
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Fast Computation of Isochrones
in Road Networks

Master Thesis of

Valentin Buchhold

At the Department of Informatics

Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner

Prof. Dr. Peter Sanders

Supervisors: Moritz Baum, M.Sc.

Dipl.-Inform. Julian Dibbelt

Period of Time: January 1, 2015 – June 30, 2015

Author’s Declaration

Unless otherwise indicated in the text or references, this thesis is entirely the product of
my own scholarly work. This thesis has not been submitted either in whole or part, for a
degree at this or any other university or institution. This is to certify that the printed
version is equivalent to the submitted electronic one.

Karlsruhe, June 30, 2015

Valentin Buchhold

i

Abstract

We study the problem of computing isochrones in road networks efficiently. Intuitively,
an isochrone is the region that is reachable within a certain amount of time from a
fixed source. Practical applications include reachability analysis in urban planning,
geomarketing, and display a vehicle’s remaining cruising range. We systematically
collate different formal definitions used in the literature and present several practical
algorithms for computing isochrones at continental scale.

Besides revisiting and extending known acceleration techniques, we propose a novel
family of algorithms for computing isochrones, which builds upon graph separators
and techniques related to contraction hierarchies. In contrast, existing approaches are
based on multilevel Dijkstra searches.

Due to the increasing popularity of electric vehicles, we explicitly consider the prob-
lem of computing isochrones for electric vehicles, where the isochrone represents the
remaining cruising range with the vehicle’s current battery charge level. In order to
obtain realistic results, we assume that drivers take quickest paths (as opposed to energy-
optimal paths). We adapt some of our algorithms to this extended scenario.

We conclude with an experimental evaluation of our algorithms. Whereas the known
acceleration techniques offer faster preprocessing times, our novel family of algorithms
dominates in terms of query performance. However, all algorithms (except a variant of
Dijkstra’s algorithm) are fast enough for practical applications. Finally, we show that
isochrones for electric vehicles are not “harder” than standard isochrones.

Zusammenfassung

Wir untersuchen das Problem, in einem Straßennetz Isochronen effizient zu berechnen.
Intuitiv ist eine Isochrone die Region, die innerhalb einer gewissen Zeit von einem fixen
Startpunkt erreicht werden kann. Praktische Anwendungen sind Erreichbarkeitsanaly-
sen in der Städteplanung, Geomarketing und die Anzeige der verbleibenden Reichweite
eines Fahrzeugs. Wir stellen verschiedene formale Definitionen aus der Literatur zusam-
men und präsentieren mehrere Algorithmen zur Berechnung von Isochronen.

Neben der Erweiterung von bekannten Beschleunigungstechniken schlagen wir eine
neue Familie von Algorithmen zur Berechnung von Isochronen vor, die auf Graphense-
paratoren und Contraction Hierarchies aufbaut. Dagegen basieren bestehende Ansätze
auf Multilevel-Dijkstra-Suchen.

Aufgrund der wachsenden Beliebtheit von Elektroautos betrachten wir explizit das Pro-
blem, Isochronen für Elektroautos zu berechnen. Hierbei repräsentiert eine Isochrone
die verbleibende Reichweite der aktuellen Batterieladung des Fahrzeugs. Um realistische
Ergebnisse zu erhalten, nehmen wir an, dass Fahrer schnellste (statt energieeffiziente)
Wege nehmen. Wir passen manche der Algorithmen an dieses erweiterte Szenario an.

Wir schließen mit einer experimentellen Evaluation unserer Algorithmen. Während
die bekannten Beschleunigungstechniken schnellere Vorberechnungszeiten bieten,
dominiert unsere neue Familie von Algorithmen bezüglich der Anfragegeschwindigkeit.
Alle Algorithmen (außer einer Variante des Algorithmus von Dijkstra) sind allerdings
schnell genug für praktische Anwendungen.

iii

Contents
List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1

1.1 Related Work . 2

1.2 Contribution . 5

1.3 Overview . 7

2 Preliminaries 9

2.1 Basic Notation and Terminology . 9

2.2 Graph Separators and Partitions . 10

2.3 Point-to-Point Shortest Paths . 10

2.3.1 Dijkstra’s Algorithm . 10

2.3.2 Customizable Route Planning . 11

2.3.3 Contraction Hierarchies . 12

2.4 Batched Shortest Paths . 13

2.4.1 The GRASP Algorithm . 13

2.4.2 The PHAST Algorithm . 14

2.4.3 Restricted PHAST . 14

3 Problem Statement 17

3.1 Formal Definition of Isochrones . 17

3.2 Isochrones for Electric Vehicles . 18

3.3 Dijkstra’s Algorithm for Isochrones . 19

4 Multilevel Dijkstra Techniques 21

4.1 Basic Multilevel Dijkstra Algorithm for Isochrones . 21

4.1.1 General Idea . 21

4.1.2 Eliminating False Negatives . 22

4.1.3 Eliminating False Positives . 23

4.1.4 Further Optimization . 24

v

Contents

4.1.5 Determining Isochrone Pairs . 25

4.2 Improved Multilevel Dijkstra Algorithm for Isochrones 25

4.2.1 Determining the Output . 26

4.2.2 Parallelization . 27

4.3 GRASP for Isochrones . 28

4.3.1 Determining the Output . 30

4.3.2 Parallelization . 30

5 Combining Graph Separators and Contraction Hierarchies 33

5.1 Basic Algorithm . 33

5.2 Edge Separators . 35

5.2.1 Core-Dijkstra . 35

5.2.2 Core-PHAST . 40

5.2.3 Distance Oracle . 43

5.2.4 Drawbacks of the ES+PHAST Algorithms . 47

5.3 Vertex Separators . 48

5.3.1 Computing Vertex Separators . 48

5.3.2 From Vertex Separators to Topologies . 49

5.3.3 The VS+PHAST Algorithm . 49

6 Isochrones for Electric Vehicles 51

6.1 Modeling Energy Consumption . 51

6.2 Basic Operations on Edge Cost Functions . 53

6.2.1 Evaluation . 53

6.2.2 Linking . 54

6.2.3 Dominance Check . 55

6.3 Extending Algorithms . 57

6.3.1 RangeDijkstra . 57

6.3.2 isoCRP . 59

6.3.3 isoGRASP . 62

7 Experimental Results 63

7.1 Inputs and Experimental Setup . 63

7.2 Basic Building Blocks . 64

7.3 Parameter Tuning . 65

7.3.1 Multilevel Dijkstra Techniques . 65

7.3.2 GS+PHAST Techniques . 68

7.4 Main Results . 74

7.5 Computing Isochrone Pairs . 78

7.6 Electric Vehicle Scenario . 80

vi

Contents

8 Conclusion 83
8.1 Summary . 83

8.2 Future Work . 84

Bibliography 87

A Appendix 93

vii

List of Figures
3.1 Different types of edges in the context of isochrones 18

4.1 Examples where our approach produces wrong outputs 22

4.2 Example where an isochrone pair is missed . 25

5.1 Illustration of the GS+PHAST algorithms . 34

5.2 Illustration of the different distances that are involved in the computation of

the distance oracle . 44

5.3 An example of a topology obtained from a vertex separator 50

6.1 Cost functions on edges with negative and positive consumption costs 52

6.2 Cost function of a path consisting of edges with negative and positive con-

sumption costs . 53

6.3 Linking two cost functions . 54

6.4 Dominance check seen as a geometric problem . 56

6.5 Example where an isochrone edge is missed . 61

7.1 Query times for varying number of cores using different scheduling strategies 68

7.2 Sequential query times for varying time limits when computing isochrone edges 76

7.3 Parallel query times using 16 cores for varying time limits when computing

isochrone edges . 76

7.4 Query times for varying number of cores when computing isochrone edges . 78

7.5 Sequential query times for varying time limits when computing isochrone pairs 79

7.6 Number of isochrone edges and isochrone pairs for varying time limits 80

7.7 Sequential query times for varying initial battery charge levels when comput-

ing isochrone edges . 82

A.1 Parallel query times using 16 cores for varying time limits on DIMACS Europe

when computing isochrone pairs . 93

A.2 Parallel query times using 16 cores for varying initial charge levels on PTV Eur-

ope when computing isochrone edges . 96

ix

List of Tables
7.1 Performance of the basic one-to-all and one-to-many building blocks 65

7.2 Impact of the multilevel partition on the performance of isoCRP for varying

number of levels and different cell sizes . 66

7.3 Impact of the multilevel partition on the performance of isoGRASP for varying

number of levels and different cell sizes . 67

7.4 Impact of the number of cells on the (parallel) time and space for the prepro-

cessing of the GS+PHAST techniques . 69

7.5 Space required to represent the downward subgraphs in ES+PHAST (do) for

different partitions and varying choices of k . 70

7.6 Space required to represent the downward subgraphs in VS+PHAST for differ-

ent partitions and varying choices of k . 70

7.7 Performance of ES+PHAST (cd) and ES+PHAST (cp) for varying number of cells 71

7.8 Parallel query times of ES+PHAST (do) for different partitions and varying

choices of the parameter k . 73

7.9 Parallel query times of VS+PHAST for different partitions and varying choices

of the parameter k . 74

7.10 Performance of the different algorithms on DIMACS Europe when computing

isochrone edges . 75

7.11 Performance of the different algorithms on DIMACS Europe when computing

isochrone pairs . 79

7.12 Performance of the different algorithms in the electric vehicle (EV) scenario . 81

A.1 Sequential query times of ES+PHAST (do) for different partitions and varying

choices of the parameter k . 94

A.2 Sequential query times of VS+PHAST for different partitions and varying

choices of the parameter k . 95

xi

List of Algorithms
4.1 ComputeQueryLevel(u) . 24

4.2 isoCRP(s , x , G , H) . 27

4.3 isoGRASP(s , x , G , H , G ↓G S) . 29

6.1 EvalEdgeCostFunction(f , b) . 54

6.2 LinkEdgeCostFunctions(f1, f2) . 55

6.3 Dominates(f1, f2) . 56

xiii

1 Introduction

Web-based map services, autonomous navigation systems and other location-based appli-

cations have gained wide currency in the last two decades. This motivated a great deal of

research on practical algorithms for routing in road networks [3, 59]. Most work focused on

computing the shortest-path distances and, if required, the complete path descriptions from

single sources to single targets or between sets of vertices. However, several applications

only need to know the vertices that are within reach of a certain location, but not the actual

distances or path descriptions to them. Such a set of vertices that are reachable within a

certain amount of time from a specific source is called an isochrone. This thesis focuses on

computing isochrones in road networks.

A practical application that relies on isochrone computations is reachability analysis in

urban planning [37, 38]. Here, one assesses the coverage of the city by various kinds of public

services, such as hospitals, schools or tram stops. Such analyses are an important instrument

to place strategic public objects in optimal position. Recently, Bauer et al. [8] deployed such

a system for reachability analysis at the Municipality of Bolzano-Bozen.

A related application is geomarketing [28], which integrates geographical information into

business intelligence. For example, isochrones are used as a basis for decisions such as

where to build a new franchise store in order to maximize the pool of customers reached.

Isochrones are also useful for online applications like job markets or real estate portals [49].
When somebody searches for vacancies close to the home town or apartments near to the

workplace, the portal should only display the offers that are reachable within the user’s

maximal acceptable traveling duration.

The above applications use isochrones as a primitive operation to implement sophisticated

location services. Isochrones are, however, also a reasonable end user feature of web-based

map services and car navigation systems, especially for electric vehicle (EV) drivers: One

of the main concerns about electric vehicles is range anxiety [46], which describes the fear

of getting stranded. Displaying the region that is reachable with the current battery charge

1

Chapter 1. Introduction

level may diminish range anxiety among EV drivers. An effective way to obtain this region,

which is sometimes called cruising range or isochrone area, is to compute a special variant

of isochrones, which is introduced in this thesis.

1.1 Related Work

Algorithms for route planning in road networks have received so much attention in the last

decade that even fairly recent overviews [20, 60] have already become outdated and thus

were updated in later publications [3, 59]. Dijkstra’s classic algorithm [26, 12] solves several

shortest-path problem variants in almost linear time [41], however, it is still too slow for

many practical applications. Hence, production systems use various speedup techniques

that consist of an offline preprocessing stage and an online query stage. We now overview

several speedup techniques on which this thesis builds on, organized into algorithms for

point-to-point shortest paths, batched shortest paths, EV routing and isochrones.

Point-to-Point Shortest Paths. Given a directed graph G = (V , E), a non-negative edge cost

function ` : E → R≥0, a source s ∈ V and a target t ∈ V , the point-to-point shortest-path

problem is to compute the distance, i.e., the length of a shortest path, from s to t in G . Three

important families of point-to-point algorithms are goal-directed techniques, separator-

based techniques and hierarchical techniques. In the following, we outline from each family

the algorithm which is the most relevant in our context.

Goal-Directed Techniques. Dijkstra’s algorithm grows a circular search space around the

source [53]. Goal-directed techniques, in contrast, grow search spaces that are oriented

towards the target. A well-known example of such speedup techniques is the ALT (A* search,

Landmarks, Triangle inequality) algorithm [42]. Queries build upon the classic A* search [44],
which works similar to Dijkstra’s algorithm. However, whereas Dijkstra’s algorithm scans at

each step a vertex v with minimum tentative distance ds (v), the A* search scans a vertex v

that minimizes ds (v)+ ft (v). Here, ft (v) is a lower bound on the distance dist(v, t) from v

to t . If we used exact lower bounds, i.e., ft (v) = dist(v, t) for all v ∈ V , only vertices on

shortest s − t paths would be scanned. If ft (v) = 0 for all v ∈V , the A* search is equivalent to

Dijkstra’s algorithm. Generally, better lower bounds lead to smaller search spaces and thus

faster queries.

To obtain lower bounds, the ALT algorithm selects a small set L ⊆V of landmarks. For each

landmark, it precomputes shortest-path distances to and from each vertex. Plugging these

distances in the triangle inequality we get for each landmark l two lower bounds on the dis-

tance from a vertex v to t : dist(v, t)≥ dist(l , t)−dist(l , v) and dist(v, t)≥ dist(v, l)−dist(t , l).
Queries take the maximum, over all landmarks, of these lower bounds to compute the

tightest lower bound. Since the first publication, there have been significant improve-

ments [43, 21, 29], which make ALT practical even for dynamic scenarios such as real-time

traffic updates.

2

Chapter 1. Introduction

Separator-Based Techniques. Since road networks have small separators [34], recent graph

partitioning algorithms such as PUNCH [16] and Buffoon [56] are able to obtain balanced

partitions of them with small sets of cut edges. Separator-based techniques build on such

partitions. A practical example is the Customizable Route Planning (CRP) algorithm [14, 15].
The CRP preprocessing builds an overlay graph that contains the cut edges of the partition

and their endpoints, i.e., the boundary vertices of the partition. Furthermore, it creates a

shortcut edge between each pair u , v of boundary vertices within a cell, that represents the

shortest u − v path within the cell. Hence, the distance between any two vertices in the

overlay graph is the same as in the original graph. Queries run a bidirectional version of

Dijkstra’s algorithm on the union of the overlay graph and the subgraphs that are induced

by the source and target cell, respectively. Since the overlay graph is much smaller than the

original graph, queries are orders of magnitude faster than Dijkstra’s algorithm. Another

advantage is the distinction between a metric-independent preprocessing stage and a metric

customization stage, which allows to incorporate new cost functions (e.g. due to traffic

updates) quickly. In practice, one uses multiple levels of overlay graphs in order to improve

query performance. There is also work on accelerating the metric customization stage, both

on the CPU [22] and the GPU [19]. Most recently, Delling et al. [23] extended CRP to support

point-of-interest queries.

Hierarchical Techniques. Road categories such as rural roads, minor urban streets or freeways

define an explicit hierarchy on the road network. However, many metrics such as travel

times or travel distances also impose an implicit hierarchy on the road network. For example,

since we can drive faster on freeways, a large faction of sufficiently long quickest paths only

uses freeways. The same is true for sufficiently long shortest paths, since freeways tends to

have less bends. Hierarchical techniques exploit the implicit hierarchy of the road network.

A well-known example of such speedup techniques are Contraction Hierarchies (CH) [40].
The CH preprocessing contracts all vertices in increasing order of importance. To contract

a vertex v , it removes v temporarily from the graph and creates a shortcut between each

pair u , w of neighbors if the shortest u −w path is unique and contains v . The query is

a variant of the bidirectional Dijkstra search, which only looks at edges leading to more

important vertices. This modification leads to small search spaces and thus fast query times.

In contrast to CRP, Contraction Hierarchies as in the original publication are not customizable.

Recently, however, Dibbelt et al. [25] introduced Customizable Contraction Hierarchies, which

extend Contraction Hierarchies to support customization. To do so, they do not determine

the contraction order online and bottom-up, but use nested dissection orders. Such orders

were proposed in [6], after showing a theoretical result that suggested to do so.

Batched Shortest Paths. In contrast to point-to-point shortest paths, batched shortest paths

involve more than two vertices. The most common variants are one-to-all shortest paths,

one-to-many shortest paths and many-to-many shortest paths. Dijkstra’s algorithm solves

all these problems, however, as mentioned before, it is too slow for practical applications on

large road networks.

3

Chapter 1. Introduction

One-to-All Shortest Paths. The one-to-all shortest path problem asks to compute shortest-

path distances from a source vertex s to all other vertices in the graph. Although the fast

computation of shortest path trees is a relevant problem and required for the preprocessing

of several point-to-point algorithms (such as Arc Flags [47, 51] or CHASE [7]), there has

been little work on one-to-all algorithms. Besides Dijkstra’s algorithm, we are aware of

two other one-to-all techniques. One of them is the PHAST algorithm [13], which builds

upon Contraction Hierarchies. Queries consist of two phases. In the first phase, PHAST

performs a forward upward search from s . In the second, it propagates distance values from

more to less important vertices. Since the importance of vertices depends solely on the

contraction hierarchy, but not on the source, the order in which the second phase processes

the vertices is the same for all sources. Hence, it is possible to reorder the vertices such

that the second phase is essentially a linear sweep over the vertices. Note that there are

PHAST implementations tailored to multi-core workstations as well as to graphics cards.

More recently, Efentakis et al. [30] proposed the GRASP algorithm, which is an one-to-all

technique that builds upon CRP. Whereas it has slightly slower query times than the PHAST

algorithm, it allows for customization in a few seconds. Most recently, Efentakis et al. [31]
combined CRP, GRASP and ALT into a unified framework that efficiently solves multiple

shortest-path problems.

One-to-Many Shortest Paths. The one-to-many shortest path problem is to compute shortest-

path distances from a single source s to all vertices in a target set T . Obviously, we can solve

the problem by computing |T | point-to-point shortest paths or, alternatively, by considering

one-to-many a special case of one-to-all. We can do better by using dedicated one-to-many

algorithms. Delling et al. [17] introduced RPHAST, which is a variant of PHAST tailored to

one-to-many shortest paths. It uses a three-phase workflow. The first phase is a standard

PHAST preprocessing and thus is independent of the target set. The second phase extracts

from the contraction hierarchy only the information necessary to compute shortest-path

distances from s to each t ∈ T . During queries, RPHAST performs a standard PHAST query,

but only on the relevant part of the contraction hierarchy. There is also a variant of the

GRASP algorithm that is tailored to one-to-many shortest paths [30].

Many-to-Many Shortest Paths. The many-to-many shortest path problem asks to compute a

|S | × |T | distance table D , where D (s , t) denotes the shortest-path distance between s ∈ S

and t ∈ T . Of course, the problem can be solved by computing |S |·|T | point-to-point shortest

paths or, alternatively, by computing min{|S |, |T |} one-to-all shortest paths. However, there

are also algorithms tailored to many-to-many shortest paths. The technique proposed by

Knopp et al. [50] builds upon a hierarchical technique such as contraction hierarchies and

maintains a bucket B (v) for each vertex v . In a first step, it performs a backward upward

search from each vertex t ∈ T . When scanning a vertex v , it adds a pair (t , dt [v]) to v ’s

bucket B (v). Here, dt [v] denotes v ’s distance label during the search from t . In a second

step, the algorithm performs a forward upward search from each s ∈ S . When it scans a

vertex v , it checks for each pair (t , dt [v]) ∈ B (v) whether ds [v] + dt [v] < D (s , t). If so, it

updates the distance label accordingly. This many-to-many algorithm was introduced for

4

Chapter 1. Introduction

Highway Hierarchies [55], but it can also be used with Contraction Hierarchies [17] or even

with Hub Labels [1, 17].

EV routing. As observed by Artmeier et al. [2], computing energy-optimal paths differs from

obtaining shortest, quickest or cheapest paths, due to the edge costs possibly being negative

and battery constraints that need to be obeyed. Negative edge costs occur since electric

vehicles are able to recuperate energy when going downhill. Hence, Artmeier et al. apply

variants of label-correcting Dijkstra and Bellman-Ford [10, 35] algorithms. Eisner et al. [33]
observe that the energy required to get across a path can be modeled as a cost function

of bounded descriptive complexity. This observation allows them to adapt contraction

hierarchies to compute energy-optimal paths. Note that their approach is somewhat similar

to time-dependent contraction hierarchies [4]. Using the same cost functions as in [33],
Baum et al. [9] adapted the CRP framework to compute energy-optimal paths.

Isochrones. Most work on the computation of isochrones has been done in the database

community. Isochrones were introduced in [8]. In this work, isochrones are computed using

an algorithm that resembles a label-correcting breadth-first search. The MIME algorithm

proposed by Gamper et al. [37] is basically a plain Dijkstra search on top of a spatial network

database. The improved variant MIMEX [38] has reduced space requirements. In order

to transform an isochrone in the form of a vertex set into an isochrone area, one may use

concave hulls or alpha shapes [27]. Both methods compute areas from arbitrary sets of two-

dimensional points. To obtain better results, Marciuska et al. [52]propose two algorithms that

are tailored to compute areas from isochrones. More recently, Innerebner et al. [49] combined

the MIMEX algorithm with methods to compute isochrone areas into a unified web-based

application. To summarize, to the best of our knowledge, the database community uses no

speedup techniques to compute isochrones on top of spatial network databases.

There has been very little work on computing isochrones outside the database community.

Besides one-to-all and one-to-many variants, Efentakis et al. [30] also propose a variant of

the GRASP algorithm for computing isochrones. However, their algorithm computes correct

distances to all vertices that are reachable within the time limit, which is not required by

several applications, for example when computing isochrone areas. There has also been a

patent specification [18] on different query scenarios for the CRP algorithm, which outlines

a method for computing isochrones using CRP. However, we are not aware of a scientific

publication that actually evaluated the method on large road networks.

1.2 Contribution

In this thesis, we study the problem of computing isochrones. Intuitively, an isochrone is the

region that is reachable from a certain source within a certain amount of time. The formal

definition varies from publication to publication. We formulate the different possibilities to

define isochrones and use two of them throughout this thesis. Besides describing a variant

5

Chapter 1. Introduction

of Dijkstra’s algorithm called RangeDijkstra, that is capable of computing isochrones, our

four main contributions are as follows.

1. We explore how multilevel overlay graphs can be used to accelerate RangeDijkstra

and propose a basic multilevel algorithm for computing isochrones that is one order

of magnitude faster than RangeDijkstra. We also revisit two known algorithms for

computing isochrones. The patent specification [18] outlines a method within the

CRP framework, however, it discusses no parallelization approaches and does not

evaluate the method. We provide an efficient implementation and propose different

parallelization strategies. The other technique we revisit is the isoGRASP algorithm.

In the original publication [30], it computes correct distances to all vertices that are

reachable within the specified amount of time. Since actual distances are generally

not needed when computing isochrones, we extend isoGRASP to jump over cells that

contain only vertices that are reachable within the time limit.

2. Motivated by the promising query times of RPHAST [17], we propose a novel family of

so-called GS+PHAST algorithms. Their key ingredients are graph separators and the

(R)PHAST algorithm. We present variants that use k -way edge separators (similar to

CRP) as well as a variant that uses (k -way) vertex separators. For many time limits, the

fastest GS+PHAST variants outperform the multilevel Dijkstra algorithms.

3. We study the problem of computing isochrones for electric vehicles, that is, computing

the region that is reachable with the vehicle’s current battery charge level. Simply using

electric energy consumption instead of travel times as cost function for computing

isochrones would lead to unrealistic estimations of the cruising range, since energy-

optimal paths differ considerably from quickest paths [9] and even an eco-friendly

driver might not take them1. Hence, we use two cost functions in the EV scenario: a

routing cost function, namely travel times, and a separate consumption cost func-

tion, namely the energy consumption of the electric vehicle. We present variants of

RangeDijkstra and the multilevel Dijkstra techniques that are capable of computing

isochrones in the EV scenario.

4. We provide an experimental evaluation of the different algorithms for computing

isochrones. We are the first that evaluate isoCRP on large road networks and compare

it with our isoGRASP variant and the different GS+PHAST algorithms. We also show

that using electric energy consumption as a separate cost function causes almost no

overhead compared to the standard scenario.

1Apart from unrealistic estimations, the ability of electric vehicles to recuperate energy when going downhill
prevents us from “simply” using electric energy consumption instead of travel times as cost function, since most
speedup techniques support only non-negative cost functions without further modifications.

6

Chapter 1. Introduction

1.3 Overview

The remainder of this thesis is organized into seven chapters. Chapter 2 introduces some

basic notation and terminology. It also reviews the basic building blocks this thesis builds

upon. The point-to-point techniques relevant to this thesis are Dijkstra’s algorithm, the

CRP framework and Contraction Hierarchies. Closely connected batched shortest paths

techniques are GRASP and the (restricted) PHAST algorithm.

Chapter 3 formalizes the notion of isochrones. It discusses the different possibilities to

define isochrones and chooses two of them. We finish the chapter with a description of

RangeDijkstra, a variant of Dijkstra’s algorithm that is capable of computing isochrones.

Chapter 4 deals with multilevel Dijkstra techniques for computing isochrones. It explores

how multilevel overlay graphs can be used to accelerate RangeDijkstra and also revisits and

extends two known algorithms, isoCRP and isoGRASP. We detail for each algorithm how it

determines the output and how it is parallelized.

Chapter 5 proposes the novel family of GS+PHAST algorithms. With CRP in mind, we start

with the variants that leverage k -way edge separators. Afterwards, we move on to (k -way)

vertex separators. Again, we detail for each variant how the output is determined and how

we parallelize it.

Chapter 6 considers isochrones for electric vehicles. It first reviews how the energy required

to get across a path can be modeled as a cost function of bounded descriptive complexity.

Afterwards, we introduce some basic operations on such cost functions that we will use in

our algorithms. We also elaborate on how to implement each operation efficiently. Having

laid the foundations, we adapt RangeDijkstra and the multilevel Dijkstra algorithms to the

EV scenario.

Chapter 7 provides an experimental evaluation of the different algorithms for computing

isochrones. We focus on the standard scenario, but also include some figures for the EV

scenario. Chapter 8 summarizes the results and outlines further routes of study.

7

2 Preliminaries

This chapter introduces some basic notation and terminology. Afterwards, we review the

basic point-to-point building blocks this thesis builds upon. The chapter finishes with some

background information on existing algorithms for batched shortest-path computations.

2.1 Basic Notation and Terminology

We represent a road network as a directed graph G = (V , E). A vertex v ∈ V represents an

intersection or junction, and an edge e ∈ E represents a road segment. Let |V |= n be the

number of vertices, and |E |=m the number of edges in G . Consider an edge e = (u , v) going

from u to v . We refer to u and v as the tail and head, respectively. We say that u and v are

adjacent or neighbors and that e is incident on u and v . Moreover, e is said to be an outgoing

edge of u and an incoming edge of v . The degree of v is the number of edges incident on v .

A graph G ′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E . The subgraph induced by a

subset V ′ ⊆V is defined as G ′ = (V ′, E ′), where E ′ = {(u , v) ∈ E : u , v ∈V ′}. A metric or cost

function ` : E →R assigns each edge e = (u , v) a constant edge cost `(u , v). Natural metrics

include travel times, travel distances, walking, biking, and many other criteria. We often use

the general term length to encompass different metrics.

A path P = (v0, . . . , vk) is a sequence of vertices in which consecutive vertices are neighbors,

that is, (v0, v1) ∈ E , (v1, v2) ∈ E , . . . , (vk−1, vk) ∈ E . Metrics carry over to paths straightforwardly,

that is, the length of a path P is defined as `(P) =
∑k−1

i=0 `(vi , vi+1). A vertex v is reachable

from a vertex u if there is a path from u to v in G . Note that the relation “being reachable”

is not necessarily symmetric in directed graphs. We say that a graph G = (V , E) is strongly

connected if any two vertices u , v ∈V are reachable from each other. Otherwise, the graph is

weakly connected.

The distance dist(u , v) from a vertex u to a vertex v is the length of the shortest path from u

to v in G . If v is not reachable from u , we set dist(u , v) =∞. A shortest path tree Ts rooted

9

Chapter 2. Preliminaries

at s is a tree that contains all vertices v ∈ V reachable from s . The path from s to each

vertex v 6= s is a shortest s − v path in G . Hence, Ts is a subgraph of G .

2.2 Graph Separators and Partitions

We adopt the notation and terminology from [15]. Given a graph G = (V , E), a k -way partition

of V is a familyC = {C0, . . . , Ck } of k cells Ci ⊆V such that C0 ∪ · · · ∪Ck =V and Ci ∩C j = ;
for all i 6= j . A multilevel partition of V is a family of partitions {C 0, . . . ,C L}. Let ` be the

level of a partitionC l . We defineC 0 as the “artificial” |V |-way partition where each vertex is

contained in its own cell. Hence, L denotes the number of levels. To simplify notation, we

also defineC L+1 as the 1-way partition where all vertices are contained in the same cell.

Throughout this thesis, we use nested multilevel partitions. The supercell of a cell C `
i ∈C

`

is the cell C `+1
j ∈ C `+1 with C `

i ⊆ C `+1
j . Conversely, C `

i is the subcell of C `+1
j if C `+1

j is the

supercell of C `
i . We denote by c`(v) the cell that contains v on level `. When L = 1 we may

use c (v) instead of c1(v). We refer to an edge e = (u , v)with c`(u) 6= c`(v) as a boundary edge

on level `, and say that u and v are boundary vertices on level `.

We define the eccentricity of a boundary vertex u on level `. Let H be the subgraph induced

by c`(u). We denote by f`(u) the vertex v farthest from u in H with dist(u , v) <∞. The

eccentricity of u on level ` is then defined as ecc`(u) = dist(u , f`(u)). Note that, throughout

this thesis, we often do not use exact eccentricities, but upper bounds on them.

A k -way edge separator is a subset S ⊂ E of the edges such that the removal of S decomposes

the graph G = (V , E) into k cells. Note that edge separators are closely related to partitions,

since the set of boundary edges of a k -way partition forms a k -way edge separator. A k -way

vertex separator is a subset S ⊂V of the vertices such that the removal of S decomposes G

into k cells. Whereas edge separators lead to cell boundaries crossing the separator edges,

vertex separators yield cell boundaries passing through the separator vertices.

2.3 Point-to-Point Shortest Paths

Given a directed graph G = (V , E), a non-negative metric ` : E → R≥0, a source s ∈ V and

a target t ∈ V , the point-to-point shortest-path problem is to compute the shortest-path

distance from s to t in G . This section briefly reviews three point-to-point algorithms that

are important throughout this thesis.

2.3.1 Dijkstra’s Algorithm

The standard solution in a textbook on algorithms to the point-to-point shortest path prob-

lem is Dijkstra’s algorithm [26, 12]. It maintains for each vertex v a distance label d [v], which

10

Chapter 2. Preliminaries

stores the length of the shortest path from s to v found so far. The algorithm initializes

the source’s distance label to zero, and all other labels to infinity. Moreover, it maintains a

priority queue of unscanned vertices, using their distance labels as keys. Vertices are scanned

in increasing order of distance from s . To scan a vertex u , the algorithm relaxes all outgoing

edges (u , v). For each such edge, if d [u] + `(u , v) < d [v], it sets d [v] = d [u] + `(u , v) and

adds vertex v with key d [v] to the priority queue. Dijkstra’s algorithm has the label-setting

property, that is, d [u] = dist(s , u)when vertex u is scanned (see [53] for a proof). Hence, the

search may stop after removing the target from the queue.

The running time depends on the priority queue used. Due to the label-setting property, each

vertex is scanned at most once, resulting in at most n delete-min operations on the priority

queue. Since a scanned vertex is never reinserted, there are also at most n insert operations.

Moreover, the algorithm relaxes at most m edges, and each relaxation yields at most one

decrease-key operation, there are at most m decrease-key operations in total. Hence, the

execution time of Dijkstra’s algorithm is TDijkstra =O (m ·TdecreaseKey +n · (TdeleteMin+Tinsert)).
This solves to O ((m+n) log n) using binary heaps [61], and to O (m+n log n) using Fibonacci

heaps [36]. Note, however, that m ∈ O (n) for road networks, resulting in a running time

of O (n log n) for both binary heaps and Fibonacci heaps. Since the latter involves larger

constant factors, binary heaps are a good choice in practice.

To accelerate queries, a bidirectional version of Dijkstra’s algorithm may be used, which

simultaneously runs a forward search from s in the original graph and a backward search

from t in the reversed graph until the search frontiers meet. More precisely, the algorithm

stops once the first vertex has been scanned by both searches (see [53] for a proof).

2.3.2 Customizable Route Planning

Customizable Route Planning (CRP) [14, 22, 19, 15] follows a three-phase workflow, subdi-

viding preprocessing into metric-independent preprocessing and metric customization. The

(metric-independent) preprocessing creates a (multilevel) partition of the road network.

This partition induces a partition-based overlay graph H . In general, a graph G ′ = (V ′, E ′)
is an overlay graph of G = (V , E) if V ′ ⊆ V and G ′ preserves the shortest-path distances

between all vertices u , v ∈V ′. The overlay H contains all boundary vertices and boundary

edges of the road network. It also contains a clique for each cell C . That is, for each pair (u , v)
of boundary vertices in C , there is a shortcut edge going from u to v .

After partitioning the road network, the preprocessing builds the topology of the overlay and

sets up appropriate data structures. Since the overlay is a collection of cliques, the topology is

represented as square matrices in contiguous memory for efficiency. A cell with n boundary

vertices corresponds to a n ×n matrix in which position (i , j) will store the length of the

shortest path (within the cell) from the cell’s i -th boundary vertex to the its j -th boundary

vertex. However, preprocessing only sets up the matrices, but does not fill them with valid

shortest-path distances. To accelerate queries, multiple levels of overlay graphs may be

11

Chapter 2. Preliminaries

used. In order to improve locality and cache efficiency in this setup, boundary vertices of

the highest level are assigned the lowest IDs, followed by boundary vertices of the second

highest level, and so on.

Customization has access to the actual metric and computes the entries of the matrices.

It processes one cell C at a time. Let v be the i -th boundary vertex in C . Customization

runs Dijkstra’s algorithm from v in the original graph (restricted to C) until the priority

queue is empty. This fills the i -th row of the matrix representing C . For a cell C at a higher

level Hi , customization runs Dijkstra’s algorithm on the subgraph of Hi−1 that is induced by

the subcells of C .

For a query between s and t , a bidirectional version of Dijkstra’s algorithm must be run on

the graph consisting of the union c1(s)∪ · · · ∪ cL−1(s)∪HL ∪ cL−1(t)∪ · · · ∪ c1(t), that is, the

union of the top-level overlay HL and for each level ` the cells c`(s) and c`(t) that contain s

and t , respectively (see [48] for a proof). The level at which a vertex v must be scanned

during the search is referred to as its query level `q . It is defined as the maximum i such that

ci (v)∩{s , t }= ;.

2.3.3 Contraction Hierarchies

Contraction Hierarchies (CH) [40]work in two phases. The preprocessing heuristically orders

the vertices by importance and contracts them from least to most important. To contract a

vertex v , it deletes v from the graph (temporarily) and adds shortcuts between v ’s as-yet-

uncontracted neighbors to preserve shortest-path distances. Let S be the set of tails u of

the edges (u , v) coming into v , and let T be the set of heads w of the edges (v, w) going out

of v . For each vertex v ∈ S , the preprocessing runs Dijkstra’s algorithm from v in the as-yet-

uncontracted graph until all vertices in T \{v } have been scanned. Letδv (w) be the length of

the shortest v−w path found by this witness search or local search. Ifδu (w)> `(u , v)+`(v, w),
a shortcut (u , w) with `(u , w) = `(u , v) + `(v, w) is added. In practice, one may limit the

local searches, since otherwise long-distance edges like ferry connections slow down the

contraction due to expensive local searches.

The output of the CH preprocessing routine is the set E + of shortcuts and the contrac-

tion order rank(·) itself. The vertex v with rank(v) = 1 is least important, and the vertex v ′

with rank(v ′) = n is most important. In addition, levels L (v) can be assigned to vertices v

during preprocessing. All levels are initialized to zero. Whenever the preprocessing contracts

a vertex v , it sets L (w) =max{L (w), L (v) +1} for each as-yet-uncontracted neighbor w of v .

Conceptually, the preprocessing yields two graphs. The edge set E ↑ of the upward graph G ↑ =
(V , E ↑) is defined as E ↑ = {(u , v) ∈ E ∪E + : rank(u)< rank(v)}. Conversely, the edge set E ↓ of

the downward graph G ↓ = (V , E ↓) is defined as E ↓ = {(u , v) ∈ E ∪E + : rank(u)> rank(v)}.

The query stage runs a bidirectional version of Dijkstra’s algorithm, where the forward search

from s is run in G ↑ and the backward search from t is run in G ↓. Let ds (·) and dt (·) be

12

Chapter 2. Preliminaries

the distance labels maintained by the upward and downward search, respectively. It is

guaranteed that the maximum-rank vertex u on the shortest s − t path is scanned by both

searches, and that ds (u)+dt (u) = dist(s , t) (see [40] for a proof). Since both searches only

look at upward edges, random s−t queries visit fewer than 400 vertices (out of 18 million [13]),

making Contraction Hierarchies four orders of magnitude faster than Dijkstra’s algorithm,

and up to an order of magnitude faster than CRP queries.

Selecting an optimal contraction order is NP-hard [5]. Usually, the order is heuristically

determined online and bottom-up. The selection is done using a priority queue, with a

linear combination of different priority terms as key. Geisberger [39] provides an exhaustive

description of different priority terms.

2.4 Batched Shortest Paths

In contrast to point-to-point shortest paths, batched shortest paths involve more than two

vertices. Given a directed graph G = (V , E), a non-negative metric ` : E →R≥0, and a source

vertex s , the one-to-all shortest-path problem is to compute the shortest-path distances

from s to all other vertices in the graph. Moreover, given a nonempty set of targets T ⊆V ,

the one-to-many shortest-path problem requires computing the shortest-path distances

between s and all vertices in T . Dijkstra’s algorithm may be used to compute batched

shortest paths. This section briefly reviews first two existing one-to-all algorithms and then

a known one-to-many technique.

2.4.1 The GRASP Algorithm

GRASP (Graph separators, RAnge, Shortest Path) [30, 31] is an extension of the CRP routing

engine to handle batched shortest paths. The metric-independent preprocessing runs the

standard CRP preprocessing. However, customization does not only compute shortest-path

distances from a boundary vertex u in c`(u) to the other boundary vertices in c`(u), but to

all vertices v ∈ c`(u)∩H`−1. The overhead is limited since the exact same Dijkstra search are

used as before. Besides computing shortcut edges, the customization of GRASP also produces

downward edges (u , v) connecting a boundary vertex u in c`(u) to each vertex v ∈H`−1 in the

interior of c`(u). The length of a level-` downward edge (u , v) is the same as the shortest path

restricted to c`(u) between u and v . All downward edges are stored in a separate downward

graph G ↓GS for efficiency.

Queries execute the one-to-all search in two phases. First, they perform a simple forward

CRP search. More precisely, they run Dijkstra’s algorithm on the graph consisting of the

union c1(s)∪ · · · ∪ cL−1(s)∪HL , that is, the union of the top-level overlay HL and for each

level ` the cell c`(s) that contains s . The search stops when the queue becomes empty. By

definition of overlay graphs, all vertices that have been scanned during the upward phase

have correct distance labels.

13

Chapter 2. Preliminaries

The scanning phase processes one cell at a time in descending level order. It propagates

distance values from boundary vertices u of C ∈C ` to all vertices v ∈C ∩H`−1 by examining

the level-` downward edges within C . To examine a downward edge (u , v), it checks whether

d [u] + `(u , v) < d [v] and updates v ’s distance label accordingly. In order to reduce the

number of downward edges, the edge reduction optimization from [32]may be used. It

stores a level-` downward edge (u , v) in the downward graph only if the shortest u − v path

within c`(u) contains no boundary vertices of c`(u) (except u , of course).

2.4.2 The PHAST Algorithm

PHAST (for PHAST hardware-accelerated shortest path trees) [13] is an one-to-all algorithm

building upon Contraction Hierarchies. Preprocessing is the same as in CH. That is, it defines

a contraction order rank(·), assigns levels L (v) to vertices v , and builds the upward graph G ↑

and the downward graph G ↓. Queries work in two phases. The upward phase performs a

simple forward CH search. In other words, it runs Dijkstra’s algorithm from s in G ↑ until the

priority queue becomes empty. The scanning phase propagates distance values from more

to less important vertices, by processing all vertices in descending rank order. To process

a vertex v , it checks for each incoming edge (u , v) ∈ E ↓ whether d [u] + `(u , v) < d [v] and

updates v ’s distance label accordingly.

It is easy to see that queries are correct. Consider any vertex v and let u be the maximum-

rank vertex on the shortest s −v path. The shortest s −u subpath is found during the upward

phase, due to the correctness of CH. Clearly, the shortest u − v subpath is found during the

scanning phase. Hence, queries compute correct distance labels. Since the instruction flow

of the scanning phase depends only on the contraction order, but not on the source, vertices

are reordered during preprocessing. Vertices at higher levels are assigned lower IDs. Then,

the scanning phase becomes a simple linear sweep through the edge array of G ↓, making

PHAST 15 times faster than Dijkstra’s algorithm [13].

2.4.3 Restricted PHAST

Restricted PHAST (RPHAST) [17] is an extension of the PHAST algorithm to handle one-to-

many shortest paths. It follows a three-phase workflow, introducing an additional target

selection phase “between” preprocessing and queries. The preprocessing does not depend

on the targets and is exactly the same as in PHAST. The target selection has access to the

actual targets T and extracts a subgraph G ↓T of the downward graph G ↓ that contains only the

information necessary to compute shortest-path distances to all targets T . Queries resemble

PHAST queries, but use G ↓T instead of G ↓ during the scanning phase.

To ensure correctness, G ↓T needs to contain the reverse CH search spaces of all targets. They

are computed at once by performing a single search from all vertices in T . More precisely,

the target selection phase maintains a set T ′ of relevant vertices and a FIFO queue Q of

14

Chapter 2. Preliminaries

“unchecked” vertices. Initially T ′ =Q = T . While Q is not empty, the target selection phase

removes a vertex v from it and checks for each incoming edge (u , v)whether u ∈ T ′. If not,

it adds u to T ′ and Q . Finally, G ↓T is the subgraph of G ↓ induced by T ′.

15

3 Problem Statement

Intuitively, an isochrone is the region that is reachable from a certain source within a specific

amount of time. This chapter formalizes the notion of isochrones and specifies the output

that our algorithms should produce. To do so, we first explore the different possibilities for

defining isochrones and compare them with the definitions of known algorithms. Afterwards,

we formalize isochrones in the context of electric vehicles. The chapter finishes with a

description of a variant of Dijkstra’s algorithm that is capable of computing isochrones.

3.1 Formal Definition of Isochrones

We consider a directed graph G = (V , E) together with a non-negative cost function ` : E →
R≥0 that assigns each edge the time it takes to travel along the edge. The isochrone problem

takes as input a source vertex s and a time limit x . We say that an edge (u , v) ∈ E is (fully)

traversable if dist(s , u)+ `(u , v)≤ x . If dist(s , u)< x , but dist(s , u)+ `(u , v)> x , we say that

the edge is partially traversable. Sometimes we say that a vertex v ∈V is time-reachable if

dist(s , v)≤ x , in order to not confuse it with the definition of reachability in graph theory.

The database community [8, 37, 38, 52, 49] defines an isochrone as the minimal subgraph

that covers all locations that are reachable within the time limit. More precisely, the subgraph

contains all time-reachable vertices, all fully traversable edges and the reachable parts of

all partially traversable edges. Efentakis et al. [30] adopt this definition for their isoGRASP

algorithm. However, they do not consider parts of edges, but only output time-reachable

vertices and fully traversable edges. The method in [18], which we call isoCRP, uses a some-

what different definition. It outputs all edges (u , v) that have a time-reachable tail u and a

time-unreachable head v , that is, all edges (u , v)with dist(s , u)≤ x and dist(s , v)> x . These

edges “form the boundary” of the isochrone area, which we sometimes call isoline. Note that

the isochrone area is not necessarily a simple polygon, but may have holes (e.g., mountain

summits that are time-unreachable).

Let us take a systematic look at the different types of edges in the context of isochrones. We

17

Chapter 3. Problem Statement

can distinguish seven types of edges, see Fig. 3.1. Time-reachable vertices are shown in green,

and time-unreachable vertices are shown as empty circles with red borders. Green edges

are fully traversable, and red dashed edges are not traversable at all. Mixed edges denote

partially traversable edges. Edges between two time-reachable vertices can be traversable in

full, partially traversable or not traversable at all, since there may be other paths that ensure

that the head is time-reachable. Edges with a time-unreachable tail are, of course, always

not traversable.

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.1 – Different types of edges in the context of isochrones.

We now can redefine the output of the algorithms mentioned above in terms of the different

edge types. [8, 37, 38] report edges of type A, B and C. The isoGRASP algorithm only outputs

edges of type A, and isoCRP reports edges of type C and E. Since our main motivation for

computing isochrones is to visualize the isoline, it is reasonable to adopt the output of isoCRP,

as these edges resemble the isoline in some sense. We call edges of type C and E isochrone

edges. Some algorithms for visualizing isolines may need somewhat more information,

namely all edges that cross the isoline. These are all isochrone edges complemented by the

edges of type F. Hence, we introduce the notion of isochrone pairs, which denote pairs (u , v)
of neighboring vertices such that u is time-reachable and v is time-unreachable. Throughout

this thesis, we describe for each algorithm how to determine isochrone edges and how to

determine isochrone pairs.

3.2 Isochrones for Electric Vehicles

Intuitively, we want to compute the region that is reachable with an electric vehicle’s current

battery charge level. Formally, we consider a directed graph G = (V , E) together with two

cost functions (metrics). The routing cost function ` : E →R>0 assigns each edge the time it

takes to travel along the edge, and the consumption cost function c : E →R assigns each edge

the amount of electric energy required to get across the edge. In contrast to travel times, the

consumption metric may take on negative function values for some downhill edges, since

electric vehicles are able to recuperate energy when going downhill. Due to physical reasons,

there are no negative cycles. Recall from the introduction that we use two cost functions,

since energy-optimal paths would differ considerably from quickest paths [9].

The EV variant of the isochrone problem takes as input a source vertex s and a battery charge

level b . We say that a vertex v ∈ V is ev-reachable from s with the initial charge level b if

18

Chapter 3. Problem Statement

a quickest s − v path obeys the battery constraints of the electric vehicle. The definitions

of isochrone edges and isochrone pairs carry over to the EV scenario straightforwardly. An

edge (u , v) with an ev-reachable tail u and an ev-unreachable head v is referred to as an

isochrone edge. Isochrone pairs are all pairs (u , v) of neighbors such that u is ev-reachable

and v is ev-unreachable. Just like in the standard scenario, the EV variant of the isochrone

problem asks for all isochrone edges or, if required, isochrone pairs.

3.3 Dijkstra’s Algorithm for Isochrones

Dijkstra’s algorithm is a quite versatile technique which can be used in several scenarios, such

as point-to-point, one-to-all and one-to-many queries. Adapting it to compute isochrones is

straightforward. We run a normal Dijkstra search from the source vertex s , but stop when all

elements in the priority queue have a distance label greater than the time limit x . It remains

to determine the isochrone edges or, if required, isochrone pairs.

Recall that isochrone edges are all edges (u , v)with dist(s , u)≤ x and dist(s , v)> x . To find

all of them, we extract, after the search has stopped, each vertex v from the queue, loop

through its incoming edges (u , v) and output each of them where u is reachable within the

time limit.

Theorem 3.1. The algorithm is correct, that is, it outputs all isochrone edges.

Proof. We claim that the vertices that are still in the queue when the search stops are exactly

the heads of the isochrone edges. Assume that the search has stopped and consider a vertex v

in the queue. Due to the stopping criterion, v has to be time-unreachable. Let (u , v) ∈ E

be the edge that caused v to be inserted into the queue. Since the search scans only time-

reachable vertices, u has to be time-reachable and thus (u , v) is an isochrone edge. Hence,

each vertex in the queue is the head of an isochrone edge.

To prove the other direction, consider an arbitrary isochrone edge e = (u , v). By definition,

u has to be time-reachable and v has to be time-unreachable. Since the search scans all

time-reachable vertices, u must have been scanned. When this happened, e was examined

and v was inserted into the queue, if it was not there before. As the search stops when all

elements in the queue have a distance label greater than the time limit, v is still in the queue

after the search has terminated. Hence, the vertices in the queue are indeed exactly the

heads of the isochrone edges. By looping through the incoming edges of the isochrone heads,

the algorithm finds all isochrone edges.

Determining isochrone pairs requires further modifications. Recall that isochrone pairs

are all pairs (u , v) such that dist(s , u) ≤ x and dist(s , v) > x and there exists an arbitrarily

directed edge that connects u and v . The above approach may not find all isochrone pairs

that should be reported since Dijkstra’s algorithm relaxes only outgoing edges. For example,

19

Chapter 3. Problem Statement

consider a time-unreachable vertex v that is only connected by an outgoing edge (v, u) to a

time-reachable vertex u (and not by an isochrone edge). Such a vertex may not be inserted

into the queue at all.

In order to properly identify these pairs, we need to adapt Dijkstra’s algorithm. When scan-

ning u , we first relax all outgoing edges as usual. However, afterwards we loop through its

incoming edges (v, u) and check for each v whether it has a finite distance label (and thus

was inserted into the queue once already). If not, we insert v into the queue with a key of

infinity. After the search has stopped, we again extract each vertex v from the queue, loop

through its incident edges and output each pair (u , v) such that u is a neighbor of v that is

reachable within the time limit.

We call this variant of Dijkstra’s algorithm RangeDijkstra. Although it works correctly, its

performance is reasonable only for small time limits. In order to enable fast isochrone

computations at continental scale, we need to develop speedup techniques.

20

4 Multilevel Dijkstra Techniques

CRP [14, 22, 19, 15] is a well-known, versatile and robust speedup technique. This makes it a

good starting point for accelerating the computation of isochrones. This chapter starts by

proposing a basic multilevel algorithm for computing isochrones that is one order of magni-

tude faster than RangeDijkstra. Afterwards, we revisit and extend two known algorithms for

computing isochrones that are based on the CRP and GRASP framework, respectively.

4.1 Basic Multilevel Dijkstra Algorithm for Isochrones

In the following we present a plausible approach for computing isochrone edges that takes

advantage of multilevel overlay graphs. However, it will produce false negatives and false

positives without further modifications. The necessary changes are described afterwards.

We finish this section with an optional optimization and a discussion of how to determine

isochrone pairs.

4.1.1 General Idea

We might come up with an approach whose general idea is as follows. We run a normal

forward CRP search from the source vertex s , but stop when the search scans a vertex with a

distance label greater than the time limit x . However, unlike a normal forward CRP search

which transitions only from lower to higher levels, we want the search to descend into cells

that may contain isochrone edges. More precisely, if we encounter a shortcut edge we cannot

traverse without violating the time limit when scanning a vertex on its current CRP query

level, we try to scan this vertex on the level below. If we again encounter a shortcut edge

that is too long, we descend one level further, and so on. After the search has stopped, we

determine isochrone edges or, if necessary, isochrone pairs as described above.

Unfortunately, without further modifications the above approach produces false negatives,

i.e., it misses some isochrone edges, as well as false positives, i.e., it outputs edges that

21

Chapter 4. Multilevel Dijkstra Techniques

22

6
1

8 7 21

4
1

(a) False negative. Although we can pass through the
cell on the fast road through a tunnel (the green edges),
we cannot use the mountain road (the red edges).

2

1

3
3

1

w

v

us

(b) False positive. Assuming a limit x = 4, we erro-
neously report (v, w) as an isochrone edge.

Figure 4.1 – Examples where our approach produces wrong outputs. Gray edges denote
shortcut edges.

actually are no isochrone edges. However, we can get rid of both problems. False negatives

may occur when isochrone edges are not part of shortcut edges, see Fig. 4.1a for an example.

Imagine a mountain in the middle of the cell. The shortcut edge from the left to the right

boundary vertex corresponds to a fast road through a tunnel (the green edges) and can be

traversed within the time limit. However, this does not necessarily mean that we can reach

the summit of the mountain via a mountain road (the red edges). Thus it may happen that

we do not descend into the cell and hence miss an isochrone edge on the mountain road.

False positives may occur when we descend at some boundary vertices into a cell, but jump

over the same cell at other boundary vertices. See Fig. 4.1b for an example. Assume a

limit x = 4. When we scan u , we can traverse the shortcut edge (u , v), since the sum of u ’s

distance label and the shortcut’s length equals the limit. Thus we do not descend at u into

the cell, but relax the shortcut edge. Next, we are going to scan v . This time the sum of v ’s

distance label and the shortcut’s length is greater than the limit, so we descend into the

cell and relax the edge (v, w). Since w has a distance label greater than the limit and the

queue contains no other vertices, the search stops. Now, we erroneously report (v, w) as an

isochrone edge, since v ’s distance label is less than x and w ’s distance label is greater than

x . The s −w path via u that makes w time-reachable is not found.

4.1.2 Eliminating False Negatives

In order to overcome false negatives, we produce some additional auxiliary data during

customization. Recall that each cell in the overlay with n boundary vertices is represented as

an n×n matrix in which position (i , j) contains the length of the shortcut edge from the cell’s

i -th to the cell’s j -th boundary vertex. We append one column to each of these matrices.

Position (i , n +1) then stores the eccentricity of the i -th boundary vertex restricted to the

cell represented by the matrix. That is, it stores the length of the shortest path (restricted to

the cell) from the i -th boundary vertex to its farthest reachable vertex in the cell.

22

Chapter 4. Multilevel Dijkstra Techniques

During queries, we no longer check whether we can traverse all shortcut edges without

violating the time limit x when scanning a vertex v . Instead, we check whether the sum of

v ’s distance label and its eccentricity on the current query level are greater than x . If so, we

descend into the cell and check v ’s eccentricity on the level below. If not, we simply relax the

shortcut edges (and boundary edges, of course) on the current query level. This approach

ensures that we miss no isochrone edges (we say more about how to determine isochrone

pairs in section 4.1.5).

The eccentricities for all boundary vertices on all levels can be computed with almost no

overhead during customization. When constructing the first overlay level, we build from each

level-1 boundary vertex v a shortest path tree restricted to v ’s level-1 cell. The eccentricity

of v on level 1 is simply the distance label of the vertex which was scanned last. However,

when we build the second overlay level (or any other above), we run Dijkstra’s algorithm

on the overlay level below to accelerate the construction of higher levels. In this case, we

maintain an upper bound on the eccentricity of v which is updated every time we scan a

vertex u . If the sum of u ’s distance label and u ’s eccentricity on the level below is greater

than the current upper bound, the bound is increased accordingly. This gives us safe (but

not necessarily tight) eccentricities on all levels at almost no extra cost.

4.1.3 Eliminating False Positives

We move on to describe how to cope with false positives. As already mentioned, the problem

occurs when boundary vertices of the same cell are scanned on different query levels. Thus

we need to ensure that if the algorithm descends at any boundary vertex, it needs to do so at all

other boundary vertices of the same cell. Algorithm 4.1 shows how to compute the query level

of a vertex. It is called whenever we scan a vertex. The algorithm maintains two bit-vectors

for each level of the multilevel partition. For each cell C on level `, the bit descend[`][C]
indicates whether we need to descend into C and the bit reach[`][C] indicates if C contains

at least one vertex that is reachable within the time limit x . At this point, the bit-vectors

descend[·]would actually suffice to compute isochrone edges. However, since we will need

the bit-vectors reach[·] in the GRASP-based algorithm and they will become more important

in the EV scenario, we already include them here. Initially, we set descend[`][c`(s)] and

reach[`][c`(s)] for all levels `, where c`(s) denotes the level-` cell that contains the source s .

To compute the query level of a vertex u , we start by checking whether u ’s top-level cell

is already marked as a cell into which we need to descend (for example, because we have

already descended at another boundary vertex into this cell). If it is, we move on to check the

same for u ’s second-highest-level cell. Finally, we will arrive at either level 0 or a level ` on

which u ’s cell is not already marked. In the first case we are done. In the second, we check

whether the sum of u ’s distance label and u ’s eccentricity on level ` is greater than x . If it is

not, the query level of u is `. If it is, we set the appropriate bit and reinsert all other boundary

vertices of c`(u) into the queue, since some of them may have already been scanned without

23

Chapter 4. Multilevel Dijkstra Techniques

Algorithm 4.1: ComputeQueryLevel(u)

1 `q ← 0
2 if u is a boundary vertex then
3 `q ← L
4 while `q > 0 do
5 if descend[`q][c`q

(u)] is not set or reach[`q][c`q
(u)] is not set then

6 if viaShortcut[u] is set then
7 break

8 if d [u] +ecc`q
(u)> x then

9 set descend[`q][c`q
(u)]

10 if d [u]≤ x then
11 set reach[`q][c`q

(u)]

12 if descend[`q][c`q
(u)] is not set or reach[`q][c`q

(u)] is not set then
13 break

14 foreach boundary vertex v ∈ c`q
(u) do

15 if v 6= u and d [u] 6=∞ then
16 if v /∈Q then
17 Q .insert(v)

18 unset viaShortcut[v]

19 `q ← `q −1

20 return `q

descending into c`(u). We also set reach[`][c`(u)] accordingly. We then move on to check

whether we need to descend even further.

Having eliminated the false negatives and false positives, we now have a correct algorithm,

which is already much faster than RangeDijkstra. We call it single-phase isoCRP algorithm, in

contrast to the two-phase algorithm which is described in the next section. However, before

we move on, we point out an optimization and also come back to isochrone pairs.

4.1.4 Further Optimization

In order to avoid some unnecessary descents, we maintain another bit-vector with as many

bits as there are boundary vertices. The bit viaShortcut[v] indicates whether v was reached

via a shortcut edge (as opposed to via a boundary edge). If it was, we do not have to ensure

that the sum of v ’s distance label and its eccentricity is not greater than x . Whether we need

to descend into its cell or not was already determined when we scanned the parent of v at

the other end of the shortcut edge.

24

Chapter 4. Multilevel Dijkstra Techniques

4.1.5 Determining Isochrone Pairs

We now come back to isochrone pairs. Unfortunately, it does not suffice to insert neighbors

that still have an infinite distance label after the outgoing edge relaxations into the queue

with a key of infinity. See Fig. 4.2 for an example. Assume a limit x = 2. Recall that ecc(u)
denotes the eccentricity of u and note that ecc(u) = 1 since w is the farthest vertex in the

cell that is reachable from u . Now, when we scan u , we do not descend into the cell since

d [u]+ecc(u)≤ x . Afterwards the search stops as the single vertex v which remains in the

queue has a distance label greater than x and we miss the isochrone pair (w , v).

1

1

∞
3

1

w

v

us

Figure 4.2 – Example where an isochrone pair is missed. The gray edge denotes a shortcut
edge. Assuming a limit x = 2, we miss the isochrone pair (w , v).

The above example fails because the cell is no strongly connected component. There actually

is a vertex in the cell that is not reachable within the limit, namely v , but we are not aware of

it when scanning u , since there is no u − v path within the cell. In order to ensure correct

results in the presence of weakly connected cells, we set ecc(u) to infinity whenever there is

at least one vertex v in the cell such that no u − v path exists within the cell. Alternatively,

one may not restrict searches during customization to the cells, but may search on the whole

(overlay) graph until each vertex in the cell has been scanned. This would give us tighter

eccentricities, but would probably increase the customization time significantly.

4.2 Improved Multilevel Dijkstra Algorithm for Isochrones

The algorithm in the previous section has two significant drawbacks. First, it suffers from

bad locality and cache efficiency. Recall that, within the CRP framework, boundary vertices

of the top level have the lowest IDs, followed by boundary vertices of the second highest

level, and so on. Since we descend directly, the locality of the accesses to the distance labels

and other data structures is far from perfect. Second, the algorithm is hard to parallelize.

Note that when scanning an overlay vertex in the basic multilevel algorithm from the previous

section, we do not know its final query level for sure. It can happen that we scan it on a level

that is too high. To solve this problem, when we descend into a cell for the first time, we

reinsert all other boundary vertices of this cell into the queue (cf. section 4.1.3). Alternatively,

we may first scan all vertices of the (top-level) overlay graph until we reach a vertex with a

25

Chapter 4. Multilevel Dijkstra Techniques

distance label greater than the time limit. Afterwards, we know for sure at which vertices

of the (top-level) overlay graph we need to descend and at which not. This idea leads to

an algorithm that has much better locality and is easy to parallelize. The algorithm was

outlined before in a patent specification [18] about query scenarios for CRP. However, to the

best of our knowledge, there has been no scientific publication that actually evaluated the

algorithm on large road networks. Furthermore, the patent specification only considers a

single-core implementation and discusses no parallelization techniques.

The customization stage remains unchanged, that is, we still run a normal CRP customization

and compute eccentricities on-the-fly, as described in the previous section. However, the

query stage now consists of two phases. First, it performs a normal forward CRP search

from the source vertex s until all elements in the priority queue have a distance label greater

than the time limit x . In other words, it runs RangeDijkstra on the graph consisting of the

union c1(s)∪ · · · ∪ cL−1(s)∪HL , that is, the union of the top-level overlay graph HL and for

each level ` the cell c`(s) that contains s . This will be referred to as the upward phase.

We need to apply one extension to RangeDijkstra. Assume it scans a vertex u on an overlay

level `. Immediately after relaxing u ’s outgoing shortcut edges, it checks whether d [u] +
ecc`(u) > x . If it is, it marks c`(u) as an active cell. These are cells that have at least one

boundary vertex from which we cannot jump over the cell. The check is cache efficient, and

will therefore cause almost no direct overhead. The distance label d [u] is read anyway and

the eccentricity ecc`(u) is placed directly behind u ’s shortcut edges in memory.

The downward phase consists of L subphases. The first subphase runs, for each active

level-L cell C , RangeDijkstra in HL−1 (restricted to C) until all elements in the priority queue

have a distance label greater than x or the queue is empty. Initially, we insert all boundary

vertices of C into the queue using their distance labels as keys. We apply the same extension

to RangeDijkstra as before. The second subphase proceeds to run RangeDijkstra on each

active level-(L − 2) cell, and so on. Finally, the last subphase runs RangeDijkstra on each

active level-1 cell and we are done.

In the end, we scan the same vertices as we did in the previous section, but in a different

order than before. This has two advantages. First, we have much better locality since we

process one level after the other and inside each level one cell after the other. Second, it is

easier to exploit parallelism. Algorithm 4.2 summarizes the new approach which we call

two-phase isoCRP algorithm or simply isoCRP. Note that we again apply the optimization

technique to avoid some unnecessary descents from the previous section.

4.2.1 Determining the Output

Recall that RangeDijkstra finds all isochrone edges among the edges it visited. To do so,

it extracts, after the search has stopped, each vertex v from the queue, loops through its

incoming edges (u , v) and reports each of them where u is reachable within the time limit.

26

Chapter 4. Multilevel Dijkstra Techniques

Algorithm 4.2: isoCRP(s , x , G , H)

1 set distance label d [v] to∞ for all v ∈G
2 unset descend[`][C] and reach[`][C] for all 1≤ `≤ L , C ∈C `
3 RangeDijkstra(s , x , c1(s)∪ · · · ∪ cL−1(s)∪HL , d , descend, reach) // upward phase
4 for `← L to 1 do // downward phase
5 foreach cell C ∈C ` do
6 if descend[`][C] is set and reach[`][C] is set then
7 RestrictedRangeDijkstra(C , x , d , descend, reach)

Thus, the algorithm as described above gives us the isochrone edges. Of course, we need to

loop only through incoming boundary edges (and not through incoming shortcuts).

More precisely, isochrone edges that are boundary edges on the top level are determined

during the upward phase. The same is true for isochrone edges that are boundary edges on

level l and contained in cl+1(s). For all other isochrone edges (u , v) it holds that they are

determined when we run RangeDijkstra on cl+1(u), where l is the highest level on which

(u , v) is a boundary edge.

As described before, RangeDijkstra is also capable of computing isochrone pairs, and so is

isoCRP. Note, however, that in the presence of weakly connected cells, we again need to set

ecc(u) to infinity whenever there is at least one vertex v in the cell such that no u − v path

exists within the cell or, alternatively, we need to spend more time during customization.

4.2.2 Parallelization

It remains difficult to parallelize the upward phase since it seems to be inherently sequential.

However, this is not a big problem, as the time spend on the upward phase is only a small

fraction of the running time. Thus we focus on the downward phase. Note that active cells

on the same level can be processed in parallel, but we need to process each cell after its

supercells (if any). This allows us to parallelize the downward phase in the same fashion as

the customization stage. More precisely, we assign active cells on the same level to distinct

cores and synchronize the threads at each level of the partition. This scheduling strategy will

be referred to as “distribute cells per level”. Since the threads operate on distinct vertex sets,

there are no concurrent accesses to the distance labels, so we can share the labels among

the threads. However, each thread needs its own priority queue.

There are two potential problems with the above strategy. First, we need to synchronize the

threads at each level. Although CRP typically uses only a handful of levels, this may result

in a performance penalty. Second, if distinct cores often process cells whose vertices are

consecutive in memory, false sharing may become a bottleneck. False sharing occurs when

distinct cores operate on independent data elements that reside on the same cache line.

27

Chapter 4. Multilevel Dijkstra Techniques

Then, each update invalidates the cache line on all other cores, although there truly is no

sharing. We reduce the risk of false sharing significantly by assigning chunks of consecutive

cells (as opposed to assigning single cells) to distinct cores. However, we still have the

synchronization overhead.

Alternatively, we can process each top-level cell in top-down fashion independent from the

others. This scheduling strategy will be referred to as “distribute top-level cells”. It requires no

synchronization constructs at all and false sharing is highly unlikely. However, the amount

of parallelism is relatively small. Typically, CRP uses about 20 cells on the top level, which

restricts the number of concurrent tasks to 20. Frequently, the number is much less, for

example when the time limit is so small that we do not leave the top-level cell that contains

the source vertex. In this case, we can exploit no parallelism at all.

The first strategy provides a good amount of parallelism, whereas the second strategy pro-

vides no synchronization overhead and practically no false sharing. Combining them may

give us the best scheduling strategy. We first assign the active top-level cells to distinct cores.

Each core then runs RangeDijkstra on its cells. After that, we synchronize the threads once

and assign the larger number of active second-highest-level cells to distinct cores. Now, each

core processes its cells in top-down fashion. This will be referred to as “combined scheduling

strategy”. It combines the advantages of the other strategies.

4.3 GRASP for Isochrones

More recently, Efentakis et al. [30]developed GRASP, an extension of CRP to compute batched

shortest paths efficiently. Besides one-to-all and one-to-many algorithms, they also propose

a technique called isoGRASP for computing isochrones. However, what they do is somewhat

different from our objectives introduced in section 3.1. First, they compute all edges (u , v)
such that dist(s , u) + len(u , v) ≤ x , that is, all edges that can be traversed within the time

limit x . More importantly, they compute the correct distance labels for all vertices that are

reachable within x . In other words, they do not jump over cells that contain only reachable

vertices. While this may be needed by several applications, we require no shortest-path

distances at all. This section describes our variant of isoGRASP, which is capable of jumping

over cells and outputs isochrone edges or, if required, isochrone pairs.

Our customization stage runs a normal CRP customization and generates downward edges

on-the-fly, just like the customization of the original GRASP algorithm (cf. section 2.4.1).

Additionally, we compute eccentricities in the same way as we did in the previous sections.

Our query stage consists of two phases. The upward phase is identical to the one of isoCRP.

The scanning phase processes all levels from top to bottom in L subphases, again just like

the downward phase of isoCRP. However, instead of running RangeDijkstra on each active

level-(L − i +1) cell, the i -th subphase of our isoGRASP algorithm scans all level-(L − i +1)
downward edges within each active level-(L − i +1) cell. Algorithm 4.3 gives the details.

28

Chapter 4. Multilevel Dijkstra Techniques

Algorithm 4.3: isoGRASP(s , x , G , H , G ↓G S)

1 set distance label d [v] to∞ for all v ∈G
2 unset descend[`][C] and reach[`][C] for all 1≤ `≤ L , C ∈C `
3 RangeDijkstra(s , x , c1(s)∪ · · · ∪ cL−1(s)∪HL , d , descend, reach) // upward phase
4 for `← L to 1 do // scanning phase
5 foreach cell C ∈C ` do
6 if descend[`][C] is set and reach[`][C] is set then
7 foreach internal vertex v ∈C do

8 foreach downward edge (u , v) ∈G ↓G S do // compute correct distance labels
9 if d [u] + len(u , v)< d [v] then

10 d [v]← d [u] + len(u , v)

11 if ` > 1 then // check for active cells
12 if d [v] +ecc`−1(v)> x then
13 set descend[`−1][c`−1(v)]

14 if d [v]≤ x then
15 set reach[`−1][c`−1(v)]

16 if ` > 1 then // check for active cells
17 foreach boundary vertex v ∈C do
18 if d [v] +ecc`−1(v)> x then
19 set descend[`−1][c`−1(v)]

20 if d [v]≤ x then
21 set reach[`−1][c`−1(v)]

22 foreach internal vertex u ∈C do // determine isochrone edges
23 foreach original edge (u , v) ∈G do
24 if v < u and d [u]≤ x and d [v]> x then
25 output (u , v)

26 foreach original edge (v, u) ∈G do
27 if v < u and d [u]> x and d [v]≤ x then
28 output (v, u)

To process an active level-` cell C , Alg. 4.3 loops through its internal vertices, which are all

the level-(`−1) overlay vertices in the interior of C . For each internal vertex v , we scan its

incoming downward edges and update the distance label accordingly. Having the correct

distance label, we check whether v ’s cell on the level below is an active cell, which is the

case if d [v] +ecc`−1(v)> x . Afterwards, we need to do the same check also for all boundary

vertices of C .

29

Chapter 4. Multilevel Dijkstra Techniques

As mentioned earlier, the bit-vectors reach[·] become important now. We need them to

avoid descending into cells where no boundary vertex is reachable within the time limit.

This cannot happen in the isoCRP algorithms, since RangeDijkstra processes vertices in

increasing order of distance from s , and stops when all elements in the priority queue have

a distance label greater than x . Thus we never set descend[l][C] for a level-l cell C with

no boundary vertex reachable within x . However, when we process a cell in our isoGRASP

algorithm, we process its internal vertices in no specific order and thus have no stopping

criterion. Hence, we set the descend bit for unreachable cells. By descending only into cells

for which both bits are set, we avoid a considerable amount of work.

4.3.1 Determining the Output

Since the upward phase is identical to the one of isoCRP, it also determines isochrone edges

that are boundary edges on level l and contained in cl+1(s). For all the other isochrone

edges (u , v) it holds that they are determined when we process cl+1(u), where l is the highest

level on which max{u , v } is a boundary vertex (recall that vertices of higher levels have lower

IDs). To do this, we loop through the internal vertices once again after having computed

their correct distance labels. For each internal vertex u , we output each outgoing edge (u , v)
with d [u]≤ x and d [v]> x and each incoming edge (v, u) with d [u]> x and d [v]≤ x . To

avoid duplicates, we output an edge incident on an internal vertex u only if v < u . This

check also prevents us from testing edges that connect u to vertices on levels below (which

do not have correct distance labels yet). See also Alg. 4.3.

We may determine isochrone pairs in the same way. However, note that in the presence

of weakly connected cells, we need to take the same measures as before, that is, set some

eccentricities to infinity or spend more time during customization.

4.3.2 Parallelization

The original isoGRASP algorithm assigns active top level cells to distinct cores and processes

each of them in top-down fashion. This corresponds to our “distribute top level cells” strategy.

However, we may use any of the scheduling strategies described above to parallelize the

query stage. Their advantages and drawbacks remain the same.

We now describe how we parallelize the customization stage of GRASP, since the original

publication does not elaborate on this algorithmic aspect. Of course, we can build an empty

downward graph data structure into which each core inserts downward edges incrementally.

However, this needs excessive locking and leads to poor parallel performance. We can do

better without locking.

We maintain one edge array for each core. The downward edges into each vertex are stored

consecutively in one of these arrays. We also have a vertex array V of size n (the number of

30

Chapter 4. Multilevel Dijkstra Techniques

vertices). V [i] stores the index of the edge array that contains vi ’s edges, as well as the starting

and the ending position in this array of vi ’s edges. When processing a cell, we additionally

maintain one temporary bucket B (v) for each internal vertex v . After running Dijkstra’s

algorithm from the boundary vertex u , we add each downward edge from u to an internal

vertex v to B (v). When we are done with all boundary vertices of the cell, we concatenate all

these little buckets, append them to the core’s edge array and set the entries in the vertex

array accordingly. Finally, when the whole CRP customization is finished, the master core

builds the actual downward graph with a single sweep through the vertex and edge arrays.

31

5 Combining Graph Separators and
Contraction Hierarchies

Besides CRP, Contraction Hierarchies [40] are another widely known and flexible speedup

technique, which is even faster for “well-behaved” metrics such as travel times [15]. There are

also fast one-to-all (PHAST [13]) and one-to-many (RPHAST [17]) algorithms that build upon

Contraction Hierarchies. In this chapter, we use Contraction Hierarchies and (R)PHAST to

compute isochrones. In order to do so, we combine Contraction Hierarchies with different

graph separators. The first section describes the basic approach of the algorithms in this

chapter. Afterwards, we detail this approach when using edge separators, which has some

similarity with CRP. However, since the algorithms that build upon edge separators suffer

from some drawbacks, we switch to vertex separators in the last section.

5.1 Basic Algorithm

Intuitively, it seems difficult to use Contraction Hierarchies and related techniques to com-

pute isochrones, due to the inherent bidirectional nature of CH. All common types of queries

(point-to-point, one-to-all and one-to-many) take the targets as input. However, when

computing isochrones, we do not have a priori information about the targets. We need to

compute correct distance labels at least for all vertices that are endpoints of an isochrone

edge. Otherwise, we would not be able to tell whether an edge is an isochrone edge or not.

However, these vertices are not known in advance. After all, computing them is exactly the

aim of isochrone queries.

But even if the targets are not known, we may be able to restrict the area that contains

isochrone edges to certain regions. Then, we may use (R)PHAST to compute correct distance

labels for all vertices in these regions. In [17], Delling et al. conducted the following experi-

ment. Using the standard Dijkstra search, they grew a ball B of varying size |B | centered on

a random vertex. Then, they used RPHAST to compute the distances between a source s

and all vertices in B . On their standard workstation, RPHAST took only 0.17 ms for a ball of

size |B |= 214 on a single core. This promising query time motivates the basic approach of

the algorithms in this chapter, which is as follows.

33

Chapter 5. Combining Graph Separators and Contraction Hierarchies

During preprocessing, we partition the graph into cells of roughly equal size. Although the

cells are not perfect balls, the vertices in a cell are close together, so that computing distances

between a source s and all vertices in a cell should not take much longer than the RPHAST

queries from the experiment that was mentioned above. The query stage generally consists

of three phases:

1. Perform a forward CH search from the source s .

2. Determine the cells that may contain isochrone edges (so-called active cells).

3. Use (R)PHAST to process the previously determined cells.

There may be a fourth phase, which determines isochrone edges that could not be deter-

mined on-the-fly during one of the other phases. We call the techniques that follow this

basic approach GS+PHAST algorithms, since their key ingredients are graph separators and

(R)PHAST. See Fig. 5.1 for an illustration. Cells that are colored gray denote active cells. Note

that it may happen that some cells are marked as active, although they are not intersected by

the isoline. The number of such cells depends on the method used for determining active

cells. Also note that besides the active cells along the primary isoline, there may be active

cells in the interior of the area bounded by the primary isoline, for example due to mountains

whose summits we cannot reach within the time limit.

dist(s,·) ≤ x dist(s,·) > x s

Figure 5.1 – Illustration of the GS+PHAST algorithms. The thick black lines denote the isoline,
which is intersected by isochrone edges (thin black lines). Cells that are colored gray denote
active cells. Note that there are three cells that are “unnecessarily” active.

34

Chapter 5. Combining Graph Separators and Contraction Hierarchies

We develop different variants of the above approach, which differ (among other respects) in

the type of graph separators they use. With CRP in mind, it is natural to start by using edge

separators, which we do in the next section. Later, we switch to vertex separators in order to

remedy some drawbacks of the variants based on edge separators.

5.2 Edge Separators

Recall that edge separators are closely related to partitions, that is, a k -way edge separator

can be defined as the set of boundary edges of a k -way partition. Of course, we can use

edge separators to decompose road networks into several preferably balanced cells. The cell

boundaries then cross the separator edges, so that separator edges cannot be assigned to a

single cell. On the other hand, each vertex is contained in exactly one cell.

We call the techniques in this section ES+PHAST algorithms. The three variants described

in the next sections use three different methods to determine active cells. We start with a

variant that has some similarity with CRP.

5.2.1 Core-Dijkstra

Probably the most straightforward approach to determine active cells is to run RangeDijkstra

on the core graph. Here, the core graph is an overlay graph that contains all boundary

vertices, all boundary edges and the shortcuts needed to preserve the distances between all

boundary vertices. This is similar to the overlay graphs that are used for CRP, except that we

always use only a single level. We also store eccentricities for each core vertex. Whenever the

Dijkstra search scans a core vertex u with d [u]+ecc(u)> x , where d [u] denotes u ’s distance

label, ecc(u) denotes u ’s eccentricity and x denotes the time limit, it marks u ’s cell c (u) as

active. We now discuss the different aspects of this Core-Dijkstra variant of the ES+PHAST

algorithm in more detail.

Preprocessing Stage

The preprocessing stage consists of seven steps. We first give a brief overview of the different

steps and then elaborate on each of them. Note that all algorithms in this chapter do not

make a distinction between metric-independent preprocessing and metric-dependent cus-

tomization. However, we will give hints towards customizable implementations in chapter 8.

The preprocessing steps are as follows.

1. Reorder vertices according to the edge separator.

2. Compute topological data.

3. Build cell graphs.

4. Contract each cell graph.

35

Chapter 5. Combining Graph Separators and Contraction Hierarchies

5. Reorder vertices in each cell by level.

6. Build upward and downward graph.

7. Compute eccentricities for all overlay vertices.

Reorder vertices according to the edge separator. The first preprocessing step is to assign

new IDs to vertices. Core vertices are pushed to the front, using their cells as a tiebreaker.

Non-core vertices are pushed to the back, using the same tiebreaker as before. The new

vertex order has two advantages. First, it simplifies mapping between core and original

vertices. Second, we have better locality and cache efficiency when processing the active

cells.

Compute topological data. Next, we compute some topological data that is needed during

preprocessing and queries. Due to the previous step, for each cell the IDs of its boundary

vertices are contiguous. The same is true for its internal vertices. Hence, we can assign to

each cell a contiguous range of boundary vertices and of internal vertices. We also store for

each vertex the cell that contains it.

Build cell graphs. The preprocessing stage needs to contract the internal vertices of each cell.

To so do, we can run a standard CH preprocessing on the graph, but block the contraction of

core vertices. While this works correctly, its performance is suboptimal. Vertices that are

contracted in succession may be spread over the whole graph. That leads to many cache

misses and thus increases running time. It is actually faster to build a dedicated graph for

each cell and then contract these small graphs. For each cell, the cell graph is the subgraph

induced by its vertices.

Contract each cell graph. Now, we actually contract the cell graphs. Basically, we run a

standard CH preprocessing on each cell graph, but block the contraction of the boundary

vertices. The vertex order is determined online and bottom-up. A vertex v is contracted as

usual, that is, we temporarily remove it from the graph and create a shortcut between each

pair u , w of neighbors if the shortest u −w path is unique and contains v .

Reorder vertices in each cell by level. The PHAST algorithm requires that the vertices are

ordered by level. Vertex levels can be computed during the CH preprocessing. Initially, we

set L (v) = 0 for all vertices v . When contracting v , we set L (v) =max{L (v), L (u)+1} for each

non-contracted neighbor u . We reorder the internal vertices in each cell according to these

levels. The boundary vertices (which have the lowest IDs) keep their relative order.

Build upward and downward graph. During queries, we need the core graph and for each

cell its upward and downward graph. As mentioned before, the core graph contains all

boundary vertices and all original edges between two boundary vertices. Furthermore,

it contains the shortcuts from the CH preprocessing that connect two core vertices. It is

convenient for the query stage to store the upward graphs of all cells and the core graph in a

single graph data structure. We store all downward graphs in another graph data structure.

More precisely, we build two graphs G ↑ and G ↓ in this step. The graph G ↑ stores at each

36

Chapter 5. Combining Graph Separators and Contraction Hierarchies

non-core vertex u the outgoing upward edges (u , v) from the cell graph of c (u). At each core

vertex u , G ↑ stores the outgoing forward edges (u , v) from the core graph. Conversely, G ↓

stores at each non-core vertex v the incoming downward edges (u , v) from the cell graphs.

At core vertices, G ↓ stores no edges at all.

Compute eccentricities for all overlay vertices. Recall that the eccentricity of a core vertex v

is the length of the shortest path (restricted to c (v)) from v to its farthest reachable vertex

in c (v). Of course, we could compute eccentricities by running Dijkstra’s algorithm in the

original graph (restricted to the cell) from each core vertex v until the queue is empty. Then,

the distance label of the vertex that was scanned last is the eccentricity of v . However, we

can do better by using the data that we have already precomputed. To compute ecc(u), we

first run Dijkstra’s algorithm on the core graph, restricted to c (u). This assigns all reachable

boundary vertices of c (u) the same distance value as the first approach. Additionally, we as-

sign a distance value of infinity to all unreachable boundary vertices of c (u). In a second step,

we use PHAST’s linear sweep through the internal vertices of c (u) to propagate distance val-

ues to non-core vertices. After processing an internal vertex v , we check whether its distance

label d [v] is finite. If it is, we update the eccentricity by setting ecc(u) =max{ecc(u), d [v]}.
If it is not, there is no u − v path within c (u) and thus the vertex v is not relevant for the

eccentricity of u .

Query Stage

As mentioned above, the query stage of the ES+PHAST algorithms generally consists of

three phases: a forward CH search from the source s , the determination of active cells and a

downward phase that processes the active cells using (R)PHAST. However, the Core-Dijkstra

variant of ES+PHAST does not strictly distinguish the first two phases. They rather merge

into each other.

A query starts by running RangeDijkstra from the source s in G ↑. Since G ↑ stores at each

non-core vertex u the outgoing upward edges (u , v), we perform a forward CH search as

long as we are in the interior of the cell that contains s . When the search extracts a core

vertex from the queue, it “automatically” switches to the second phase (the search on the

core graph), since G ↑ stores at each core vertex the forward edges from the core graph. Here,

we exploit that the upward graphs of the cells and the core graph are stored in the same

graph data structure. Note that by construction of G ↑, we never relax edges going from a

core vertex to a non-core vertex during the search on the core graph.

In order to determine active cells, we check, when scanning a core vertex v , whether the

sum of v ’s distance label d [v] and its eccentricity ecc(v) is greater than the time limit x . If it

is, we mark the cell c (v) as active. If d [v]+ecc(v)≤ x , all vertices in c (v) reachable from v

are time-reachable and thus there can be no isochrone edges (or pairs) in the part of the cell

that is reachable from v . After the RangeDijkstra search terminated, we know which cells

are active and proceed to the third phase.

37

Chapter 5. Combining Graph Separators and Contraction Hierarchies

Now, we process each active cell (including the cell that contains s) by running PHAST’s

linear sweep on it. More precisely, to process an active cell C , we start by checking whether

each of its boundary vertices has a valid distance label. Here, a distance label is called valid

when it has been set during the RangeDijkstra search on the core graph. If the distance label

of a boundary vertex v is not valid, the search terminated before visiting v and thus v is not

reachable within the time limit x . Hence, we can safely set v ’s distance label to infinity. Next,

we perform a linear sweep through the internal vertices of C , which propagates distance

values from the core vertices to the internal vertices. This approach computes correct

distance labels for all vertices that are contained in an active cell and that are reachable

within x . Vertices in active cells that are not reachable within x may have incorrect labels.

This happens because we may not have correct distance labels for all boundary vertices, as

mentioned above. However, these incorrect labels are no problem, since for all vertices v

that are not reachable within x it holds that d [v]> x . After all, this is enough to safely decide

if an edge is an isochrone edge or not.

Determining the Output

We have to distinguish two types of isochrone edges: those that connect two core vertices

and those that are incident to at least one internal vertex. Isochrone edges of the first type

are visited during the RangeDijkstra search on the core graph. Recall that RangeDijkstra

finds all isochrone edges among the edges it visited. To do so, it extracts, after the search

has stopped, each vertex v from the queue, loops through its incoming edges (u , v) and

reports each of them where u is reachable within the time limit. It remains to determine the

isochrone edges that are incident to at least one internal vertex.

By definition, isochrone edges of the second type can occur only in active cells, so we

determine them during the linear sweeps. When scanning a vertex v , all of its higher ranked

neighbors u already have final distance labels, since we process the vertices in descending

order of level. In addition, after examining each incoming downward edge (u , v) ∈G ↓, the

distance label of v is also final. Thus we can loop through the incoming downward edges a

second time and check which of them is an isochrone edge. To do so, we basically output

those that have one endpoint that is reachable within the time limit and one that is not.

There are three difficulties with the above approach: First, each isochrone edge that we

output should be an original edge. However, there may also be some shortcuts among the

downward edges in G ↓. To exclude these shortcuts, we store a bit with each downward edge

that indicates whether it is an original edge or not. Second, there may be pairs of vertices u , v

that are connected by an edge in the original graph, but not in G ↓. For example, assume

that u has a lower level than v and that there is only an original edge going from u to v , but

not the other way round. Since this edge goes upward, it is contained in G ↑. However, there

may be no edge between u and v in G ↓ and thus we may not recognize them as neighbors

during the linear sweeps. In order to handle such cases, we need to ensure that if two vertices

38

Chapter 5. Combining Graph Separators and Contraction Hierarchies

are connected in the original graph, there must also be an edge in G ↓ that connects these

vertices. Such “artificial” downward edges are assigned a length of infinity, which ensures

that they do not influence the computation of the distance labels.

We now come to the third problem. What we have described so far determines isochrone

pairs rather than isochrone edges. To determine the latter, we not only need to ensure that

one endpoint of the downward edge is reachable within the time limit and the other is not.

Instead, we have to output only those downward edges that have a reachable tail and an

unreachable head. Consider a downward edge (u , v)with a length of infinity. We know that

it is an artificial downward edge and that v is actually the tail and u is actually the head in

the original graph. Thus we output it only if v is reachable and u is not. Now, consider a

downward edge (u , v)with a finite length. This time, we know that it is indeed a downward

edge and output it if the tail u is reachable and the head v is not. However, if it is the other

way round, that is, if v is reachable and u is not, the downward edge can also be a valid

isochrone edge. This is the case, when there is a bidirectional edge between u and v in the

original graph. In order to recognize such cases, we mark each downward edge (u , v) in G ↓

with an additional bit as bidirectional, if there is also an edge (v, u) in the original graph.

Having resolved the three problems mentioned above, the algorithm now correctly outputs

isochrone edges. Determining isochrone pairs is even simpler, since we do not need to check

whether an downward edge in G ↓ actually represents an upward, downward or bidirectional

original edge. We simply output each downward edge that has one endpoint that is reachable

within the time limit and one endpoint that is not. However, as already described in chapter 4,

we need to be careful in the presence of weakly connected cells. We can ensure correct results

as follows. Either we need to set ecc(u) to infinity whenever there is at least one vertex v in

the cell c (u) such that no u − v path exists within c (u) or, alternatively, we may not restrict

Dijkstra searches to the cells when computing eccentricities, but may search on the whole

core graph until each boundary vertex in the cell has been scanned. See Section 4.1.5 for

further details.

Parallelization

Both the preprocessing and the query stage can be parallelized straightforwardly. We start

with the preprocessing stage. After executing the first two steps sequentially, we process each

cell in parallel. To do so, we assign cells to distinct cores. Each core then first builds the cell

graph, contracts the internal vertices of the cell, inserts artificial downward edges necessary

to determine the output, and finally reorders the internal vertices by level. Afterwards,

we have to synchronize the threads. The master core continues to build the upward and

downward graph sequentially. The last step, computing the eccentricities, is done in parallel

again, by assigning cells to distinct cores. Since the cores operate on distinct vertex sets,

there are no concurrent accesses to the distance labels, and we can share the labels among

the cores. However, each core needs its own priority queue.

39

Chapter 5. Combining Graph Separators and Contraction Hierarchies

Let us come to queries. It is difficult to parallelize the RangeDijkstra search since it seems

to be inherently sequential. Hence, we focus on the linear sweeps. Since there are no

dependencies between different active cells, we can process them in parallel. Again, we can

share the distance labels among the cores.

In order to accelerate the linear sweeps even further, we take the computer architecture of

modern machines into consideration. Nowadays, most multi-socket systems have more

than one NUMA node. Processors in such systems can access memory that is assigned to

their NUMA node faster than memory that is assigned to different NUMA nodes. To exploit

such computer architectures, we store the downward graph G ↓ once on each NUMA node.

During queries, each core uses the copy of G ↓ on the NUMA node which its processor is

assigned to.

5.2.2 Core-PHAST

The Core-Dijkstra variant of the ES+PHAST algorithm, which was described in the previous

section, works reasonably fast if the time limit is small. However, if we need to search a large

portion of the core graph, the Dijkstra search is a performance bottleneck, especially when

processing the active cells in parallel. To do better, one may want to use another algorithm to

determine active cells. Since we use PHAST for the active cells, it seems natural to use it also

on the core graph for determining which of the cells are active. We call this the Core-PHAST

variant of ES+PHAST.

Preprocessing Stage

The preprocessing stage starts by performing the same seven steps as in the preprocessing of

the Core-Dijkstra variant. That is, it first reorders the vertices according to the edge separator

and then it computes some topological data, such as the ranges of vertices for each cell.

Following this, it contracts the internal vertices of each cell and reorders them by level.

Finally, it builds the upward graph G ↑ and downward graph G ↓ and computes eccentricities

for all core vertices. There are no differences in these steps compared to what we described

in section 5.2.1. What follows are three additional steps that the preprocessing stage of the

Core-PHAST variant has to take.

Since we want to use PHAST on the core graph, we obviously need to contract the core graph.

To do so, we run a standard CH preprocessing on it. Afterwards, we also have to reorder

the core vertices according to their levels. As usual, vertices on higher levels are pushed

to the front. Lower ranked vertices follow behind. In the third additional step, we update

the graphs G ↑ and G ↓ such that they also contain the upward and downward edges from

the contracted core graph. At this point, G ↓ stores at each non-core vertex v the incoming

downward edges (u , v). At core vertices, it stores no edges at all. We update G ↓ such that it

stores the incoming downward edges from the contracted core graph.

40

Chapter 5. Combining Graph Separators and Contraction Hierarchies

Apart from the outgoing upward edges at non-core vertices, in G ↑ also stores the forward

edges from the non-contracted core graph at core vertices so far. We need these edges not

only for the query stage of the Core-Dijkstra variant, but also to compute eccentricities.

However, since they are not needed for the query stage of the Core-PHAST variant, we now

remove them from G ↑ after preprocessing and instead store at each core vertex the outgoing

upward edges from the contracted core graph. This finishes the preprocessing stage.

Query Stage

Queries consist of the three distinct phases that were mentioned in section 5.1. The first

phase performs a standard forward CH search. That is, it runs Dijkstra’s algorithm from the

source s in G ↑ and stops when the priority queue becomes empty. The next phase determines

active cells and computes correct distance labels for all core vertices. As already mentioned,

we do so by performing a linear sweep through the core vertices, which propagates distance

values from higher ranked to lower ranked vertices.

To process a vertex v , we first examine each incoming downward edge (u , v) ∈G ↓. If d [u] +
`(u , v)< d [v], we set d [v] = d [u] + `(u , v), just like in a standard PHAST query. Afterwards,

we check whether d [v] + ecc(v) > x , that is, whether the sum of v ’s distance label and its

eccentricity is greater than the time limit. If it is, we mark v ’s cell as active. Additionally, we

check if d [v]≤ x , and if so, we mark c (v) as reachable.

After the linear sweep through the core vertices terminated, we move on to process individual

cells. Since isochrone edges can only be in cells that have at least one boundary vertex that

is reachable within the time limit, we only consider active cells that are additionally marked

as reachable. We also always process the cell that contains s , since we have to do so if the

forward CH search does not leave the cell. The cells are processed by a linear sweep over

their internal vertices, exactly as described for the Core-Dijkstra variant of ES+PHAST.

Determining the Output

Again, we need to distinguish the two types of isochrone edges: those that connect two core

vertices and those that are incident to at least one internal vertex. The latter are determined,

as in the Core-Dijkstra variant, during the linear sweeps through the active cells. Isochrone

edges of the first type are now determined during the linear sweep over the core vertices, using

exactly the same approach as the sweeps through the individual cells. As a consequence, we

need to insert some artificial downward edges also into the contracted core graph and mark

original as well as bidirectional edges in it with special bits, as was described before.

Determining isochrone pairs works as in the Core-Dijkstra variant. However, note that we

neither have to set some eccentricities to infinity, nor do we need to extend the Dijkstra

searches (during the computation of the eccentricities) across the cell borders (cf. sec-

41

Chapter 5. Combining Graph Separators and Contraction Hierarchies

tion 4.1.5). The reason is that the Core-PHAST variant always visits all boundary vertices of

each cell. Consider an isochrone edge (u , v) inside a cell C and let v be the endpoint that is

not reachable within the time limit. Since we assume the network to be strongly connected,

there must be some boundary vertex w in C such that there is a w − v path within the cell.

When the linear sweep on the core vertices visits w , it must hold that d [w]+ecc(w)> x and

thus C is marked as active.

Parallelization

We parallelize the preprocessing stage of the Core-PHAST variant of ES+PHAST in the same

way as that of the Core-Dijkstra variant. The three additional steps (contracting the core

graph, reordering the core vertices, updating the upward and downward graph) are executed

sequentially. During the query stage, we parallelize only the linear sweeps on the individual

cells as described before.

Generally, it is also possible to parallelize a single PHAST query by processing vertices of

the same level by distinct threads [13]. When all threads terminate, one can proceed to

the next level. This works, since there are no dependencies between vertices on the same

level in a standard PHAST query. Unfortunately, in our implementation, there can be such

dependencies. Consider the following example. Assume that the CH preprocessing deletes

an original edge (u , v) from the hierarchy, because it is superfluous (i.e., it is not needed to

preserve shortest-path distances). Then, u and v may not be connected directly any more.

Hence, the CH preprocessing may assign both vertices the same level.

However, recall that we ensure that if two vertices are connected in the original graph, there

must also be an edge in G ↓ that connects these vertices. Hence, in the example above, we

would insert an artificial downward edge between u and v after the contraction process.

This leads to the situation that there is an edge between two vertices on the same level. By

storing such artificial downward edges at the endpoint with the higher ID, we can ensure

that when a sequential linear sweep checks whether such an edge is an isochrone edge,

both endpoints have final distance labels. However, considering a parallel linear sweep, it is

difficult to resolve these dependencies. That is why we do not parallelize to linear sweep

through the core vertices.

One could avoid the problem described above by adapting the CH preprocessing such that it

never deletes original edges. However, even then the speedup due to a parallel Core-PHAST

would probably be rather low. For a good parallel performance, we need enough vertices

(i.e., enough parallel work) on the levels. This is the case in a standard PHAST query. For

example, Delling et al. [13] observed that in a contraction hierarchy of Western Europe with

18 million vertices and 138 levels, half of the vertices are on the lowest level and that the

lowest 20 levels contain more than 99 % of the vertices. However, the core graph has much

fewer vertices, but a similar amount of levels. This makes it difficult to parallelize the linear

sweep over the core vertices.

42

Chapter 5. Combining Graph Separators and Contraction Hierarchies

5.2.3 Distance Oracle

Since Dijkstra’s algorithm does not scale well on large graphs and is difficult to parallelize,

we replaced the Dijkstra search on the core graph by a linear sweep through the core vertices

in the previous section. While the Core-PHAST variant of ES+PHAST tends to be faster than

the Core-Dijkstra variant if the time limit is large, it also suffers from two drawbacks. First, as

described above, the linear sweep over the core vertices is difficult to parallelize. Especially

when processing the active cells in parallel, it is a performance bottleneck. Second, since

PHAST processes vertices in decreasing order of level and not in increasing order of distance,

it is not clear how to have an early termination criterion. Instead, we always compute correct

distance labels for all core vertices, regardless of the time limit, which causes unnecessary

work in the case of small time limits. This section describes a third variant of ES+PHAST that

reduces the sequential work during queries and avoids to compute unnecessary distance

labels. We call it the distance oracle variant of ES+PHAST.

Up to know, we have always computed correct distance labels for some or all core vertices

as a first sequential step. Afterwards, we performed linear sweeps to propagate distance

values from the core vertices to the internal vertices of the active cells. If multiple cores

are available, we can process the active cells in parallel. In contrast, the distance oracle

variant of ES+PHAST does not need a dedicated phase to compute correct distance labels

for core vertices. Instead, it processes each active cell individually using an RPHAST query.

During preprocessing, we extract, for each cell, the relevant subgraph (cf. section 2.4.3) of

the downward graph G ↓, just like in a standard RPHAST selection phase. These subgraphs

are stored explicitly. During queries, we first perform a forward CH search and then run a

linear sweep through the precomputed subgraph of each active cell.

In order to determine active cells, we use a distance oracle. That is, for each pair of cells C1, C2,

we maintain a lower bound `(C1, C2) and an upper bound u (C1, C2) on the distance between

a vertex in C1 and another vertex in C2. More precisely, for all pairs of vertices u ∈C1, v ∈C2 it

holds that `(C1, C2)≤ dist(u , v)≤ u (C1, C2). We determine active cells as follows. Let Cs be the

cell that contains the source vertex and consider an arbitrary cell C 6=Cs . If the time limit x

is smaller than the lower bound `(Cs , C), all vertices in C are not reachable within x and

thus there can be no isochrone edges (or pairs) in C . Conversely, if x ≥ u (Cs , C), all vertices

in C are reachable within x and, again, there can be no isochrone edges in C . However,

if `(Cs , C) ≤ x < u (Cs , C), there may be isochrone edges in C , which is thus marked as an

active cell. In the next section, we describe how to compute the lower and upper bounds.

Computing the Distance Oracle

There is an obvious trade-off between preprocessing time and accuracy. On the one hand, we

can obtain exact lower and upper bounds by computing all-pairs shortest paths on the whole

road network. However, the PHAST algorithm, which is the fastest all-pairs shortest path

technique on road networks, needs a few days to do so on a standard multi-core workstation.

43

Chapter 5. Combining Graph Separators and Contraction Hierarchies

C1

C2

(a) The sum of the blue, red and violet distances
leads to a valid upper bound.

C1

C2

(b) The sum of the blue and green distances leads
to another (tighter) upper bound.

Figure 5.2 – Illustration of the different distances that are involved in the computation of the
distance oracle. The violet path denotes the forward diameter of C2, the blue path denotes
the backward diameter of C1. The lower bound from C1 to C2 is colored red. Finally, the
longest shortest path from a boundary vertex in C1 to any vertex in C2 is colored green.

Even its GPU implementation needs about half a day on a high-end graphics card [13].

We now propose two approaches that are much faster, but do not lead to exact bounds.

In the following, we need the concept of cell diameters. We call the length of the longest

shortest path from a boundary vertex in C to any other vertex in C the forward diameter

of C . More precisely, diam f (C) =maxu ,v∈C {dist(u , v)}, where u is a boundary vertex. Note

that the shortest u − v path is not restricted to C and may pass the cell border. Similarly,

we call the length of the longest shortest path from any vertex in C to a boundary vertex

in C the backward diameter of C . See Fig. 5.2 for an illustration. The violet path denotes the

forward diameter of C2, and the blue path denotes the backward diameter of C1.

In order to compute (exact) lower bounds, we perform multiple-source PHAST queries on

the core graph. To obtain lower bounds from a cell C to all other cells, we initialize the queue

for the forward CH search with all boundary vertices of C and set their distance labels to zero.

During the linear sweep through the core vertices, we remember for each cell the smallest

distance label among its boundary vertices. In other words, after processing a vertex v ,

we check whether d [v]< `(C , c (v)). If it is, we set `(C , c (v)) = d [v]. After the linear sweep

terminates, we have lower bounds from C to all other cells. In Fig. 5.2, the red path denotes

the lower bound from C1 to C2. Now, we can obtain a valid (but not necessarily tight) upper

bound by forming the sum u (C1, C2) = diamb (C1)+`(C1, C2)+diam f (C2). Fig. 5.2a illustrates

this approach.

44

Chapter 5. Combining Graph Separators and Contraction Hierarchies

If we are willing to spend slightly more time, we can obtain tighter upper bounds. We still

perform one multiple-source PHAST query per cell, but run it on the whole graph instead

of on the core graph. The initialization remains the same. During the linear sweep, we

remember for each cell the smallest distance label among its vertices as before. This gives

the lower bounds. Additionally, we remember for each cell the largest distance label among

its vertices. This gives the length ũ (C1, C2) of the longest shortest path from a boundary

vertex in C1 to any vertex in C2. In Fig. 5.2, this length is colored green. Now, we obtain an

upper bound from C1 to C2 by forming the sum u (C1, C2) = diamb (C1)+ ũ (C1, C2). Obviously,

this upper bound cannot be worse than the one from the previous paragraph and often, it

will be significantly tighter. In the following, we use the tighter upper bounds. We move on

to describe some details of the distance oracle variant of ES+PHAST.

Preprocessing Stage

The preprocessing stage closely follows that of the Core-PHAST variant. That is, it first

reorders the vertices according to the edge separator (boundary vertices are pushed to the

front etc.) and then it computes some topological data, such as the range of vertices for

each cell. Afterwards, it contracts the cells and reorders their internal vertices by level.

However, instead of computing eccentricities, it then computes the backward diameters

of the cells. Conceptually, this is similar to what we do when computing eccentricities. We

process one cell after the other. Now, consider an arbitrary cell C and a boundary vertex v

in it. First, we run Dijkstra’s algorithm from v on the core graph until all other boundary

vertices of C have been scanned. In contrast to eccentricities, we do not restrict the search

to C . Afterwards, we perform a linear sweep through the internal vertices of C to propagate

distance values from core vertices to internal vertices. Note that the Dijkstra search relaxes

backward edges and that the linear sweep is done on the upward graph G ↑, since we are

looking for distances to v (and not from v). We remember the distance dist(f (v), v) from

the farthest vertex f (v) found during the search and the sweep. The backward diameter of C

then is the maximum dist(f (v), v) over all boundary vertices v ∈C .

After computing the backward diameters, the preprocessing stage proceeds with the con-

traction of the core graph and then reorders the core vertices by level. Afterwards, it updates

the upward graph G ↑ and the downward graph G ↓ such that they also contain the upward

and downward edges from the contracted core graph (besides the upward and downward

edges from the contracted cell graphs, which we already needed to compute the backward

diameters). At this point, the preprocessing of the Core-PHAST variant of ES+PHAST was

finished. For the distance oracle variant, it remains to extract the relevant subgraph of the

downward graph G ↓ for each cell. To do so, we simply perform a standard RPHAST selection

phase. It expects a set of targets that should be included in the extracted subgraph. In our

case, the (boundary and internal) vertices of a cell are the relevant targets. The extracted

subgraphs are stored explicitly for the query stage, since it would take too much time to

perform the selection during queries.

45

Chapter 5. Combining Graph Separators and Contraction Hierarchies

Query Stage

The query stage of the distance oracle variant consists of the three main phases (forward CH

search, determine active cells, process active cells) that were outlined at the beginning of this

chapter. Additionally, it needs a fourth phase, which determines isochrone edges (or pairs)

that could not be determined on-the-fly during one of the other phases. We come back to the

fourth phase in the next section. The forward CH search works as usual and was described

several times before. In order to determine active cells, we check for each cell C whether

the time limit x lies between the lower bound `(Cs , C) and the upper bound u (Cs , C). If

`(Cs , C)≤ x < u (Cs , C), we mark C as active.

In the third phase, we perform a linear sweep on each subgraph that belongs to an active cell

(or the cell which contains the source vertex). As usual, to process a vertex v , we examine each

incoming downward edge (u , v). If d [u] + `(u , v)< d [v], we set d [v] = d [u] + `(u , v). This

computes correct distance labels for all vertices that are contained in an active cell. Note that

we do not need to reinitialize the distance labels before processing the next subgraph, since

the source vertex remains the same. Of course, before computing a whole new query with a

new source, distances labels need to be reinitialized, for example by using time-stamps.

Determining the Output

Once again, we need to distinguish isochrone edges between two core vertices and isochrone

edges incident on at least one internal vertex. The latter are determined, as in the previous

two variants, during the linear sweeps through the active cells. Whenever we there process a

non-core vertex, we loop through the incoming downward edges a second time and check

which of them is an isochrone edge. Note that we have to take the same precautions that we

already described for the previous variants, for example, we need to insert some artificial

downward edges into G ↓ in order to get correct results.

Determining isochrone edges (or pairs) between two core vertices is more difficult. Of course,

the linear sweeps could check for all downward edges whether they are isochrone edges

(and not only at non-core vertices). This might give some isochrone edges of the first type,

but also many duplicates, since the subgraphs are not distinct. While we could eliminate

duplicates by using some sorting algorithm, the approach fails because isochrone edges

could be missed.

Consider two cells that border on each other and assume that there are some boundary

edges crossing this border. Suppose that in one cell, all vertices are reachable within the

time limit, and in the other cell, all vertices are not reachable. Depending on the bounds,

we may mark neither of the two cells as active. This may lead to the situation where some

boundary edges, that truly are isochrone edges, are not contained in any of the processed

subgraphs. In order to find such isochrone edges, we look at each edge between two core

vertices, after the last linear sweep has terminated, and check which of them is an isochrone

46

Chapter 5. Combining Graph Separators and Contraction Hierarchies

edge (or pair). These edges reside at the beginning of the edge array of the downward graph,

since core vertices were assigned the lowest IDs during preprocessing. Hence, we look only

at a small fraction of the array.

Parallelization

The preprocessing stage of the distance oracle variant of ES+PHAST can be parallelized

similar to that of the Core-PHAST variant. Additionally, we compute the backward diameters

in parallel by assigning cells to distinct cores. This is similar to how we parallelize the

computation of eccentricities. The extraction of the subgraphs can be done in parallel in the

same way (assign cells to distinct cores).

From the query stage, we parallelize the third and fourth phase. The linear sweeps on the

subgraphs are independent of each other, so they can be performed in parallel. The same

is true for the checks which boundary edge is an isochrone edge (or pair). Determining

active cells takes less than a few microseconds, so we leave it sequential. Note that since

the subgraphs are not distinct, each core has to use its own copy of the distance labels in

order to avoid concurrent accesses. As a consequence, each core also needs to perform the

forward CH search to initialize its copy with the correct values.

Compressing the Subgraphs

As mentioned above, the vertex sets of the extracted subgraphs are not distinct. For example,

the highest-ranked vertex on top of the hierarchy is guaranteed to be contained in each

subgraph. Generally, the more cells we use, the more vertices are contained in multiple

subgraphs. This does not only waste a considerable amount of space, but also slows down

queries, since high-rank vertices are processed again and again during the same query. In

order to save space and accelerate queries, we “compress” the subgraphs.

The idea is as follows. We store the topmost k vertices of the hierarchy and their incoming

downward edges in a separate subgraph, and remove them from all other subgraphs. This

works very well, for example, when using 1024 cells and k = 8192 on Western Europe, the

space required by the subgraphs decreases from 2164 MiB to 499 MiB. During queries, each

core first needs to perform a linear sweep through this special subgraph, before it can start

to process the subgraphs that belong to active cells.

5.2.4 Drawbacks of the ES+PHAST Algorithms

In the previous three sections, we described three variants of the ES+PHAST algorithm.

Unfortunately, each of them has significant drawbacks. The Core-Dijkstra variant does not

scale well as the number of cells increases and also not with the time limits used. The Core-

PHAST variant has no early termination criterion and thus always computes correct distance

47

Chapter 5. Combining Graph Separators and Contraction Hierarchies

labels for all core vertices, regardless of the time limit. In both variants, the searches on the

core graph are difficult to parallelize and, as a consequence, are a performance bottleneck

on multi-core machines. Another drawback of the Core-PHAST variant is that the hierarchy

we built is not as good as a “standard” contraction hierarchy. Since we block the contraction

of boundary vertices until all internal vertices are contracted, we force the CH preprocessing

to select a suboptimal contraction order.

The distance oracle variant suffers from the latter as well. However, if we contracted the

whole graph without blocking boundary vertices, then boundary edges would be spread over

the whole edge array. As a consequence, the time required to determine which boundary

edges are isochrone edges would increase significantly. This step introduces a slowdown

even now, although we look only at a small fraction at the beginning of the edge array of the

downward graph (where the boundary edges reside). When using a standard contraction

hierarchy, we would need to loop through the whole edge array, which would be way too

slow. In order to remedy the drawbacks of the distance oracle variant, we have to eliminate

boundary edges. We achieve this by switching from edge to vertex separators, as will be

described in the next section.

5.3 Vertex Separators

A vertex separator is a subset S ⊂V of vertices such that the removal of S decomposes the

graph G = (V , E) into several disconnected cells. Usually, the subset should be small and

the cells should be balanced. In contrast to edge separators, the cell boundaries here pass

through the separator vertices, each of which may be contained in any number of cells. On

the other hand, each edge can be assigned to a single cell and thus there are no boundary

edges. Before describing the GS+PHAST algorithm when using vertex separators, the next

two sections discuss how to compute vertex separators and how to obtain a cell topology

from them.

5.3.1 Computing Vertex Separators

A common approach to compute a vertex separator is to partition the graph G in a first step

and then obtain the separator from the partition in a postprocessing step. For simplicity,

assume for now that the partition contains only two cells C1, C2. Clearly, the boundary

vertices of C1 form a valid vertex separator, and so do the boundary vertices of C2. However,

in order to obtain better (smaller) separators, one may also take the boundary edges into

consideration. The approach described in [58, 54] computes the smallest subset of boundary

vertices that forms a valid vertex separator. To do so, it builds a bipartite graph H that

contains all boundary vertices and all boundary edges. Afterwards, it computes a minimum

vertex cover S ⊂ V in H . By definition of a vertex cover, each edge in H is incident on at

least one vertex from S . Hence, the removal of S eliminates all boundary edges and thus

48

Chapter 5. Combining Graph Separators and Contraction Hierarchies

decomposes the graph G into several cells. In other words, the minimum vertex cover is

a valid vertex separator. Note that, although the minimum vertex cover problem is NP-

complete in general [11], it is efficiently solvable in bipartite graphs, since it can be reduced

to a max-flow min-cut computation in this case [58, 54].

We come back to partitions that contain more than two cells. Adapting the approaches from

the previous paragraph to compute k -way vertex separators is straightforward. One can

simply pick an approach and apply it between all pairs of cells that shared a non-empty

boundary. The union of the pairwise separators then forms the k -way separator. In our

implementation, we use a helper program from the KaHIP framework [57] to compute vertex

separators from partitions. It obtains separators by computing minimum vertex covers in

bipartite graphs, as described in this section.

5.3.2 From Vertex Separators to Topologies

A vertex separator is just a set of vertices. However, for the GS+PHAST algorithm we need to

know the topology, that is, we have to fix boundaries and determine for each cell its boundary

vertices and for each separator vertex its incident cells. To do so, we combine information

from the vertex separator S and the underlying partition that was used to compute S . As

always, we denote by c (v) the cell that contains v according to the (underlying) partition.

The internal vertices of a cell C are all non-separator vertices v such that c (v) =C . We move

on to determine boundary vertices.

We maintain one list of boundary vertices for each cell and one list of incident cells for each

separator vertex. For each vertex u ∈ S , we loop through its incident edges (u , v). If v is a

non-separator vertex, we insert u into the list of boundary vertices of c (v) and add c (v) to

u ’s list of incident cells. In Fig. 5.3, such edges are colored red. Now, assume that v is also

a separator vertex. By construction of the separator, the edge (u , v) has to be a boundary

edge in the partition and thus goes directly along the boundary between c (u) and c (v). Such

edges are colored green in Fig. 5.3. We can put (u , v) in either c (u) or c (v), however, we need

to be consistent during all stages of the algorithm. We decide to put edges (u , v) between

two separator vertices in c (min{u , v }).

5.3.3 The VS+PHAST Algorithm

This section finishes the chapter with a description of the GS+PHAST algorithm when using

vertex separators. We call this variant VS+PHAST algorithm. It closely follows the distance

oracle variant of ES+PHAST. The main difference is that VS+PHAST obtains the cell topology

from a vertex separator instead of from an edge separator. Since most other algorithmic

aspects are quite similar, we will not go into details again. In the following, we briefly point

out some differences during the different stages.

49

Chapter 5. Combining Graph Separators and Contraction Hierarchies

Figure 5.3 – An example of a topology obtained from a vertex separator. Black circles denote
separator vertices, gray circles denote internal vertices. Edges between two internal (separa-
tor) vertices are colored blue (green). Red edges denote those between a separator and an
internal vertex.

Preprocessing Stage. One advantage of VS+PHAST is that we can use a standard contraction

hierarchy without delaying the contraction of core vertices. This allows better contraction

orders and thus leads to lower preprocessing and query times. Note, however, that we still

temporarily contract and reorder each cell in order to accelerate the computation of the

backward diameters as before. If we computed the backward diameters by running Dijkstra’s

algorithm in the original graph, we would spend more time than we would save by avoiding

the contraction of the cells.

Query Stage. The query stages are almost identical. If the source s is a non-core vertex, we

look up the cell Cs that contains s and check the lower and upper bounds from Cs to all

other cells. Note that if s is a core vertex, there are multiple cells that contain s . However,

queries remain correct if we just take any of the cells that contain the source as Cs .

Determining the Output. Another advantage of VS+PHAST due to the absence of boundary

edges is that queries do not need an additional fourth phase. All isochrone edges (or pairs)

can be determined during the linear sweeps on the subgraphs that belong to active cells.

However, since the vertex sets of the subgraphs are not distinct, we have to pay attention

that we produce no duplicates. Recall that we output only edges where a special bit is set

that marks them as original edges. We use the same mechanism to avoid duplicates at no

extra cost. After extracting the relevant subgraph from the downward graph for a cell C , we

simply loop through its edges and unset the aforementioned bit for all of them that are not

contained in C .

50

6 Isochrones for Electric Vehicles

In this chapter, we adapt RangeDijkstra and the multilevel Dijkstra techniques such that they

are capable of computing isochrones for electric vehicles. In the EV scenario, we want to

obtain the region that is reachable with a certain battery charge level. Recall that we cannot

simply use energy consumption instead of travel times as metric, since energy-optimal paths

differ considerably from quickest paths [9]. Instead, we use two cost functions in the EV

scenario: a routing cost function, namely travel times, and a separate consumption cost

function, namely the energy consumption of the electric vehicle.

The first section of this chapter describes how the energy required to get across a path can

be modeled as a cost function of bounded descriptive complexity, which was first observed

by Eisner et al. [33]. Afterwards, we introduce some basic operations on such cost functions

that we will use in our algorithms. In the last section, we finally adapt RangeDijkstra and the

multilevel Dijkstra techniques for the EV scenario.

6.1 Modeling Energy Consumption

As before, each edge (u , v) is assigned a length `(u , v) that represents the time it takes to

travel along the edge. We use ` as routing metric. Additionally, we assign each edge (u , v)
a consumption value c (u , v). In contrast to travel times or travel distances, c is no non-

negative metric, since electric vehicles are able to recuperate energy during deceleration

phases or when going downhill. Hence, c (u , v) takes on negative function values on some

downhill edges. However, due to physical reasons there are no negative cycles.

In order for a vertex v to be reachable from s with an initial charge level bs , the shortest

s − v path Ps v = (s = v0, . . . , vk = v) has to obey the battery constraints of the electric vehicle.

First, we must never run out of energy when driving along Ps v . More precisely, bvi
≥ 0 for

i = 1, . . . , k . Second, overcharging must never take place. That is, the battery charge bvi
must

not exceed the maximum charge level M of the electric vehicle for any i = 1, . . . , k . If there is

an initial charge level such that a path obeys the battery constraints, we say it is feasible.

51

Chapter 6. Isochrones for Electric Vehicles

Due to the battery constraints, the actual amount of energy that is consumed or recuperated

when driving along a path P = (v = v0, . . . , vk)or even along a single edge (v, w) is not constant,

but a function of the battery charge level bv at v . These cost functions fe on the edges e are of

the form fe : [0, M]→R∪∞. When going along an edge (v, w)with c (v, w)< 0, we are able

to fully recuperate the energy only if bv ≤M + c (v, w). As soon as bv exceeds M + c (v, w),
the amount of energy that is recuperated decreases linearly. Finally, if bu =M , we are not

able to recuperate any energy at all. See Fig. 6.1b for an example. When considering to drive

along an edge e = (v, w) with c (v, w) ≥ 0, we are not allowed to take this road segment if

bv < c (v, w). Hence, we set fe (bv) =∞ for bv < c (v, w) and otherwise we set fe (bv) = c (v, w).
See Fig. 6.1c for an example.

s

u

v

t

-2

5

-1

(a) Path from s to t via three edges.

M
0

M

∞

-2

(b) Cost function on the edge (s , u).

M
0

M

∞

5

(c) Cost function on the edge (u , v).

Figure 6.1 – Cost functions on edges with negative and positive consumption costs. Finite
function values are only taken on in the shaded area.

As we have seen, cost functions on edges always consist of (at most) two pieces. Cost

functions for whole paths P = (v0, . . . , vk), i.e., sequences of edges, have almost the same

descriptive complexity and consist of (at most) three pieces. See Fig. 6.2 for an example.

Let bmin be the minimal battery charge level required at v0 to get across P , that is, no cost

function fe (bu) of an edge e = (u , v) on the path P takes on infinity for the battery charge

level bu at u . Then, by definition of bmin, the cost function fP takes on infinity in the inter-

val [0, bmin−1]. Now, let rmax be the (possibly negative) amount of energy that is consumed at

the lowest vertex in the consumption profile (see Fig. 6.2a). In the interval [bmin, M − |rmax|],
energy recuperation is not limited and thus fP takes on c =

∑k−1
i=0 c (vi , vi+1) in the whole

interval. For initial charge levels bv0
>M − |rmax|, recuperation is limited, which means that

there is at least one vertex on P where the battery is fully loaded and thus the final charge

level bvk
at vk is the same for all such bv0

. Hence, if we start at v0 with a higher initial charge

level bv0
, the consumed energy bv0

− bvk
increases by the same amount. So the third piece

of fP is a line of slope one in the interval [M − |rmax|, M].

52

Chapter 6. Isochrones for Electric Vehicles

s

u

v

t

-2

5

-1

bmin

c

rmax

(a) Path from s to t via three edges.

M
0

M

∞

bmin

|rmax|
c

(b) Cost function of the path Ps t .

Figure 6.2 – Cost function of a path consisting of edges with negative and positive consump-
tion costs. The minimal battery charge required to get across the path is bmin(Ps t) = 3 and
the maximal amount of energy that is recuperated while traversing the path is rmax(Ps t) =−2.
The total consumption cost is c (Ps t) = 2.

Each cost function (on edges or whole paths) can be fully specified by a triple (bmin, rmax, c).
This allows us to store any cost function as three 32-bit integers. Note that in the case of

cost functions on single edges (u , v)with c (u , v)< 0, bmin is always zero. Conversely, for cost

functions on single edges (u , v)with c (u , v)≥ 0, rmax is always zero. More precisely, the cost

function that is induced by a triple (bmin, rmax, c) is defined as

f (b) =

∞, b ∈ [0, bmin−1]

c , b ∈ [bmin, M − |rmax|]

c + (b − (M − |rmax|)), b ∈ [M − |rmax|+1, M]

.

6.2 Basic Operations on Edge Cost Functions

The previous section described how we model energy consumption as cost functions and

how we represent them in memory. Before we move on to adapt our algorithms for the EV

scenario, this section introduces three basic operations on edge cost functions that we will

use in our algorithms. These operations include the evaluation of edge cost functions, linking

two edge cost functions and checking for dominance between two edge cost functions.

6.2.1 Evaluation

The evaluation of an edge cost function fP = (bmin, rmax, c) at a battery charge level b is

straightforward. See Alg. 6.1. If b < bmin, the battery charge level does not suffice to get

53

Chapter 6. Isochrones for Electric Vehicles

across P , that is, the electric vehicle runs out of energy. Hence, we return a cost of infinity.

Next, if b ≤M − |rmax|, energy recuperation is not limited and thus we return c . Otherwise,

b is in the interval [M − |rmax|+1, M] and the energy required to traverse P is computed by

c + (b − (M − |rmax|)), as described in the previous section.

Algorithm 6.1: EvalEdgeCostFunction(f , b)

1 if b < f .bmin then // EV runs out of energy
2 return∞

3 if b ≤M + f .rmax then // overcharging does not take place
4 return f .c

5 return f .c + (b − (M + f .rmax))

6.2.2 Linking

During the customization of the multilevel Dijkstra techniques, we need to compute shortcut

edges between the boundary vertices within each cell. A shortcut edge on level ` is the

concatenation of shortcuts (and boundary edges) on level `−1. To obtain the cost function fP

for a path P that is the concatenation of two paths P1 and P2, we need to link their cost

functions fP1
and fP2

. What we need to do to link two edge cost functions becomes clear

when looking at their consumption profiles. See Fig. 6.3a for an example. We obtain the

consumption profile of P by joining the profiles of P1 and P2 such that the P1’s last vertex

touches P2’s first vertex. Obviously, we have to set bmin(P) to max{bmin(P1), c (P1) + bmin(P2)}
and rmax(P) to min{rmax(P1), c (P1) + rmax(P2)}. The total cost c (P)when energy recuperation

is not limited is simply the sum c (P1) + c (P2).

-2

5

-1

2
-3

2

bmin(P)

c(P)

rmax(P)

rmax(P1)

bmin(P1)

c(P1)+bmin(P2)

c(P1)+rmax(P2)

(a) The two paths to be linked.

M
0

M

∞

bmin

|rmax|
c

(b) Cost function of the resulting
path P .

Figure 6.3 – Linking two cost functions. P1 and P2 denote the two paths taken as input. The
resulting path is denoted by P .

54

Chapter 6. Isochrones for Electric Vehicles

Note that we have to check explicitly whether the resulting path is feasible, that is, if there is

an initial charge level such that the path obeys the battery constraints. This is not the case

if the distance between rmax(P1) and c (P1) + bmin(P2) is greater than the maximum charge

level M , since even a fully loaded battery then does not suffice to get across the resulting

path. If we determine that the resulting path is not feasible, we manually set its minimum

charge level and its total cost to infinity (see Algorithm 6.2).

Algorithm 6.2: LinkEdgeCostFunctions(f1, f2)

1 if f1.c + f2.bmin− f1.rmax >M then // resulting edge cost function is not feasible
2 f .bmin←∞
3 f .rmax← 0
4 f .c ←∞
5 else // resulting edge cost function is feasible
6 f .bmin←max{ f1.bmin, f1.c + f2.bmin}
7 f .rmax←min{ f1.rmax, f1.c + f2.rmax}
8 f .c ← f1.c + f2.c

9 return f

6.2.3 Dominance Check

Another operation that we will use when computing shortcut edges is to check for dominance

between two cost functions. We say that f1 dominates f2 if there is no b such that f1(b)>
f2(b). Due to the special shape of the cost functions, this check can be done efficiently in

constant time. Recall that each cost function f in general consists of three pieces. In the

interval [0, f .bmin−1], the cost function takes on infinity. The middle piece is a horizontal

line that represents the cost when energy recuperation is not limited and finally a line of

slope one forms the right piece of the cost function. Note that one or two of the pieces may

vanish. Now, f1 dominates f2 if the following three conditions hold:

1. The minimal charge level of f1 is no greater than the one of f2, that is, f1.bmin ≤ f2.bmin.

2. The right piece of f2 (with slope one) does not lie below the right piece of f1.

3. The middle piece of f2 (with slope zero) does not lie below the middle piece of f1.

It is clear that the first condition can be checked using a single comparison. The second

condition can be seen as a geometric problem (see Fig. 6.4). Let f1 denote the lower cost

function and f2 the upper cost function. The right piece of f2 does not lie below the right

piece of f1 if the point r lies to the left or on the line through the points p and q . The points p

and r are defined as follows.

p =

�

M + f1.rmax

f1.c

�

r =

�

M + f2.rmax

f2.c

�

55

Chapter 6. Isochrones for Electric Vehicles

Let v be the vector from p to r , that is,

v = r −p =

�

f2.rmax− f1.rmax

f2.c − f1.c

�

.

Since the line through p and q has slope one, its normal vector is

np q =

�

−1

1

�

.

By definition of the dot product, if v T ·np q ≥ 0, then 0◦ ≤φ ≤ 90◦ and thus r lies to the left

or on the line through p and q . Hence, if f1.rmax − f2.rmax − f1.c + f2.c ≥ 0, then the right

piece f2 does not lie below the right piece of f1. So the second condition can be checked

using one addition, two subtractions and one comparison. It is easy to see that the formula

remains correct when one (or even both) of the right pieces vanishes.

M
0

M

∞

p

q

r

v

npq ϕ

Figure 6.4 – Dominance check seen as a geometric problem.

In order to check the third condition, it suffices to ensure that f1(f2.bmin) ≤ f2(f2.bmin) if

we already know that the other two conditions hold. The cost functions are evaluated as

described before. Algorithm 6.3 summarizes the steps to check whether f1 dominates f2.

Algorithm 6.3: Dominates(f1, f2)

1 if f1.bmin > f2.bmin then
2 return false

3 if f1.rmax− f2.rmax− f1.c + f2.c < 0 then
4 return false

5 if EvalEdgeCostFunction(f1, f2.bmin) > EvalEdgeCostFunction(f2, f2.bmin) then
6 return false

7 return true

56

Chapter 6. Isochrones for Electric Vehicles

6.3 Extending Algorithms

We now adapt RangeDijkstra and the multilevel Dijkstra techniques for the EV scenario. We

chose the multilevel Dijkstra techniques since they provide a reasonable trade-off between

preprocessing time, customization time and query time. However, adapting the GS+PHAST

algorithms is also possible and remains for future work. This section starts by describing the

changes made to RangeDijkstra and then moves on to isoCRP and isoGRASP.

6.3.1 RangeDijkstra

The standard RangeDijkstra maintains for each vertex v a distance label dlbl[v], which stores

the length of the shortest path from the source s to v found so far. In the EV scenario, we keep

the distance labels and additionally maintain for each vertex v a consumption label clbl[v],
which stores the (possibly negative) amount of energy that is consumed when driving along

the shortest s − v path found so far. If clbl[v] < 0, we recuperate more energy than we

consume. As long as clbl[v] is finite, the shortest s −v path obeys the battery constraints. We

also say that v is ev-reachable with the initial charge level bs . If clbl[v] =∞, the vertex v is

not ev-reachable. Initially, we set dlbl[s] = clbl[s] = 0 and dlbl[v] = clbl[v] =∞ for all v 6= s .

We stress once again that we use two metrics in the EV scenario, namely travel times as

routing metric and electric energy consumption as consumption metric. Hence, when we

say shortest paths, we mean quickest paths, and not energy-optimal paths.

Just like the standard variant, the EV variant of RangeDijkstra maintains a priority queue

of unscanned vertices with finite dlbl values, using their distance labels as keys. Vertices

are scanned in increasing order of distance from s . To scan a vertex u , we relax all outgoing

edges e = (u , v). To do so, if dlbl[u] + `(u , v) < dlbl[v], we set dlbl[v] = dlbl[u] + `(u , v)
and clbl[v] = clbl[u] + fe (bu), where bu = bs − clbl[u] is the battery charge level at u . If

dlbl[u] + `(u , v) = dlbl[v] and clbl[u] + fe (bu)< clbl[v], we also update clbl[v] accordingly.

Stopping Criterion

Recall that the standard RangeDijkstra stops when all elements in the priority queue have

a distance label greater than the time limit. In other words, it stops when all vertices in

the queue are not reachable (within the time limit). In the same way, we can safely stop

RangeDijkstra in the EV scenario when all elements in the queue are not ev-reachable (with

the initial charge level), that is, when all vertices in the queue have infinite clbl values.

One might want to implement the stopping criterion by only allowing ev-reachable vertices

to enter the queue, and running the algorithm until the queue is empty. However, then we

may not find the shortest path to some vertices and thus may erroneously consider some

of these vertices as ev-reachable. Consider the following example. There are two vertices s

and v that are connected by two distinct paths P1 and P2. Assume that P1 is the quicker paths,

57

Chapter 6. Isochrones for Electric Vehicles

but does not obey the battery constraints. The other path P2 is the slower path, but fulfills the

battery constraints. If we did not allow ev-unreachable vertices to enter the queue, we would

only insert the vertices on P2 into the queue. Finally, we would erroneously consider v as

ev-reachable, although the shortest s − v path does not obey the battery constraints. Clearly,

the algorithm would not be correct.

Hence, we need to insert each vertex that the search visits into the queue. To implement the

stopping criterion, we use a counter that keeps track of the number of ev-reachable vertices

in the queue. Whenever we insert an ev-reachable vertex into the queue, we increase the

counter, and whenever we extract an ev-reachable vertex from the queue, we decrement

the counter. Of course, we also may need to update the counter whenever we update the

consumption label of a vertex that is contained in the queue. We stop the algorithm as soon

as the counter becomes zero.

Determining the Output

Recall that the standard RangeDijkstra determines isochrone edges as follows. It extracts,

after the search has stopped, each vertex v from the queue, loops through its incoming

edges (u , v) and outputs each of them where u is reachable (within the time limit). This

works correctly, since each unreachable vertex that is adjacent to at least one reachable

vertex is still in the queue when the search stops. However, as we have seen in the previous

section, in the EV scenario we may already extract and process ev-unreachable vertices

during the search, in order to find the shortest path to all vertices. Hence, isochrone edges

that are incident on such vertices cannot be determined during the postprocessing step after

the search has stopped.

In the EV scenario, we keep the postprocessing step as in the standard scenario. Additionally,

we also look for isochrone edges during the search itself. However, we have to be careful,

since when scanning a vertex v , not all of v ’s neighbors have final distance and consumption

labels. In order to be correct, we must not check for edges between v and neighbors that

have not been scanned yet whether they are isochrone edges. Since we use non-zero edge

lengths in the EV scenario, each neighbor u with dlbl[u] ≤ dlbl[v] has final distance and

consumption labels, since each s −u path found later would lead to a higher distance label.

More precisely, we determine isochrone edges as follows. After scanning a vertex u , we

loop through its outgoing edges again if u is ev-reachable. If u is ev-unreachable, we loop

through its incoming edges again. For each outgoing edge (u , v), we check if dlbl[v]< dlbl[u].
If it is, we output (u , v) if v is ev-unreachable. For each incoming edge (v, u), we check if

dlbl[v] ≤ dlbl[u], and if it is, we output (v, u) if v is ev-reachable. Note that we choose <

for outgoing edges and ≤ for incoming edges in order to avoid duplicates. Also note that

this choice of the comparison operators is consistent with the postprocessing step. If we

had chosen them the other way round, the choice would have not been consistent with the

postprocessing step, and might have checked some edges twice.

58

Chapter 6. Isochrones for Electric Vehicles

We may determine isochrone pairs in the same way. However, note that in this case, the EV

variant of RangeDijkstra needs the same adaptions that the standard RangeDijkstra needs

in order to determine isochrone pairs. Basically, after scanning a vertex u , we need to loop

through its incoming edges (v, u) and check for each v whether it has a finite distance label

(and thus was inserted into the queue once already). If is has not, we need to insert v with a

key of infinity into the queue. See section 3.3 for further details.

6.3.2 isoCRP

We now move on to the EV variant of isoCRP. Note that the extensions that we developed for

the EV variant of RangeDijkstra carry over to isoCRP straightforwardly. Hence, we may not

go into each detail in this section. We concentrate on the two-phase variant, however, the

single-phase variant can be adapted in the same way.

Customization Stage

During the customization of standard isoCRP, we compute shortest-path distances between

the boundary vertices within each cell and store them in matrices (one per cell). In the

EV scenario, we need to compute two matrices per cell. Besides the matrix which stores

the lengths of the shortcuts between boundary vertices, we need an additional matrix that

stores for each shortcut its cost function. These cost functions can be computed during

customization with little overhead.

Basically, we need to adapt the Dijkstra searches during customization in a similar way as

we adapted RangeDijkstra. Obviously, the searches maintain for each vertex v besides a

distance label dlbl[v] an additional consumption label clbl[v]. However, this consumption

label is not a single 32-bit integer as before, but a cost function. This is necessary since we

need to know the amount of energy that is consumed when driving along a shortcut for each

initial charge level. As mentioned before, cost functions can be represented in memory by

three integers.

Assume that we scan a vertex u on level ` and are about to relax the outgoing (original

or shortcut) edge e = (u , v). If dlbl[u] + `(u , v) < dlbl[v], we set dlbl[v] = dlbl[u] + `(u , v).
Additionally, we need to link the cost function that is stored at clbl[u]with the cost function fe .

The resulting function is stored at clbl[v]. When the Dijkstra search stops, the distance label

of each boundary vertex w represents the length of the shortest path to w (within the cell),

and w ’s consumption label contains the cost function of the shortcut to w .

There is one thing we need to care about. It may happen that there are multiple paths of

the same length to a single vertex. Assume that we have just found a new path to a vertex v

via an edge (u , v) such that dlbl[u] + `(u , v) = dlbl[v]. Then, we check whether the cost

function of the new path dominates the cost function stored at clbl[v]. If it does, we can

59

Chapter 6. Isochrones for Electric Vehicles

safely replace clbl[v]with the new cost function. If it does not, we check whether the cost

function at clbl[v] dominates the new cost function. If so, we dismiss the new cost function.

Sometimes, however, neither cost function dominates the other and thus we have to keep

both in order to ensure correct queries. Note that neither a consumption label nor a matrix

entry has room for more than one cost function. Hence, the Dijkstra searches maintain

an additional array that stores the cost functions for each vertex v that has an ambiguous

consumption label. At v ’s consumption label we store the starting and ending positions

in the additional array of v ’s cost functions. Consider scanning a vertex u with multiple

cost functions and assume that we are about to relax an outgoing edge e = (u , v) such that

dlbl[u]+ `(u , v)< dlbl[v]. Then, we have to link each of u ’s cost functions with fe and check

for dominance between all resulting functions, including the cost function or functions that

is stored at clbl[v]. If we are lucky, there is one cost function that dominates all others and we

can continue at v with a single cost function. Otherwise, we have to store all non-dominated

cost functions at v as described before.

Due to dominance checks, the number of shortcuts with ambiguous cost functions can

be reduced drastically. In our experiments on the road network of Western Europe, only

0.00009 % of the shortcuts have ambiguous non-dominated cost functions. The total number

of non-dominated cost functions that are stored in the additional array is 6028.

Finally, eccentricities on the bottom level are computed as follows. During the Dijkstra

search from a boundary vertex v (restricted to v ’s bottom-level cell), we update the eccen-

tricity ecc1(v)whenever we scan a vertex u by setting ecc1(v) =max{ecc1(v), bmin}, where

bmin is the minimal charge level required at v to get to u . Eccentricities on higher levels

are computed in a similar way. Assume that we are computing the eccentricity for a ver-

tex v on level `. Whenever scanning a vertex u on level (`− 1), we link the cost function

stored at clbl[u]with the cost function fe , where e is an edge of length ecc`−1(u). Then, we

set ecc`(v) =max{ecc`(v), bmin}, where bmin is the minimal charge level of the chained cost

function. Note that on higher levels, we actually compute upper bounds on the eccentricities.

Query Stage

Queries in the EV scenario are basically standard isoCRP queries, except that they use the

EV variant of RangeDijkstra during the upward and downward phase. Hence, the upward

phase runs the EV variant of RangeDijkstra on the graph consisting of the union c1(s)∪ · · · ∪
cL−1(s)∪HL , that is, the union of the top-level overlay graph HL and for each level ` the cell

c`(s) that contains s . During the search, we set the bit descend[`][C] for each level-` cell C if

we scan a boundary vertex v of C with clbl[v]+ecc`(v)> bs , and we set the bit reach[`][C] for

each level-` cell C if we scan at least one boundary vertex of C that is ev-reachable (see also

section 4.1.3). The downward phase consists of L subphases. The i -th subphase runs the EV

variant of RangeDijkstra on each level-(L − i +1) cells C for which both descend[L − i +1][C]
and reach[L − i +1][C] are set.

60

Chapter 6. Isochrones for Electric Vehicles

We need to make one change to the EV variant of RangeDijkstra. Stopping as soon as the

counter of the ev-reachable vertices in the queue becomes zero may lead to incorrect results.

See Fig. 6.5 for an example. Assume that the green edges obey the battery constraints, but

the red edges have too high consumption costs. When scanning s , we insert u with a key

of one and v with a key of two into the queue. Next, we scan u . Since clbl[u]+ecc(u)≤ bs ,

we do not mark u ’s cell as active. Afterwards, the queue contains only the ev-unreachable

vertex v and thus we stop the search. Now, we erroneously consider w as ev-reachable, since

we have not found the shortest s −w path, and miss the isochrone edge (u , w).

1

3

∞
2

1

w

v

us

Figure 6.5 – Example where an isochrone edge is missed. Edge labels show the routing costs
of the edges. Assume that the green edges obey the battery constraints, but the red edges
have too high consumption costs. Then, we miss the isochrone edge (u , w).

In order to avoid the problem described above, we need to ensure that we find shortest

paths to all vertices that we consider ev-reachable. To do so, we store for each boundary

vertex v besides its normal (consumption) eccentricity additionally its routing eccentricity

recc(v), which represents the length of the shortest path (restricted to the cell) from v to its

farthest reachable vertex in the cell. Basically, the routing eccentricities in the EV scenario

are the same as the normal (consumption) eccentricities in the standard scenario. During

queries, we maintain (in addition to the counter) an upper bound dmax on the distance

to the farthest ev-reachable vertex. Whenever scanning an ev-reachable vertex v , we set

dmax =max{dmax, dlbl[v]+recc(v)}. Now, we can safely stop the search as soon as the counter

becomes zero and the all elements in the queue have a distance label no less than dmax.

Due to the loose stopping criterion, we may set descend[`][C] for level-` cells C with no

ev-reachable boundary vertex. Of course, such cells cannot contain any isochrone edges or

isochrone pairs and thus do not need to be processed. By descending only into level-` cells C

for which reach[`][C] is set, we avoid a considerable amount of work. See also section 4.3.

Recall that isochrone edges are determined during the RangeDijkstra searches. Hence, this

works exactly as described in the previous section. When determining isochrone pairs, note

that we need to take the same measures as in the standard scenario in order to deal with

weakly connected cells. That is, we need to set some (consumption) eccentricities to infinity

or, alternatively, spend more time during customization. See also section 4.1.5.

61

Chapter 6. Isochrones for Electric Vehicles

6.3.3 isoGRASP

Basically, isoGRASP needs the same extensions as we developed for the EV variant of isoCRP.

However, recall that during customization, the isoGRASP algorithm additionally needs to

build the downward graph GG S ↓. As in the standard scenario, the downward graph contains

for each boundary vertex u on level ` a shortcut edge from u to each level-(`−1) boundary

vertex v in the interior of c`(u). The length of such a shortcut edge (u , v) is set to the length

of the shortest u − v path within the cell c`(u). In the EV scenario, we additionally store

at each shortcut edge the cost function for the shortest u − v path. Again, there may be

multiple shortest paths to v and their cost functions may not dominate each other. However,

such situations are easy to manage in the downward graph, since there is room for an

arbitrary number of downward edges per pair u , v . More precisely, if there are n shortest

u − v paths with non-dominating cost functions, we insert n downward edges into GG S ↓.

These downward edges all have the same length, namely the length of the shortest path to v ,

but different (non-do minted) cost functions.

62

7 Experimental Results

This chapter provides an experimental evaluation of the different algorithms discussed

in this thesis. We mainly focus on computing isochrone edges in the standard scenario.

After describing the inputs and experimental setup, we compare the performance of our

implementations of some basic building blocks with the running times reported in the

corresponding original publications. Then, we conduct some experiments to tune the

parameters of our implementations, for example the number of cells used by the GS+PHAST

algorithms. Afterwards, we evaluate the tuned algorithms in different experiments. The

evaluation finishes with considering the computation of isochrone pairs and the EV scenario.

7.1 Inputs and Experimental Setup

Our code is written in C++ (with OpenMP for parallelization) and compiled with the GNU

C++ compiler 4.8.1 using optimization level 3. We run most of our evaluation on a multi-

socket machine that has two 8-core Intel Xeon E5-2680 CPUs and 256 GiB main memory. It

runs SuSE Linux 13.1 (kernel 3.11.10). Each core is clocked at 2.70 GHz and has 64 KiB of L1,

256 KiB of L2, and 20 MiB of shared L3 cache.

Our main benchmark instance is the road network of Western Europe made available for the

9th DIMACS Implementation Challenge [24]. It has 18 million vertices and 42 million edges.

The cost of an edge represents the travel time (in seconds) between its endpoints. We refer

to it as DIMACS Europe. In the EV scenario, we use a proprietary (and not publicly available)

road network, kindly provided by PTV AG. It also represents the European road network,

but provides more information for each edge, such as physical lengths, road categories and

speed limits. Hence, we are able to compute travel times of arbitrary precision. In contrast

to DIMACS Europe, we use travel times measured in tens of seconds in the EV scenario. This

reduces the total number of ambiguous shortest paths and leads to fewer non-dominating

cost functions on the ambiguous shortest paths that are still present. We refer to the instance

used in the EV scenario as PTV Europe. Additionally, we obtain height information for the

vertices from the Shuttle Radar Topography Mission (SRTM) data, made publicly available

63

Chapter 7. Experimental Results

by NASA. SRTM data for Europe are sampled at three arc-seconds, which is about 90 meters.

To obtain consumption costs, we use the simulation tool PHEM (Passenger car and Heavy

duty Emission Model) [45]. One application of PHEM is to compute the energy an electric

vehicle consumes when traversing a road segment, depending on its physical length, road

category, speed limit and slope. PTV Europe provides for each edge its physical length and

speed limit, and also its road category. In order to map these road categories to the ones

of PHEM, we use the heuristic developed by Baum et al. [9]. The slope for each edge is

computed from the SRTM data. Note that we remove all vertices from the the benchmark

instance where no height information is available, and all edges whose road categories

cannot be mapped to PHEM. The final (strongly connected) road network has 22 million

vertices and 51 million edges.

PHEM supports a huge number of vehicle categories. In our experiments, we use the model

of a Peugeot iOn. The battery capacity is chosen such that the longest shortest path in the

benchmark instance obeys the electric vehicle’s battery constraints when starting with a full

battery. We consider different initial charge levels to produce isochrones of varying size. Our

choice of the maximum charge level allows us to compute isochrones that cover arbitrary

fractions of the instance.

Our CH implementation follows [40], however, we use during contraction the priority term

proposed by Delling et al. [13]. That is, the priority of a vertex is given by 2ED(u)+CN (u)+
H (u)+5L (u), where ED(u) is the change in the number of edges caused by the contraction

of u , CN (u) is the number of deleted neighbors, H (u) is the number of original edges repre-

sented by all shortcuts added, and L (u) is the (tentative) level of u . As in [13], we bound H (u)
such that each incident edge on u can contribute at most 3. To limit local searches, we use

staged hop limits [13]. Again, we adopt the parameters in [13]. While the average degree of

the remaining graph is at most 5, we limit the number of edges on witness paths to 5. The

hop limit is then set to 10 until the average degree 10. When it exceeds 10, the hop limit is

set to infinity. We stress that our CH preprocessing implementation is not tuned for speed

and is also not parallelized.

Our GRASP implementation follows [30]. It includes acceleration techniques such as implicit

initialization [30] and (downward) edge reduction [32]. However, whereas [30] use (reduced)

adjacency lists to represent the cliques for the cells, we resort to the matrix representation

from [15]. Note that Efentakis et al. [30] proposed in the original publication to use 16 overlay

levels. Later [31], they reported that using a “normal” CRP partition (with much fewer levels)

is only slightly less efficient. Hence, we also resort to partitions with four to six levels.

7.2 Basic Building Blocks

The algorithms for computing isochrones rely on some basic building blocks. This section

compares the performance of our Dijkstra, PHAST and RPHAST implementations with the

64

Chapter 7. Experimental Results

running times reported in [17]. Since their CPU is clocked at 3.33 GHz, we do not run the

experiments in this section on our main benchmark machine, but on a workstation with an

Intel Core i7-2600K CPU clocked at 3.40 GHz. We consider two scenarios: one-to-all and

one-to-many queries. In the one-to-all scenario, we pick a source s at random and compute

shortest-path distances from s to all other vertices in the graph. The methodology of [17] is

adopted in the one-to-many scenario. We fix the number of targets |T | at 16384 (214), pick

a center c at random and run Dijkstra’s algorithm from c until reaching |T | vertices. The

visited vertices form a ball B of size |B |= |T |. Then, we pick a random source s from B and

compute shortest-path distances from s to all other vertices in B .

Table 7.1 shows the results. It reports the average running time over 1000 random one-to-all

queries. In the one-to-many scenario, we test 100 different centers, each with 100 different

sources. Both selection and query times are sequential. For each algorithm, the query

times are more or less equal. The target selection phase of our RPHAST implementation

is even slightly faster than the original implementation. Note that the number of levels

in the contraction hierarchy has a huge impact on the query times of RPHAST. Since our

CH implementation produces contraction hierarchies with relatively many levels, we use a

different (precomputed) contraction order for RPHAST with much fewer levels.

Table 7.1 – Performance of the basic one-to-all and one-to-many building blocks. Execution
times are sequential. The one-to-many algorithms compute distances to the |T |= 214 targets
in a ball of size |B |= 214.

SELECTION TIME [MS] QUERY TIME [MS]
algorithm our impl. ref. [17] our impl. ref. [17]
Dijkstra (one-to-all) – – 2 789.12 –
PHAST – – 144.12 136.92

Dijkstra (one-to-many) – – 7.74 7.43
RPHAST 1.35 1.80 0.16 0.17

7.3 Parameter Tuning

Next, we consider the impact of the multilevel partition on the performance of the different

algorithms. We also compare the three scheduling strategies proposed in section 4.2.2 to

parallelize queries of the multilevel Dijkstra techniques. All queries in this section compute

isochrone edges in the standard (non-EV) scenario and are run on our main benchmark

machine described above.

7.3.1 Multilevel Dijkstra Techniques

We start by measuring the impact of the multilevel partition on isoCRP. Delling et al. use for

their (point-to-point) CRP implementation four levels in the conference version [14] and

five levels in the journal version [15]. Efentakis et al. [31] use six resort to six levels for their

65

Chapter 7. Experimental Results

SALT implementation. Hence, we expect the optimal number of levels to lie between 4 and 6.

We test our isoCRP implementation with the 4-level partition from [14], which was created

by using PUNCH [16]. Besides, we use Buffoon [56] to create further partitions for varying

number of levels (L) and different cell sizes.

Table 7.2 reports sequential and parallel customization times. We test both a mid-range

(x = 100 min) and a long-range time limit (x = 500 min). For each time limit, we report the

average number of vertices scanned (delete-min operations on the priority queue) and the

average sequential and parallel query times over 1000 random sources. Whereas sequential

execution uses only one core, parallel customization and queries take advantage of all sixteen

cores. The second column shows the number of cells per level, from bottom level to top level.

The first row corresponds to the PUNCH partition mentioned above, the others correspond

to Buffoon partitions. The best value in each column is highlighted.

Table 7.2 – Impact of the multilevel partition on the performance of isoCRP for varying
number of levels (L) and different cell sizes. The first 4-level partition was created by using
PUNCH. Buffoon was used for all other partitions.

QUERIES

CUSTOM limit x = 100 min limit x = 500 min
seq. par. seq. par. seq. par.

L parameter [s] [s] # scans [ms] [ms] # scans [ms] [ms]
4 [667963:20481:623:20] 14.95 1.50 133 559 17.67 3.02 501 553 75.51 9.45
[218:213:28:23] 18.50 1.78 159 149 19.75 4.33 589 526 85.44 11.80
[219:214:29:24] 18.72 1.81 147 652 21.34 3.55 561 172 92.83 10.81

5 [219:215:211:27:23] 17.28 1.82 144 438 20.66 6.09 532 437 86.92 12.13
[220:216:212:28:24] 18.99 1.97 140 770 23.02 4.91 524 669 96.16 12.51

6 [219:215:212:29:26:23] 16.77 1.89 146 327 20.97 8.83 535 507 87.20 15.37
[220:216:213:210:27:24] 18.91 2.13 142 696 23.39 6.82 527 437 96.85 13.28

We observe that the PUNCH partition leads to the best sequential and parallel performance,

in terms of the customization times as well as queries times. We mainly tune for query

times, however, the customization times (when using Buffoon partitions) are relatively

stable. Moreover, customization scales reasonably well. With 16 cores, we see a speedup of

around 10. When considering only the Buffoon partitions, we observe that four levels yield

the fastest sequential and parallel queries for both mid-range and long-range time limits.

Hence, 5- or 6-level PUNCH partitions would probably also lead to slightly slower queries

than the 4-level PUNCH partition. For the remainder of our experiments, we thus use for

isoCRP the 4-level partition created by using PUNCH.

Next, we consider the impact of the multilevel partition on isoGRASP. Since the (one-to-all)

queries of GRASP tend to be faster when using somewhat more levels than we typically

use for a CRP implementation [30], we expect that the 4-level partitions do not dominate

as clearly as before. Table 7.3 shows the results. The structure of the table is identical to

the one of Table 7.2. Again, we test mid-range and long-range queries and execute them

66

Chapter 7. Experimental Results

both sequentially and in parallel (using all sixteen cores). We report average values over

1000 random queries.

Table 7.3 – Impact of the multilevel partition on the performance of isoGRASP for varying
number of levels (L) and different cell sizes. The first 4-level partition was created by using
PUNCH. Buffoon was used for all other partitions.

QUERIES

CUSTOM limit x = 100 min limit x = 500 min
seq. par. seq. par. seq. par.

L parameter [s] [s] # scans [ms] [ms] # scans [ms] [ms]
4 [667963:20481:623:20] 18.29 2.38 157 516 10.92 2.39 548 632 43.89 6.52
[218:213:28:23] 22.61 2.73 193 407 12.48 3.31 665 765 50.32 8.31
[219:214:29:24] 22.35 2.65 173 028 12.05 2.73 611 826 49.96 7.47

5 [219:215:211:27:23] 20.92 2.59 161 058 10.62 3.36 552 532 43.23 7.30
[220:216:212:28:24] 22.06 2.88 149 449 10.85 2.76 522 265 44.44 7.16

6 [219:215:212:29:26:23] 20.21 2.76 159 537 10.20 4.43 538 030 40.43 9.37
[220:216:213:210:27:24] 21.49 3.10 146444 10.04 3.31 501712 40.66 8.19

As expected, the PUNCH partition still dominates in terms of customization times. Compared

to the customization of isoCRP, we here have to build the downward graph in addition.

However, we observe that the overhead is fairly reasonable. Sequential customization times

slightly increase by 14-22 %, and parallel times increase by 42-59 %. Parallel times suffer

more than sequential times, since the computation of shortcuts can be parallelized very

well, by simply assigning cells to distinct cores. However, the computation of the downward

graph always involves sequential work that cannot be parallelized (cf. section 4.3.2). For the

same reason, customization of isoGRASP scales slightly worse then before.

In terms of sequential query times, the 6-level partitions now dominate the partitions with

fewer levels, even the 4-level partition created by using PUNCH. This is consistent with the

number of downward edges, which decreases from about 130 million (when using 4-level

Buffoon partitions) to under 110 million (when using 6-level Buffoon partitions). Hence,

the number of vertices scanned also decreases. Considering parallel query times, however,

the 4-level PUNCH partition dominates. Since it leads, at the same time, to only slightly

slower sequential queries, we also use it for isoGRASP for the remainder of our experiments.

However, note that a 6-level partition created by using PUNCH may be the best choice for

isoGRASP. Unfortunately, we have no such partition at hand.

Having fixed the partitions, it remains to compare the scheduling strategies proposed in

section 4.2.2 to parallelize isoCRP and isoGRASP queries. Consider the following two plots.

Fig. 7.1a shows the query times for a mid-range time limit x = 100 min and varying number

of cores. Fig. 7.1b shows the same for a long-range time limit x = 500 min. There is no plot

for a short-range time limit, since those queries are difficult to accelerate by using multiple

cores. We report average values over 1000 random queries.

67

Chapter 7. Experimental Results

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

Q
u
e
ry

 T
im

e
 [

m
s]

Number of Threads

isoCRP (dtlc)
isoCRP (dcpl)
isoCRP (css)

isoGRASP (dtlc)
isoGRASP (dcpl)
isoGRASP (css)

(a) Mid-range limit x = 100 min.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16

Q
u
e
ry

 T
im

e
 [

m
s]

Number of Threads

isoCRP (dtlc)
isoCRP (dcpl)
isoCRP (css)

isoGRASP (dtlc)
isoGRASP (dcpl)
isoGRASP (css)

(b) Long-range limit x = 500 min.

Figure 7.1 – Query times for varying number of cores using different scheduling strategies:
distribute cells per level (dcpl), distribute top-level cells (dtlc) and combined scheduling
strategy (css).

Basically, isoCRP and isoGRASP queries show the same behavior, both for mid-range and

long-range queries. The combined scheduling strategy (CSS) and the strategy that distributes

cells per level (DCPL) are almost equally fast, whereas the strategy that distributes the top-

level cells (DTLC) is significantly worse when using a higher number of cores. We tried

to combine the advantages of DCPL and DTLC in the combined scheduling strategy, thus

we are not surprised to observe it performs best. Our main concern about DCPL was the

synchronization overhead, since we need to synchronize the threads at each level. However,

as we use only four levels, there are only three additional barriers, which has no impact

on the overall performance. However, as suspected, the amount of parallelism when using

DTLC is too small to fully occupy multiple cores. This is especially true for mid-range time

limits, where it may happen that we do not leave the top-level cell at all. Note that we are not

quite sure why sequential mid-range isoGRASP queries are slightly slower when using DCPL

instead of one of the other strategies. For the remainder of our experiments, we parallelize

isoCRP and isoGRASP queries using the combined scheduling strategy.

7.3.2 GS+PHAST Techniques

We move on to consider the impact of the partition on the GS+PHAST algorithms. Although

we tune our implementations for query performance, we also want to show how different

partitions influence the preprocessing time and space. Note, however, that our CH prepro-

cessing routine is neither highly optimized nor parallelized. Hence, most preprocessing

figures are probably far from perfect. Table 7.4 reports for each of the four GS+PHAST al-

gorithms the preprocessing time and space when using different partitions. Note that the

preprocessing space for both distance oracle variants does not include the space required to

represent the downward subgraphs, since their size depends on their compression.

68

Chapter 7. Experimental Results

Table 7.4 – Impact of the number of cells on the (parallel) time [min:s] and space [MiB] for the
preprocessing of the GS+PHAST techniques. Space usage of both distance oracle algorithms
does not include the downward subgraphs, since their sizes depend on their compression.

CELLS

algorithm criterion 128 256 512 1 024 2 048 4 096 8 192 16 384
ES+PHAST (cd) time 0:46 0:37 0:33 0:29 0:27 0:25 0:23 0:23

space 764 767 770 774 777 782 787 796
ES+PHAST (cp) time 20:52 22:17 20:58 20:49 18:21 17:58 17:30 16:13

space 762 766 769 773 779 785 793 806
ES+PHAST (do) time 20:56 22:24 21:08 21:06 18:53 19:01 19:39 20:17

space 409 411 415 423 449 548 936 2 478
VS+PHAST time 12:34 12:25 12:24 12:28 12:53 13:26 14:29 17:13

space 403 404 405 411 435 531 915 2 451

We observe that the preprocessing time of the Core-Dijkstra variant decreases with the num-

ber of cells. This happens mainly because the time required to contract the cell graphs de-

creases from 36.53 seconds (when using 128 cells) to 12.68 seconds (when using 16384 cells),

since the cell graphs become smaller and smaller. At the same time, the preprocessing space

increases slightly, due to the larger core graphs.

The preprocessing of the Core-PHAST and distance oracle variant takes much longer. This is

due to the contraction of the core graph, which makes up over 96 % of the total preprocessing

time in case the number of cells is between 128 and 1024. Even when using 16384 cells, the

core graph contraction still makes up 76 % of the total time. One reason for this is that, as

already mentioned, our CH preprocessing routine is not parallelized, whereas the contraction

of the cell graphs, the computation of the eccentricities and diameters, and the calculation of

the distance oracle is done in parallel. However, even a parallelized CH preprocessing would

take much longer than we are used to see. That is because we force the CH preprocessing to

select a suboptimal contraction order, since we first block the contraction of core vertices.

This not only leads to a worse contraction hierarchy, but also to slower preprocessing times.

The preprocessing time of the Core-PHAST variant slightly decreases with the number of

cells. When using a partition with few cells, we contract more vertices while the contraction

of some vertices is blocked. Hence, we “damage” the contraction order more than in the

case of a partition with many cells, where we contract less vertices while some vertices

are blocked. Note, however, that the preprocessing time of the oracle variant increase at

some point again, since the computation of the distance oracle then also takes a significant

amount of time (229.47 seconds in the case of 16384 cells). The distance oracle is also the

reason for the steep increase in preprocessing space.

The preprocessing of VS+PHAST takes less time than the one of the distance oracle variant of

ES+PHAST, since we perform a normal CH preprocessing without blocking the core vertices.

Independent of the number of cells, our CH implementation takes about 660 seconds to

contract DIMACS Europe. The preprocessing times increase with the number of cells, since

69

Chapter 7. Experimental Results

the computation of the distance oracle becomes more expensive. For the same reason, the

preprocessing space also increases.

We now evaluate the impact of the compression optimization proposed in section 5.2.3 on

the size of the downward subgraphs that we use for the oracle variant of the ES+PHAST

algorithm. Table 7.5 reports the size of the compressed subgraphs for different partitions and

varying choices of the parameter k (cf. section 5.2.3). The size of the downward subgraphs

increases with the number of cells, since more and smaller cells lead to downward subgraphs

that overlap significantly. In contrast, the size of the downward subgraphs decreases with

the parameter k . The compression works very well even for small k . For example, when

using a partition with 16384 cells and k = 32768 (after all, that are only 0.002 % of the vertices

of the whole graph), the size decreases by a factor of about 25 from 15 GiB to 619 MiB.

Table 7.5 – Space [MiB] required to represent the downward subgraphs in ES+PHAST (do)
for different partitions and varying choices of the parameter k .

core # CELLS

size 128 256 512 1 024 2 048 4 096 8 192 16 384
128 617 849 1 307 2 124 3 561 6 107 9 983 14 970
256 605 831 1 267 2 042 3 415 5 846 9 485 13 974
512 579 789 1 180 1 879 3 131 5 321 8 524 12 115

1 024 529 700 1 020 1 563 2 593 4 402 6 730 9 051
2 048 453 545 765 1 077 1 794 3 008 4 289 5 562
4 096 425 450 523 678 1 045 1 663 2 370 3 164
8 192 422 426 445 499 640 908 1 308 1 786

16 384 421 423 427 438 475 566 750 980
32 768 421 423 425 428 436 459 515 619

Table 7.6 reports the size of the compressed subgraphs that we use for the VS+PHAST algo-

rithm. Note that these subgraphs are in general significantly smaller then their counterparts

used for the oracle variant of ES+PHAST. Since we use a “standard” contraction hierarchy

(with a normal contraction order) for VS+PHAST, the subgraphs extracted from the hierarchy

overlap much less, resulting in lower space requirements.

Table 7.6 – Space [MiB] required to represent the downward subgraphs in VS+PHAST for
different partitions and varying choices of the parameter k .

core # CELLS

size 128 256 512 1 024 2 048 4 096 8 192 16 384
128 479 536 640 802 1 117 1 838 3 356 6 029
256 474 523 616 755 1 040 1 659 2 985 5 375
512 463 502 574 681 901 1 353 2 344 4 247

1 024 450 474 524 588 742 1 009 1 586 2 754
2 048 439 453 484 525 612 772 1 062 1 614
4 096 431 440 458 485 534 627 780 1 085
8 192 426 432 442 457 485 534 615 766

16 384 422 426 432 441 457 483 525 602
32 768 420 422 426 432 441 456 481 523

70

Chapter 7. Experimental Results

Next, we evaluate the performance of the Core-Dijkstra and Core-PHAST variant when using

different partitions. Table 7.7 reports sequential and parallel query times for both variants.

For each combination, it shows the running time of short-, mid- and long-range queries.

We use time limits of 10 minutes, 100 minutes and 500 minutes, respectively. Moreover, we

compute for each combination the variant whose query times deviate the least from the

respective best running times. These variants are highlighted in dark gray. We also highlight

the variants with the least relative deviation in light gray. As always, we report average the

running time over 1000 random queries.

Table 7.7 – Performance of ES+PHAST (cd) and ES+PHAST (cp) for varying number of cells.
Queries are executed sequentially (seq.) and in parallel (par.) and given in milliseconds. The
variant with the least absolute (relative) deviations is highlighted in dark (light) gray.

limit # CELLS

algorithm exec. [min] 128 256 512 1 024 2 048 4 096 8 192 16 384
ES+PHAST (cd) seq. 10 1.96 1.11 0.67 0.43 0.31 0.25 0.26 0.32

100 12.38 10.24 8.88 7.92 7.26 6.73 6.38 6.32
500 70.89 58.58 49.57 42.24 38.15 36.49 38.17 43.72

par. 10 1.76 0.90 0.48 0.29 0.29 0.49 0.94 2.32
100 2.23 1.61 1.35 1.33 1.47 1.86 2.64 4.42
500 8.92 8.84 9.50 10.70 12.93 16.56 22.15 31.48

ES+PHAST (cp) seq. 10 3.55 3.31 3.59 4.22 5.27 6.93 9.87 13.47
100 14.17 12.69 12.07 11.96 12.51 13.64 15.49 17.94
500 71.58 59.04 49.51 40.94 35.14 30.91 28.74 28.29

par. 10 3.55 3.39 3.75 4.28 5.61 7.04 10.18 13.55
100 4.15 4.15 4.59 5.22 6.57 7.92 11.21 14.26
500 8.67 7.61 7.88 7.71 8.58 9.49 12.50 15.37

We observe that sequential queries of the Core-Dijkstra variant are slow for partitions with

both too few cells and too many cells. When using few cells, we cannot narrow down the cells

that may contain isochrone edges very well. Hence, a large fraction of the cells is marked as

active and needs to be processed, which slows down queries. Conversely, when using many

cells, there is also a large number of core vertices and thus the whole core graph becomes

rather large. As a consequence, the RangeDijkstra search on the core graph is a performance

bottleneck. A medium-sized partition (in terms of the number of cells) provides a good

trade-off between the fraction of cells that are marked as active and the amount of work that

has to be done core graph size.

If multiple cores are available, we can accelerate the processing of the active cells significantly,

however, the RangeDijkstra search on the core graph remains sequential. Hence, the core

search becomes much earlier an performance bottleneck, so that parallel queries of the Core-

Dijkstra variant are faster when using partitions with less cells than in the single-core setup.

Although queries then scan much more vertices in total, the parallelization compensates for

this drawback.

71

Chapter 7. Experimental Results

We notice a similar behavior for the Core-PHAST variant. Partitions with few cells lead to a

large fraction of active cells. Conversely, partitions with many cells lead to large core graphs

and thus the Core-PHAST becomes a bottleneck. In contrast to the Core-Dijkstra, which stops

when all elements in the priority queue have a distance label greater than the time limit, the

Core-PHAST has no early termination criterion, but always processes the whole core graph.

As a consequence, short-, mid- and long-range queries are fastest at different partitions. For

short-range queries, the Core-PHAST becomes earlier a performance bottleneck than for

mid- or long-range queries.

As before, since we parallelize the processing of the active cells in a multi-core setup, but not

the Core-PHAST, it becomes earlier a bottleneck. Hence, partitions with fewer cells also lead

to faster mid- and long-range queries. For the remainder of our experiments, we use the

variants with the least absolute deviation from the respective best query times, which are

highlighted in Table 7.7 in dark gray.

Finally, we evaluate the performance of the distance oracle variants when using different

partitions, starting with the oracle variant of ES+PHAST. Table 7.8 reports query times

for different partitions and varying choices of the compression parameter k . For each

combination, it again shows the running time of short-, mid- and long-range queries, using

the same time limits as before. Moreover, we again highlight the variant with the least

absolute deviation in dark gray, and the one with the least relative deviation in light gray.

Running times are averages over 1000 random queries. Note that the queries use multiple

cores. There is a similar table in the appendix that reports sequential query times.

Once again, we observe that the query times are slow for partitions with both too few and

too many cells. The problem with using few cells is the same as described above. We cannot

narrow down the active cells very well and thus need to process a large fraction of the cells.

When using many cells, we have a large core graph and thus the fourth phase of the algorithm

(cf. section 5.2.3) becomes a performance bottleneck, since it loops through all edges that

connect two core vertices.

The compression parameter k does not only have a great impact on the size of the downward

subgraphs, but also on the query performance. For small k , many vertices are contained

in multiple subgraphs, and thus high-rank vertices are processed again and again during

the same query. Obviously, this slows down queries. However, for large k , there are many

“unnecessary” vertices among the topmost k vertices that we actually do not need to scan

for the current query. Hence, query times also increase. Using a partition with 1024 cells

and choosing k = 4096 or k = 8192 offers a good trade-off.

Let us finish this section with evaluating the performance of VS+PHAST when using different

partitions. Table 7.9 again reports query times for different partitions and varying choices of

the parameter k . The structure of the table is identical to the one of Table 7.8. Again, the

queries use multiple cores. A table reporting sequential times is contained in the appendix.

72

Chapter 7. Experimental Results

Table 7.8 – Parallel query times [ms] of ES+PHAST (do) for different partitions and varying
choices of the parameter k . The variant with the least absolute (relative) deviations is
highlighted in dark (light) gray.

core limit # CELLS

size [min] 128 256 512 1 024 2 048 4 096 8 192 16 384
128 10 6.28 4.38 3.63 3.27 3.21 3.29 3.63 4.21

100 6.91 5.45 5.20 6.26 7.83 10.05 12.72 15.54
500 13.95 12.11 12.46 15.29 22.61 28.84 35.93 41.18

256 10 6.22 4.43 3.54 3.36 3.17 3.38 3.49 4.57
100 6.88 5.45 5.06 6.21 7.48 9.77 12.17 15.03
500 13.70 12.14 12.31 15.17 21.68 27.87 34.37 39.93

512 10 6.23 4.36 3.54 3.44 3.11 3.22 4.06 3.95
100 6.83 5.36 5.03 5.92 7.28 9.27 12.27 13.77
500 13.44 11.75 11.92 14.21 20.44 26.08 32.59 35.92

1 024 10 6.15 4.31 3.45 2.99 3.21 3.26 3.29 3.85
100 6.71 5.23 4.83 5.48 6.59 8.42 9.86 11.65
500 13.08 11.25 11.15 12.66 17.86 22.65 26.26 28.73

2 048 10 6.06 4.16 3.26 2.84 2.90 3.10 3.17 3.72
100 6.58 4.96 4.56 4.81 5.71 6.99 7.78 8.81
500 12.52 10.36 9.98 10.46 14.14 17.35 18.86 19.42

4 096 10 6.19 4.15 3.30 2.81 2.72 3.01 3.12 3.72
100 6.70 5.02 4.53 4.23 4.79 5.55 6.12 7.03
500 12.50 9.97 8.98 8.31 10.32 11.97 12.76 13.60

8 192 10 6.41 4.40 3.38 2.97 2.87 3.12 3.25 3.83
100 6.88 5.25 4.62 4.31 4.52 5.05 5.26 6.04
500 12.65 10.06 8.81 7.94 8.53 9.14 9.47 10.24

16 384 10 6.79 4.71 4.01 3.41 3.28 3.58 3.67 4.17
100 7.29 5.53 5.07 4.77 4.79 4.92 10.44 5.72
500 13.37 10.32 9.10 8.15 8.09 7.97 8.89 8.48

32 768 10 7.00 5.13 4.25 4.39 4.29 4.74 5.07 4.92
100 7.51 5.98 5.49 5.46 5.51 5.82 5.84 6.20
500 13.58 10.96 9.56 8.76 8.83 8.41 8.06 8.29

We observe similar effects as before. That is, too small parameters k lead to many vertices

scanned multiple times, and too large k yield many unnecessary scans. Moreover, partitions

with too few cells cause a large fraction of active cells. However, the VS+PHAST algorithm

does not loop through all edges connecting two core vertices after processing the active

cells. This allows us to use partition with more cells than we can use for the oracle variant

of ES+PHAST, decreasing the fraction of cells that are marked as active. However, at some

point, cells become too small, such that the higher accuracy in terms of active cells does not

outweigh the additional overhead. After all, when using 16384 cells, there are only about

1100 vertices in each cell. For the remainder of our experiments, we use a partition with

8192 cells and also set k = 8192 for VS+PHAST.

73

Chapter 7. Experimental Results

Table 7.9 – Parallel query times [ms] of VS+PHAST different partitions and varying choices of
the parameter k . The variant with the least absolute (relative) deviations is highlighted in
dark (light) gray.

core limit # CELLS

size [min] 128 256 512 1 024 2 048 4 096 8 192 16 384
128 10 4.12 2.54 1.71 1.16 0.98 0.89 0.93 1.12

100 4.61 3.27 2.68 2.36 2.77 3.59 4.82 6.97
500 10.17 8.22 7.60 7.19 8.76 10.89 14.89 20.72

256 10 4.12 2.52 1.68 1.14 0.92 0.88 0.95 1.20
100 4.58 3.24 2.63 2.26 2.69 3.26 4.48 6.42
500 10.08 8.07 7.37 6.82 8.39 10.07 13.51 18.77

512 10 4.10 2.48 1.63 1.10 0.89 0.84 0.87 1.10
100 4.53 3.17 2.53 2.13 2.48 2.88 3.78 5.46
500 9.91 7.81 6.95 6.29 7.53 8.63 11.03 15.37

1 024 10 4.06 2.43 1.59 1.05 0.84 0.78 0.83 1.04
100 4.47 3.08 2.41 1.96 2.24 2.44 2.94 4.16
500 9.69 7.47 6.49 5.57 6.74 6.96 8.12 10.76

2 048 10 4.02 2.40 1.57 1.04 0.85 0.77 0.81 1.01
100 4.45 3.01 2.36 1.86 2.01 2.11 2.39 2.99
500 9.53 7.25 6.07 5.08 5.86 5.82 6.12 7.19

4 096 10 4.05 2.44 1.60 1.07 0.90 0.82 0.91 1.06
100 4.73 3.03 2.32 1.83 1.95 1.96 2.10 2.47
500 9.57 7.15 5.87 4.83 5.48 5.18 5.09 5.57

8 192 10 4.13 2.52 1.70 1.17 1.00 1.00 1.03 1.19
100 4.55 3.11 2.40 1.89 1.98 1.94 1.97 2.25
500 9.49 7.15 5.85 4.76 5.33 4.86 4.57 4.65

16 384 10 4.31 2.71 1.88 1.41 1.37 1.43 1.47 1.54
100 4.73 3.30 2.59 2.09 2.16 2.11 2.09 2.29
500 9.63 7.29 5.97 4.89 5.38 4.83 4.43 4.35

32 768 10 4.66 3.07 2.28 2.07 2.04 2.09 2.15 2.22
100 5.12 3.70 2.99 2.55 2.61 2.56 2.54 2.68
500 9.98 7.65 6.32 5.22 5.60 5.14 4.71 4.52

7.4 Main Results

Table 7.10 summarizes the main results of our work. It compares the performance of the

different algorithms discussed in this thesis on DIMACS Europe when computing isochrone

edges. For each algorithm it reports preprocessing time and space, customization time

and space (if applicable), and sequential and parallel query times. Preprocessing and cus-

tomization are executed in parallel. The time required to create (multilevel) partitions is not

included in the figures. Note that we report for the GS+PHAST algorithms the preprocessing

time for the multi-core setup. For both sequential and parallel queries, we provide running

times for mid-range and long-range time limits. The best value in each column is highlighted

in bold.

74

Chapter 7. Experimental Results

Table 7.10 – Performance of the different algorithms on DIMACS Europe when comput-
ing isochrone edges. Preprocessing and customization times are given for multi-threaded
execution, while queries are run single- (seq.) and multi-threaded (par.).

PREPRO CUSTOM SEQ. QUERIES [MS] PAR. QUERIES [MS]
time space time space limit [min] limit [min]

algorithm [s] [MiB] [s] [MiB] x = 100 x = 500 x = 100 x = 500
RangeDijkstra – 645 – – 59.00 966.79 – –
isoCRP (1-phase) 28.39 762 1.50 138 26.20 114.24 – –
isoCRP 28.39 762 1.50 138 17.58 75.22 3.02 9.08
isoGRASP 28.39 762 2.38 1 093 10.73 43.23 2.43 6.20
ES+PHAST (cd) 36.93 767 – – 6.50 35.17 1.57 8.33
ES+PHAST (cp) 1 336.70 766 – – 12.74 29.30 4.09 7.50
ES+PHAST (do) 1 265.59 880 – – 22.21 46.59 4.33 8.10
VS+PHAST 868.52 1 530 – – 10.24 27.77 2.13 4.09

We observe that the multilevel Dijkstra techniques provide the better trade-off between

preprocessing, customization and query times. Yet the GS+PHAST algorithms achieve the

best query times. The Core-Dijkstra variant of ES+PHAST dominates for mid-range time

limits, whereas VS+PHAST is the fastest algorithm for long-range time limits. As discussed in

section 7.3.2, the slow preprocessing times of the last three algorithms in the table are mainly

due to expensive graph contractions. Note the whereas the customization of isoGRASP is

only slightly slower then the one of isoCRP (cf. section 7.3.1), it requires almost an order of

magnitude more space to represent the downward graph, which contains about 110 million

downward edges. Except RangeDijkstra, all algorithms enable queries that are fast enough

for practical applications.

Fig. 7.2 shows sequential query times for varying time limits when computing isochrone

edges. Each point is the average of 1000 random queries. Note that the network diameter

of DIMACS Europe is about 4710 minutes. We observe that the curves for all algorithms

(except RangeDijkstra) follow the same pattern. First, query times increase with the time

limit. For larger time limits, the isochrone area becomes larger and with it the length of

isoline longer. Since at least all cells intersected by the isoline become active cells, the work

and thus query times increase for larger time limits. However, at some point, the isoline

meets the “periphery” or “boundary” of the road network. Beyond this point, the number of

isochrone edges and active cells decreases again. If the time limit is no less than the network

diameter, each vertex is time-reachable from each other vertex, and thus there are neither

isochrone edges nor active cells. Hence, queries are very fast again for the largest time limits.

For short-range time limits, the multilevel Dijkstra techniques dominate. Queries of the

oracle variant of ES+PHAST take even for the smallest (and largest) time limits over ten

milliseconds, due to their fourth phase which loops through all edges connecting two core ver-

tices, in order to determine isochrone edges among them (cf. section 5.2.3). This phase takes

about nine milliseconds and thus slows down the queries significantly. The Core-PHAST

variant of ES+PHAST is slowed down by the linear sweep through the core graph, which

75

Chapter 7. Experimental Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 30 300 3000 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [min]

RangeDijkstra
isoCRP (single-phase)

isoCRP
ES+PHAST (do)

isoGRASP
ES+PHAST (cd)
ES+PHAST (cp)

VS+PHAST

Figure 7.2 – Sequential query times for varying time limits when computing isochrone edges.
The network diameter of the benchmark instance is about 4710 minutes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 30 300 3000 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [min]

ES+PHAST (cd)
isoCRP

ES+PHAST (do)
ES+PHAST (cp)

isoGRASP
VS+PHAST

Figure 7.3 – Parallel query times using 16 cores for varying time limits when computing
isochrone edges.

76

Chapter 7. Experimental Results

is independent from the time limit and takes about six milliseconds. Finally, VS+PHAST

queries are somewhat slow for small time limits, since the distance oracle is not tight. Among

the GS+PHAST algorithms, the Core-Dijkstra variant is the only one that is competitive for

small time limits, since its search on the core graph has an early termination criterion. Un-

fortunately, the RangeDijkstra search does not scale to large time limits, causing queries of

the Core-Dijkstra variant to be by far the slowest for those limits.

Moreover, we observe that single-phase isoCRP queries are even in a single-core setup sig-

nificantly slower than their two-phase counterparts, due to bad locality and cache efficiency.

However, even single-phase queries are fast enough for most practical applications. The

isoGRASP algorithm is up to almost twice as fast as isoCRP. Hence, it provides a somewhat

different trade-off customization space and query times. However, almost one gigabyte for

storing the downward graph may be to much if each user should have an own cost function.

Fig. 7.3 shows parallel query times (using 16 cores) for varying time limits when computing

isochrone edges. Again, each point is the average of 1000 random queries. Note that the plot

does not contain curves for RangeDijkstra or single-phase isoCRP, since these algorithms are

difficult to parallelize. The other curves mainly resemble the ones in the single-core setup.

Queries of the Core-PHAST and distance oracle variant of ES+PHAST are still (relatively)

slow for small time limits, due to the same reasons as described above. For the Core-PHAST

variant, the linear sweep through the core graph still takes most of the query time. However,

it is slightly faster than before, since we use smaller core graphs (partitions with fewer cells)

in the multi-core setup (cf. section 7.3.2). For the distance oracle variant, its fourth query

phase is still the main performance bottleneck, although the edges between core vertices

are distributed among the cores (what explains the faster query times compared to the

single-core setup).

The Core-Dijkstra variant is the best technique for mid-range queries again, however, as

before, query performance get worse quickly for larger time limits, due to the scaling behavior

of the RangeDijkstra search on the core graph. Note that the performance gap between

isoCRP and isoGRASP is smaller when using multiple cores. Since isoCRP comes with

more computational overhead than isoGRASP (e.g., much more operations on the priority

queue), we conjecture that isoGRASP is limited by the memory bandwidth. The conjecture

is supported by the fact that isoGRASP benefits significantly from storing a copy of the

downward graph on each NUMA node. In contrast, the impact of keeping a copy of the

clique matrices on each NUMA node on isoCRP queries is limited.

Finally, we evaluate how queries scale as the number of CPU cores increases. Fig. 7.4a plots

mid-range query times against the number of cores used, and Fig. 7.4b does the same for

long-range query times. As we expect after the previous experiments, the Core-Dijkstra

variant of ES+PHAST is the best algorithm for mid-range time limits, and VS+PHAST is the

fastest technique for long-range limits. All algorithms scale reasonably well (but not perfect)

for long-range queries. With 16 cores, we see a speedup between 7 and 9. The isoGRASP

77

Chapter 7. Experimental Results

algorithm scales worst (speedup of 6.5), probably because it is memory bandwidth bounded.

The VS+PHAST algorithm scales best (speedup of 9.4), since the only sequential parts are a

forward upward CH search and questioning the distance oracle, that are both extremely fast.

Hence, processing the active cells takes up to 99 % of the total running time for VS+PHAST

queries, and this phase can be parallelized well. As one may expect, the speedups are slightly

lower for mid-range queries.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 4 8 16

Q
u
e
ry

 T
im

e
 [

m
s]

Number of Threads

ES+PHAST (cd)
isoCRP

ES+PHAST (do)
ES+PHAST (cp)

isoGRASP
VS+PHAST

(a) Mid-range limit x = 100 min.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16

Q
u
e
ry

 T
im

e
 [

m
s]

Number of Threads

ES+PHAST (cd)
isoCRP

ES+PHAST (do)
ES+PHAST (cp)

isoGRASP
VS+PHAST

(b) Long-range limit x = 500 min.

Figure 7.4 – Query times for varying number of cores when computing isochrone edges.

7.5 Computing Isochrone Pairs

Up to now, we have focused on computing isochrone edges. This section evaluates the per-

formance of different algorithms when computing isochrone pairs. Recall that we proposed

for the multilevel Dijkstra techniques two approaches to handle weakly connected cells

(cf. section 4.1.5). Either we need to set the eccentricity of a boundary vertex u to infinity

whenever there is at least one vertex v in the cell such that no u−v path exists within the cell.

Or we may not restrict searches during customization to cells, but allow them to cross cell

boundaries. Whereas the first approach causes almost no overhead during customization,

but slows down queries, the second approach leads to tighter eccentricities and thus faster

queries, but slows down customization. In this section, we test the first approach. The

evaluation of the second one remains for future work.

Table 7.11 reports some explicit sequential and parallel query times on DIMACS Europe

when computing isochrone pairs. We omit preprocessing and customization times, since

they are about the same as when computing isochrone edges. After all, we just add an

additional check to the customization of the multilevel Dijkstra techniques that tests for

each boundary vertex whether all other vertices in the cell are reachable within the cell.

Fig. 7.5 shows sequential query times on DIMACS Europe for varying time limits. Each point

is the average over 1000 random queries.

78

Chapter 7. Experimental Results

Table 7.11 – Performance of the different algorithms on DIMACS Europe when computing
isochrone pairs. Query times are given for single- (seq.) and multi-threaded (par.) execution.
Multilevel Dijkstra techniques use eccentricities of infinity, if necessary.

SEQ. QUERIES [MS] PAR. QUERIES [MS]
limit [min] limit [min]

algorithm x = 10 x = 100 x = 500 x = 10 x = 100 x = 500
RangeDijkstra 0.27 59.11 973.45 – – –
isoCRP (1-phase) 0.40 36.95 404.91 – – –
isoCRP 0.33 24.96 255.77 0.41 3.94 24.48
isoGRASP 0.33 13.44 117.72 0.35 2.70 12.43
ES+PHAST (cp) 6.80 13.77 31.99 3.44 4.14 7.67
ES+PHAST (do) 12.72 22.31 46.27 3.13 4.39 8.16
VS+PHAST 2.47 10.71 29.13 1.75 2.55 4.55

We observe that the impact of the change from isochrone edges to isochrone pairs is limited

for the GS+PHAST algorithms. However, queries of the multilevel Dijkstra techniques are

much slower for large time limits than when computing isochrone edges. This happens due

to the high number of weakly connected cells, resulting in many eccentricities of infinity. As

a consequence, query times do not decrease when the time limit gets close to the network

diameter. We conclude that our first approach to handle weakly connected cells is not

practical. Note that there is a second plot in the appendix that shows parallel query times on

DIMACS Europe when computing isochrone pairs.

 0.3

 3

 30

 300

 0.1

 1

 10

 100

 1000

 30 300 3000 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [min]

RangeDijkstra
isoCRP (single-phase)

isoCRP
isoGRASP

ES+PHAST (do)
ES+PHAST (cp)

VS+PHAST

Figure 7.5 – Sequential query times for varying time limits when computing isochrone pairs.

We finish this section with Fig. 7.6, which plots the number of isochrone edges and the

number of isochrone pairs against the time limit. As the plots seen so far suggest, the

number of isochrone edges increases until the time limit is 500 minutes. Beyond this point,

79

Chapter 7. Experimental Results

the number decreases again. If the time limit is no less than the network diameter, there

are no isochrone edges at all. The curve for the number of isochrone pairs follows the same

pattern. By definition, the number of isochrone pairs must never be less than the number of

isochrone edges. For long-range time limits, it is up to 3 % higher.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 30 300 3000 10 100 1000

T
o
ta

l
N

u
m

b
e
r

in
 T

h
o
u
sa

n
d
s

Limit [min]

isochrone pairs
isochrone edges

Figure 7.6 – Number of isochrone edges and isochrone pairs for varying time limits.

7.6 Electric Vehicle Scenario

This section finishes the experimental evaluation with considering the EV scenario. Table 7.12

compares the performance of the algorithms adapted to the EV scenario on PTV Europe

when computing isochrone edges. For each algorithm, it reports preprocessing time and

space, customization time and space, and sequential and parallel query times. As in sec-

tion 7.4, preprocessing and customization are executed in parallel. Again, the time required

to create the multilevel partition is not included in the preprocessing times. For both sequen-

tial and parallel queries, we provide the running time of mid- and long-range queries, using

initial charge levels of 30 kWh and 250 kWh, respectively. The best value in each column is

highlighted in bold.

We need to be careful when comparing the results from the EV scenario with the figures from

the standard scenario, since we use a different benchmark instance here. However, as it has

23 % more vertices and 21 % more edges, we expect it to be “harder” for our algorithms. We

use the 4-level partition from [9], which was created by using PUNCH. The higher prepro-

cessing time and space are not directly related to the additional consumption metric, but are

due to the fact that the instance is different. Although PTV Europe is about 20 % larger than

DIMACS Europe and we need to maintain consumption cost functions, customization is

80

Chapter 7. Experimental Results

Table 7.12 – Performance of the different algorithms in the electric vehicle (EV) scenario.
Preprocessing and customization times are given for multi-threaded execution, while queries
are run single- (seq.) and multi-threaded (par.).

PREPRO CUSTOM SEQ. QUERIES [MS] PAR. QUERIES [MS]
time space time space limit [kWh] limit [kWh]

algorithm [s] [MiB] [s] [MiB] x = 30 x = 250 x = 30 x = 250
RangeDijkstra – 1 558 – – 184.45 2 543.00 – –
isoCRP (1-phase) 77.59 1 642 1.60 550 15.03 61.92 – –
isoCRP 77.59 1 642 1.60 550 14.67 50.74 4.60 10.07
isoGRASP 77.59 1 642 3.22 3 020 9.54 30.83 4.23 9.23

only slightly slower. However, the space required to represent the clique matrices increases

by a factor of about 4. This is plausible since instead of one 32-bit integer, we now need four

integers to store the length and the consumption cost function for each shortcut. Besides, we

need some space for the array that stores the cost functions for shortcuts that have multiple

non-dominated cost functions. As mentioned in section 6.3.2, when using travel times in

tens of seconds, only 0.00009 % of the shortcuts have multiple cost functions, resulting in a

total number of additional cost functions of 6028 (71 KiB). Note that the space required to

represent an downward edge increases from two 32-bit integers (tail, length) to five integers

(tail, length, consumption cost function). Hence, the downward graph increases by a factor

of about 2.5.

Fig. 7.7 shows sequential query times on PTV Europe for varying initial charge levels. Note

that with the largest initial charge level, each vertex is ev-reachable from each other vertex

and thus there are no isochrone edges. Each point is the average over 1000 random queries.

We observe the the curves follow a similar pattern as in section 7.4. Queries of isoGRASP

are still the fastest, followed by two-phase queries of isoCRP. The single-phase counterparts

of the latter perform worst. However, what is interesting is that the query times of the

multilevel Dijkstra techniques are faster by a factor of about 1.5, compared to the running

times in the standard scenario. This happens because isochrones for electric vehicles contain

much less isochrone edges. As shown in section 7.5, there are up to about 14000 isochrone

edges in the standard scenario, however, we have only up to about 3600 isochrone edges

when computing isochrones for electric vehicles. Hence, there are less active cells, which

leads to improved query performance. Comparing the shape of isochrone areas in both

scenarios (using visualization algorithms) remains for future work. We think it is possible

that isochrones are star-shaped for large time limits, but rather circular when using electric

energy as consumption metric. Note that there is a second plot in the appendix that shows

parallel query times for varying initial charge levels when computing isochrone pairs.

81

Chapter 7. Experimental Results

 3

 30

 300

 3000

 1

 10

 100

 1000

 10000

 30 300 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [kWh]

RangeDijkstra
isoCRP (single-phase)

isoCRP
isoGRASP

Figure 7.7 – Sequential query times for varying initial battery charge levels when computing
isochrone edges. The network diameter of the benchmark instance is about 986 kWh.

82

8 Conclusion

This chapter finishes the thesis by summarizing our contributions and results. Afterwards,

we outline possible future work in the context of isochrones.

8.1 Summary

We have studied the problem of computing isochrones in road networks. Practical appli-

cations include reachability analysis in urban planning, geomarketing, and displaying a

electric vehicle’s remaining cruising range. Although one may have a fairly good intuitive

understanding of what isochrones are, the formal definitions varies among the literature. We

systematically collated different definitions and introduced the notion of isochrone edges

and isochrone pairs, which are two possible outputs for algorithms computing isochrones.

We started by describing RangeDijkstra, a Dijkstra variant that outputs isochrone edges or, if

required, isochrone pairs. Since its performance is reasonable only for small time limits, we

considered different speedup techniques. First, we explored multilevel overlay graphs to

accelerate RangeDijkstra. Besides proposing a basic multilevel algorithm that is one order of

magnitude faster than RangeDijkstra, we revisited and extended the isoCRP and isoGRASP

algorithm, two known techniques for computing isochrones. We found that all multilevel

algorithms provide a reasonable trade-off between preprocessing time, customization time

and query time.

Motivated by promising query times of RPHAST, we proposed the novel family of GS+PHAST

algorithms. They decompose the road network into several cells using k -way graph separa-

tors, determine which of the cells may contain isochrone edges (or isochrone pairs), and

process each of those cells using the (R)PHAST algorithm. We tried edge separators as well

as vertex separators and discussed their advantages and drawbacks. Our current GS+PHAST

implementations are not customizable, however, their queries outperform the multilevel

Dijkstra algorithms for many time limits.

83

Chapter 8. Conclusion

Since our main motivation for computing isochrones is to display a electric vehicle’s remain-

ing cursing range, we dedicated a chapter to isochrones for electric vehicles. We modeled

electric energy consumption as cost functions of bounded descriptive complexity, as de-

scribed by Eisner et al. [33]. This allowed us to adapt RangeDijkstra and the multilevel

algorithms to the EV scenario.

We finished with an experimental evaluation of the algorithms described in this thesis. We

found that, except RangeDijkstra, all algorithms are fast enough for practical applications.

The speedups on multi-core machines were fairly good (although not perfect). We observed

that computing isochrone pairs is somewhat more difficult, especially for the multilevel

algorithms. They need to spend more time during either customization or queries. Finally,

we showed that computing isochrones in the EV scenario does not take longer than in the

standard scenario.

8.2 Future Work

Our current multilevel Dijkstra implementations achieve rather poor query times for com-

puting isochrone pairs, due to our handling of weakly connected cells. For now, we set

the eccentricity of a boundary vertex u to infinity whenever there is at least one vertex v

in the cell such that no u − v path exists within the cell. This approach causes almost no

overhead during customization, but significantly slows down queries. Alternatively, we may

not restrict searches during customization to cells, but allow them to cross cell boundaries.

This approach leads to tighter eccentricities and thus faster queries. It is an interesting

question how much it slows down customization.

The GS+PHAST algorithms do not distinguish between metric-independent preprocessing

and metric-dependent customization. Future work includes extending them to support

the three-phase workflow introduced with CRP. A key ingredient could be Customizable

Contraction Hierarchies [25]. For preliminary experiments, we built a customizable imple-

mentation of PHAST, using a nested dissection order [6] to build the upward and downward

graph. Whereas the number of edges in the downward graph doubled, query times increased

only by a factor of one and a half. Since computing eccentricities takes only about a sec-

ond on a 16-core server, customizable implementations may be possible at least for the

Core-Dijkstra and Core-PHAST variant. It is probably more difficult to provide customizable

implementations for the oracle variants, due to the expensive oracle computation.

It would also be interesting to adapt the GS+PHAST algorithms to compute isochrones for

electric vehicles. There should be no fundamental problems, since we can augment the

downward graph used by PHAST in the same way as the downward graph used by GRASP

(with consumption cost functions). However, the linear sweeps may become significantly

slower, since the amount of data accessed would quadruple (32 bits for storing the length of

a (shortcut) edge plus three times 32 bits to represent its consumption cost function).

84

Chapter 8. Conclusion

Our main motivation for computing isochrones is to display the region that is reachable

within a certain amount of time or, in the context of electric vehicles, to display the remain-

ing cruising range. Hence, we need to develop algorithms that transform isochrones into

displayable isochrone areas or isolines.

85

Bibliography

[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. A hub-

based labeling algorithm for shortest paths on road networks. In Panos M. Pardalos

and Steffen Rebennack, editors, Proceedings of the 10th International Symposium on

Experimental Algorithms (SEA’11), volume 6630 of Lecture Notes in Computer Science,

pages 230–241. Springer, 2011.

[2] Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The

shortest path problem revisited: Optimal routing for electric vehicles. In Rüdiger

Dillmann, Jürgen Beyerer, Uwe D. Hanebeck, and Tanja Schultz, editors, Proceedings of

the 33rd Annual German Conference on Advances in Artificial Intelligence, volume 6359

of Lecture Notes in Computer Science, pages 309–316. Springer, September 2010.

[3] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning

in transportation networks. Technical Report abs/1504.05140, ArXiv e-prints, 2015.

[4] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum

time-dependent travel times with contraction hierarchies. ACM Journal of Experimental

Algorithmics, 18(1.4):1–43, April 2013.

[5] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wagner.

Preprocessing speed-up techniques is hard. In Proceedings of the 7th Conference on

Algorithms and Complexity (CIAC’10), volume 6078 of Lecture Notes in Computer Science,

pages 359–370. Springer, 2010.

[6] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space

size in contraction hierarchies. In Proceedings of the 40th International Colloquium on

Automata, Languages, and Programming (ICALP’13), volume 7965 of Lecture Notes in

Computer Science, pages 93–104. Springer, 2013.

[7] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik

Schultes, and Dorothea Wagner. Combining hierarchical and goal-directed speed-

up techniques for Dijkstra’s algorithm. ACM Journal of Experimental Algorithmics,

15(2.3):1–31, January 2010. Special Section devoted to WEA’08.

87

Bibliography

[8] Veronika Bauer, Johann Gamper, Roberto Loperfido, Sylvia Profanter, Stefan Putzer, and

Igor Timko. Computing isochrones in multi-modal, schedule-based transport networks.

In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in

geographic information systems (GIS ’08), GIS ’08, pages 78:1–78:2. ACM Press, 2008.

[9] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal

routes for electric vehicles. In Proceedings of the 21st ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pages 54–63. ACM Press,

2013.

[10] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,

1958.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms. MIT Press, 2 edition, 2001.

[12] George B. Dantzig. Linear Programming and Extensions. Princeton University Press,

1962.

[13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. PHAST:

Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Comput-

ing, 73(7):940–952, 2013.

[14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customiz-

able route planning. In Panos M. Pardalos and Steffen Rebennack, editors, Proceedings

of the 10th International Symposium on Experimental Algorithms (SEA’11), volume 6630

of Lecture Notes in Computer Science, pages 376–387. Springer, 2011.

[15] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customiz-

able route planning in road networks. Transportation Science, 2015.

[16] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph

partitioning with natural cuts. In 25th International Parallel and Distributed Processing

Symposium (IPDPS’11), pages 1135–1146. IEEE Computer Society, 2011.

[17] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster batched shortest

paths in road networks. In Proceedings of the 11th Workshop on Algorithmic Approaches

for Transportation Modeling, Optimization, and Systems (ATMOS’11), volume 20 of

OpenAccess Series in Informatics (OASIcs), pages 52–63, 2011.

[18] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Query scenarios for cus-

tomizable route planning, April 2014. US Patent Application 13/649,114.

[19] Daniel Delling, Moritz Kobitzsch, and Renato F. Werneck. Customizing driving di-

rections with GPUs. In Proceedings of the 20th International Conference on Parallel

Processing (Euro-Par 2014), volume 8632 of Lecture Notes in Computer Science, pages

728–739. Springer, 2014.

88

Bibliography

[20] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering

route planning algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig,

editors, Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in

Computer Science, pages 117–139. Springer, 2009.

[21] Daniel Delling and Dorothea Wagner. Landmark-based routing in dynamic graphs. In

Camil Demetrescu, editor, Proceedings of the 6th Workshop on Experimental Algorithms

(WEA’07), volume 4525 of Lecture Notes in Computer Science, pages 52–65. Springer,

June 2007.

[22] Daniel Delling and Renato F. Werneck. Faster customization of road networks. In

Proceedings of the 12th International Symposium on Experimental Algorithms (SEA’13),

volume 7933 of Lecture Notes in Computer Science, pages 30–42. Springer, 2013.

[23] Daniel Delling and Renato F. Werneck. Customizable point-of-interest queries in road

networks. IEEE Transactions on Knowledge and Data Engineering, 27(3):686–698, March

2015.

[24] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest

Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book.

American Mathematical Society, 2009.

[25] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierar-

chies. In Joachim Gudmundsson and Jyrki Katajainen, editors, Proceedings of the 13th

International Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture

Notes in Computer Science, pages 271–282. Springer, 2014.

[26] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[27] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set

of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559, July

1983.

[28] Alexandros Efentakis, Nikos Grivas, George Lamprianidis, Georg Magenschab, and

Dieter Pfoser. Isochrones, traffic and DEMOgraphics. In Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems,

SIGSPATIAL’13, pages 548–551. ACM Press, 2013.

[29] Alexandros Efentakis and Dieter Pfoser. Optimizing landmark-based routing and pre-

processing. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on

Computational Transportation Science, pages 25:25–25:30. ACM Press, November 2013.

[30] Alexandros Efentakis and Dieter Pfoser. GRASP. Extending graph separators for the

single-source shortest-path problem. In Proceedings of the 22nd Annual European

Symposium on Algorithms (ESA’14), volume 8737 of Lecture Notes in Computer Science,

pages 358–370. Springer, September 2014.

89

Bibliography

[31] Alexandros Efentakis, Dieter Pfoser, and Yannis Vassiliou. SALT. A unified framework

for all shortest-path query variants on road networks. In Evripidis Bampis, editor,

Experimental Algorithms, volume 9125 of Lecture Notes in Computer Science, pages

298–311. Springer, 2015.

[32] Alexandros Efentakis, Dimitris Theodorakis, and Dieter Pfoser. Crowdsourcing comput-

ing resources for shortest-path computation. In Proceedings of the 20th ACM SIGSPA-

TIAL International Symposium on Advances in Geographic Information Systems (GIS’12),

pages 434–437. ACM Press, 2012.

[33] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric

vehicles in large network. In Wolfram Burgard and Dan Roth, editors, Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press, August 2011.

[34] David Eppstein and Michael T. Goodrich. Studying (non-planar) road networks through

an algorithmic lens. In Proceedings of the 16th ACM SIGSPATIAL international conference

on Advances in geographic information systems (GIS ’08), pages 1–10. ACM Press, 2008.

[35] Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,

1962.

[36] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

[37] Johann Gamper, Michael Böhlen, Willi Cometti, and Markus Innerebner. Defining

isochrones in multimodal spatial networks. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management, CIKM ’11, pages 2381–2384.

ACM Press, 2011.

[38] Johann Gamper, Michael Böhlen, and Markus Innerebner. Scalable computation of

isochrones with network expiration. In Proceedings of the 24th International Conference

on Scientific and Statistical Database Management, SSDBM’12, pages 526–543. Springer,

2012.

[39] Robert Geisberger. Contraction hierarchies. Master’s thesis, Universität Karlsruhe, 2008.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf.

[40] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing

in large road networks using contraction hierarchies. Transportation Science, 46(3):388–

404, August 2012.

[41] Andrew V. Goldberg. A practical shortest path algorithm with linear expected time.

SIAM Journal on Computing, 37:1637–1655, 2008.

[42] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A* search meets

graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA’05), pages 156–165. SIAM, 2005.

90

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf

Bibliography

[43] Andrew V. Goldberg and Renato F. Werneck. Computing point-to-point shortest paths

from external memory. In Proceedings of the 7th Workshop on Algorithm Engineering

and Experiments (ALENEX’05), pages 26–40. SIAM, 2005.

[44] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4:100–107, 1968.

[45] Stefan Hausberger. Simulation of Real World Vehicle Exhaust Emissions. Habilitation,

Technische Universität Graz, 2003.

[46] Michael K. Hidrue, George R. Parsons, Willett Kempton, and Meryl P. Gardner. Willing-

ness to pay for electric vehicles and their attributes. Resource and Energy Economics,

33(3):686–705, 2011.

[47] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast point-to-

point shortest path computations with arc-flags. In Camil Demetrescu, Andrew V.

Goldberg, and David S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS

Implementation Challenge, volume 74 of DIMACS Book, pages 41–72. American Mathe-

matical Society, 2009.

[48] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multi-level overlay

graphs for shortest-path queries. In Proceedings of the 8th Workshop on Algorithm

Engineering and Experiments (ALENEX’06), pages 156–170. SIAM, 2006.

[49] Markus Innerebner, Michael Böhlen, and Johann Gamper. Isoga: A system for geograph-

ical reachability analysis. In Proceedings of the 12th International Conference on Web

and Wireless Geographical Information Systems, W2GIS’13, pages 180–189. Springer,

2013.

[50] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.

Computing many-to-many shortest paths using highway hierarchies. In Proceedings

of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages

36–45. SIAM, 2007.

[51] Ulrich Lauther. An experimental evaluation of point-to-point shortest path calcula-

tion on roadnetworks with precalculated edge-flags. In Camil Demetrescu, Andrew V.

Goldberg, and David S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS

Implementation Challenge, volume 74 of DIMACS Book, pages 19–40. American Mathe-

matical Society, 2009.

[52] Sarunas Marciuska and Johann Gamper. Determining objects within isochrones in

spatial network databases. In Proceedings of the 14th East European Conference on

Advances in Databases and Information Systems, ADBIS’10, pages 392–405. Springer,

2010.

91

Bibliography

[53] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.

Springer, 2008.

[54] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11:430–452,

1990.

[55] Peter Sanders and Dominik Schultes. Engineering highway hierarchies. ACM Journal of

Experimental Algorithmics, 17(1):1–40, 2012.

[56] Peter Sanders and Christian Schulz. Distributed evolutionary graph partitioning. In

Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX’12),

pages 16–29. SIAM, 2012.

[57] Peter Sanders and Christian Schulz. Karlsruhe high quality partioning: User guide.

Technical report, Karlsruhe Institute of Technology, 2015.

[58] Christian Schulz. High Quality Graph Partitioning. PhD thesis, Karlsruhe Institute of

Technology, July 2013.

[59] Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys,

46(4), 2014.

[60] Dorothea Wagner and Thomas Willhalm. Speed-up techniques for shortest-path com-

putations. In Proceedings of the 24th International Symposium on Theoretical Aspects of

Computer Science (STACS’07), volume 4393 of Lecture Notes in Computer Science, pages

23–36. Springer, 2007. Invited Talk.

[61] J.W.J. Williams. Algorithm 232: Heapsort. Journal of the ACM, 7(6):347–348, June 1964.

92

A Appendix

 0.3

 3

 30

 0.1

 1

 10

 100

 30 300 3000 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [min]

isoCRP
isoGRASP

ES+PHAST (do)
ES+PHAST (cp)

VS+PHAST

Figure A.1 – Parallel query times using 16 cores for varying time limits on DIMACS Europe
when computing isochrone pairs.

93

Appendix A. Appendix

Table A.1 – Sequential query times [ms] of ES+PHAST (do) for different partitions and varying
choices of the parameter k . The variant with the least absolute (relative) deviations is
highlighted in dark (light) gray.

core limit # CELLS

size [min] 128 256 512 1 024 2 048 4 096 8 192 16 384
128 10 15.97 11.33 9.48 9.35 10.39 12.38 15.00 16.83

100 37.62 33.54 34.87 40.77 53.13 72.52 94.92 112.57
500 140.42 133.28 140.29 155.25 189.91 241.25 299.12 326.39

256 10 15.85 11.23 9.47 9.22 10.27 12.26 14.84 16.65
100 37.33 33.13 34.32 39.81 51.69 70.59 91.72 106.33
500 139.09 131.61 137.43 151.08 184.15 233.27 286.93 312.07

512 10 15.58 11.04 9.26 9.00 10.03 11.96 14.55 16.18
100 36.67 32.47 33.12 37.96 48.87 66.22 84.80 93.75
500 136.55 128.51 132.35 143.09 172.89 217.03 265.15 267.09

1 024 10 15.17 10.64 8.84 8.52 9.52 11.46 13.87 15.45
100 35.43 30.75 30.87 34.31 43.61 58.55 71.38 76.57
500 131.32 121.49 121.96 127.33 151.58 188.10 215.39 207.94

2 048 10 14.50 9.90 8.18 7.76 8.81 10.67 13.08 14.78
100 33.57 28.06 27.27 28.67 35.63 46.55 55.31 56.91
500 123.73 108.70 104.88 102.18 118.74 143.01 159.06 143.81

4 096 10 14.40 9.54 7.55 7.16 8.01 9.87 12.33 14.31
100 33.04 26.32 23.55 23.50 27.01 33.62 37.19 41.61
500 120.81 100.43 87.86 80.10 84.91 95.58 96.31 96.85

8 192 10 14.56 9.72 7.57 7.09 7.79 9.57 12.07 14.13
100 33.11 26.10 22.51 21.25 22.37 25.32 27.93 31.40
500 120.50 98.49 82.16 70.25 66.60 67.44 66.67 67.39

16 384 10 15.42 9.98 8.00 7.49 8.16 9.89 12.26 14.28
100 34.89 26.29 22.66 20.82 20.75 22.02 23.51 25.68
500 127.28 98.53 81.40 67.12 59.22 54.72 51.04 50.39

32 768 10 15.67 10.59 8.54 8.26 9.17 10.86 13.03 14.88
100 35.14 27.68 23.03 21.23 20.97 21.56 22.27 23.68
500 127.47 103.56 81.31 66.80 57.65 50.79 45.07 42.98

94

Appendix A. Appendix

Table A.2 – Sequential query times [ms] of VS+PHAST for different partitions and varying
choices of the parameter k . The variant with the least absolute (relative) deviations is
highlighted in dark (light) gray.

core limit # CELLS

size [min] 128 256 512 1 024 2 048 4 096 8 192 16 384
128 10 10.52 6.10 3.88 2.71 2.25 2.23 2.68 3.33

100 27.40 22.23 20.58 20.98 24.68 33.94 54.24 82.83
500 104.50 93.02 88.56 86.42 96.13 121.41 185.43 268.22

256 10 10.43 6.01 3.80 2.61 2.15 2.08 2.48 3.07
100 27.14 21.79 19.98 19.95 23.27 31.20 48.89 74.96
500 103.28 90.85 85.54 81.68 89.64 110.38 166.40 240.61

512 10 10.28 5.85 3.63 2.45 1.98 1.83 2.11 2.63
100 26.65 21.10 18.86 18.38 20.73 26.52 40.04 61.94
500 101.13 87.51 80.00 74.19 78.21 91.74 132.30 193.11

1 024 10 10.12 5.65 3.45 2.25 1.78 1.56 1.69 2.03
100 26.02 20.13 17.49 16.22 17.64 20.91 29.05 43.76
500 98.36 82.92 73.16 64.42 64.86 69.30 92.21 129.08

2 048 10 9.97 5.52 3.33 2.16 1.64 1.40 1.42 1.55
100 25.47 19.34 16.30 14.65 14.73 16.22 20.46 26.81
500 95.99 79.26 67.71 57.36 53.82 53.46 63.43 77.58

4 096 10 9.93 5.51 3.31 2.16 1.63 1.37 1.34 1.40
100 25.05 18.82 15.50 13.51 12.92 13.23 15.37 18.14
500 94.35 76.95 64.06 52.82 46.87 43.71 47.09 52.46

8 192 10 10.03 5.63 3.45 2.29 1.76 1.48 1.44 1.45
100 24.91 18.68 15.10 12.86 11.81 11.33 12.16 13.00
500 93.20 75.61 61.84 49.97 42.72 37.48 37.66 37.52

16 384 10 10.31 5.93 3.74 2.59 2.07 1.78 1.74 1.72
100 25.02 18.70 15.07 12.67 11.44 10.55 10.86 10.79
500 92.68 74.87 60.74 48.51 40.60 34.32 33.19 30.46

32 768 10 10.87 6.50 4.30 3.16 2.62 2.34 2.30 2.29
100 25.43 19.10 15.44 13.01 11.63 10.54 10.66 10.14
500 92.44 74.55 60.37 47.93 39.72 32.99 31.20 27.50

95

Appendix A. Appendix

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 30 300 10 100 1000

Q
u
e
ry

 T
im

e
 [

m
s]

Limit [kWh]

isoCRP
isoGRASP

Figure A.2 – Parallel query times using 16 cores for varying initial charge levels on PTV Europe
when computing isochrone edges.

96

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Related Work
	Contribution
	Overview

	Preliminaries
	Basic Notation and Terminology
	Graph Separators and Partitions
	Point-to-Point Shortest Paths
	Dijkstra's Algorithm
	Customizable Route Planning
	Contraction Hierarchies

	Batched Shortest Paths
	The GRASP Algorithm
	The PHAST Algorithm
	Restricted PHAST

	Problem Statement
	Formal Definition of Isochrones
	Isochrones for Electric Vehicles
	Dijkstra's Algorithm for Isochrones

	Multilevel Dijkstra Techniques
	Basic Multilevel Dijkstra Algorithm for Isochrones
	General Idea
	Eliminating False Negatives
	Eliminating False Positives
	Further Optimization
	Determining Isochrone Pairs

	Improved Multilevel Dijkstra Algorithm for Isochrones
	Determining the Output
	Parallelization

	GRASP for Isochrones
	Determining the Output
	Parallelization

	Combining Graph Separators and Contraction Hierarchies
	Basic Algorithm
	Edge Separators
	Core-Dijkstra
	Core-PHAST
	Distance Oracle
	Drawbacks of the ES+PHAST Algorithms

	Vertex Separators
	Computing Vertex Separators
	From Vertex Separators to Topologies
	The VS+PHAST Algorithm

	Isochrones for Electric Vehicles
	Modeling Energy Consumption
	Basic Operations on Edge Cost Functions
	Evaluation
	Linking
	Dominance Check

	Extending Algorithms
	RangeDijkstra
	isoCRP
	isoGRASP

	Experimental Results
	Inputs and Experimental Setup
	Basic Building Blocks
	Parameter Tuning
	Multilevel Dijkstra Techniques
	GS+PHAST Techniques

	Main Results
	Computing Isochrone Pairs
	Electric Vehicle Scenario

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix

