 and B leaves, respectively. According to Equations 4.30 and 4.31, we get the
following difference.

SL32 − SU32 =
x

2
(B − 1)− x

2
B −B(B − 1)

= −x
2
−B2 +B (4.51)

Note that the term s7 in Equation 4.32 does not depend on the values Bi, hence we can
omit it from our considerations. The results stated in Equations 4.50 and 4.51 then yield
the difference in the bounds according to queries that start or end at the root node r.

∆3 = SL3 − SU3
= SL31 − SU31 + SL32 − SU32
= 1− x

2
−B2 +B (4.52)

We have now gathered enough information to study the difference between the considered
bounds SUyes and SLno. Taking Equations 4.45, 4.49 and 4.52, we show that the obtained
difference is always non-negative. Recall that we have x = 4mB2 and that we can safely
assume m ≥ 2 and B ≥ 1.

∆L
U = ∆1 + ∆2 + ∆3

=

(
3m− 5

2

)
x︸ ︷︷ ︸

≥3x

+ (m+ 1)B︸ ︷︷ ︸
≥3

−3− 2mB

⌈
B

3

⌉
︸ ︷︷ ︸

≤x

−B2

≥ 2x−B2

≥ x

This proves that the difference between the provided lower bound SLno for instances of
(m,B, x)-trees corresponding to unsatisfiable instances of 3-Partition and the upper
bound SUyes for satisfiable instances is always positive.

The last matter we have to take care of is the question that was postponed when considering
the term x · Bir/2 in Equation 4.40. We must check whether reducing the size of the cell
that contains r can improve the lower bound. To see that this is not the case, recall
that the cost function f we stated above is convex. Lowering the number of leaves of the
corresponding cell to B − 2 implies that on other hand we have to increase another cell
size by one. But this implies an additional increase of the search-space size that is at least
∆ because f is convex. Furthermore, the term in question is Bir ·x/2, so reducing the cell
size by 1 reduces our bound by x/2. Since we have ∆ ≥ x > x/2, the upper bound SUyes
clearly cannot be broken this way.

We have seen that every input instance of 3-Partition corresponds to an (m,B, x)-tree
T such that its optimal search-space size SAF(T, Copt) is below or equal SUyes if and only if
the input instance is satisfiable. This completes the proof.
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4.4 Other Graph Classes

We close this chapter with short reviews of further restricted classes of graphs. Instead
of formal studies, we provide rough ideas of how to approach the investigation of these
graphs. The proofs given in Sections 4.2 and 4.3 supply tools to formally complete most
tasks, which we omit here.

4.4.1 Directed Paths and Trees

In the previous sections we only studied the undirected versions of paths and trees. We
now provide arguments for obtaining similar results on their directed counterparts. We
briefly show how to adapt the proof given in Section 4.2 to cover directed paths, before
we study the problem of finding optimal cells on rooted directed trees.

Directed Paths

First of all, we examine directed paths, i.e., graphs that are of the form P = (V,E, ω)
with V = {v1, . . . , vn} and E = {(vi, vi+1) | 1 ≤ i < n}. It is easy to see that the study of
undirected paths presented in Section 4.2 directly applies to directed paths. However, since
we only defined penalties for strongly connected graphs, we need to extend Definition 4.5
to cover our case. Therefore, we say that the penalty of a query where the target is
unreachable equals the search-space size of that query decreased by 1. This way we account
for the source node, which must be settled in all cases. Interestingly enough, the obtained
penalties remain exactly the same in the directed case when using this definition. In what
follows, we give a sketch of the formal proof.

Theorem 4.12. Let P = (V,E, ω) be a directed path as specified above and k a positive
integer. Assume that starting at v1, nodes are assigned to cells Ci, 1 ≤ i ≤ k, in ascending
order such that |Ci| = dn/ke for 1 ≤ i ≤ n mod k and |Ci| = bn/kc for n mod k < i ≤ k.
The partition C = {C1, . . . , Ck} yields a search-space optimal partition if the number of
cells is limited by k.

Proofsketch: The only change we have to cope with in comparison to undirected paths is
the difference in queries from a node vi to a node vj where i > j. Since the target node is
unreachable in this case, the query algorithm starts at vi and settles all successive nodes
until it encounters an edge that does not have the target flag set. To prove the theorem,
we proceed along the lines of Section 4.2.

First, it is easy to see that we can use the same procedure as in the proof of Lemma 4.6 to
convert an arbitrary partition into one that only has connected cells, without increasing
the total search-space size. Inspecting the resulting partition, we find that inter-cell queries
again cause a total penalty of 0, because either the exact path is settled or no outgoing
edge has the target flag set. Intra-cell query penalties cannot increase in comparison to
the original partition, for either the target gets settled or the query settles all nodes up to
the rightmost node of the cell. The total penalty accounting for the latter case clearly is
minimized if cells are connected.

As the next step, we consider the weight function ω. Since the next node to be taken from
the queue is always unique, edge weights can be ignored. This covers the result obtained
in Lemma 4.7.

Finally, we have to minimize the overall penalty, just as we did for undirected paths in
the proof of Theorem 4.8. The only penalties found are those of intra-cell queries where
the target nodes are unreachable. Imagine a node v at a relative position i in an arbitrary
cell C, where 1 ≤ i ≤ |C|. There are i − 1 distinct intra-cell nodes that are unreachable
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from v. A query from v to any of these nodes then causes all reachable nodes in C to be
settled, which induces a penalty of |C| − i. This yields a total penalty as shown below.

∑
s,t

penC(s, t) =
∑
C∈C

|C|−1∑
i=1

(i− 1) · (|C| − i)

=
∑
C∈C

|C| · |C|−1∑
i=1

i−
|C|−1∑
i=1

i2 −
|C|−1∑
i=1

|C|+
|C|−1∑
i=1

i


=
∑
C∈C

(
(|C|+ 1)

(|C| − 1) |C|
2

− 1

6
(|C| − 1) |C| (2 |C| − 1)− |C| (|C| − 1)

)
=
∑
C∈C

(
1

6
|C|3 − 1

2
|C|2 +

1

3
|C|
)

This is the same result as we obtained in Equation 4.2 of Theorem 4.8. Hence, we get
similar optimal partitions for directed paths. �

Directed Trees

We conjecture that one could modify the proof of hardness for undirected trees in order
to cover directed trees. Many arguments used throughout the proof presented in Section
4.3 would directly carry over to the directed case. As a difference to the original analysis,
queries to unreachable nodes now imply settling all succeeding nodes within a limb as
long as the corresponding flags are set to true. A reasonable assumption would be that
the best partition again puts together triples of limbs. Then it appears obvious that the
search-space size again falls below a certain threshold if and only if the corresponding
instance of 3-Partition is satisfiable. However, a detailed analysis would be necessary to
formally adapt the proof to the directed case. Since this would exceed the scope of this
work, we only propose the following conjecture.

Conjecture 4.13. The Problem ArcFlagsPartition is NP-hard on rooted directed
trees.

Moreover, this result would immediately imply the hardness of ArcFlagsPartition on
directed acyclic graphs. Since directed acyclic graphs occur in the form of time-expanded
graphs in time-dependent scenarios [PSWZ07], a proof of Conjecture 4.13 would be desir-
able.

4.4.2 Cycles

Another interesting restricted class of graphs are cycles. One may think of a directed cycle
to be generated from a directed path P by the addition of a single edge (vn, v1). In the
undirected case, the edge (v1, vn) is added as well. Somewhat surprising at first glance, this
simple modification has a large impact on the structure of optimal cells for the underlying
graphs.

Undirected Cycles

In what follows, we first explain why optimal cells on undirected cycles may substantially
differ from those on undirected paths. Afterwards, we propose basic ideas for an approach
that computes optimal partitions of arbitrary cycles in polynomial time.

Theorem 4.8 proposes a simple way to obtain optimal partitions for undirected paths by
using strongly connected cells of balanced size. For several reasons, the proof of this

57



4. Search-Space Optimal Cells on Restricted Graph Classes

theorem does not carry over to undirected cycles. Formally, an undirected cycle is a graph
Z = (V,E, ω) with a set of nodes V = {v1, . . . , vn} and a set of edges E = {(vi, vi+1) | 0 <
i < n} ∪ {(vn, v1), (v1, vn)}. To see why we cannot proceed along the lines of Section 4.2
to obtain optimal cells for cycles, we point out the vital differences when concerning
undirected cycles.

C

s2

s1

w1

C

s2

s1

w2

Figure 4.11: Backward-shortest-path trees of two nodes u and v in an undirected cycle.

Imagine a backward-shortest-path tree of an arbitrary node w ∈ V . Observe that every
such tree must contain either the edge (u, v) or (v, u) for all but one undirected edge in
E. In general, the edge that is left out differs for the trees of most nodes. Figure 4.11
depicts exemplary backward-shortest-path trees of two nodes w1 and w2. Imagine w1 and
w2 belong to the same cell C. In this case, in queries starting at either s1 or s2, there are
two distinct paths leading into the target cell C with set flags, despite the fact that C is
strongly connected. Recall that this was not the case for paths, which is why penalties
of inter-cell queries were always 0 in case of a strongly connected target cell. The same
effect can even force intra-cell queries to leave a strongly connected cell and settle nodes
outside of it. Additionally, since in contrast to the situation for paths, backward-shortest-
path trees now depend on the edge weights, we can no longer ignore these weights as
we did in case of paths. As a result of these observations, there may even be unique
optimal partitions with unbalanced cell sizes. Figure 4.12 shows an example. Note that
this partition is purely induced by the edge weights. It prevents queries to nodes that lie
beyond one of the heavy edges from settling the whole cycle.

3

3

Figure 4.12: An optimal partition of a cycle with two cells. Edge weights are assumed to
be 1 unless otherwise labeled.

Presuming that for every undirected cycle, there exists a partition such that all cells are
strongly connected, we can provide an algorithm that finds optimal partitions for arbitrary
undirected cycles. Although it seems reasonable to assume that search-space optimal cells
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on undirected cycles must be strongly connected, a prove of this conjecture is yet to be
found.

Below, we describe the work of an algorithm based on dynamic programming that assigns
optimal strongly connected cells to arbitrary undirected cycles. For cells are strongly
connected, we can define a valid partition by naming k cell borders. Cells of the partition
are than assigned by merging nodes between a distinct pair of borders into one cell. In
what follows, we design an algorithm that outputs k edges of the input cycle, each of which
represents a border between two cells.

Assume that the set of edges of the input graph Z = (V,E, ω) is E = {e1, . . . , en}, where
ei is an undirected edge. Note that we abuse notation here, because due to Chapter 2, we
defined undirected graphs to hold directed edges as well. Formally speaking, ei represents
a set of two edges with alternate source and target node. Our objective is to find a set
Eopt = {ei1 , . . . , eik} ⊆ E of k edges such that these edges represent borders of an optimal
partition. For now, imagine the first of k edges to be e1 and that it actually belongs to
Eopt. To determine the k−1 remaining edges, we proceed as follows. We maintain a table
of k−1 rows and n columns. For 1 ≤ i ≤ n and 2 ≤ j ≤ k, the i-th column of the j-th row
is supposed to store information that encodes the best possible partition considering only
the edges e1, . . . , ei and separating the cycle into j cells. Each table entry consists of an
integer that holds the optimal search-space size corresponding to this entry and a pointer
to the previous border of the determined partition.

Starting at e1, we fill the first row of the table as follows. We iteratively process the
remaining edges e2, . . . , en of the graph. In each step, e1 together with the involved edge
ei uniquely determines a tentative cell C. We set the cost of this cell to

SC =
∑

s∈V,t∈C
SAF(s, t). (4.53)

To determine SC , we must compute correct arc-flags for C and execute the arc-flags al-
gorithm for all necessary pairs of nodes, both of which can be done in polynomial time.
Moreover, SC is exactly the search-space size induced by picking border edges e1 and ei.
The retrieved value of SC is stored in the i-th column of the first row of T .

The remaining rows of the table are then computed using the following scheme. Given
values of edges e1, . . . , ei−1 of the j-th row, the next edge ei is processed as follows. As
we did for the first row, edge ei is temporarily added to the partition as a border. To
obtain the optimal search-space size, one iteratively checks the search-space sizes stored
in columns 1 ≤ x ≤ i − 1 of the j − 1-th row. To the value of the x-th columns we add
the search-space size induced by the cell with borders ex and ej , similar to Equation 4.53.
This yields the optimal search-space size when setting the borders of the j-th partition
to be ex and ej . The best of all i − 1 computed values is finally stored in column i. It
determines the best possible partition that covers all nodes between the edges e1 and ei
when using j cells. Doing this for all table entries eventually gets us the optimal solution
in the last column of the last row.

To obtain the actual partition, in each table entry one simply stores the index of the
previous border. Starting at the last row of the last column, one retrieves the next border
edge by reading the corresponding index i. The next edge can then be found in the i-th
column of the n− 1-th row, and so on.

Recall that we did not specify how to determine the initial edge e1. However, we can
simply perform n runs of the procedure, each time picking a distinct edge to start with.
Returning the best of all search-space sizes then clearly gets us the optimal value.
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The description given above is only supposed to give a rough idea of an algorithm to
generate search-space optimal partitions for undirected cycles. A formal specification and
a proof of correctness are left as future work.

Directed Cycles

A directed cycle is a graph Z = (V,E, ω), where we have V = {v1, . . . , vn} and E =
{(vi, vi+1) | 1 ≤ i < n} ∪ {(vn, v1)}. The situation for directed cycles is quite simple.
Imagine a query of Dijkstra’s algorithm on a directed cycle that implements the stopping
criterion but makes no use of arc-flags at all. On an arbitrary query, the algorithm settles
exactly the unique path between the given nodes s and t. Hence, the total penalty on a
directed cycle is always 0 and every valid partition is optimal.

Corollary 4.14. Let Z = (V,E, ω) be a directed cycle and C = {C1, . . . , Ck} a partition
of Z. C is search-space optimal for Z.

4.4.3 Towards the Border of Tractability

Before, we realized that optimal cells are efficiently computable for several restricted graph
classes such as paths and directed cycles. On the other hand, we showed that the same
problem is NP-hard for undirected trees, which in case of P 6= NP proves the non-
existence of a polynomial-time algorithm for such graphs in general. A natural question
that arises is whether one can further restrict the class of undirected trees to obtain a
class for which there exists an efficient procedure that assigns optimal cells to an arbitrary
input instance.

Restricted Classes of Trees

As an example, we consider undirected trees in which each node has a degree that is
bounded by a constant. If this constant is 2, we have exactly the class of undirected paths.
Unfortunately, we conjecture that the problem ArcFlagsPartition becomes NP-hard
already if we increment this bound to 3. Although the reduction presented in Section 4.3
creates trees with an unbounded maximum degree, this does not seem to be inherently
necessary to prove Theorem 4.11. There are two locations in an (m,B, x)-tree where nodes
of a degrees larger than 3 may occur. Namely, we have the root node with a degree of 3m
and the outermost node of the chain of each limb with a maximum degree of B. However,
in both cases we can eliminate this problem by inserting more complex subgraphs into
the (m,B, x)-tree such that all nodes have a degree bounded by 3. Figure 4.13 depicts
a proposal for such a modified (m,B, x)-tree. The root node r is replaced by a chain of
nodes, each of which has one limb attached to it. Each leaf of a tree is replaced by two
nodes. If an original limb has two or more leaves, the corresponding pairs of nodes are
chained. The tree depicted here shows the corresponding modification of the (m,B, x)-tree
depicted in Figure 4.6.

Recall that the proof of Theorem 4.11 is based on the idea that optimal partitions consist
of three entire limbs each and that the search-space size is minimized if those partitions
are balanced. It appears likely that these conditions still hold for the modified reduction
after minor changes, such as the increase of x by some polynomial factor. An adaptation of
the proof itself, however, would possibly be a lot more complex than the one presented in
Section 4.3 due to the less transparent structure of the modified (m,B, x)-tree. Therefore,
we only propose the following conjecture.

Conjecture 4.15. The Problem ArcFlagsPartition is NP-hard on undirected trees if
their maximum degree is at most 3.
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r

Figure 4.13: A modified (m,B, x)-tree with a maximum degree of 3.

One might consider other restricted classes of trees in order to find a class other than paths
for which one can efficiently compute optimal cells. We close this section by considering
trees with a limited height. Stars form a special case. A star S = (V,E, ω) consists of a
node r and n− 1 leaves that are connected to r via an edge. Hence, stars are exactly the
class of trees with a maximum height of 1. Imagine an arbitrary query in an undirected
star. If the start and destination node are not the same and s 6= r, the second node settled
is always r. Starting at r, we obviously minimize the search-space size by balancing the
number of leaves per cell. It is easy to see that the same holds for directed stars. Whether
or not there are polynomial-time algorithms that compute optimal cells for trees with
their height limited to a constant that is greater or equal to 2 is left as an open question.
A reduction of 3-Partition to (m,B, 1)-trees could provide a negative answer to this
question.

Concluding Remarks

Throughout this chapter, we inspected several classes of graphs aiming at methods for
computing optimal cells for them. Unfortunately, we could establish efficient procedures
only for a few severely restricted classes of graphs, such as paths, directed cycles and stars.
An efficient procedure for undirected cycles seems likely to exist. Conversely, we conjecture
that the problem is NP-hard for trees even if their degree is bounded by 3. It appears
that efficient procedures for finding search-space optimal partitions exist only for very
restricted classes of graphs that carry some sense of inherent symmetry, such as the classes
mentioned above or special balanced trees. As a final remark, we suggest that the choice of
other reasonable measures concerning the quality of a partition, for example the worst-case
search-space size, would presumably lead to similar results in terms of polynomial-time
solvability.
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Optimal Partitions

In this chapter, we derive a linear program for solving the problem ArcFlagsPartition.
To this end, in Section 5.1 we first introduce an ILP for a relaxed variant of this problem.
Afterwards, this ILP is extended to cover the original problem as specified in Chapter 3.
Ultimately, in Section 5.2 we discuss a way to obtain a dual ILP for the relaxed variant of
the problem.

5.1 Primal Linear Programs

Assume we are given a graph G = (V,E, ω) and a positive integer k to determine the
number of allowed cells. At first, in Section 5.1.1 an ILP for finding an optimal partition
for a relaxed version of the problem ArcFlagsPartition is developed, where the stopping
criterion of the arc-flags algorithm is omitted. In Section 5.1.2, this approach is refined
to deduce a linear program that finds an optimal solution of the original problem by
reintroducing the stopping criterion. In both sections, we discuss alternative ideas instead
of proposing only one single program. In Section 5.1.3 we then show how to significantly
reduce the number of necessary constraints in order to improve the performance of the
ILP.

Representation of Cell Assignments

First of all, when looking for an ILP for optimal partitions, a representation of distinct
cells and the maximum number of allowed cells k need to be specified. To achieve this
goal, we use constraints of an existing ILP approach for graph clustering [Gör10]. Since
the cells of the given graph, just like clusters, form a partition of the underlying graph,
this approach can be directly applied to our scenario. Clusters of a graph are distinguished
using binary cluster variables cvi, such that cvi = 1 if and only if node v belongs to cluster i.
Furthermore, binary variables xuv are introduced with the interpretation that xuv = 1 if
and only if nodes u and v are in the same cluster. To obtain consistent values for the
latter variables, the following Constraints 5.1 to 5.4 realize an equivalence relation on the
variables xuv depending on the cell assignments specified by the corresponding variables
cui and cvi for i ∈ {1, . . . , k}. Constraint 5.4 ensures that each node is assigned to exactly
one cell.
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cui + cvi − xuv ≤ 1 ∀u < v ∈ V, 1 ≤ i ≤ k (5.1)

xuv + cui − cvi ≤ 1 ∀u < v ∈ V, 1 ≤ i ≤ k (5.2)

xuv + cvi − cui ≤ 1 ∀u < v ∈ V, 1 ≤ i ≤ k (5.3)

k∑
i=1

cvi = 1, ∀v ∈ V (5.4)

With these constraints in place, we are able to express cell assignments. This yields a
starting point for different approaches to compute the search-space size of a given partition.
All linear programs described below use this basis.

5.1.1 Integer Linear Programs for a Relaxed Problem Instance

In what follows, we consider a relaxed version of the problem ArcFlagsPartition, which
we specified in Chapter 3. Therefore, we introduce a modified definition of this problem in
which one asks for minimizing the search-space size of a modified version of the arc-flags
algorithm that does not implement the stopping criterion.

Problem RelaxedArcFlagsPartition. Given a graph G = (V,E, ω) and a positive
integer k, find a partition C of G such that |C| ≤ k and S+

AF(G, C) is minimized.

As it turns out, the relinquishment of the stopping criterion makes the specification of a
linear program easier. Below, we provide two different but closely related approaches for
given input parameters G = (V,E, ω) and k.

A First Approach Using Binary Variables

A straight-forward formulation of the minimal search-space size could work as follows.
First, we add variables that represent the arc-flags for a certain assignment of nodes to
cells. To set the flags correctly, the backward-shortest-path trees for all nodes of the given
graph G need to be computed in advance. Therefore, we assume that as a result of a
preprocessing step there are n ·m binary constants bw(u, v) such that bw(u, v) = 1 if and
only if the edge (u, v) is part of the backward-shortest-path tree rooted at node w. To
decide whether an edge has a certain flag set to 1, we use n ·m binary variables ft(u, v)
such that ft(u, v) represents the value of the flag of the edge (u, v) corresponding to the
cell that the target node t belongs to. According to the preprocessing of the arc-flags
algorithm presented in Chapter 3, a flag for a certain target cell is set to 1 if and only if
the corresponding edge is part of the backward-shortest-path tree rooted at any node of
the respective cell. The following Constraint 5.5 assures that the flags are set properly.
If two given nodes w and t belong to the same cell, the backward-shortest-path tree of w
determines a subset of the set flags in a query to t.

ft(u, v) ≥ bw(u, v) · xwt ∀t, w ∈ V, (u, v) ∈ E (5.5)

We further introduce n3 binary search-space variables sst(v) with the interpretation that
sst(v) = 1 if and only if the node v is included in the search space of a query from s to
t. Following the relaxed problem definition given above, our goal is to minimize the total
search-space size S+

AF(G, C) =
∑

s,t∈V S+
AF(G, C, s, t). This directly leads to the following

objective function.

minimize
∑

s,t,v∈V
sst(v) (5.6)
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Since the query algorithm does not abort its work at its destination t, we can interpret the
query as a plain Dijkstra that runs on the cell-dependent graph Gc(t) = (V,Ec(t)) with
Ec(t) = {e ∈ E | F(e)(c(t)) = 1}, as introduced in Chapter 3. Thus, we tentatively discard
all edges from the graph that do not have the target flag set to 1. A node is then included
in the search space of a given source node s if and only if it is reachable in Gc(t). This is
expressed in the following Constraints 5.7 and 5.8.

sst(s) = 1 ∀s, t ∈ V (5.7)

sst(u) + ft(u, v)− sst(v) ≤ 1 ∀s, t ∈ V, (u, v) ∈ E (5.8)

Altogether, we obtain an integer linear program that finds an optimal solution for an arbi-
trary instance of the problem RelaxedArcFlagsPartition by minimizing the objective
function given in Equation 5.6 subject to the constraints specified in Equations 5.1 to 5.5,
5.7 and 5.8.

A Second Approach Using Integer Variables

It is easy to see that the n2+m·n2 constraints depicted in Equations 5.7 and 5.8 are highly
redundant. This is due to the fact that we omit the stopping criterion: When starting
from a certain node s, the search-space size only depends on the target cell that t belongs
to. Thus, for a given cell assignment and a distinct node s,

∑
v∈V sst(v) is identical for

all nodes t that belong to the same cell. Therefore, we can summarize the search-space
variables that share the same target cell. To this end, we use k ·n2 integer variables ssi(v)
to represent the former binary search-space variables sst(v) of all targets t in the i-th cell.
Analogously to Equation 5.6, our new objective function given by Equation 5.9 aims at
minimizing the total search-space size.

minimize
∑
s,v∈V

∑
1≤i≤k

ssi(v) (5.9)

Instead of the flag variables ft(u, v) introduced above we now use complementary variables
hi(u, v) that represent the absence of a corresponding edge (u, v) in the graph induced by
the i-th cell, i.e., it is hi(u, v) = 1− ft(u, v) if c(t) = i. The corresponding Constraint 5.10
given below replaces the constraint in Equation 5.5.

hi(u, v) ≤ 1− bw(u, v) · cwi ∀w ∈ V, (u, v) ∈ E, 1 ≤ i ≤ k (5.10)

Using Constraints 5.11 and 5.12, we can now get along with only n ·k+n ·m ·k constraints.
In addition to that, note that we do not need the variables xuv in this case, which allows
us to omit Equations 5.1 to 5.3 in this variant. An integer variable ssi(v) now sums up the
binary search-space sizes sst(v) of all distinct target nodes t of a given cell represented by
the index i. Assume that below, M denotes a large constant such that M ≥ ssi(v) can be
assured for all s, v ∈ V and i ∈ {1, . . . , k}. Setting M = n satisfies this condition.

ssi(s) =
∑
v∈V

cvi ∀s ∈ V, 1 ≤ i ≤ k (5.11)

ssi(u)− ssi(v)−M · hi(u, v) ≤ 0 ∀s ∈ V, (u, v) ∈ E, 1 ≤ i ≤ k (5.12)

A second variant of an ILP solving RelaxedArcFlagsPartition is then given by the
Objective 5.9 with respect to the Constraints 5.1 and 5.10 to 5.12. Because usually k � n
holds, the difference in the number of constraints compared to the first version of the
ILP may accordingly be very large. However, the newly introduced search-space variables
ssi(v) are now integer variables instead of binaries, which extends the solution space. The
choice of the right ILP variant should therefore depend on the number of cells. For small
values of k the second approach might work faster, whereas for larger values of k the
original ILP presented above is recommended.
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5.1.2 Applying the Stopping Criterion

Now, we construct a linear program for the original problem ArcFlagsPartition, so the
underyling query algorithm is assumed to make use of the stopping criterion. Note that
this may indeed have an influence on the search-space optimal partition of the graph. In
what follows, we first see why a simple adaptation of the ILP presented in Section 5.1.1
fails, before we derive a correct MILP for the modified task.

An Attempt to Adapt the Established ILP

Recall that in the new scenario, the query algorithm is aborted once the target node has
been settled. Assuming there is a fixed order ≺ in which nodes are extracted from the
priority queue, a node v is now settled by Dijkstra’s algorithm in an s-t-query if and only
if d(s, v) < d(s, t) or d(s, v) = d(s, t) and additionally u � t. This information can be
computed on beforehand for all triples s, t, v in polynomial time. Thus, a first idea might
be to simply adjust the ILP from Section 5.1.1 by adding binary constants dst(v) with
dst(v) = 1 if and only if d(s, v) < d(s, t) or d(s, v) = d(s, t) and u � t. Adding a single
constant to each of the constraints in Equation 5.8, one receives the following adapted
constraints instead.

sst(u) + ft(u, v) + dst(v)− sst(v) ≤ 2 ∀s, t ∈ V, (u, v) ∈ E (5.13)

Unfortunately, the ILP induced by this approach is not correct. Since the query algorithm
in an arc-flag enhanced query skips certain edges, computed distances to settled nodes that
do not belong to the target cell may be incorrect. For a simple example, see Figure 5.1.
Imagine an arc-flags based query from node s to node t, where the edges (s, t) and (t, v)
have their flags for cell c(t) set to 1, while (s, v) does not. We further assume that all edge
weights are uniform and v ≺ t. Clearly, the query algorithm immediately settles t and
thus we have SAF(s, t) = 2. However, v would belong to the Dijkstra search space of an
s-t-query because starting from s, it would be settled first. This leaves us with sst(t) = 1,
ft(t, v) = 1 and dst(v) = 1, which falsely implies that due to Constraint 5.13, sst(v) must
be 1 in the obtained ILP.

s

t

v

Figure 5.1: A simple example to show the incorrectness of the ILP induced by Con-
straint 5.13.

However, because the removal of edges cannot reduce the distance between two nodes,
the ILP using Constraint 5.13 would yield an upper bound on the actual search-space
size. Although in general this ILP would not compute the correct optimum, we can use
this observation for later tuning the correct linear program that is developed below. See
Section 5.1.3 for further details on tuning of the linear program.

A Correct MILP for Strongly Connected Graphs

For now, let us assume that the underlying graph is strongly connected. Similar to the first
ILP examined in Section 5.1.1, we introduce n3 search-space variables sst(v) and define
the objective function as follows.

minimize
∑

s,t,v∈V
sst(v) (5.14)

66



5.1. Primal Linear Programs

We have seen that using the arc-flags algorithm, computed distances from the source node
to any node that does not belong to the target cell may become larger than the correct
distance due to ignored edges. In other words, the computed distances, and consequently
the order in which nodes are removed from the queue, depend on the cell assignment. Thus,
the distance from a node s to any node that is not in the target cell cannot be determined
in advance. Instead, we introduce n2 · m continuous variables δst(v) that represent the
distances dGc(t)(v, s) from s to any node v in the target-cell-dependent graph Gc(t) =
(V,Ec(t), ω) introduced in Chapter 3. We know that the arc-flags algorithm computes
correct distances for all nodes in the target cell. Consequently, δst(t) = dG(s, t) holds for
all pairs of nodes s and t. So, for fixed s and t, a node v is included in SAF(s, t) if and
only if δst(s, v) < dG(s, t) or δst(s, v) = dG(s, t) and u � t. The Constraints 5.15 and 5.16
express these relations, where all d(s, t) are supposed to be precomputed constants that
hold the corresponding distances of the input graph G. Again, M is supposed to be a
sufficiently large number which ensures that the inequalities remain satisfiable.

δst(v)− d(s, t) +M · sst(v) ≥ 0 ∀s, t ≺ v ∈ V (5.15)

δst(v)− (d(s, t) + ε) +M · sst(v) ≥ 0 ∀s, t � v ∈ V (5.16)

Observe that Constraint 5.15 ensures that all nodes with δst(s, v) < dG(s, t) are included in
the search space. To handle nodes that have a distance to s in Gc(t) that is equal to dG(s, t),
we have to check whether δst(s, v) ≤ dG(s, t). This is equivalent to δst(s, v) < dG(s, t) + ε
if the constant ε is sufficiently small, as assumed for Equation 5.16. Since we expect edge
weights to be positive real numbers, one has to make sure that ε is not greater than any
difference of any two path lengths in Gc(t). If all weights in G are positive integers, ε = 1
fulfills this requirement. For the constant number M one has to make sure that M is
greater or equal than the maximum distance in G, that is, M ≥ maxs,t∈V dG(s, t).

The Constraints 5.15 and 5.16 ensure that all variables sst(v) are set correctly, provided
that the objective is to minimize the search-space size and that all variables δst(v) have
values that preserve the appropriate relation to dG(s, t). Note that δst(v) does not have
to hold the exact value of the tentative distance of v from s in Gc(t) as long as this
condition is met. In other words, one only has to make sure that dGc(t)(s, v) ≤ dG(s, t)
implies δst(v) ≤ dG(s, t), because in this case v must be included in the search space of
an s-t-query. On the other hand, in an optimal solution, δst(v) > dG(s, t) automatically
holds for all other distance variables, for this allows setting sst(v) = 0 and the objective
is to minimize the search-space size. Consequently, we do not have to handle this case
explicitly. The following Constraints 5.18 and 5.19 ensure that the values of all variables
δst(v) fulfill our requirements. Again, we use variables ht(u, v) to hold the information
whether an edge (u, v) is available in a certain cell-dependent graph Gc(t). Along similar
lines to the linear programs studied above, Constraint 5.17 ensures that these variables
are set properly. An edge (u, v) that is not present in a cell-dependent graph implies that
the distance from u to v is not bounded by ω(u, v). Hence, we set the variables δst(v)
accordingly in Equations 5.18 and 5.19.

ht(u, v) ≤ 1− bw(u, v) · xwt ∀t, w ∈ V, (u, v) ∈ E (5.17)

δst(s) = 0 ∀s, t ∈ V (5.18)

δst(v) ≤ δst(u) + ω(u, v) +M · ht(u, v) ∀s, t ∈ V, (u, v) ∈ E (5.19)

Setting the constant M to a value greater than maxs,t∈V dG(s, t) suffices for the MILP
to work correctly. Summarily, we obtain a linear program to solve the problem Ar-
cFlagsPartition by stating the objective function given in Equation 5.14 subject to the
Constraints 5.1 to 5.4 and 5.15 to 5.19.
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5. Linear Programs for Search-Space Optimal Partitions

Extension to Graphs that are not Strongly Connected

There are two simple ways to enable the MILP stated above to cover general graphs, in
which certain target nodes may be unreachable. The first approach would be to simply
set the constant d(s, t) = M or d(s, t) = M − ε in Equations 5.15 and 5.16, respectively,
if the precomputed distance from s to t is infinite. Then, any reachable node in the
cell-dependent graph must be included in the search space if d(s, t) = ∞ and the linear
program can be adapted without any further changes.

Another approach is to define the constraints subject to the precomputed values for d(s, t).
For any pair of nodes s and t, the constraints given above remain unchanged if d(s, t) < ∞.
Otherwise, if d(s, t) = ∞, we remove Constraints 5.15 to 5.19 and replace them by Con-
straints 5.5, 5.7 and 5.8 presented in Section 5.1.1. Since in case of an unreachable target,
all reachable nodes of the cell-dependent graph must be settled, this yields a correct adap-
tation of the linear program.

5.1.3 Tuning of the Obtained Linear Programs

In what follows, two simple modifications of the linear programs for search-space optimal
partitions are presented in order to reduce the number of constraints and variables. These
easily implementable changes may improve the performance of an underlying solver. The
main idea is to use efficiently precomputable information to reduce the solution space. As
before, we assume that the values dG(s, t) have been determined for all pairs of nodes s,
t of the input graph G during an all-pairs shortest path computation that has been run
beforehand.

1. Assume there are nodes s, t, v such that dG(s, t) < dG(s, v). We know that the
distance dG(s, t) from the source s to the target t is preserved in a query due to the
correctness of the arc-flags algorithm. Furthermore, discarding single edges from the
graph in a single run of Dijkstra’s algorithm cannot reduce the distance between any
two nodes. Thus we know that if dG(s, t) < dG(s, v) holds, dG(s, t) < dGc(t)(s, v)
and therefore sst(v) = 0 follows immediately. Hence, we can drop all variables sst(v)
where dG(s, t) < dG(s, v) and all constraints including these variables from the linear
program.

2. To reduce the solution space, it is helpful to find bounds on any occurrences of the
large constant M , which is used in Equations 5.12, 5.15 5.16 and 5.19. In what
follows, we look for individual proper bounds on each of these values such that the
resulting linear program remains correct. First of all, consider the value of M in
Equation 5.12. The search-space variables ssi(v) count the number of target nodes
for which v is settled when starting at s. Clearly, this number cannot exceed n. By
precomputing the exact number of reachable nodes for every node of the graph one
could even obtain better bounds. For the equation to be satisfiable in any case, it
then suffices to set M to the corresponding number. For Equations 5.15 and 5.16 it is
clear that setting M = d(s, t) and M = d(s, t)+ε, respectively, suffices for the MILP
to maintain correctness. Finally, we examine the occurrence of M in Equation 5.19.
Remember that this value must allow tentative distances δst(v) to become larger
than d(s, t), for this in turn allows corresponding search-space variables to drop to
0. Obviously, setting M to a value that is marginally larger than d(s, t) suffices for
this condition. Hence we may set M = d(s, t) + ε, for instance.

In addition to these improvements, generic approaches such as the use of callbacks may
leave more room for tuning. However, an analysis of such techniques is beyond the scope
of this thesis.
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5.2 Towards a Dual Integer Linear Program

In this section, we derive the dual ILP for a simplified version of the first primal linear
program that we obtained in Section 5.1.1. The dual ILP given below may serve as the
starting point of a more detailed analysis. For example, such an analysis could aim at a
deeper understanding of the problem structure or at the establishment of lower bounds
on the optimal solution, which in turn can be useful for finding approximation bounds of
polynomial-time algorithms.

It appears reasonable to choose a comparatively simple primal ILP for this analysis. Hence,
we consider the first ILP that was presented in Section 5.1.1. First of all, we omit the
Constraints 5.1 to 5.3 and the variables xuv. This seems impractical since it saves 3kn2

constraints and n2 variables while it adds (k − 1) · n2 ·m new constraints given in Equa-
tion 5.21 to compensate for this simplification. However, this modification has no influence
on the optimal solution and thus it serves our purpose here. We further simplify the lin-
ear program by adding unnecessary constraints. The variables ft(u, v) for all (u, v) ∈ E
were used to indicate a set flag. To simplify the matter, we introduce additional variables
ft(u, v) for all remaining tuples (u, v) /∈ E. As long as we have bw(u, v) = 0 for all constants
corresponding to pairs (u, v) that do not represent edges of the input graph, the additional
variables have no influence on the obtained optimal solution. Moreover, we only request
that all variables are integers greater or equal zero instead of binaries for simplicity. This
leaves us with the following primal program.

minimize
∑

s,t,v∈V
sst(v)

subject to

k∑
i=1

cvi = 1 ∀v ∈ V (5.20)

bw(u, v) · cwi + cti − ft(u, v) ≤ 1 ∀t, u, v, w ∈ V, i ∈ {1, . . . , k} (5.21)

sst(s) = 1 ∀s, t ∈ V (5.22)

sst(u) + ft(u, v)− sst(v) ≤ 1 ∀s, t, u, v ∈ V (5.23)

cvi, sst(v), ft(u, v) ≥ 0 ∀s, t, u, v ∈ V, i ∈ {1, . . . , k}

Below, we state the corresponding dual program. We introduce n variables Cv for Con-
straints 5.20, k · n4 variables Ftuvwi for the flag-setting Constraints 5.21, n2 variables Sst
for the initial search-space sizes defined in Constraints 5.22 and finally n4 variables Sstuv
corresponding to Constraints 5.23.

maximize
∑
v∈V

Cv +
∑

t,u,v,w∈V
1≤i≤k

Ftuvwi +
∑
s,t∈V

Sst +
∑

s,t,u,v∈V
Sstuv

subject to

Cv +
∑

v,x,y∈V
(bw(x, y) · Fvxywi + bw(x, y) · Fwxyvi) ≤ 0 ∀w ∈ V, i ∈ {1, . . . , k} (5.24)

∑
s∈V

Sstuv −
∑

w∈V,1≤i≤k
Ftuvwi ≤ 0 ∀t, u, v ∈ V (5.25)

Sst +
∑
v∈V

(Sstsv − Sstvs) ≤ 1 ∀s, t ∈ V (5.26)∑
v∈V

(Sstuv − Sstvu) ≤ 1 ∀s 6= u, t ∈ V (5.27)

Ftuvwi, Sstuv ≤ 0 ∀s, t, u, v, w ∈ V, i ∈ {1, . . . , k}
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In the dual ILP, constraints given in Equation 5.27 represent the variables cvi of the primal.
The variables ft(u, v) are represented by Equation 5.25. Equation 5.26 holds constraints
according to the variables sst(s) and Equation 5.27 covers all remaining sst(v) where v 6= s.
Unfortunately, it appears that there is no obvious interpretation of the dual program, even
for the simplified version given above. However, a more detailed analysis of the dual ILP
is beyond the scope of this thesis. This may instead be part of future work on this topic.
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In this chapter, we examine two greedy approaches finding partitions of arbitrary graphs
to serve as cells for the arc-flags algorithm. The first algorithm we present is based on the
idea that nodes should be in the same partition if their corresponding backward-shortest-
path trees are similar. The second approach assigns nodes to cells one after another and
greedily optimizes the search-space size in every step.

From the results in Chapter 4 we know that the problem ArcFlagsPartition is NP-
hard even if input graphs are restricted to trees. The question that arises naturally is
whether or not one can find algorithms for which there exist provable guarantees concerning
the quality of their provided solutions. As we have already mentioned in Chapter 3,
algorithms for preprocessing a given graph used in practice are heuristics. Their strategies
for finding a partition of a given graph are based on intuitions about the characteristics
of a good partition. However, as we also pointed out, one can construct input instances
for which these intuitions fail. Hence, it appears to be unlikely that one could establish
such guarantees for the corresponding heuristics. In this chapter, we focus on the question
whether we can find any guarantees for the two combinatorial approaches presented below.
Unfortunately, it turns out that no constant approximation ratio can be established for
both of them, even if we restrict input instances to strongly connected graphs.

In the following Sections 6.1 and 6.2 we present the two greedy approaches mentioned
above. In each section, we give a brief description of how the algorithm works. An
analysis of the time and space complexity of the algorithm follows. Finally, we construct
input instances for which the partition generated by the particular approach is of very
poor quality. In Section 6.3 we then present a short case study to indicate the qualities of
both algorithms on realistic instances.

A Trivial Bound on the Approximation Ratio

First of all, we observe that any algorithm that returns a valid partition of a graph fulfills
a trivial approximation ratio concerning the problem ArcFlagsPartition. For an arbi-
trary graph G, there are n2 distinct s-t-queries. Each query settles at least the source node
s, resulting in a search-space size that is at least 1. Consequently, n2 is a lower bound on
the search-space size SAF(G, C), regardless of the partition C. On the other hand, at most
n nodes can get settled in any query. We obtain an upper bound on the search-space size
of n3, so the corollary given below follows immediately.
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Corollary 6.1. Let A be an algorithm that takes as input a graph G and a positive integer k
and outputs a partition of G into at most k cells. Then A is an n-approximation algorithm
for ArcFlagsPartition.

In fact, using Lemma 2.2, we can even bound the approximation ratio by (n + 1)/2 with
similar arguments.

6.1 Merging Cells with Similar Flags

The basic idea of the first greedy approach is as follows. On a query to a given target node
t, one may encounter edges that have the flag for the target cell c(t) set to 1, even though
they are not part of the backward-shortest-path tree rooted at t. To keep the search-space
size of an s-t-query small, one needs to assure that as few edges as possible have this
property. Clearly, if exactly those edges belonging to the backward-shortest-path tree of t
had the corresponding flag set, the query would only settle nodes that actually lie on the
shortest path. This clearly is the best case that may occur in an arc-flag based query.
Obviously however, in general one cannot assure that only these edges have the target cell
flag set. Instead, the following approach aims at putting nodes into the same partition if
the edges of their backward-shortest-path trees cover similar edges to the greatest possible
extent.

6.1.1 Algorithm Description and Analysis

Algorithm 6.1 shows our approach, which works as follows. The input of the algorithm
consists of a directed graph G = (V,E, ω) and an integer k denoting the maximum number
of cells of the desired partition. In a first step, the backward-shortest-path tree of every
node of the graph is computed and stored in an array. This can be done by distinct
runs of Dijkstra’s algorithm on the reverse graph G starting once at every node. Here, we
assume that the routine Dijkstra() called in Line 2 returns a set of edges representing the
shortest-path tree of the respective source node. In the second step, the differences between
these trees are computed and stored as well. In our context, we define the difference
between two shortest-path trees Tu = (Vu, Eu, ωu) and Tv = (Vv, Ev, ωv) of two nodes
u, v ∈ V as the size of the set (Eu ∪Ev) \ (Eu ∩Ev). In the last step of Algorithm 6.1, the
cells of the partition are obtained as follows. Initially, each node is interpreted as a single
cell. Its backward-shortest-path tree then holds exactly the edges that have the flag of
that cell set to 1. Cells are then iteratively merged in a greedy fashion until k cells are left.
Every merging phase consists of the following steps. First, the minimal difference between
any pair of cells is determined. Then, the corresponding cells and the sets of flagged edges
are merged. Afterwards, the differences between the newly created cell and all remaining
cells are updated.

Time and Space Complexity

We proceed with a brief analysis of the running time and the space consumption of Algo-
rithm 6.1. Step one consists of n runs of Dijkstra’s algorithm, which runs in O(m+n log n)
for each node. Hence, we get a total running time that is in O(nm+n2 log n). The amount
of storage necessary to keep n shortest-path trees is in O(n2). The second step has a time
complexity of O(n2m). Storing n2 differences again requires quadratic space complexity.
The third step is dominated by its two inner loops beginning in Lines 13 and 20, respec-
tively. The first one searches for the minimum of O(n2) differences, whereas the second
updates the cell differences in O(nm) steps. Since these loops are executed at most n
times each, the time complexity of the last step is in O(n2m+n3). Merging two cells into
one requires at most the space necessary to store the two cells separately, so the space
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Algorithm 6.1: GreedyMerge

Input: Graph G = (V,E, ω), positive integer k
Data: Array flags of sets of edges, matrix diff of integers
Output: A partition C of G with |C| = k

// Step 1: Compute and store all backward-shortest-path trees

1 forall v ∈ V do

2 flags({v}) ← Dijkstra(G, v)

// Step 2: Initialize cell differences and partition

3 forall u ≺ v ∈ V do
4 diff({u}, {v}) ← 0
5 forall e ∈ E do
6 if (e ∈ flags({u}) ∧ e /∈ flags({v})) ∨ (e /∈ flags({u}) ∧ e ∈ flags({v})) then
7 diff({u}, {v}) ← diff({u}, {v})+1

8 C ← ∅
9 forall v ∈ V do

10 C ← C ∪ {{v}}

// Step 3: Greedy minimization of cell differences

11 while |C| > k do
// Find the pair of cells with minimum difference

12 min←∞
13 forall Ci, Cj ∈ C do
14 if diff(Ci, Cj) < min then
15 min← diff(Ci, Cj)
16 i1 ← i, i2 ← j

// Merge the cells with minimum difference

17 C ′ ← Ci1 ∪ Ci2
18 flags (C ′) ← flags (Ci1) ∪ flags (Ci2)
19 C ← (C \ {Ci1 , Ci2}) ∪ {C ′}

// Update differences

20 forall C 6= C ′ ∈ C do
21 diff(C,C ′) ← 0
22 forall e ∈ E do
23 if (e ∈ flags(C) ∧ e /∈ flags(C ′)) ∨ (e /∈ flags(C) ∧ e ∈ flags(C ′)) then
24 diff(C,C ′) ← diff(C,C ′)+1

consumption does not increase after each step of merging. Overall, the algorithm uses
quadratic amount of storage and runs in polynomial time with a complexity of O(n4) in
general and O(n3) if the degree of every node is bounded by a constant.

6.1.2 Bounding the Approximation Ratio

Although Algorithm 6.1 may provide high quality solutions for many input instances, the
relation between differences in the number of flagged edges and the resulting search-space
size is unclear. It turns out that there are instances for which the partition provided
by Algorithm 6.1 is very poor in terms of applicability for the arc-flags algorithm. In
what follows, we show that Algorithm 6.1 yields no O(

√
n)-approximation for the problem

ArcFlagsPartition, even if we restrict the set of allowed input instances to strongly
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connected graphs. Since we know from Corollary 6.1 that n is a trivial upper bound on
the approximation ratio, this is a rather dissatisfactory result.

We construct a graph for which Algorithm 6.1 provides a rather poor solution. Let k be
the number of allowed cells. The computed partition will hold k− 1 cells of size 1 and one
cell of size n − k + 1. Let G′ = (V ′, E′, ω′) be an undirected star, i.e., there is a distinct
node r such that {(v, r), (r, v)} ⊆ E′ for all v ∈ V ′ \ {r} and G′ contains no further edges.
The number of nodes in G′ is specified later. We obtain the desired graph G by adding a
set W of k−1 nodes w1, . . . , wk−1 to V ′ and edges (v, wi) for all v ∈ V ′, i ∈ {1, . . . , k−1},
to E′. In other words, we add edges from every single node of the star to all of the k − 1
newly added nodes. To make the graph G strongly connected, we finally add k − 1 edges
(wi, r) for all i ∈ {1, . . . , k − 1}. Furthermore, we set all edge weights to one. Figure 6.1
shows a schematic example of the conceived graph G.

w2

w1

Figure 6.1: A graph that induces bad performance of Algorithm 6.1.

The backward-shortest-path trees of the nodes in G look as depicted in Figure 6.2. Any of
these trees contains the k−1 edges (wi, r) for i ∈ {1, . . . , k−1}. Apart from that, backward-
shortest-path trees corresponding to nodes in V ′ only cover nodes of the original star G′.
By contrast, the backward-shortest-path trees of the k − 1 nodes in W cover exactly the
edges incoming directly from all nodes in V ′. If we look at the initially inferred tree
differences, it is then clear that differences between any nodes u, v ∈ V ′ are at most 4.
Differences between any two nodes v ∈ V ′ and w ∈ W each sum up to 2(n − k) − 1 and
the difference between any pair w1, w2 ∈W is exactly 2(n− k).

u

v

Figure 6.2: Backward-shortest-path trees of two labeled nodes u and v of the adverse graph
instance.
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In what follows, we show that the partition returned by Algorithm 6.1 given the input
parameters G and k is C = {V ′, {w1}, . . . , {wk−1}}. From the explanations given above it
is clear that the algorithm starts by merging pairs of nodes in V ′ into one cell. Imagine a
set of edges obtained after exclusively merging edges of arbitrary backward-shortest-path
trees corresponding to nodes in V ′. First of all, every such set contains at least n− k − 1
of altogether n− k edges (v, r) of E′ with the root r of G′ being the head of the edge. If
we only account for these edges, the maximum difference between any two cells holding
only nodes from V ′ is at most 2. In addition to that, the n− k edges (r, v) with the root
being the tail of the edge are possibly part of this set. Hence, the maximum difference
between any cells obtained after merging nodes in V ′ is bounded by n − k + 2 in total.
Moreover, the differences between obtained cells after merging arbitrary nodes in V ′ and
the cells containing single nodes of W remain unaffected. Since we may safely assume that
n ≥ k + 4, differences between cells that are subsets of V ′ are always smaller than the
differences of 2(n− k)− 1 between one of these cells and the nodes in W . Consequently,
the preprocessing algorithm always merges cells that exclusively contain nodes from V ′

until the number of cells is reduced to k. On termination, the output of the algorithm is
thus C = {V ′, {w1}, . . . , {wk−1}}, as claimed above.

The Approximation Ratio of the Adverse Input Instance

To obtain a feasible lower bound on the corresponding search-space size, consider the intra-
cell search-space size of the cell V ′. Since this cell induces a strongly connected subgraph
of G, we get an intra-cell search-space size that we can bound as shown below due to
Lemma 2.2. This yields a lower bound on the search-space size Sgreedy induced by the
partition computed by Algorithm 6.1.

Sgreedy ≥ (n− k + 1)2
(n− k + 2)

2

≥ (n− k)3

2

=
1

2
· (n3 − 3n2k + 3nk2 − k3) (6.1)

Next, we construct a partition C′ of G in which all nodes v 6= r ∈ V ′ are distributed
equally over the k cells. The remaining nodes r, w1, . . . , wk−1 are as well assigned to a
distinct cell, each. We may safely assume that n/k ∈ N and hence the obtained partition
consists of k cells of equal size. Note that the given partition is not even claimed to be
search-space optimal in general. Consider an arbitrary s-t-query that originates at a node
s ∈ V . The only nodes that possibly get settled despite not being in the target cell are s
and r. The number of nodes settled in the target cell only depends on the order ≺ and
takes a distinct value in the range from 1 to n/k for each of the n/k possible target nodes
of that cell. Thus, the total number of settled nodes in all queries to a certain target cell

can be bounded by
∑n/k+2

i=3 i = (n/k+ 2)(n/k+ 3)− 3. Since there are n nodes and k cells
in total, an upper bound on the optimal search-space size for G is obtained as follows.

Sopt ≤ n · k ·

((
n
k + 2

) (
n
k + 3

)
2

− 3

)

≤ n · k ·
(
n
k + 3

)2
2

=
1

2k
·
(
n3 + 6n2k + 9nk2

)
(6.2)

Given an upper bound on the optimal search-space size and a lower bound on the search-
space size induced by the partition computed by Algorithm 6.1, we finally turn to the

75



6. Greedy Approaches

approximation ratio corresponding to the input graph G. Setting k =
√
n we achieve the

following bound from Equations 6.1 and 6.2.

Sgreedy
Sopt

≥ k · n
3 − 3n2k + 3nk2 − k3

n3 + 6n2k + 9nk2

=
(
√
n− 3)n3 + 3n

5
2 − n2

n3 + 6n
5
2 + 9n2

=
(√
n− 3

) n+ 3
√
n− 1

n+ 6
√
n+ 9

(6.3)

For large n Equation 6.3 gets close to
√
n + b for a constant b ∈ R. Furthermore, we

obtain an analogous result if we set k = a ·
√
n for an arbitrary constant a ∈ R+.

Hence, Algorithm 6.1 does not provide an f(n)-approximation for any f ∈ O(
√
n) nor

a δ-approximation for any constant δ.

6.2 Assigning Nodes Sequentially

We present a second approach for solving the problem ArcFlagsPartition on arbitrary
graphs. The idea of this algorithm is to assign single nodes of the given graph to cells one
after another. Each time a new node is picked, its cell is chosen optimally with respect to
the nodes that have already been processed.

6.2.1 Algorithm Description and Analysis

Algorithm 6.2 shows the sequential approach. It maintains two sets T and U with the
invariant that T ] U = V . In each step of the main loop, a node of the set U is moved
into the set T . The routine SelectNode called in Line 7 picks a node from a given set
for this purpose. Its concrete implementation is specified later. The node returned by this
method is then assigned to a cell such that the current search-space size is minimized. To
find the best cell for a certain node u, the node is temporarily assigned once to every cell.
Each time, the overall search-space size of queries from any node in G to all nodes that
have already been handled, including u, is computed. The cell assignment that causes the
lowest search-space size is chosen for u. The function CountingDijkstra called in Line
16 of Algorithm 6.2 is a slightly modified version of Dijkstra’s algorithm used to obtain the
correct search-space sizes. It requires three parameters, the first of which is a cell-induced
subgraph of G, the second is a set of target nodes and the last is the source node. The
function is used to compute the change in the search-space size in the following way. To
receive the new search-space size of the candidate cell of u, one simply counts number
of nodes settled so far during a run of Dijkstra’s Algorithm starting from a certain node
in G. Every time a node in the target cell is settled, the current value of the counter is
added to the search-space size. Doing this for all distinct source nodes and accounting for
unreachable nodes at the end yields the search-space size

∑
s∈V,t∈Ci SAF(s, t) induced by

cell Ci of the so far constructed partition {C1, . . . , Ck}. Pseudo code of this procedure is
given in Algorithm 6.3. Recall that at the end, the considered node is added to the cell
that minimizes the search-space size

∑
s∈V,t∈T SAF(s, t) =

∑k
i=1

∑
s∈V,t∈Ci SAF(s, t). Since

exactly one cell is modified, only the corresponding term changes in the sum given above.
Hence, we simply assign u to the cell for which the difference in this term is minimized.
To this end, we keep track of the minimum difference in the variable smin. The main loop
is then continued until all nodes have been processed.

Time and Space Complexity

In what follows, we give an analysis of the time and space complexity of Algorithm 6.2.
First of all, it is easy to see that the main loop dominates the running time of the algorithm.
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6.2. Assigning Nodes Sequentially

Algorithm 6.2: GreedySequential

Input: Graph G = (V,E, ω), positive integer k
Data: Sets T , U , C1, . . . , Ck of nodes, sets E1, . . . , Ek of edges, array s(·)
Output: A partition C = {C1, . . . , Ck} of G

// Initialization

1 T ← ∅
2 U ← V
3 for i = 1, . . . , k do
4 Ei ← ∅
5 Ci ← ∅

// Main loop

6 while U 6= ∅ do
7 u← SelectNode(G, U )
8 T ← T ∪ {u}
9 U ← U \ {u}

// Find the best cell for u
10 smin ←∞
11 imin ← null

12 E′ ← Dijkstra(G, u)
13 for i = 1, . . . , k do
14 s← 0
15 forall v ∈ V do
16 s← s+ CountingDijkstra((V,Ei ∪ E′), Ci, v)

17 if s− s(i) < smin then
18 smin ← s− s(i)
19 imin ← i

20 s(imin)← s(imin) + smin

21 Eimin ← Eimin ∪ E′
22 Cimin ← Cimin ∪ {u}

Since U contains n nodes at the beginning and one of them is extracted in every iteration,
the loop is executed exactly n times. In all of these steps, the search-space size caused by
assigning the node to any of the k cells is computed. To this end, the routine Count-
ingDijkstra is executed n times in each of the k steps of the corresponding inner loop.
Since the modified version of Dijkstra’s algorithm has the same asymptotic time complex-
ity as the original one presented in Chapter 2, each execution has costs in O(m+n log n).
In total, we obtain a time complexity that is in O(k ·(n2m+n3 log n)) ∈ O(kn4). The space
consumption is dominated by the space required for storing the flagged edges and the sets
of nodes. Observe that these edges are stored to construct the cell-induced subgraphs that
are required for the function CountingDijkstra. Since at all times we have |T | ≤ n,
|U | ≤ n and

∑k
i=1 |Ci| ≤ n, the overall space requirement is in O(km+ n).

Selecting Nodes

So far we have not specified how the function selectNode used in Algorithm 6.2 chooses
the next node to be processed. A naive deterministic procedure that works in O(1) time
would be to pick nodes in ascending order according to their index. However, it appears
that the order in which nodes are chosen has a large impact on the quality of the provided
output of the algorithm GreedySequential. If nodes are simply selected with respect
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Algorithm 6.3: CountingDijkstra

Input: Graph G = (V,E, ω), target node set T , source node s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , search-space size r of queries from s to T

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0
6 c← 0 // Counter for settled nodes

7 r ← 0 // Seach-space size

8 t← 0 // Counter for settled nodes in T

9 while Q is not empty do
10 u← Q.deleteMin()
11 c← c+ 1
12 if u ∈ T then
13 r ← r + c
14 t← t+ 1

15 forall (u, v) ∈ E do
16 if d(u) + ω(u, v) < d(v) then
17 d(v)← d(u) + ω(u, v)
18 pred(v)← u
19 if Q.contains(v) then
20 Q.decreaseKey(v, d(v))

21 else
22 Q.insert(v, d(v))

23 r ← r + (|T | − t) · c // Search-space size for unreachable nodes

to their index, it seems easy to construct graphs for which the solution computed by
Algorithm 6.2 is of poor quality. Instead, we propose a more sophisticated approach for
picking the node that is to be processed next. It is based on the following intuition. Since
especially the very first nodes that are assigned to cells have a large impact on the solution
quality, one would want them to be spread evenly over the graph. A deterministic way
of choosing nodes that have a preferably large distance from each other is given below.
Initially, the node of maximum distance from any other node in the input graph G is picked.
Then, following nodes are chosen to have the minimum distance from any processed node
maximized. The proposed Algorithm 6.4 implements this strategy. It requires a unique
precomputation of all distances within the graph, which induces additional computational
costs in O(n3). The algorithm itself clearly runs in O(n2) time and requires a linear
amount of storage. Thus, the asymptotic time and space complexities of Algorithm 6.2 do
not increase when this approach is used to pick nodes of a graph.

6.2.2 Bounding the Approximation Ratio

The remainder of this section is devoted to showing that we cannot provide any con-
stant quality assurance on the outputs produced by Algorithm 6.2, even if the nodes are
processed in the rather sophisticated way described above.
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6.2. Assigning Nodes Sequentially

Algorithm 6.4: SelectNode

Input: Graph G = (V,E, ω), set of nodes U
Data: Array minDist of integers
Output: A node u ∈ U
// Precondition: Distances between pairs of nodes in V are known.

1 max← −1
2 r ← null

3 if U 6= ∅ then
4 forall t ∈ U do
5 minDist(t)←∞
6 forall s ∈ V \ U do
7 minDist(t)← min{minDist(t), d(s, t)}

8 forall t ∈ U do
9 if minDist(t) > max then

10 max← minDist(t)
11 r ← t

12 else
13 forall s, t ∈ V do
14 if d(s, t) > max then
15 max← d(s, t)
16 r ← t

17 return r

Again, we construct a graph for which the solution of the presented algorithm GreedySe-
quential is of poor quality. For an adverse input instance, consider the undirected tree
G = (V,E, ω) depicted in Figure 6.3. It contains a chain of x nodes with several leaves
attached to both ends. First, there are y leaves attached to the leftmost node of the chain.
All edges between this node and the leaves have a weight of 1. Edge weights on the chain
are set to a small number ε. In particular, (x−1) ·ε < 1 shall hold. At the right end of the
chain we have k + 1 additional leaves. According edge weights connecting these leaves to
the last node of the chain are supposed to be numbers W with W > 3. We divide the set
V of nodes into two sets X and Y , where X contains all nodes of the chain plus the k+ 1
leaves that are incident to the rightmost node of the chain. Y holds the remaining nodes,
i.e., the y leaves incident to the first node of the chain. In what follows, we examine the
search-space sizes of different partitions on this tree.

Edge weights: 1 ε W

Node counts: y x k + 1

Figure 6.3: An adverse example for the presented greedy approach introduced above.
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To begin with the analysis of the approximation ratio concerning the given adverse input
instance, we present a technical lemma that is going to be useful during the rest of this
section in order to bound occurring search-space sizes.

Lemma 6.2. Let x, c and n be positive integers. There is a positive integer d such that
(x+ c)n ≤ 2xn holds for all x ≥ d.

Proof. The Lemma follows immediately after a few basic transformations shown below.

(x+ c)n =

n∑
k=0

(
n

k

)
· xn−k · ck

= xn +
n∑
k=1

(
n

k

)
· xn−k · ck

≤ xn + d · xn−1 for a d ∈ N
≤ 2xn for all x ≥ d

This proves the claim.

Along the lines of Section 6.1, we proceed by deriving bounds on the optimal search-
space size and on the partition computed by algorithm GreedySequential for a given
maximum number of cells.

An Upper Bound on the Optimal Search-Space Size

First, we provide an upper bound on the optimal search-space size induced by a tree with
the properties given above. Assume that the number of allowed cells is k + 1 and that we
choose the following partition C. All nodes of X are put into one cell. The nodes in Y are
divided equally over the k remaining cells. Without loss of generality, let y = c · k for a
constant c ∈ N, so that each of the k cells consists of exactly y/k nodes. We examine the
search-space size induced by this partition and derive an upper bound depending on the
graph size. In all what follows, assume that x, y and k are large enough for Lemma 6.2 to
be applied. More precisely, we demand that (z + 3)3 ≤ 2z2 holds for z ∈ {x+ k, y/k}.

We separate the search space into four components and consider these components one by
one. At first, we study the queries between nodes in X. Since the corresponding subgraph
consists of a single cell that induces a strongly connected subgraph of T , we obtain a search-
space size for queries within X that equals the search-space size of Dijkstra’s algorithm
given in Lemma 2.2.

SCX→X =
∑

s∈X,t∈X
SAF(G, C, s, t)

= (x+ k + 1)2
x+ k + 2

2

≤ 1

2
(x+ k + 2)3

≤
Lemma 6.2

(x+ k)3 (6.4)

Next, we investigate the search-space size of queries within the set Y . Starting from an
arbitrary node, the number of nodes one has to visit ranges from 3 to (y/k) + 2 nodes for
each target cell, depending on the target node index. Queries where the source and target
node belong to the same cell form an exception with a search-space size between 1 and
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(y/k)+1. Taking into account that there are y distinct source nodes and k possible target
cells in Y , we get the following search-space size.

SCY→Y =
∑

s∈Y,t∈Y
SAF(G, C, s, t)

= y · k ·

(( y
k + 2

) ( y
k + 3

)
2

− 3

)
− y

k
− 1

≤ y · k ·
( y
k + 3

)2
2

≤
Lemma 6.2

y · k
(y
k

)2
=
y3

k
(6.5)

For the search-space size caused by queries from nodes in Y to nodes in X, one obtains
almost exactly the search-space size of Dijkstra’s algorithm running on a strongly connected
graph of size |X| increased by 1 to account for the source node in Y . The only difference
is that the number of distinct source nodes is y instead of x+ k + 1.

SCY→X =
∑

s∈X,t∈X
SAF(G, C, s, t)

= y

(
(x+ k + 2)

(x+ k + 3)

2
− 1

)
≤

Lemma 6.2
y(x+ k)2 (6.6)

Finally, we turn to queries from nodes in X to nodes in Y . Considering the nodes from
X that are settled in such queries, we see that for each of the y target nodes exactly the
path from the source node s to the leftmost node of the chain is visited. On the other
hand, we have x+ k + 1 distinct source nodes and each of them is responsible for settling
1 to y/k nodes for each of the k possible target cells. Hence, we get the search-space size
shown below.

SCX→Y =
∑

s∈X,t∈X
SAF(G, C, s, t)

= y

(
x∑
i=1

i+ (k + 1)(x+ 1)

)
+ (x+ k + 1) · k ·

y/k∑
i=1

i

≤ y · (x+ k + 1)(x+ k + 2)

2
+ (x+ k + 1) · k ·

( y
k

( y
k + 1

))
2

≤ 1

2
· y · (x+ k + 2)2 +

1

2
· (x+ k + 1) · k ·

(y
k

+ 1
)2

≤
Lemma 6.2

y(x+ k)2 + 2(x+ k)
y2

k
(6.7)

Summing up Equations 6.4 to 6.7 yields the total search-space size. We further set k = x
and obtain the following upper bound on the optimal search-space size.

Sopt ≤ SCX→X + SCY→Y + SCY→X + SCX→Y

≤ (x+ k)3 +
y3

k
+ y(x+ k)2 + y(x+ k)2 + 2(x+ k)

y2

k

= 8x3 + 8yx2 + 4y2 +
y3

x
(6.8)
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A Lower Bound on the Search-Space Size Induced by the Greedy Approach

Now, assume that Algorithm 6.2 is used to compute a partition of G and that nodes are
picked in an order determined by Algorithm 6.4. The first node that is selected is chosen
to be one that has the largest possible distance to another node of the graph. Clearly, any
of the k + 1 leaves in X fulfills this requirement. So assume that one of them is assigned
to an arbitrary cell first. The next node is selected to be the one with maximum distance
from the first node. But the nodes at maximum distance from the first one are exactly the
k remaining leaves in X with a distance of 2W . Consequently, the k+1 leaves are assigned
first and each of them is put into a distinct cell. We bound the resulting search-space size
induced by such a partition C′ in what follows. In contrast to the partition considered
before, all edges that connect nodes on the chain pointing rightward now have all flags set
to 1.

Again, we distinguish the same four components of the search-space size as before. For
queries within X, we can safely assume that at least the whole s-t-path is settled in a query
from a node s ∈ X to a node t ∈ X. Using Lemma 2.3 yields the following search-space
size, ignoring all queries involving any of the k + 1 leaves.

SC
′

X→X ≥
1

3
x3 + x2 − 1

3
x

≥ 1

3
x3 (6.9)

Next, we take account of queries where both nodes belong to Y . We assume that the nodes
in Y are again balanced over k cells, which clearly yields the best solution for this case.
Then, we know that for a distinct source node, the number of settled nodes in Y ranges
from 1 to y/k for targets in the same cell. For targets not in the cell of the source node,
this number ranges from 2 to y/k + 1. In addition to that, all x nodes of the chain must
get settled in every single query since the corresponding edges have small weights and all
their flags are set to 1. In total, we can bound the search-space size as follows.

SC
′

Y→Y ≥ y · k ·

(( y
k

) ( y
k + 1

)
2

)
+ y(y − 1)x

≥ y · k · 1

2

(y
k

)2
+

1

2
y2x

=
1

2

y3

k
+

1

2
y2x (6.10)

We can bound the overall search-space size of queries from Y to X with the same argu-
mentation as for Equation 6.6 above, except for the fact that at most one of the leaves in
X needs to be settled, as all leaves are assigned to distinct cells.

SC
′

Y→X ≥ y

(
x+1∑
i=2

i+ k(x+ 2)

)

= y · 1

2
(x+ 1)(x+ 2)− 1 + yk(x+ 2)

≥ 1

2
yx2 + yxk (6.11)

Ultimately, for queries from nodes in X to nodes in Y we know that at least the whole
chain must get settled every time. This is again due to the fact that the corresponding
flags are set and edge weights were chosen to be small.

SC
′

X→Y ≥ yx2 (6.12)
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From Equations 6.9 to 6.12 directly follows the lower bound on the obtained search-space
size given below. Again we set the number of cells to be k = x.

Sgreedy ≥ SC
′

X→X + SC
′

Y→Y + SC
′

Y→X + SC
′

X→Y

≥ 1

3
x3 +

1

2

y3

k
+

1

2
y2x+

1

2
yx2 + yxk + yx2

=
1

3
x3 +

1

2

y3

x
+

1

2
y2x+

5

2
yx2 (6.13)

The Resulting Approximation Ratio

To obtain a bound on the approximation ratio, we use the bounds on Sopt and Sgreedy
stated in Equations 6.8 and 6.13. Furthermore, we demanded that y = c · k = c · x for a
constant c ∈ N. Altogether, we find the following approximation ratio r for Algorithm 6.2.

r ≥
Sgreedy
Sopt

≥
1
3x

3 + 1
2
y3

x + 1
2y

2x+ 5
2yx

2

8x3 + y3

x + 8yx2 + 4y2

=
1
3x

3 + 1
2c

3x2 + 1
2c

2x3 + 5
2cx

3

8x3 + c3x2 + 8cx3 + 4c2x2

=

(
1
2c

2 + 5
2c+ 1

3

)
x3 + 1

2c
3x2

(8c+ 8)x3 + (c3 + 2c2)x2
(6.14)

We know that the number of nodes is n = y + x + k + 1 = (c + 2)x + 1, where c is a
constant natural number. As n tends to infinity, so does x and hence the bound on the
approximation ratio given in Equation 6.14 converges to

δ =
1
2c

2 + 5
2c+ 1

3

8c+ 8
.

We can choose c arbitrarily in N+ and clearly δ is divergent for large c. Thus, we can
achieve any constant upper bound δ ∈ R+. This proves that Algorithm 6.2 does not yield
any constant approximation ratio.

Other Techniques to Determine the Order of Processed Nodes

One might consider to slightly modify the node-selection routine given by Algorithm 6.4
in order to provide a deterministic method that copes well with the input instance we
inspected above. For example, distances in Algorithm 6.4 could be measured in the number
of hops, i.e., edge weights are ignored during node selection. This results in a more
favorable order of nodes for the adverse tree we constructed above. However, a simple
modification of this graph infers the same order of selected nodes as above for the adjusted
procedure. All one has to do is remove the outgoing edges of the k + 1 leaves in X at the
rightmost node of the chain. Note that edges pointing in the opposite direction remain
unchanged. Moreover, we add an edge from each leaf in X to an arbitrary leaf in Y with
weight 1. This implies that starting at one of the k+1 leaves in X, the node with maximum
hop distance is again one of the remaining leaves of X. Hence, the greedy algorithm creates
a partition that is similar to the one we examined above, which results in an equally bad
approximation ratio.

It appears likely that any deterministic approach that chooses the next processed node and
is efficiently computable can be countered by an input instance that induces a bad parti-
tion. Another idea thus might be to pick nodes at random. Since it seems quite unlikely
that the resulting order induces a bad partition, this might produce good solutions with
a high probability. Whether or not randomization can be used to establish a probabilistic
bound on the approximation ratio of Algorithm 6.2 remains an open question.
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6.3 Case Study

We close this chapter with a brief experimental setup. Note that the case study presented
here is supposed to give a rough idea of the performance of the approaches introduced
in Sections 6.1 and 6.2 rather than an exhaustive evaluation. Both greedy algorithms
presented above were implemented naively without any additional engineering or paral-
lelization, although there appear to be many possible improvements with positive effects
on running times. For example, the algorithms include loops of independent computations
that one could perform in different threads to save time, such as the tentative assign-
ment of a node to each cell in Algorithm 6.2. All implementations were compiled with
Java 1.6. To compute optimal search-space sizes, we implemented the stopping-criterion
aware MILP introduced in Chapter 5, including all tuning possibilities mentioned there.
We used Gurobi 4.0 as a black-box solver [GRB10].

We examine three different types of graphs for this case study. Namely, partitions were
generated for excerpts of a real street network. Moreover, we performed experiments on
unit-disk graphs, which were generated by placing a fixed number of nodes into a squared
plane, with their positions picked uniformly at random. Nodes were connected by an edge
if and only if their Euclidean distance fell below a specified value. This value was chosen
such that the average degree of each node was about 10. Finally, grids of a fixed size were
used, where a node was placed on each discrete x- and y-coordinate for all x, y ≤ c given
a constant c and connected to its up to four neighbors via an edge. Edge weights for both
the unit-disk graphs and the grids were integers chosen uniformly at random from the set
{1, . . . , 1000}. Instances of different sizes were generated for each type of graph and each
time, different parameters k indicating the number of allowed cells were tested.

Experiments concerning Algorithms 6.1 and 6.2 were performed on a machine equipped
with a dual-core AMD Opteron processor 2218 clocked at 2.6 GHz and 32 GB RAM
running SUSE Linux 11.3. The linear programs were executed on up to 48 cores of AMD
Opteron processors 6172 clocked at 2.1 GHz, provided with 256 GB RAM on a machine
also running SUSE Linux 11.3. To compare the quality of both greedy algorithms to the
optimal solution, all three approaches were performed on small graphs containing at most
40 nodes. Furthermore, the algorithms GreedyMerge and GreedySequential were
tested on larger graphs for more detailed results and to get a first impression of their
scalability.

The results of our experiments are listed in Tables 6.1, 6.2 and 6.3. For each run, we list
the running time of the corresponding algorithm in seconds as well as the search-space
size SAF(C) induced by the constructed partition C. Input graphs that represent a part of
the street network of the city of Karlsruhe are denoted by GKa. By Gunit and Ggrid, we
denote the generated unit-disk and grid graphs, respectively. In particular, we consider
the following input instances.

• Small instances: GSKa (n = 40, m = 61), GSunit (n = 32, m = 312) and GSgrid (n = 25,
m = 80).

• Medium instances: GMKa (n = 795, m = 1 652), GMunit (n = 500, m = 5 598) and GMgrid
(n = 484, m = 1 848).

• Large instances: GLKa (n = 2 206, m = 4 693), GLunit (n = 2 000, m = 20 144) and
GLgrid (n = 1 936, m = 7 568).

We see that both greedy approaches generate partitions of similar quality. The algorithm
providing the better output depends on both the input graph and the number of cells, so
neither approach outperforms the other in terms of solution quality.
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6.3. Case Study

Table 6.1: Performance on small instances

Merge Sequential Linear Program
Graph k Time SAF Time SAF Time SAF

GSKa 2 0.049 s 25 293 0.307 s 26 525 56 263 s 22 301
3 0.049 s 18 628 0.320 s 17 693 453 265 s 17 460
4 0.050 s 17 932 0.343 s 16 833 159 703 s 15 027

GSunit 2 0.094 s 11 502 0.227 s 11 771 2 321 s 11 454
3 0.095 s 9 399 0.245 s 9 690 50 690 s 9 232
4 0.094 s 8 765 0.264 s 8 453 67 671 s 7 996

GSgrid 2 0.031 s 5 861 0.162 s 5 697 283 s 5 627
3 0.031 s 4 538 0.173 s 4 538 1 833 s 4 479
4 0.031 s 4 252 0.188 s 3 977 8 775 s 3 977

Table 6.2: Performance on medium instances

GreedyMerge GreedySequential
Graph k Time SAF Time SAF

GMKa 2 38.853 s 153 270 108 559.436 s 152 372 435
4 38.989 s 99 664 387 853.127 s 103 071 795
8 38.658 s 63 414 459 1 671.261 s 62 208 282

GMunit 2 63.550 s 45 707 575 146.449 s 43 360 751
4 66.091 s 28 125 277 188.373 s 27 798 149
8 62.295 s 18 105 421 326.675 s 18 619 313

GMgrid 2 15.977 s 42 095 431 113.355 s 35 930 872
4 16.127 s 25 494 693 140.917 s 24 076 881
8 16.041 s 16 610 479 211.196 s 16 218 291

Table 6.3: Performance on large instances

GreedyMerge GreedySequential
Graph k Time SAF Time SAF

GLKa 2 548 s 3 109 218 136 19 035 s 3 208 415 108
4 541 s 2 231 385 054 22 125 s 1 959 477 358
8 536 s 1 287 719 872 29 482 s 1 317 165 206

GLunit 2 2 878 s 2 516 844 936 22 217 s 2 630 583 944
4 2 709 s 1 569 466 774 31 263 s 1 636 507 220
8 2 985 s 1 032 627 816 34 575 s 991 322 491

GLgrid 2 649 s 2 439 891 488 18 535 s 2 498 003 414
4 611 s 1 527 244 192 19 919 s 1 419 332 997
8 635 s 987 332 678 26 110 s 911 282 505
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6. Greedy Approaches

Furthermore, the results shown in Table 6.1 suggest that the partitions computed by the
greedy approaches are not too far from the optimum on common graphs. However, our
implementation of the algorithm GreedyMerge was running considerably faster than
GreedySequential on all instances.

Note that in each case, we only recorded the running time of a single execution of the
respective algorithm, even though we experienced variability between several runs of the
same algorithm given the same input. Hence, running times listed in Tables 6.1, 6.2 and 6.3
are only supposed to give an impression of the performances of the presented approaches
rather than providing the basis for a detailed analysis.

Besides the comparatively slow running times of both approaches, we observe that their
space consumption is extensive as well. In particular, on the largest instances up to 1
and 5.8 GB of RAM were acquired by the algorithms GreedyMerge and GreedySe-
quential, respectively. This renders their basic versions prohibitive for realistic instances
containing millions of nodes. However, elaborate engineering of the naive implementations
used in our experiments or combinations with ingredients from established approaches may
provide more sophisticated but practical techniques.
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7. Node-Sensitive Arc-Flags for Encoding
All-Pairs Shortest Paths

We study a new approach for speeding up Dijkstra’s algorithm that is based on arc-flags.
Imagine that instead of one single partition, we are allowed to choose a distinct partition
for each node. We shall refer to this modification of the original approach as node-sensitive
arc-flags. On the downside, such node-sensitive flags require additional amount of space
because up to n different partitions need to be stored. However, this approach surely
yields further speed-up in comparison to the original arc-flags algorithm. In fact, it turns
out that node-sensitive arc-flags can be used to encode shortest paths between all pairs of
nodes in a given graph. More precisely, given node-sensitive arc-flags, the query algorithm
settles exactly the nodes on a shortest s-t-path for arbitrary nodes s and t. We say that
a speed-up technique encodes all-pairs shortest paths if this holds.

In the following Section 7.1 we examine node-sensitive arc-flags and their applicability for
storing the information for all-pairs shortest paths with relatively low memory consump-
tion. Rather than giving formal studies and guarantees, this section is supposed to provide
the general ideas of our approach. Evaluation of the practical usefulness of node-sensitive
arc-flags would be part of future work. In Section 7.2, we further abstract from the idea of
node-sensitive arc-flags in order to deduce ways to efficiently store information necessary
to encode all-pairs shortest paths on restricted graph classes, especially trees.

Throughout this chapter, for any graph G = (V,E, ω) we assume that numbers in O(n)
can be stored at constant costs, that is, numbers that require at most O(log n) bits to
represent account for constant space consumption. This is a common precondition in the
unit-cost RAM model [AHU74].

7.1 The Concept of Node-Sensitive Arc-Flags

Below, we modify the arc-flags algorithm presented in Chapter 3. In the original approach,
for a given graph G = (V,E, ω), a partition C = {C1, . . . , Ck} of the set of nodes V is
computed in advance to obtain feasible arc-flags. In case of node-sensitive flags, however,
each node v ∈ V gets its own partition Cv = {Cv1 , . . . , Cvk}. This partition and the
resulting flags are precomputed and stored for every node in V . When the query algorithm
settles a node, its corresponding flags are used to prune the search at any edge that does not
have the target flag set to 1. Clearly, this approach may demand orders of magnitudes of
additional memory compared to original arc-flags approach. On the other hand, one would
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7. Node-Sensitive Arc-Flags for Encoding All-Pairs Shortest Paths

expect query times to considerably improve. In what follows, we examine the performance
and the memory consumption of node-sensitive arc-flags.

Optimal Partitions for Node-Sensitive Arc-Flags

For now, let us assume that the number of cells k is greater or equal to the maximum out-
degree of any node in a given graph G = (V,E, ω). We obtain optimal cell assignments
for an arbitrary node u as follows. Using Dijkstra’s algorithm, we compute the shortest-
path tree Tu that is rooted at u. Then, for every edge (u, v) incident to u that belongs
to the shortest-path tree, we assign v and all nodes reachable from v in Tu to a distinct
cell Cuv . See Figure 7.1 for an illustration. This implies that for every outgoing edge,
exactly one flag is set and this flag represents a cell containing nodes reachable via this
edge on a shortest path. Furthermore, if a shortest path is not unique, only one edge
leading to the target node gets the corresponding flag set to 1. Hence, a query algorithm
based on node-sensitive flags settles exactly the nodes that lie on a single shortest path to
the target node. The only modification necessary in the query algorithm we presented in
Chapter 3 to cope with node-sensitive flags is a routine that updates the node-dependent
cell membership of the target node every time a new node is settled.

C1 C2 C3

u

Figure 7.1: Shortest-path tree of a node u and corresponding node-sensitive cells.

As for the space requirement of this approach, observe that we do not need to save the
binary flags explicitly. Instead, storing the specified cell for each node suffices for the
query algorithm to find the corresponding edge. Note that this node-dependent partition
must be stored anyway. Furthermore, there no longer is any need to bound the maximum
number of allowed cells per node. Assigning n nodes to cells requires space in O(n) for
each of the n nodes, so the overall space complexity is in O(n2). Note that explicitly
storing all n2 shortest paths would require space in O(p ·n2), where p is the maximum size
of a shortest path in G.

In total, we see that we obtain a shortest path Ps,t between two given nodes s and t in
time O(|Ps,t|). By forcing Dijkstra’s algorithm to prefer hop-minimal shortest paths in the
preprocessing phase, we can even assure that the size of the returned path Ps,t is minimal.
However, it is clear that the quadratic space requirements for storing the preprocessed
information are prohibitive for large-scale graphs. Therefore, we propose different ideas
for reducing the memory consumption of node-sensitive arc-flags. Since we are facing a
trade-off between fast query times and low memory consumption, a practical evaluation
of these approaches would be necessary to determine the best one.

Reducing Space Requirements

Imagine a realistic large graph containing millions of nodes. If we consider the node-
dependent partitions of different nodes, it seems likely that nodes within a small region of
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the graph possess similar partitions. This leaves room for engineering in order to reduce
the space requirements, although it seems difficult to provide asymptotic guarantees in
general. Here, we propose the following approach. We define a small set VB ⊆ V of
basic nodes and store the node-sensitive partitions of all nodes in VB explicitly. Given a
node vB ∈ VB, for nearby nodes in v ∈ V \ VB we only store the differences between the
partitions CvB and Cv, i.e., all information that is sufficient to generate the node-dependent
partition of v given the partition CvB . One would expect that this is far less costly than
storing an explicit partition for v as well. Clearly, implementing this approach increases
the work of the query algorithm, for it must restore the cell information of all nodes other
than the basic nodes on-the-fly. However, one might save a large amount of memory this
way. Moreover, the size of the set VB may serve as a tuning parameter that realizes a
trade-off between space consumption and query times.

The original arc-flags algorithm and the node-sensitive approach can be interpreted as two
extreme points of a continuous scale that trades time for space. While original arc-flags
only need additional space that is linear in the graph size, node-sensitive flags require
a quadratic amount of space but guarantee an optimal search-space size if one assumes
that the whole path must get settled by the query algorithm. Hence, one could create
intermediate levels between these two approaches by allowing distinct partitions for sets
of nodes. The sizes of these sets then balance the time and space requirements of the
algorithm. Observe that in case of original arc-flags we have one set of size n, whereas
node-sensitive flags permit n sets of size 1. Obviously, small sets induce extensive memory
consumption and low query times, whereas larger sets of nodes that share a partition
reduce space requirements at the cost of worse expected search-space sizes. Before, we
have seen that it is easy to find optimal partitions for node-sensitive arc-flags if each
node gets its own partition. Consequently, the question arises whether there is a way to
efficiently obtain optimal cells if several nodes share the same partition. This problem
appears much more difficult than the single-node case described above, even if we restrict
the number of nodes per set to two. The following problems arise in this scenario.

• One needs to determine which pairs of nodes should be taken into the same sets in
order to achieve globally optimal solutions.

• An optimal partition with respect to several nodes depends on the number of s-t-
queries that settle each node of the considered set. In particular, one might want
to concentrate on finding a partition that rather serves nodes that are settled more
frequently.

• Even if we restrict ourselves to an optimization of the partition for two given nodes
and only optimize the search-space sizes of queries starting at these nodes, there is no
obvious way of how to assign cells. This is due to the fact that in general, the shortest-
path trees of both nodes have overlapping sets of reachable nodes corresponding to
their outgoing edges.

In summary, practical experiments seem promising in order to prove the usefulness of
our approach rather than a theoretical study. Further analysis of node-sensitive arc-flags
including experimental evaluation are left as future work.

7.2 Encoding All-Pairs Shortest Paths on Restricted Graph
Classes

The technique of encoding all-pairs shortest paths using node-sensitive arc-flags introduced
above can be seen as an abstract view of arc-flags. Instead of flag vectors, partitions of
V are used to store all necessary information for obtaining shortest paths. The question
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arises what information is needed to ensure that only nodes of the actual shortest path
are settled by a query algorithm, especially if we consider restricted classes of graphs. In
what follows, we derive simple approaches for the restricted classes that were examined in
Chapter 4, namely paths, cycles and trees.

Paths

First of all, we take into account graphs P = (V,E, ω) that consist of a single undirected
path. Precomputing a linear amount of information to encode all-pairs shortest paths is
simple in this case. Starting at one of the two distinct nodes in V with an out-degree of 1,
we simply traverse all nodes of the graph and assign ascending numbers to each of them.
Then, the query algorithm only has to compare the assigned numbers of the given source
and target node. This unambigously determines the direction that leads to the target node
and only those nodes on the unique path from the source to the target get settled in a
query. An analogous approach encodes all-pairs shortest paths on directed paths.

Cycles

Next, think of a graph Z = (V,E, ω) that is an undirected cycle. As explained in the
corresponding section of Chapter 4, a shortest-path tree of an arbitrary node s in a cycle
consists of directed edges corresponding to all but one undirected edge in E. The unique
undirected edge that is not present in this tree provides all necessary information for a
query from s to only settle nodes of a shortest path to a given target node.

Based on this idea, we describe how to establish a query algorithm encoding all-pairs
shortest paths on cycles. Again, we assign ascending indices iv to all nodes v ∈ V by
setting iw = 1 for an arbitrary node w and iteratively assigning an index to a yet unvisited
neighbor such that nodes with indices j and j + 1 are connected via an edge until w is
reached again. Then, we obtain a shortest path as follows. For each node s ∈ V , given the
unique pair of edges {(u, v), (v, u)} that is not part of the precomputed shortest-path tree
rooted at s, we store the according indices of u and v. Together with the index of s, we
are given all information necessary for the query algorithm to choose the right direction.
To avoid case distinctions, assume that iu < iv and is < iu. In a query to a target node
t, the unique neighbor of s with the index is + 1 is settled if and only if is < it < iu. If
it > iu or it < is, the other neighbor is settled. The initiated path is then followed until
the target node is reached. Other cases work analogously.

Unique Paths on Trees and Least Common Ancestors

Finally, we propose an approach for directed and undirected trees to encode all-pairs
shortest paths after a linear-time preprocessing step and with a linear amount of auxiliary
data needed to be stored. Related approaches have been published in the past to obtain
least common ancestors in a rooted tree, i.e., given two nodes u and v, one asks for the
unique node w farthest from the root r such that w is in both the path from r to u and
from r to v. An algorithm that computes the least common ancestor of arbitrary nodes
in a tree in O(1) after linear-time preprocessing was first presented by Harel and Tarjan
[HT84]. Further information on this problem and simplifications of the original approach
are provided by Schieber and Vishkin [SV88] and presented in a book by Gusfield [Gus07].

However, to the best of our knowledge, the problem of encoding all-pairs shortest paths
on trees has not yet been studied explicitly. Clearly, if one can compute the least common
ancestor of two nodes in a roooted tree in constant time, this can be used to obtain the
unique path between two nodes by simultaneously starting at both the source and the
destination node and following the unique edges that lead towards the root of the tree
until the least common ancestor is reached. Though, the mentioned algorithm to compute
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the least common ancestor is rather complex. Instead, we now present an alternative
approach for our purposes. It is based on a simpler precomputation step and provides a
straightforward technique to obtain arbitrary shortest paths.

A First Approach for Encoding All-Pairs Shortest Paths on Trees

Given an undirected or directed tree, the precomputation phase works as follows. If the
tree is undirected, an arbitrary node is defined to be its root node. Starting at the root,
one assigns indices in depth-first-search order to all nodes of the tree, that is, recursively
assign ascending numbers to the children of the node and finally to the node itself. In
addition to that, the number of nodes belonging to the subtree rooted at each encountered
node is computed and stored. Both tasks can be fulfilled in a single run of a modified
depth-first search. Since a depth-first search has a time complexity in O(n+m) = O(n),
this preprocessing step can be performed in linear time [CLRS01].

An s-t-query in a preprocessed undirected tree then works as follows. When a node u is
settled, we compare the target-node index to the indices of all neighbors of u. This is done
by checking outgoing edges in ascending order of their head indices. Since node indices
were determined in a depth-first search, there is at most one edge pointing at a node with
an index smaller than the index of u. First, this node is skipped and the query algorithm
checks each of the remaining nodes. Let it be the index of the target node, iv the index of
the head of an edge (u, v) and nv the size of the corresponding subtree rooted at v. The
edge (u, v) is part of the unique s-t-path if and only if iv ≤ it ≤ iv + nv. Hence, the head
of this edge is settled if and only if this condition holds. If none of the inspected edges
fulfill this requirement and u 6= t, the unique edge that points towards the root must lie
on the path to the target node and hence is to be settled next or, if the tree is directed,
the target is unreachable. This way we can ensure that the query algorithm settles only
nodes that belong to the path from s to t. Clearly, this only requires a memory overhead
that is linear in n. Let Ps,t be the unique s-t-path and δ = maxv∈V out(v) the maximum
out-degree of T . Since only the nodes of the s-t-path are settled and for each node we
have to check at most all its incident edges, the overall complexity of an s-t-query is in
O(δ · |Ps,t|).

Further Improvements of Query Times

In what follows, we slightly modify the preprocessing phase to improve the query complex-
ity obtained above. Assume we are given a rooted tree T = (V,E, ω) with root node r.
Let `(v) = h(r)− |Pr,v| denote the level of v, defined as the height of the root r minus the
hop-distance between r and v. As a first step of the preprocessing phase, we compute the
values `(v) of every node v ∈ V and the maximum out-degree δ that occurs in the rooted
tree. This can be done by performing two additional depth-first search at the beginning,
the first of which computes h(r) before the mentioned values `(v) and δ are obtained in the
second run. Next, we are going to make the tree balanced and δ-ary by temporarily adding
dummy nodes and edges to it. We do this during a third depth-first search, in which we
also assign the depth-first search indices to all encountered nodes. For any node v with
`(v) > 0 and out(v) < δ, we attach dummy subtrees Tiv , 1 ≤ i ≤ δ− out(v) to v by adding
an edge from v to the root of each subtree. All added subtrees are δ-ary balanced trees of
height `(v) − 1, and they are directed trees if and only if T is directed. Figure 7.2 shows
an example of a tentatively created new tree T ′ that is obtained this way, where all white
nodes belong to dummy subtrees. Depth-first search indices are now assigned according
to the graph T ′. For example, for the graph depicted in Figure 7.2, we obtain the indices
2, 3, 6, 7, 8, 9 for the nodes v1 to v6, respectively. Since we can safely bound the number of
added nodes to δ ·n per node, the created tree T ′ contains no more than δ ·n2 ≤ n3 nodes.
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Consequently, the preprocessing can still be performed in polynomial time and the com-
puted numbers require at most log n3 ∈ O(log n) bits. Finally, all tentatively added nodes
are removed and the indices as well as the values `(v) of all remaining nodes are stored.
Note that in fact, the dummy nodes do not have to be added to the input tree explicitly,
since they are only needed to obtain the corresponding depth-first search indices.

r

v1 v2

v3 v4 v5 v6

Figure 7.2: The modified tree corresponding to an undirected rooted tree containing the
nodes {r, v1, . . . , v6}.

Consider an arbitrary node u with `(u) = λ. Since the modified tree on which the indices
were computed was balanced, we know that the size of the subtree rooted at u in T ′ is
exactly

∑λ
i=0(δ − 1)i if T ′ is undirected and

∑λ
i=0 δ

i otherwise. In what follows, we only
consider the first case for the sake of simplicity. The query algorithm then works as follows.
If a node u with index iu is settled, we know that the next node is in the subtree rooted
at u if and only if iu ≤ it ≤ iu +

∑λ
i=0(δ − 1)i. Otherwise, the target node is either

unreachable if the tree is directed or the next node is the unique predecessor of u on the
path to r. If the target node t 6= u lies within the subtree rooted at u, it is it > iu and the
next node must have the following index iv.

iv = iu + 1 +

⌊
it − iu − 1∑λ−1
i=0 (δ − 1)i

⌋
·
λ−1∑
i=0

(δ − 1)i

The predecessor of a given node can either be determined in another calculation or stored
explicitly for each node. Now, assume that for each node v instead of `(v) = λ we store
the value of

∑λ−1
i=0 (δ−1)i. Then, for each settled node we find the next node on the unique

s-t-path after a case distinction and a single calculation. Altogether, this enables us to
find any path |Ps,t| of a tree and its distance in O(|Ps,t|) with a very small linear factor
after linear preprocessing and with linear memory overhead. Clearly, the directed case
works analogously.

An interesting open question is whether this result can help in obtaining a comparable
result for directed acyclic graphs. As for finding the least common ancestor, a way to
find it in constant time even for directed acyclic graphs was proposed by Bender et al.
[BFCP+05]. A similar result for encoding all-pairs shortest paths on directed acyclic
graphs would be crucial, since they are of high relevance for routing in practice [PSWZ07].
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8. Conclusion

We close our observations with concluding remarks. At first, we summarize the results
obtained in this work, before we turn to future work based on the outcomes and open
questions we proposed throughout this thesis.

8.1 Summary

In this thesis, we considered several theoretical aspects of filling the degree of freedom
during preprocessing of the arc-flags algorithm, namely the specification of a partition for
a given graph. The results of our studies are summarized below.

The basis of our work was provided by the hardness result of the problem ArcFlagsPar-
tition on graphs in general. We refined this result and provided further steps on the
way of finding a border of tractability by considering restricted graph classes. We showed
that optimal cells can be obtained in polynomial time for paths, stars and supposedly for
cycles. Additionally, the NP-hardness of computing a search-space optimal partition on
undirected trees with uniform edge weights was proven. This result provides a significant
refinement of the known proof of hardness regarding general graphs. Furthermore, we
conjecture that the problem is hard on directed acyclic graphs and even on trees with a
maximum out-degree that is at most 3. Hence, provided that P 6= NP, only severely
restricted graph classes seem to allow an efficient computation of optimal cells in general.

Since polynomial-time algorithms that generate optimal cells for arbitrary graphs are un-
likely to exist, we introduced several approaches aiming at the computation of optimal
or high-quality solutions. First of all, linear programs yielding optimal partitions were
established. Depending on the problem specification, different possible approaches were
derived. Another important step in dealing with hard problems is the design and analysis
of approximation algorithms, i.e., algorithms that guarantee worst-case bounds on their
relative solution quality. One general approach is to analyze a dual linear program in
order to gain further insights into the structure of the primal program or even obtain
bounds for an approximation algorithm. Unfortunately, this approach does not appear to
be promising in our case. Another idea is to consider combinatorial algorithms with regard
to the establishment of approximation bounds for them. To this end, we introduced two
novel greedy approaches. Their capability was reviewed in a brief case study. However,
we showed that neither of the greedy algorithms provides a constant approximation ratio
in terms of minimal average search-space size.
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8. Conclusion

Finally, we relaxed the original idea of arc-flags and introduced a node-sensitive variant in
which each node possesses its own partition. It turns out that this interpretation yields a
way to encode the shortest paths between all pairs of nodes at impractical quadratic mem-
ory costs. However, this approach might serve as a starting point for new algorithms that
deal with the encoding of all-pairs shortest paths at comparatively low costs. Furthermore,
we discussed several methods to encode all-pairs shortest paths in certain restricted graph
classes, such that the path itself can be obtained efficiently after a linear-time preprocessing
phase.

8.2 Outlook

Although many results were presented for all aspects considered throughout this work, a
wide-ranging basis for future work in the domain of preprocessing arc-flags and even route
planning in general was provided as well.

Despite the correctness of the result of NP-hardness concerning undirected trees, one may
seek to find ways to simplify the yet very extensive proof. For example, one might attempt
to construct a proof that reduces given instances of 3-Partition to simpler instances of
undirected trees, such as (m,B, 1)-trees. Considering the problem ArcFlagsPartition
on further restricted classes of trees and directed acyclic graphs, we proposed conjectures
that these problems are NP-hard as well. Proofs of these conjectures, however, are yet
to be completed formally. We presented a brief sketch of an approach to optimally assign
cells in undirected cycles, but again a formal analysis is to be conducted and the proof
of a necessary condition needs to be found. Furthermore, it would be interesting to know
if there exist restricted classes of graphs other than those we proposed for which optimal
cells are efficiently computable.

The dual ILP presented in Chapter 5 remains subject to a deeper analysis, although it
appears unlikely that further insights may be gained from such an examination. The pri-
mal linear program, on the other hand, could be analyzed with regard to further tuning.
Moreover, the greedy algorithms proposed in Chapter 6 could be engineered or parallelized
to render them applicable for large-scale graphs. Yet another approach might be to intro-
duce ingredients from established preprocessing techniques for further tuning. However,
one would have to find ways to reduce the memory consumption, which is prohibitive
for the plain greedy approaches. Furthermore, a more sophisticated experimental setting
would be necessary for a deeper analysis of the capability of both algorithms. Espe-
cially, it would be interesting to compare the resulting search-space sizes of the greedy
approaches to those of heuristics that are used in practice. Finally, since the inability of
both greedy algorithms to guarantee a constant bound on the solution quality was shown,
another interesting question would be if one can prove inapproximability of the problem
ArcFlagsPartition with respect to certain bounds.

Finally, the provided ideas for space-efficient implementations of node-sensitive arc-flags
given in Chapter 7 yield only a rough idea of their capability. An experimental evaluation
of this approach would provide further insights into this topic. Furthermore, we posed the
question whether there is any efficient way to encode all-pairs shortest paths for directed
acyclic graphs.
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