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1 Introdu
tion
Have you ever questioned the quality of a route-planning system's output? You mightbe surprised that popular route-planners do not always 
ompute optimal itinery. Figure1 shows an example of a non-optimal route 
omputed by an automated route-planningsystem. When talking of su
h a system we are thinking of the following, 
on
rete appli-
ation: an online-working route-planner whi
h has to answer a huge number of queriesea
h 
on
erning the fastest 
onne
tion between two pla
es and ea
h to be answered byan exa
t solution.In most 
ases, the reason for the non-optimality of the given routes is the usage of heuristi
algorithms to speed up the query. These heuristi
s do not guarantee the optimality ofthe 
omputed path. During the last years strong e�orts have been made to develop fastalgorithms that also 
ompute exa
t results. The a
hievements on this area, 
ombinedwith the advan
e in a
tual hardware, now make it imaginable to use output-optimalmethods in 
ommer
ial appli
ations.Unfortunately, most of the established output-optimal algorithms are stati
 in the fol-lowing sense: in order to operate they need extra data 
omputed by a time-
onsumingprepro
essing. This prepro
essing 
an last days for huge input data and often onlyfast 
omputers are able to perform it. Therefore these te
hniques hardly arrange with
hanges in reality su
h as tra�
 jams, road works or 
an
eled trains even if these 
hangesare `small' 
ompared with the whole underlying graph. At worst this would e�e
t in a
omplete re
omputation from s
rat
h after the 
hange of only one edge on the graph.Therefore solutions are needed that 
ompute optimal routes but are �exible enough todeal with 
hanges in the algorithm's input. This work shows how to e�
iently re
omputethe prepro
essed data of some of the re
ent output-optimal algorithms without startingfrom s
rat
h. As in real-world data those 
hanges normally a

umulate (think of atra�
 jam that slows down surrounding roads) we demand of the update routine topro
ess several updates in bat
h and to take advantage of the 
loseness of the updates ifpossible.OverviewIn Chapter 2 the topi
 of this work, the (dynami
) single-sour
e single-target shortest pathproblem, is formally de�ned and Dijkstra's algorithm, the basi
 algorithm solving thatproblem, is introdu
ed. As Dijkstra's algorithm is fundamental for all later presented6



CHAPTER 1. INTRODUCTION

Fig. 1.1: Shortest path from Hausgesund to Trondheim (both in Norway) 
omputed byMi
rosoft MapPoint in 2005te
hniques we analyze important properties of the algorithm. The 
hapter 
loses with adynami
 variant of Dijkstra's algorithm.The next 
hapter gives an overview of the te
hniques used to speed up Dijkstra's algo-rithm while granting the optimality of the result. Furthermore, we sket
h a dynami
update method for most te
hniques.Chapter 4 pre
isely des
ribes the prepro
essing of a speed-up te
hnique using rea
h-bounds. This is a relatively new, promising method by Gutman (2004) and improved byGoldberg (2005).In Chapter 5 we present our main 
ontribution to the problem: an e�
ient method toupdate the prepro
essing used by the rea
h-bound speed-up te
hnique. The methodonly slightly in
reases the spa
e-
onsumption of the prepro
essed data, bene�ts frombat
h-updating several 
hanges and re
omputes the same data as a full re
omputationfrom s
rat
h would do. Chapter 6 shows the results of some own experiments 
on
erningrea
h-bounds.The last 
hapter summarizes the results and points out several �elds of resear
h, theauthor 
onsiders promising for a further development on the �eld of this topi
.
7



2 FundamentalsIn this 
hapter we formally de�ne the fundamentals of the topi
 of this thesis. Themost important notions are: single-sour
e single-target problem, single-sour
e all-targetsproblem, speed-up te
hnique and update of a speed-up te
hnique. Referen
es to re-lated problems and related work are being given. Then Dijkstra's algorithm, the mostimportant algorithm for the solution of the single-sour
e single/all-target(s) problem isdes
ribed and some important properties of that algorithm are analyzed. Finally, asolution for the dynami
 single-sour
e all-targets problem is given.2.1 Presentation of the problemLet G = (V,E) be a weighted, dire
ted graph with n verti
es, m edges and lengths
len : E → R+

0 . A path with sour
e s and target t (or shorter an s-t-path) in G is a k-tupel of verti
es P = (s = u0, u1, . . . , uk−1 = t) where for every i between 1 and k−1 theedge (ui−1, ui) exists in E. The length of P is de�ned as len(P ) :=
∑k−1

i=1 len(ui−1, ui).An s-t path is 
alled a shortest path if its length is minimal among the lengths of all
s-t-paths. Given two verti
es s and t the distan
e from s and t is the length of a shortest
s-t-path.The most fundamental problems when dealing with shortest paths are:single-sour
e single-target. Given two verti
es s and t, �nd a shortest s-t-path.single-sour
e all-targets. Given a vertex s. For ea
h other vertex t in the graph, �nda shortest s-t-path.all-pairs shortest-paths. For ea
h (s, t) ∈ V 2, �nd a shortest s-t-path.A graph is 
alled 
onne
ted if for ea
h (s, t) ∈ V 2 an s-t-path exists. A graph is 
alleddense if the number of its edges is 
lose to the maximal number of edges. A graph is
alled sparse if it has only few edges. We 
all a 
lass of graphs large if one 
an onlya�ord the 
onsumption of O(n) memory.In this work, we 
on
entrate on the single-sour
e single-target problem on 
onne
ted,large and sparse graphs. We 
an solve this problem e�
ently in O(m log n) time usingDijkstra's algorithm whi
h we present in the next se
tion. As even this asymptoti
ally8



CHAPTER 2. FUNDAMENTALSgood runtime needs too mu
h time for very large graphs, various variants of Dijkstra'salgorithm have been developed that improve its runtime, often using additional, prepro-
essed data. We 
all su
h algorithms speed-up te
hniques. Most of these speed-up te
h-niques work as follows: �rst, a prepro
essing step is performed. The input of that step
onsists of the graph, the graph's edge lengths and sometimes additional data, atta
hedto the graph. Then, using the prepro
essed data, 
on
rete single-sour
e single-targetqueries are answered, most times signi�
antly faster than through Dijkstra's algorithm.We want to emphasize that speed-up te
hniques work exa
tly 
on
erning the problem'ssolution but are heuristi
 in the runtime. Therefore a query performed by a speed-upte
hnique may even take more time than a query performed by Dijkstra's algorithm.An update on the graph is a 
hange in the graph's length fun
tion. If for ea
h edge ofthe graph the new length of the edge is greater (lower) or equal to the old length theupdate is 
alled in
remental (de
remental). If both, at least one edge with in
reased andone with de
reased length exists, the update is 
alled fully dynami
. Further, we willabbreviate `update of an edge's length' with `edge update'.We regard edge deletions and edge insertions as spe
ial 
ase of updated edges: when wewant to delete an edge we simply set its length to in�nity. As we want to keep our proofssimple we assume that the graph remains 
onne
ted after an edge has been deleted. Toinsert an edge we 
onsider it as already existent with length in�nity in the unalteredgraph and set the edge's length in the altered graph to the value given by the update.This pro
eeding has to be justi�ed separately for ea
h speed-up te
hnique but mostlyworks well: unless stated otherwise the prepro
essing of the speed-up te
hniques doesnot 
hange be
ause of the insertion of an edge with length in�nity.The problem this work is about is that of e�
iently updating the prepro
essed data of aspeed-up te
hnique after the underlying graph has been updated: let G be a graph withnon-negative edge lengths lenold and an altered (non-negative) length fun
tion lennew.Further let Dold (Dnew) be the data 
omputed in the prepro
essing step of a speed-up te
hnique using lenold (lennew). We say an algorithm alg(G, lenold, lennew,Dold) isan exa
t re
omputation of (G, lenold, lennew,Dold) if its output is Dnew. We say (veryfuzzy) an algorithm alg(G, lenold, lennew,Dold) is a quality preserving re
omputation of
(G, lenold, lennew,Dold) if its output is as good as Dnew with respe
t to the runtime ofthe queries speed-up te
hnique.Related work. Further reading on the stati
 
ase of ea
h speed-up te
hnique 
anbe found at the beginning of the a

ording se
tion in the next 
hapter. Most of thespeed-up te
hniques des
ribed in this thesis are fairly new. Therefore only little re-sear
h has been made on the dynami
 
ase of these te
hniques. Fundamental thoughtsabout ben
hmarking dynami
 shortest paths algorithms were published by Ramalingamin [RR96℄. The dynami
 update of shortest paths trees has been studied by Frigioni,Mar
hetti-Spa

amela and Nanni in [FMSN96℄, [FMSN98℄ and [FMSN00℄. A solutionfor the dynami
 update of geometri
 
ontainers was given by Wagner, Willhalm andZaroliagis in [WWZ04℄. To our best knowledge no papers are available for the dynami
update of multi-level graphs, highway hierar
hies and rea
h-values so far.9



CHAPTER 2. FUNDAMENTALSRelated problems. We 
onsider only graphs with non-negative edge lengths. Thisseems to be a small restri
tion, but enormously s
ales down the 
omplexity of the single-sour
e (single/all)-target(s) problem. In fa
t, the general problem allowing negative edgelengths is NP-hard, therefore e�
ent solutions are not likely to exist. The main problemwhen dealing with negative edge lengths is the existan
e of negative 
y
les. If no negative
y
les exist, a problem with negative edge lengths 
an be transformed to one with non-negative edge lengths in polynomial time. [AMO93℄ gives a good overview of fundamentalshortest path problems and algorithms.An area in whi
h pro
eedings that help �nd solutions for the re
omputation of speed-upte
hniques may be found is the dynami
 all-pairs shortest-paths problem. We refer toDemetres
u's and Italiano's paper [DI05℄ for a list of related work on the topi
 and aninteresting, new algorithm solving this problem.2.2 Canoni
al Shortest PathsAt this point, we want to remind the reader that a shortest path is not ne
essarily unique.While some appli
ations bene�t from obtaining a list of all possible shortest paths for agiven problem many others are su�
iently solved by 
omputing just one of su
h paths.The requirement for knowing all shortest paths o

urs parti
ularly when an algorithm�rst pre-sele
ts some interesting paths and later determines the one to use.In order to simplify the mathemati
al treatment of a shortest-path algorithm it is 
on-venient to ensure the uniqueness of the shortest path for a given problem. We 
oulddo so by adding fra
tions to ea
h edge, all so small that they do not have any in�uen
efurther than determining whi
h of all shortest paths for a given problem to 
hoose. Thisapproa
h seems to be very un
omfortable be
ause of the o

uring numeri
al problems.Another possibility is to use a deterministi
 rule that de
ides whi
h of a set of paths totake.
1

2

3

4

5

6 7

8

s

t
ṽ

v

w

Fig. 2.1: Two shortest paths from s to t. The numbers within the verti
es represent the
anoni
al ordering, the orange verti
es indu
e the 
anoni
al shortest pathWe use an inje
tive mapping from every vertex to N to determine one path from the setof all shortest s-t-paths. We 
all su
h a path a 
anoni
al shortest path:
10



CHAPTER 2. FUNDAMENTALSDe�nition 1 (Canoni
al Shortest Paths) An inje
tive mapping o : V → N is
alled a 
anoni
al ordering of V .Given a 
anoni
al ordering o. A shortest path P with start vertex s and end vertex
t is said to be a 
anoni
al (shortest) path if for any shortest path P̃ between s and tfollows:Let (w, . . . , t) be the maximal subpath ending at t that P and P̃ have in 
ommon.Further, let v (ṽ) be the prede
essor of w on P (P̃ ). Then

o(v) < o(ṽ).Figure 2.1 gives an example for 
hoosing a 
anoni
al path in a graph with two shortestpaths between sour
e and target. Note that a subpath 
onsisting of only one vertex maybe possible and that a 
anoni
al ordering is impli
itly given by the order in whi
h theverti
es are put down in the 
omputer's memory.When we des
ribe the highway hierar
hies te
hnique (se
tion 3.6) and rea
h-based prun-ing (se
tion 3.7, 
hapter 4, 
hapter 5) our aim is to 
ompute only 
anoni
al shortestpaths and therefore we refer to 
anoni
al shortest paths as shortest paths. Wewant to stress that all speed-up te
hniques des
ribed in this work 
an be modi�ed forhandling all shortest paths. We do not do that in order to in
rease the readability of thetext and to emphasize the real idea behind the algorithms.Further we will use the following properties of 
anoni
al paths without expli
itly men-tioning them:Uniqueness The most important property of 
anoni
al paths is that they are unique.Existen
e Furthermore we will use that on a 
onne
ted graph for all pairs of verti
es
s, t the existen
e of a 
anoni
al path is guaranteed.Inheritan
e The subpaths of 
anoni
al paths are also 
anoni
al paths.Computability In order to make Dijkstra's algorithm 
hoose the 
anoni
al out of allshortest paths the algorithm has only to be slightly adapted. The 
hanges will beshown in the next se
tion.Proof 1 (Properties of Canoni
al Shortest Paths)The uniqueness follows dire
tly from the de�nition of the 
anoni
al shortest path.To proof the inheritan
e-property of shortest paths we 
onsider a 
anoni
al shortestpath P = (s1, s2, . . . , sn, u1, . . . , um, t1, . . . tk) and assume that a 
anoni
al shortest path

Q = (si, . . . , sn, v1, . . . , vl, t1, . . . , tk) with u1 6= v1 and um 6= vl exists. Then must
o(vl) < o(um) and sin
e Q̃ = (s1, s2, . . . , sn, v1, . . . , vl, t1, . . . tk) is also a shortest path
an P not be a 
anoni
al shortest path. Therfore all subpaths of a 
anoni
al shortest path11



CHAPTER 2. FUNDAMENTALSthat end with the same vertex are also 
anoni
al shortest paths. The same argumentationholds for all subpaths that start with the same vertex. Applying both dire
tions we knowthat all subpaths of 
anoni
al shortest paths are also 
anoni
al.To show the existen
e of a 
anoni
al shortest path we des
ribe a 
onstru
tion of it. Giventwo verti
es s and t and the set S0 of all shortest s-t-paths (S0 
an be 
onstru
ted by avariant of Dijkstra's algorithm). Starting with i = 0 we iteratively 
onstru
t a sequen
eof sets of paths Si: Let P̃i = (p0, p1, . . . , pk = t) be the maximal subpath that ends with
t and that all paths in Si have in 
ommon. We want Si+1 to 
onsist of exa
tly all pathsin Si for whi
h the 
anoni
al ordering of the prede
essor vertex of p0 is minimal amongthe 
anoni
al orderings of prede
essor verti
es of p0 of paths in Si. The 
onstru
tionstops at iteration step j if #Sj = 1. It is easy to see that the path in
luded in Sj is a
anoni
al s-t-path.

�2.3 Dijkstra's AlgorithmDijkstra's algorithm is one of the most fundamental algorithms for the single-sour
esingle/all-target(s) shortest path problem. The output of the algorithm is a list, providingfor every vertex v the prede
essor of v on the shortest path from the sour
e to v and thelength of that path.The algorithm has to store the output and some extra information on its progress travers-ing the graph: it maintains for ea
h vertex v a distan
e label d(v), a parent vertex p(v)and a status marker representing one of the states unvisited, visited and �nished. Allstatus markers are initialized to be unvisited, the distan
e labels to be in�nity and theparent to be nil. After that, the sour
e vertex is set to be visited and its distan
e is setto zero.We provide a priority queue that 
ontains all visited verti
es keyed by the distan
e label,the lower the better. While there are visited labels the algorithm removes the one withthe smallest distan
e label from the queue, marks it as �nished and relaxes all its outgoingedges.The relaxation of an edge (v,w) goes as follows: �rst it is tested if d(w) > d(v)+len(v,w)or (d(w) = d(v) + len(v,w) and o(v) < o(p(w)). If that is true, the vertex w is markedas visited, the parent of w is set to v, and the value of the distan
e label is 
hanged to
d(v)+ len(v,w). Finally, if the vertex w was unvisited before, it will be inserted into thepriority queue.Note that the 
ondition's se
ond possibility d(w) = d(v) + len(v,w) and o(v) < o(p(w))is not a 
lassi
al part of Dijkstra's algorithm. We added it here to ensure that only the
anoni
al out of all shortest paths is 
hosen.When a single-target problem is queried, the algorithm 
an break after the target-vertexhas been marked as �nished. 12



CHAPTER 2. FUNDAMENTALS
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Fig. 2.2: Weighted Digraph (left side) and its shortest paths tree rooted at s (right side)Algorithm 1: DIJKSTRAfor v ∈ V \ {s} do d(v) := ∞1
d(s) := 02 insert s in Q3 while Q 6= ∅ do4 remove minimal Element v from Q5 mark v as �nished6 for e := (v,w) ∈ E do7 if w is not marked as �nished then8 if d(v) + len(e) < d(w) or (d(v) + len(e) = d(w) and o(v) < o(p(w)))9 then

d(w) := d(v) + len(e)10
p(w) = v11 if e /∈ Q then insert w in Q12Proof 2 (Corre
tness)The 
orre
tness of Dijkstra's algorithm relies on the fa
t, that at ea
h step, the tentativepath from the sour
e to the vertex minimal in the priority queue already is a shortestpath. A 
omplete proof 
an be found in [AMO93℄.Given a 
anoni
al ordering o and an s-t-query. In order to prove that only 
anoni
alshortest paths are 
omputed we assume that at least one path P = (u1, . . . , un) is
ontained in the shortest-paths tree that is not 
anoni
al. Let Q be the 
anoni
al s-t-path and P̃ = (uk, . . . , un) be the maximal subpath ending at t that both paths have in
ommon. Let q be the prede
essor of uk on Q. Then is o(q) < o(uk−1) and the adaptionof Dijkstra's algorithm would not have settled uk via uk−1.

�Later, we will use the following notation: given the tentative shortest paths tree at anarbitrary step of Dijkstra's algorithm. Then, the �nished part of that tree is the tree'ssubgraph indu
ed by all verti
es marked as �nished.13



CHAPTER 2. FUNDAMENTALSRuntime. Even if the worst-
ase runtime of the algorithm is O(n2) on dense graphs, one
an do mu
h better on sparse graphs. The 
hoi
e of the priority queue is a 
ru
ial point forthe performan
e. If the edge lengths are natural numbers bounded by a 
onstant C, DialsImplementation needs O(m + nC), Johnson's Implementation O(m log log C) runtime.Binary Heaps (runtime of O(m log n)) and Fibona

i-Heaps (runtime of O(m + n log n))are the best performing priority queues that are known for general sparse graphs. [CLL90℄
ontains a pre
ise des
ription of all these algorithms.SetDijkstra. Dijkstra's algorithm 
an also be used to �nd for ea
h vertex on the graphthe shortest path from the nearest of a set of given verti
es. We will fa
e that problemin Chapter 5 as a subproblem of a speed-up te
hnique's re
omputation. A pra
ti
alappli
ation is to 
he
k the 
overage of infrastru
tural fa
ilities.SetDijkstra works as follows: given a set of `sour
e verti
es' we run Dijkstra's algorithm,but initialize it using all sour
e verti
es instead of using only one sour
e vertex. Theresulting output 
ontains for ea
h vertex the prede
essor on the way from the nearestsour
e vertex. We refer to that variant as SetDijkstra.2.4 Updating Shortest Path TreesBased on the algorithms des
ribed by Frigioni, Mar
hetti-Spa

amela and Nanni in[FMSN00℄, we present an algorithm that updates an existing shortest paths tree after aset of edges has been updated. We assume that the shortest paths tree is identi�ed bya label 
ontaining the tree-prede
essor of ea
h vertex. Furthermore the distan
e of ea
hvertex to the sour
e shall be given. The update algorithm pro
eeds mu
h like Dijkstra'salgorithm.Notation. Given a graph G = (V,E) with length fun
tion lenold : E → R+ and asubset of edges U with updated edge lengths. The new length fun
tion is denoted by
lennew : E → R+. Let Told be the shortest-paths tree on G with respe
t to lenold rootedat a vertex s. Let Tnew be the tentative shortest paths tree 
omputed by our algorithm.Initially Tnew equals Told. Let Pold(v)/Pnew(v) be the prede
essor of the vertex v on
Told/Tnew. For ea
h v ∈ V let distold(v)/distnew(v) be the distan
e from s to v withrespe
t to the old/new length fun
tion. With D(v) we denote the tentative distan
efrom s to v 
urrently 
omputed by our algorithm. Initally D(v) equals distold(v).Initialization. At the initialization step we update the distan
es of the target verti
esof edges in U . In order to do that we provide a priority queue H 
ontaining all edges
(u, v) of U keyed by the distan
e label D(u). We iteratively remove the minimal edge
(u, v) from H and set D(v) := D(u) + lennew(u, v) if D(v) > D(u) + lennew(u, v) or
Pnew(v) = u. We update the priority of an edge in the queue if the distan
e label of thea

ording sour
e vertex has been updated.We maintain a se
ond priority queue Q that 
ontains ea
h vertex v with altered andtentative distan
e label. The priority of v is D(v). When we 
hange the distan
e labelof a vertex v whi
h is not 
ontained in Q we insert v into Q (with the new distan
e14



CHAPTER 2. FUNDAMENTALS
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Fig. 2.3: Example for the update of a shortest paths tree. Continous lines represent edgeson the (tentative) shortest paths tree, dashed lines the other edges. The verti
es
urrently in the queue are drawn red.
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CHAPTER 2. FUNDAMENTALSas priority) and the original distan
e of the vertex (the a
tual value of D(v) before the
hange) is saved. We 
all that saved value DinsQueue(v). Ea
h time the distan
e label ofthis vertex is 
hanged, the priority of the vertex has to be 
hanged to the new distan
e.Main Algorithm. At the main algorithm we remove the minimal vertex m from thequeue and `pro
ess' it. We iteratively repeat that until the queue is empty. The pro
essingof a vertex depends on the relation of its original and its a
tual distan
e:
• DinsQueue(v) = D(v). If the original distan
e equals the a
tual one, nothing is tobe done.
• DinsQueue(v) > D(v). If the distan
e label of m has de
reased we 
he
k for everyoutgoing edge (m, t) if the path to t 
ontaining the edge (m, t) is shorter than theshortest path to t found so far. In that 
ase we update distan
e label D(t) andprede
essor P (t) of t a

ordingly.
• DinsQueue(v) < D(v). If the distan
e label of m has in
reased, we 
he
k everyin
oming edge (s,m) if a path using that edge is shorter than the shortest pathto m found so far. In that 
ase we update distan
e label D(t) and prede
essor

P (m) of m a

ordingly. Now the distan
e label of m is 
orre
t and we sear
h everyoutgoing edge (m, t) that is part of the tentative shortest paths tree Tnew. For ea
hfound edge (m, t), we set the distan
e label of t to dist(m) + len(m, t).after pro
essing a vertex it is removed from the queue Q. The algorithm terminates when
Q is empty. Figure 2.3, page 15 shows the algorithm at work on an example graph.Comparison with the algorithm in [FMSN00℄ Though the main ideas of the formerdes
ribed algorithm are the same as that in [FMSN00℄ we want to list the di�eren
es:

• The re
omputation of our algorithm handles not only one edge update per timebut is a fully dynami
 algorithm.
• In [FMSN00℄ the existan
e of a spe
ial assignment of ea
h edge to one of its end-verti
es is used in 
ombination with a datastru
ture that sorts a subset of all edgesin
ident to a vertex in order to guarantee better worst 
ase runtime.
• The algorithm in [FMSN00℄ operates on undire
ted graphs.Coarse sket
h of the proof of 
orre
tnessThe 
orre
tness for in
remental or de
remental updates is proven 
ompletely analogousto the proofs in [FMSN96, RR96℄.The proof of 
orre
tness for the fully dynami
 
ase 
onsists of two steps: �rst it is shownthat the algorithm would work 
orre
t if the priority of ea
h vertex v in the queue Q wasthe 
orre
t new distan
e of v. That sub-proof works mu
h like the proof of 
orre
tnessfor Dijkstra's algorithm. 16



CHAPTER 2. FUNDAMENTALSThe se
ond step is to show that the order in whi
h the verti
es are removed from thequeue does not have any in�uen
e on the �nal values of Dv and (if shortest paths areare supposed to be unique) has no in�uen
e on the �nal values of the shortest paths treeprede
essors P (v). The author wants to point out that he has not �nished that sub-proofin detail.Algorithm 2: UPDATE DIJKSTRAinput: Graph G, len(·), Distan
e[℄, Prede
essor[℄/* init */forall edges e in update set U do1 insert e in queue H with priority distan
e[e.sour
e℄2 while queue H is not empty do3 edge e := get minimal element from H4 remove minimal element from H5 if prede
essor[e.target℄=e.sour
e or distan
e[e.target℄>distan
e[e.sour
e℄+len[e℄6 thenUPDATE DISTANCE(e.sour
e, e.target)7 forall h in H with h.sour
e=e.target do8 update H-priority of h9 /* step down the tree */while queue Q is not empty do10 node n:=get minimal element from Q11 remove minimal element from Q12 if oldDistan
e[n℄<distan
e[n℄ then13 forall edges e with e.target=n do14 if distan
e[n℄>distan
e[e.sour
e℄+len[e℄ then15 UPDATE DISTANCE(e.sour
e, e.target)16 forall edges e with (e.sour
e=n and prede
essor[e.target℄=n) do17 UPDATE DISTANCE(e.sour
e, e.target)18 if oldDistan
e[n℄>distan
e[n℄ then19 forall edges e with e.sour
e=n do20 if distan
e[e.target℄>distan
e[e.sour
e℄+len[e℄ then21 UPDATE DISTANCE(e.sour
e, e.target)22

17



CHAPTER 2. FUNDAMENTALSAlgorithm 3: UPDATE DISTANCE(fromNode, toNode)if not Q 
ontains toNode then1 oldDistan
e[toNode℄:=distan
e[toNode℄2 distan
e[toNode℄:=distan
e[fromNode℄+len[(fromNode,toNode)℄3 prede
essor[toNode℄:=fromNode4 if not Q 
ontains toNode then5 insert toNode into Q with priority distan
e[toNode℄)6 else7 
hange priority of toNode in Q to distan
e[toNode℄)8Heuristi
 variant to improve a bat
h update.At this point we want to stress that the order how verti
es are removed from the queuedoes not in�uen
e the 
orre
tness of the algorithm. It is a heuristi
 strategy to improvethe runtime. Our strategy works well on de
remental updates: the algorithm pro
eedslike Dijkstra's algorithm would do but shrinks the pro
essed part of the graph if possi-ble. However, on in
remental or fully dynami
 updates there are many 
ases where thealgorithm does not perform better than iteratively re
omputing the shortest paths treeedge-update by edge-update and performs worse than a full re
omputation from s
rat
h.Figure 2.4 shows su
h an example.
s u v w

10 10 10 10 10 10

1000 20
x y zFig. 2.4: Graph and shortest-paths tree rooted at s. The red numbers represent up-dated edge lengths. The optimal order to pro
ess the verti
es is: u,v,w,x,y,z.Our update-algorithm would pro
ess the verti
es in the following order:w,x,y,z,u,v,w,x,y,z.To improve the performan
e on in
remental or fully dynami
 updates we propose a slight
hange in the algorithm: the priority of an edge (u, v) in the initialization queue H is thedistan
e D(v) of (u, v)'s target vertex instead of its sour
e vertex. At the initializationonly the �rst edge in H is pro
essed, then the main algorithm is performed. The mainalgorithm almost works as des
ribed. The only di�eren
e is that, before a minimal vertex

m from the queue is pro
essed, the initialization step is performed for all elements of thequeue H with H-priority lower than the Q-priority of m.
18



3 Speed-Up Te
hniquesIn this 
hapter we des
ribe several te
hniques that are used to speed up Dijkstra's sear
hwhen solving a single-sour
e single-target problem. All des
ribed te
hniques ex
ept bidi-re
tional sear
h and a goal-dire
ted sear
h variant require a prepro
essing step to 
om-pute data whi
h is later used to speed up single-sour
e single-target queries.Goal-dire
ted sear
h and the landmark te
hnique, whi
h is a spe
ial 
ase of goal-dire
tedsear
h, alter the lengths of the original graph's edges in a way that preserves the propertythat shortest paths from sour
e to target remain shortests paths but `dire
t' Dijkstra'salgorithm to arrive at the target while visiting fewer useless verti
es.The main idea of multi-level graphs and highway hierar
hies is to build a new graphwhose shortest paths 
orrespond to shortest paths on the original graph. The new graphis built in a manner that aims to minimize the number of verti
es visited by Dijkstra'salgorithm. This is supported by a set of spe
ial rules whi
h edges (not) to relax.The edge-label te
hnique and rea
h-based pruning atta
h additional data to ea
h edge orvertex. This data 
an be used to identify bran
hes of a shortest-paths tree that are notrelevant for the solution of a given single-sour
e single-target problem. Therefore thesebran
hes 
an be omitted, resulting in a faster sear
h.Changing the underlying graph 
an result in a 
hange of the prepro
essed data. Theprepro
essing is usually very time-
onsuming and a 
omplete re
omputation is oftennot possible. Therefore it is important to �nd pro
edures whi
h e�
iently update theprepro
essing without re
omputing from s
rat
h when dealing with this situation. Wewill show su
h dynami
 update strategies for most of the des
ribed speed-up te
hniques.3.1 Bidire
tional Sear
h3.1.1 QueryA very 
ommon speed-up te
hnique for the single-sour
e single-target shortest pathsproblem is the bidire
tional sear
h. This te
hnique simultaniously performs two sear
hes.The �rst, a normal Dijkstra's algorithm starts at the sour
e and is 
alled the forwardsear
h. The se
ond is rooted at the target and is also a Dijkstra's algorithm, but appliedto the reverse graph, whi
h is the graph with the same vertex set and the reverse edgeset E = {(u, v) | (v, u) ∈ E}. We 
all it the ba
kward sear
h. The algorithm terminates19



CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.1: Verti
es visited (shown in red) by Dijkstra's algorithm (left) and bidire
tionalsear
h (right)when one vertex v is marked as �nished by both dire
tions. The shortest path betweensour
e and target is 
omposed by the shortest path from sour
e to v found by the forwardsear
h and the shortest path from v to target found by the ba
kward sear
h.In [GKW05℄ Goldberg proposes a better stopping 
riterion: stop the algorithm when thesum of the minimum labels of visited verti
es for the forward and reverse sear
hes is atleast the length of the shortest path seen so far.Although performing the two sear
hes 
ompletely simultanious would be possible onmulti 
ore/pro
essor ma
hines, alternating strategies must be used when using a singlepro
essor ma
hine. A simple approa
h is to swap to the 
ontrary dire
tion every timeafter visiting a vertex. Another possibility is to keep the minimum distan
e label fromvisited verti
es of the forward sear
h approximately equal to the minimum distan
elabel from visited verti
es of the ba
kward sear
h. In order to do that the bidire
tionalalgorithm swaps to the 
ontrary sear
h when the distan
e label of the minimal queuevertex is greater than the distan
e label of the minimal vertex of the 
ontrary queue. We
all this alternating strategy distan
e balan
ed.The reason why this te
hnique a
hieves an improvement of the runtime is a very intuitiveone. The set of verti
es whi
h are visited by Dijkstra's algorithm 
an be imagined as aball surrounding the sour
e of the sear
h. The unidire
tional sear
h needs one ball withthe distan
e from sour
e to target as radius. The bidire
tional sear
h on the other handneeds two balls with only half the radius, ea
h. This diminishes the visited area, whi
his nothing else than the number of visited nodes.Note that this te
hnique 
an be 
ombined with several other speed-up te
hniques and isan integral part of the later shown speed-up te
hnique using rea
h values.3.1.2 Dynami
 UpdateThis speed-up te
hnique requires no prepro
essing and therefore no data has to be re-
omputed after altering a graph.
20



CHAPTER 3. SPEED-UP TECHNIQUES3.2 Goal-Dire
ted Sear
hThe goal-dire
ted sear
h, whi
h is also 
alled A* was introdu
ed in [HNBR68℄, the de-s
ription here is based on [WW06℄. Its main idea is to stret
h the ball of verti
es visitedby Dijkstra's algorithm in the dire
tion of the target. This way, many verti
es useless forthe solution of a given problem will not be visited and an improvement in the algorithm'sruntime is a
hieved.3.2.1 QueryThe sear
h is a normal Dijkstra's algorithm but performed on an altered graph. Thevertex and the edge set of the original graph stay the same but the lengths of the edgesare altered in the following way:The goal-dire
ted sear
h uses additional data in form of a fun
tion from the graph'sverti
es to reals. This fun
tion 
an di�er for di�erent targets. In this 
ontext, we 
allsu
h a fun
tion a potential fun
tion and denote it by p. The new length of an edge (u, v)is assigned to lennew(u, v) = lenold(u, v) + p(v) − p(u).Note, that a 
on
rete implementation of the goal-dire
ted sear
h does not need to alterthe underlying graph at initialization. It only has to add the di�eren
e of the potentialfun
tion p(v)− p(u) to the length of (u, v) when this edge is relaxed. This way, only theedges whi
h get relaxed during the sear
h have to be 
onsidered to the 
hange, whi
himproves the runtime of the algorithm. Furthermore the sear
h is easier to 
ombine withother algorithms if the underlying graph stays the same.Remember that Dijkstra's algorithm 
an only be applied if the underlying graph is freefrom negative 
y
les. We ensure that by 
laiming all new edge lengths to be non-negative.A potential fun
tion granting that property is 
alled feasible:De�nition: given a weighted graph G = (V,E) and a length fun
tion len : V → R+
0 , apotential fun
tion p : V → R is 
alled feasible if len(u, v)− p(u) + p(v) ≥ 0 for all edges

(u, v) ∈ E.To �nd feasible potential fun
tions it is useful to sear
h tight lower bounds for the distan
eto the target vertex t: if p(t) ≤ 0 then p(v) is a lower bound for the distan
e from v to
t. Hen
e, we 
an shift every feasible potential p to gain a new one pnew(v) = p(v) − p(t)whi
h is a valid lower bound and will result in the same sear
h (will visit the sameverti
es in the same order). As tighter lower bounds will push the sear
h more into thedire
tion of the target, the main aim is to sear
h those good potentials. A simple tri
kto extra
t a better potential fun
tion from a set of others is to 
ombine them by takingthe maximum:If p1, p2, . . . , pn are feasible potential fun
tions, then p(v) = max{p1(v), p2(v), . . . , pn(v)}is a feasible potential fun
tion.3.2.2 Corre
tnessNow, we are going to 
he
k the 
orre
tness of the algorithm: for ea
h path P = (s =
v1, v2, . . . , vn = t) on the graph the length of the path applying the old edge lengths21



CHAPTER 3. SPEED-UP TECHNIQUESdi�ers from the length of the path applying the new edge length by the same amount
p(t) − p(s):

lennew(P ) =

n
∑

i=1

lennew(vi, vi+1) =

n
∑

i=1

lenold(vi, vi+1) − p(vi) + p(vi+1)

= −p(s) + p(t) +

n
∑

i=1

lenold(vi, vi+1)

= −p(s) + p(t) + lenold(P )Therefore a shortest path in the altered graph is also a shortest path in the original graph.
�3.2.3 Example Potential Fun
tionsFor road maps or other graphs with a geographi
 origin good lower bounds 
an oftenbe found by exploiting the real-world 
oordinates of ea
h vertex. These 
oordinatesdetermine a layout L : V → R2 of the graph. We now assume that the length of an edge

(u, v) is the Eu
lidean distan
e ‖L(u) − L(v)‖ of the edge's sour
e and target vertex.Then, the Eu
lidean distan
e to the target t, p(v) = ‖L(v) − L(t)‖ represents a feasiblepotential.
source

target

source

target

Fig. 3.2: Part of a graph whose edge lengths are indu
ed by the Eu
lidean distan
es ofthe end verti
es (left) and the same graph with altered edge lengths (by goaldire
ted sear
h). The 
ir
les 
entered at the target vertex represent the potentialof ea
h vertex.Often however, problems are given where the edge lengths are not exa
tly proportional tothe Eu
lidean distan
es but 
orrelate. A 
ommon example for that situation is the traveltime on a road map. There a 
orre
tive fa
tor vmax = max(u,v)∈E {len(u, v)/‖L(u) − L(v)‖}has to be multiplied to p: pcorr(v) = vmax · ‖L(v) − L(t)‖.Note that this pro
eeding will work in any normed ve
tor spa
e if appropriate edgelengths are given. 22



CHAPTER 3. SPEED-UP TECHNIQUES3.2.4 Dynami
 Update of the Example Potential Fun
tionsThe �rst example where edge lengths are proportional to the Eu
lidean distan
es requiresno prepro
essing and therefore is fully dynami
.The only prepro
essing used in the se
ond example is �guring out vmax. Pure in
rementaledge updates 
an re
ompute vmax by 
al
ulating the maximum
vmax/update = max(u,v)∈U (len(u, v)/‖L(u) − L(v)‖ over all edges in the set of updatededges U . The old value vmax has to be substituted by the maximum of vmax and
vmax/update. This needs linear time in the number of updated edges.For dealing with the fully dynami
 
ase we propose a slight 
hange in the data stru
ture.The edges shall be sorted by len(u, v)/‖L(u)−L(v)‖. This slows the prepro
essing from
O(m) to O(m log m) where m is the number of edges in the graph. Updated edges nowonly have to be re-sorted. This is done in O(k log m) time, where k denotes the numberof updated edges and m the number of the edges in the graph. The new value for vmaxis the value of the last edge in the list.
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CHAPTER 3. SPEED-UP TECHNIQUES3.3 LandmarksThe landmark te
hnique has been introdu
ed in [GH05℄ as main part of the ALT-algorithms (ALT is an abbreviation for A-star, landmarks, triangular inequality). Itis a method to get potential fun
tions for the goal-dire
ted sear
h only using the graphand its length fun
tion as input. Therefore it 
an be applied in 
ase no domain spe
i�
information is given. Its idea is to grow full shortest-paths trees on a very small numberof verti
es (whi
h we 
all landmarks in that 
ontext) and exploit lower bounds for the dis-tan
e to the target out of these trees using the triangular inequality for graphs. We wantto refer to [GH05℄ for an experimental study on this te
hnique and some optimizationsin
luding the 
ombination with bidire
tional sear
h.3.3.1 Prepro
essingThe prepro
essing starts by 
hoosing a small number of verti
es of the graph, whi
h we
all landmarks. Then, for ea
h landmark L we grow a full shortest paths tree rooted at
L.

L

v

t
dist(v, L) − dist(t, L)

dist(t, v)

Given a landmark L, the triangle inequalityon graphs, dist(v, L) − dist(t, L) ≤ dist(v, t)holds. The �gure to the left is a s
hemati
example of that inequality. Therefore p(v) =
dist(v, L) − dist(t, L) provides a lower boundfor the distan
e dist(v, t) from a vertex v tothe target t whi
h we use as a feasible potentialfun
tion.As des
ribed in the last se
tion, the poten-tial fun
tions pi(v) derived from di�erent land-marks 
an be 
ombined to one, better potential fun
tion by taking the maximum

p(v) = maxi{pi(v)}. For speeding-up the query it may be useful to identify a subsetof landmarks whi
h provide strong lower bounds for the distan
e from sour
e to targetof the sear
h. Then the query is run only using these landmarks. Even though thismay e�e
t in visiting slightly more nodes, the savings in the 
al
ulation of the potentialfun
tion p often lead to a faster query.Pi
king the right landmarks is 
ru
ial for that te
hnique. In [GH05℄ good results arereported for 1 to 16 landmarks at a graph size of 600.000 to 15 Mio edges. Some basi
sele
tion strategies are:By Random. Choosing by random is a simple way of sele
ting the landmarks. However,the resulting potential fun
tion may be far away from being optimal.Geometri
. This approa
h 
an be used for graphs with two dimensional layouts likethe ones des
ribed in the last se
tion. It derives from the observation that havinglandmarks geometri
ally lying behind the destination tend to give good potentialfun
tions. The algorithm �rst pi
ks the vertex c that is most 
lose to the 
enter24



CHAPTER 3. SPEED-UP TECHNIQUESof the graph (here, all geometri
 statements are meant with respe
t to the given2-dimensional layout). Then, the graph is divided into pie-sli
e se
tors 
enteredat c, all of the se
tors should 
ontain approximately the same number of verti
es.Now, for ea
h se
tor, the vertex farthest away from c is 
hosen as landmark.Farthest Landmark. Starting at an arbitrary vertex as �rst landmark, this pro
eedingiteratively adds new landmarks. The following 
ondition has to be satis�ed: ea
hnew landmark is 
hosen su
h that the distan
e of the new landmark to the nearestof all 
urrent landmarks is maximal.3.3.2 Dynami
 UpdateThe prepro
essing of the landmark te
hnique 
onsists of two steps: �rst 
hoosing thelandmarks and then performing Dijkstra's algorithm for ea
h landmark.If the landmarks stay the same the prepro
essing 
an be e�
ently updated by the algo-rithm presented in se
tion 2.4, page 14. Note that for most landmark sele
tion strategiesonly re
omputing the shortest paths trees will not give the same result as a full re
om-putation from s
at
h would do, be
ause the landmarks stay the same.However, the landmarks that result from a 
omplete re-
hoosing are near to the oldlandmarks as long as the 
hanges in the graph stay 'little enough'. In this 
ase, there
omputation is quality preserving. When updating the prepro
essing without 
hangingthe landmarks it is important to know wether the sele
tion remains `good'. An indi
ationfor that is the new distan
e between the landmarks whi
h is expli
itely known by theshortest paths trees. Landmarks near to ea
h other are ine�
ient and should by repla
edby new ones.We do not have to apply that pro
eeding on the random and the geometri
 landmarksele
tion strategy: the edges have no in�uen
e on these strategies and therefore thelandmarks remain the same after an edge update.To deal with the farthest landmark strategy we re
ompute the shortest paths trees withthe algorithm presented in se
tion 2.4. Then we 
he
k on landmarks near to another.If we �nd a pair of su
h landmarks, one of both is removed and repla
ed by a new onesele
ted by the farthest landmark 
riterion.
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CHAPTER 3. SPEED-UP TECHNIQUES3.4 Edge LabelsThis te
hnique needs a geometri
 layout of the underlying graph and tagges to ea
h edge
(u, v) some prepro
essed geometri
 information (the edge label) about the area of allverti
es that lie on a shortest path that begins with (u, v). When an edge (u, v) is tobe relaxed it is 
he
ked whether the target vertex t of the sear
h is within the a

ordingarea of (u, v). The edge (u, v) 
an be ignored if t is not within that area.One 
an distuingish two types of edge labels: bit-ve
tors and geometri
 
ontainers. Whenusing bit-ve
tors the whole graph is separated into several areas. Given an edge (u, v),the bit-ve
tor of (u, v) 
odes the information whi
h areas 
ontain at least one vertexon a shortest path starting at (u, v). Further reading on bit-ve
tors 
an be found in[KMS04, Lau04, MSS+05℄.Geometri
 
ontainers are due to S
hulz, Wagner and Weihe [SWW99℄ and have been im-proved and experimental studied by Wagner, Willhalm and Zaroliagis in [Wil05, WWZ04,WW06℄. The geometri
 
ontainer of an edge (u, v) is a geometri
 obje
t that 
ontains atleast all verti
es to whi
h a shortest path starts at (u, v).3.4.1 Basi
sIf for ea
h edge (u, v) the exa
t set H(u, v) of all verti
es t for whi
h (u, v) is on theshortest path from u to t is known, good pruning 
an be a
hieved: Dijkstra's algorithm
an leave out the relaxation of ea
h edge for whi
h the atta
hed target set does not
ontain the target of the sear
h. It is easy to see that this pruning keeps the optimalityof the 
omputed path from sour
e to target.As storing all these sets is prohibitive be
ause of the memory 
onsumption, appropriatesupersets have to be found. Su
h a superset H(u, v) has to satisfy three requirements:�rst, it must be possible to determine very fast if a vertex is 
ontained in H(u, v). Se
ond,
H(u, v) should not 
ontain too mu
h verti
es that are on no shortest path starting atthe edge (u, v). Finally, H(u, v) has to be storaged with 
onstant or at least very fewmemory. For real-world data with a given two-dimensional layout L : V → R2 likeroad-networks geometri
 obje
ts seem to be a good 
hoi
e.Note that this pro
eeding also works without a given real-world justi�ed layout. One
an also try to 
ompute layouts that promise to e�e
t in a good speed-up.3.4.2 Geometri
 ContainersThe geometri
 
ontainer of an edge (u, v) is a `simple' geometri
 obje
t that 
ontainsat least all verti
es of H(u, v). Out of 
onvex obje
ts like angular se
tors or 
ir
les,re
tangles have been reported to produ
e the best results in the algorithms runtime.The minimal, re
tangular shaped, parallel to the axes geometri
 
ontainer of an edge is
alled its bounding box.A bidire
tional variant of pruning using bounding boxes is due to [WWZ04℄. It uses twodi�erent edge-labels:The (
onsistent) target 
ontainer T (v,w) of an edge (v,w) is an re
tangle (an area26
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u

v

Fig. 3.3: Bounding Box of the edge (u, v). The graph's shortest paths tree rooted at u isdrawn with solid lines.
R ⊂ R2 of the form {(x, y) ∈ R2 | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}) that 
ontainsat least all verti
es t for whi
h there is a shortest path from v to t using the edge (v,w).The (
onsistent) sour
e 
ontainer S(v,w) of an edge (v,w) is a re
tangle that 
ontainsat least all verti
es s for whi
h there is a shortest path from s to w using the edge (v,w).We want to point out that su
h a 
ontainer does not have to be minimal. It only has to
ontain the a

ording bounding box.Prepro
essing. To get the target 
ontainers we run for ea
h vertex r on the graph aslightly enhan
ed Dijkstra's algorithm rooted at r. During the algorithm we keep, forea
h labeled vertex v, the edge (r, u) on the tentative shortest path to v. When v is�nished we enhan
e the bounding box of (r, u) to 
ontain v, if ne
essary. We use thismethod on the reverse graph to get the sour
e 
ontainers.Query. To answer a single-sour
e single-target problem with sour
e s and target t abidire
tional Dijkstra's sear
h is used. The forward sear
h is altered su
h that ea
h edge
(u, v) is not relaxed if t is not in T (u, v), the ba
kward sear
h does not relax every edge
(u, v) with s not in S(u, v).3.4.3 Bit-Ve
torsThis pro
eeding works as follows: �rst, we partition the graph into k areas. Then, weassign to ea
h edge a bit-ve
tor with k bits. Ea
h bit represents one of the pre
omputedareas. We �x an arbitrary area A and an arbitrary edge (u, v). The bit of (u, v) thatrepresents A is set to false if (u, v) lies on no shortest path with at least one vertex in A.Otherwise the bit is set to true.A

ording to [Wil05℄, useful partitions 
an be found through kd-trees when dealing withroad maps and through the method des
ribed in [HK00℄ in the general 
ase.Prepro
essing. The prepro
essing dire
tly transfers from the prepro
essing of geomet-27



CHAPTER 3. SPEED-UP TECHNIQUESri
 
ontainers. [WW06℄ mentions a great speed-up for the prepro
essing of bit-ve
tors:every shortest path in
ident to at least two di�erent areas has to enter an area at onevertex. Therefore it is su�
ent to 
onsider only verti
es on the border of an area insteadof solving the 
omplete all-pairs shortest-paths problem. We do that by solving, for ea
hvertex that is on the border of at least one area, the single-sour
e all-targets problem ofthe reverse graph.
u

v

A

C

B

D

Fig. 3.4: Sample partition in 4 areas. The graph's shortest paths tree rooted at u is drawnwith solid lines. The bitve
tor of the edge (u, v) is (A = 0, B = 1, C = 0,D = 1).3.4.4 Dynami
 Update of Geometri
 ContainersA routine to update the prepro
essing of the bidire
tional variant of geometri
 
ontainershas been published in [WWZ04℄. It handles one edge update per time and is split into ade
remental and an in
remental pro
eeding. Both pro
eedings do not 
onsider shortestpaths that have been destroyed by the update but only re
ompute all shortest paths thathave been 
reated due to the edge update. Therefore existing edge 
ontainers 
annotshrink and the update routine is not an exa
t re
omputation. The update method hasbeen reported to be four times faster than a re
omputation from s
rat
h would be.In
remental Update. Given an edge (u, v) with in
reased length we want to limitthe area of all shortest paths that have been 
reated by the update: if an s-t path hasbeen 
reated by the in
rement of the length of the edge (u, v) then must (u, v) be on theshortest s-t-path on the old graph. It follows that (u, v) is the last edge of a shortest
s-v-path and the �rst edge of a shortest u-t-path in the original graph. Therefore is s
ontained in Sold(u, v) and t in Told(u, v).To update the geometri
 
ontainers we grow a full shortest-paths tree on ea
h vertex in
Sold(u, v) when 
omputing the target 
ontainers and on ea
h vertex in Told(u, v) when
omputing the sour
e 
ontainers. The existing geometri
 
ontainers of verti
es outgoingfrom these verti
es are augmented like in the stati
 prepro
essing routine.28
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ond improvement is as follows. It 
an be shown that for ea
h node x on a shortest
s-t-path 
reated by the update of the edge (u, v):

distnew(s, x) < distnew(s, u) + lennew(u, v) + distnew(v, x)Note that the inequality only holds in 
ase shortest paths are unique. In the general
ase the < has to be repla
ed by a ≤. To exploit the inequality we �rst run a Dijkstra'salgorithm on the ba
kward graph rooted u and a Dijkstra's algorithm rooted at v. Then
distnew(s, u) and distnew(v, x) are known for every s and x. When we perform theupdate algorithm this inequality 
an be 
he
ked everytime an edge is relaxed by Dijkstra'salgorithm and we 
an omit those edges whose target verti
es do not ful�ll it.De
remental Update. Now we deal with the situation that the length of an edge (u, v)has been de
reased. Here, the former statement 
hanges to:If an s-t path has been 
reated by the de
rement of the length of the edge (u, v) thenmust (u, v) be on the shortest s-t-path on the new graph. It follows that (u, v) is the lastedge of a shortest s-v-path and the �rst edge of a shortest u-t-path on the new graph.Therefore is s 
ontained in Snew(u, v) and t in Tnew(u, v).Sin
e Snew(u, v) and Tnew(u, v) are unknown at the beginning of the update the �rst stepof the algorithm is to re
ompute them like in the stati
 
ase. Then we pro
eed like inthe in
remental 
ase only repla
ing Sold and Told by Snew and Tnew.The improvement 
hanges to

distnew(s, x) < distnew(s, u) + lenold(u, v) + distnew(v, x)and 
an also be applied like in the in
remental 
ase.

29



CHAPTER 3. SPEED-UP TECHNIQUES3.5 Multi-Level GraphsMulti-level graphs have been intensively experimentally studied sin
e they were intro-du
ed by S
hulz, Wagner and Weihe in [SWW99, SWW00, SWZ02℄. This des
ription isa summary of [HSW06℄, the most re
ent paper on the topi
. We enhan
ed it by a sket
hof a new update algorithm for the method.The speed-up of this te
hnique results from a prepro
essing step at whi
h the input graphis de
omposed into l + 1 levels. This de
omposition is used to limit the sear
h spa
e ofDijkstra's algorithm. Furthermore additional edges are inserted that represent shortestpaths 
onne
ting important verti
es on the graph. These edges 
an be used as short
utsfor Dijkstra's Algorithm.3.5.1 Data Stru
tureGiven a graph G = (V,E) with non-negative edge lengths len : E → R+ and a subsetof the graph's verti
es S ⊂ V , we want to 
onstru
t the shortest path overlay graph
G′ = (S,E′) that is de�ned as follows: for ea
h (u, v) ∈ S × S there is an edge (u, v) in
E′ if and only if for any shortest u-v-path in G no internal vertex belongs to S (internalverti
es are all verti
es on the path ex
ept u and v). The length of ea
h edge in E′is determined by the following 
ondition: for ea
h pair of verti
es (u, v) ∈ S × S thedistan
e from u to v on G′ equals the distan
e of the two verti
es on G.The 
onstru
tion of that graph 
an be done by the min-overlay algorithm:Algorithm 4: min-overlay(G, len(), S)forall verti
es u ∈ S do

• run Dijkstra's algorithm on the graph G with root u

• the edge weights are pairs (len(e), se), addition is done pairwise, theorder is lexi
ographi
, se =

{

−1 ; source(e) ∈ S \ {u}
0 ; otherwise ,

• break if all verti
es in the queue have distan
e of at most (·,−1)forall verti
es v ∈ S \ {u} doif dist(u, v) = (·, 0) thenintrodu
e an edge (u, v) in E′ with weight dist(u, v)Given a sequen
e of l subsets of verti
es Si (1 ≤ i ≤ l) with V = S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Slthe basi
 multi-level graph is the result of iteratively applying the min-overlay algorithm:starting with G and S1, the min-overlay algorithm inserts a set E1 of edges. Ea
hfollowing step i, min-overlay is applied to (Si, Ei) and Si+1 and inserts the set Ei+1 ofedges. We 
all the subgraph (Si, Ei) the level i. We say a vertex v is of level i (or alevel-i vertex) if i is the maximal level that 
ontains v.30
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Fig. 3.5: Bidire
ted 2-level multilevel-graph. The quadrati
 verti
es represent verti
es in
S. The lower �gure shows the original graph, the upper �gure shows the edgesinserted by the min-overlay algorithm.If the usage of more prepro
essing time and memory 
onsumption is a

eptable, theshortest-paths queries 
an further be sped up by inserting even more edges to the basi
multi-level graph. The resulting extended multi-level graph 
ontains two new types ofedges: upward edges from verti
es in Si−1 \ Si to verti
es in Si and downward edgesfrom verti
es in Si to verti
es in Si−1 \ Si. As in the basi
 multi-level graph, the lengthof an edge equals the length of a shortest path on the underlying graph. An upward edge

(u, v) with u ∈ Si−1 \Si and v ∈ Si (or an downward edge with v ∈ Si−1 \Si and u ∈ Si)is only inserted if and only if no other vertex w ∈ Si is on a shortest path from u to v.The min-overlay algorithm 
an be altered to 
onstru
t the extended multi-level graph.By 
hanging the last step where the new edges are introdu
ed we 
an 
onstru
t downwardedges: we 
onsider also verti
es v ∈ V \S and an edge is introdu
ed if dist(u, v) = (·, 0).Upward edges are 
onstru
ted by running Dijkstra's algorithm for all verti
es of theunderlying graph instead of running it only for verti
es in Si, and by introdu
ing an edge
(u, v) if and only if dist(u, v) = (·, 0).3.5.2 QueryTo answer a given s-t-query, only a subgraph of the basi
/extended multi-level graph hasto be sear
hed. This subgraph is theoreti
ally determined by a 
onstru
t 
alled tree of
onne
ted 
omponents, whose des
ription we want to omit be
ause it is not of importan
efor the update of the multi-level graph. Therefore, we only sket
h the sear
h algorithm.The extra information of the tree of 
onne
ted 
omponents that is used for the query isa partition of ea
h level i− 1 that is indu
ed by the verti
es in Si. We use the followingnotation: given an integer 1 ≤ i ≤ l and a vertex v on the subgraph of the multi-levelgraph that is indu
ed by the verti
es Si−1 \ Si, then Cv

i denotes the maximal 
onne
ted
omponent on that subgraph 
ontaining v. From now on, we assume that the stru
ture31



CHAPTER 3. SPEED-UP TECHNIQUESof the 
omponents Cv
i is known.Assume that s is a level-k, t is a level-h vertex. Starting a Dijkstra's sear
h at s, theshortest s-t-path query on the basi
 multi-level graph has to 
onsider only edges 
ontainedin Ek while sear
hing in Cs

k. The 
omponent Cs
k may only be left to a vertex v of higherlevel k + n, n ∈ N>0. When relaxing the outgoing edges e of v, only those 
ontainedin Ek+n are 
onsidered. The same holds for ea
h following level: 
onne
ted 
omponentsmay only be left to a vertex of higher level.When the sear
h as
ends to the highest level or a level i on whi
h s and t are in the same
onne
ted 
omponent on the subgraph of G indu
ed by the verti
es V \ Si+1, no higherlevels have to be 
onsidered. All edges of that level i may be used and the sear
h maydes
end in dire
tion of t. Here, the sear
h spa
e is pruned analogously. When we relaxoutgoing edges from a vertex of level k + n with k + n > i we 
onsider all edges of level

i instead of all edges of level k + n.The query 
an be further improved by a similar sear
h using the edges of the extendedmulti-level graph.

s

tFig. 3.6: sear
h-spa
e for an s-t-query on the example 2-level multi-level graphThe important tuning parameter of this te
hnique are number of levels and numberand sele
tion of the verti
es in Si. We refer to [HSW06℄ for an experimental study ofdi�erent 
riteria for sele
ting these verti
es. An exa
t des
ription of the query algorithmand proofs of the 
orre
tness of the method 
an be found in [SWZ02℄.3.5.3 Dynami
 UpdateMotivationWe 
onsider a graph G = (V,E) and its min-overlay graph MO indu
ed by a set ofverti
es S whi
h we 
all separator verti
es here. Intuitively speaking, the verti
es in Sseparate the graph and the subgraph G− indu
ed by the verti
es V \ S 
onsists of manylittle 
onne
ted 
omponents if the verti
es in S are `well' 
hosen. It is obvious that an32



CHAPTER 3. SPEED-UP TECHNIQUESedge on the min-overlay graph either represents only one edge with end-verti
es in S or
onne
ts verti
es adja
ent to the same 
omponent of G−: a path 
ontaining more thanone edge between two separator-verti
es that are not adja
ent to the same 
omponenthas to traverse at least two 
omponents. Therefore it has to pass at least one otherseparator-vertex and is not represented by an edge in the min-overlay graph.Let us assume an edge u has been updated. To re
ompute the min-overlay graph of G, weonly have to 
onsider separator verti
es adja
ent to the 
onne
ted 
omponent 
ontaining
u. The overlay edges of all other verti
es stay the same. We will later treat some spe
ial
ases where an edge u is not 
ontained in any 
onne
ted 
omponent.As we allow edge insertions and deletions the stru
ture of the 
onne
ted 
omponents mayalter due to an edge udate: 
omponents 
an grow or shrink, be unioned, parted, 
reatedor destroyed. In this 
ase we have to identify these stru
ture-altered 
omponents andmust 
onsider all separator verti
es adja
ent to either the original or the altered/new
omponents.We now present an algorithm that re
omputes an existing multi-level graph level-by-level.The min-overlay graph of ea
h level is re
omputed only 
onsidering separator verti
esadja
ent to 
omponents with updated edges. We also give some strategies to furtherdiminish the set of separator verti
es 
onsidered for re
omputation.OutlineGiven a graph G = (V,E) with length fun
tion lenold : E → R+, a sequen
e of l subsetsof verti
es Si (1 ≤ i ≤ l) with V = S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl and the multi-level graph
ML of G with respe
t to that sequen
e. The update is given by a new length fun
tion
lennew : E → R+. The set of all edges with altered length is denoted by U . We 
all Gthe original graph if we apply the edge lengths lenold and 
all it the altered graph if weapply the edge lengths lennew.To avoid that edges exist that are 
ontained in no 
onne
ted 
omponent we alter ournotion of 
onne
ted 
omponent Cv

i (page 31): we want Cv
i to in
lude also all adja
entseparator verti
es of that level and the edges between these verti
es. If an edge 
onne
tstwo separator verti
es not adja
ent to the same 
omponent we regard those two verti
esand the edge 
onne
ting them as a separate, degenerated 
omponent. We further assumethat for ea
h vertex and ea
h level, the vertex is 
ontained in, a label is given thatidenti�es the a

ording 
onne
ted 
omponent(s) Cv

i .To re
ompute the multi-level graph of G the graph has to be updated level-by-level.Starting with i = 0, we know the set of all updated edges Ui of level i and re
omputethat level as follows: �rst, we update the verti
es' 
onne
ted 
omponent labels. Thisis ne
essary be
ause edge insertions or edge deletions may a�e
t the stru
ture of the
onne
ted 
omponents.Then for ea
h separator vertex s 
ontained in at least one 
omponent C that either
ontains at least one element of Ui or that has 
hanged its form, we re
ompute themin-overlay edges outgoing from s. We remove the min-overlay edges of deleted 
ompo-33



CHAPTER 3. SPEED-UP TECHNIQUESnents. Finally, the 
hanges Ui+1 between the old and the new overlay graphs have to beidenti�ed.The 
orre
tness of this algorithm follows dire
tly from the observation that the edges in-serted by the min-overlay algorithm represent only paths within a 
onne
ted 
omponent.Re
omputation of the min-overlay edges outgoing from a given separator vertexWe use the min-overlay algorithm to re
ompute the min-overlay edges outgoing from aseparator vertex s. The only 
hange in the algorithm is to grow a shortest paths treeonly from s instead of growing a shortest-paths tree on ea
h separator vertex. Thereforethe �rst line of Algorithm 4, page 30 
hanges to for vertex s do.Full Re
omputation of a Conne
ted ComponentWhen dealing with updates that `seem to have a great impa
t on the shortest path stru
-ture of a 
onne
ted 
omponent C', it is reasonable to re
ompute the overlay edges for ea
hseparator vertex 
ontained in that 
omponent. Espe
ially in the 
ase that many edges ofa 
omponent have 
hanged their lengths, this approa
h is likely to be runtime-optimalamong all possibilities that use no extra information gathered for handling dynami
 up-dates.Sophisti
ated Re
omputation of a Conne
ted ComponentBasi
s. However, we believe that another strategy does better if the number of updatededges within a 
onne
ted 
omponent is small in relation to the 
omponent. For simpli
ity,we restri
t this des
ription to 
omponents that have not 
hanged their form. Given a
omponent C on a graph G, the set of separator verti
es S 
ontained in C, old and newlength fun
tions lenold, lennew and the set U of edges with updated length. We 
all Gthe original graph if we apply lenold and 
all it the altered graph if we apply lennew.Re
omputation. We know that the update of an edge (u, v) 
an only in�uen
e an edgebetween two separator verti
es s and t on the min-overlay graph if at least one shortestpath between s and t has no other separator vertex on the subpath from s to u and noother separator vertex on the subpath from v to t.We use a modi�
ation of the min-overlay algorithm to identify all verti
es S− ⊆ S thatare sour
e verti
es of overlay edges that have to be 
onsidered for the re
ompution: to �nd
S− we run, for ea
h edge (u, v) in U , Dijkstra's algorithm rooted at v on the ba
kward
omponent (the 
omponent with the ba
kward edge set) of the original graph. The edgeweights and addition are de�ned analogously to the edge weights and addition in themin-overlay algorithm: the length of an edge (x, s) with s ∈ S (that are all edges thatgo out from a separator vertex on the ba
kward edge set) is (len(x, s),−1). The lengthof ea
h edge (w, v) with w 6= u is (len(w, v),−1). The length of all other edges (x, y) is
(len(x, y), 0). We stop the sear
h when all verti
es in the queue have distan
e of at most
(·,−1). We repeat the sear
hes on the altered graph.34



CHAPTER 3. SPEED-UP TECHNIQUESLet S− denote the set of all verti
es w ∈ S with distan
e (·, 0) visited in at least one of thesear
hes. By the 
onstru
tion of S− we know that S− 
ontains all separator verti
es fromwhi
h, either on the original or the altered graph, a shortest path starts that 
ontains anupdated edge (u, v) and has no other separator vertex on the path from w to v.
S
−Fig. 3.7: S
hemati
 representation of S− in a 
onne
ted 
omponent 
ontaining an up-dated edge.

Therefore, the outgoing overlay edges of all verti
es in S \S− remain the same. We onlyhave to re
ompute the overlay edges outgoing from a vertex in S−. Figure 3.7 shows as
hemati
 example for S− within a 
onne
ted 
omponent.If the extended multi-level graph is to be updated, we de�ne S− to 
onsist of all verti
es
v ∈ S with distan
e (·, 0).
Bidire
tional VariantAnalogously, we 
an run the sear
hes used to �nd S− also on the original edge set (insteadof on the reverse edge set) of the original and the altered graph with the sour
e vertexof ea
h updated edge as roots. We denote the resulting set by S+ and know that S+
ontains all separator verti
es at whi
h, either on the original or the altered graph, ashortest path ends that 
ontains an updated edge and has no other separator vertex onthe path from the updated edge to the separator vertex. To re
ompute the a

ordingoverlay edges, we 
an pro
eed as in the �rst 
ase but have to run the algorithm on thereverse edge set.A promising heuristi
 to redu
e the 
ost of the min-overlay re
omputation is to 
omputeboth sets, S+ and S−. Then, the re
omputation should be performed using the set
ontaining fewer verti
es. Figure 3.8 shows an s
hemati
 example for S− and S+ withina 
onne
ted 
omponent. 35
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S
−

S
+

Fig. 3.8: S
hemati
 representation of S− and S+ in a 
onne
ted 
omponent 
ontainingan updated edgeImprovement for the Bidire
tional Variant. Assume that only one edge on thegraph has 
hanged its length. Before performing the update of the basi
 multi-levelgraph, S− and S+ 
an be further diminished. On
e again we want to stress that theupdate of an edge 
hanges the min-overlay graph only if it lies on a shortest path, eitheron the original or on the altered 
omponent.After performing the algorithm to 
ompute S− and S+, we know for ea
h updated edge
(u, v) and ea
h vertex s− ∈ S− the distan
e from s− to u on the original graph. For ea
hupdated edge e and ea
h vertex s+ ∈ S+ we know the distan
e from the v to s+.We observe that the in
rement of an edge (u, v) 
an a�e
t the min-overlay graph only if
(u, v) is on a shortest path between two separator verti
es on the original graph. We 
anex
lude that (u, v) is on a shortest path (represented on the min-overlay graph) between
s− ∈ S− and s+ ∈ S+ if dist(s−, u)old + len(u, v)old + dist(v, s+)old is greater than thelength of the min-overlay edge between s− and s+. Figure 3.9 visualizes that 
ondition.
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s
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s
+

Fig. 3.9: S
hemati
 representation of a 
onne
ted 
omponent. The red edge 
annot beon a path responsible for the dashed overlay edge between s− and s+.A similar argument works for de
remented edges. The de
rement of an edge (u, v) 
anonly a�e
t the min-overlay graph if a path between two separator verti
es s− and s+ issmaller than the a
tual shortest path.Con
luding, to re
ompute the overlay graph, we only have to 
onsider separator verti
es36
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s− ∈ S− for whi
h at least one edge with in
remented length (u, v) and one vertex
s+ ∈ S+ exists su
h that an overlay edge between s− and s+ exists and
distold(s

−, u)+ lengthold(u, v)+distold(v, s+) = lenold(overlay edge between s− and s+)or at least one edge with de
remented length (u, v) and one vertex s+ ∈ S+ exists su
hthat either no overlay edge between s− and s+ exists or
distnew(s−, u) + lengthnew(u, v) + distnew(v, s+) <

lenold(overlay edge between s− and s+)Note that this strategy 
an be enhan
ed to handle updates 
ontaining multiple edges. Thepro
eeding for pure in
remental or pure de
remental updates is obvious. The possibilityto enhan
e it to handle the fully dynami
 
ase results from the observation that a shortestpath that 
hanges be
ause of the update of a set of edges U must 
ontain at least oneend vertex of an edge in U .With Use of Additional Data. If we store, for ea
h edge e of the overlay graph, allshortest paths that are responsible for the existen
e of e, we 
an further speed-up theupdate: we only have to 
onsider all verti
es v ∈ Si from whi
h su
h a shortest path
ontains either an in
remented edge or an end-vertex of a de
remented edge. A problemof this strategy is that it will e�e
t in the 
onsumation of a huge amount of memory.Comments. Finally, we want to stress that the 
hoi
e of the sets Si usually is dependenton the underlying graph. Our update strategy does not update the sets Si and thereforeall these pro
eedings are no exa
t re
omputations of the prepro
essing. However, thepro
eedings are useful be
ause they are quality preserving as long as the 
hanges betweenoriginal and altered graph stay `little enough'.
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CHAPTER 3. SPEED-UP TECHNIQUES3.6 Highway Hierar
hiesThis fairly new te
hnique is due to Sanders and S
hultes [SS05℄ and works on undire
tedgraphs. A paper [SS06℄ presenting an improved version that also works on dire
tedgraphs is to appear. Its main idea is to transform the original graph into a hierar
hi
algraph 
ontaining the original graph as �rst level. Ea
h level i is like the former level i− ibut only edges and verti
es that are in the middle of shortest paths that 
ontain manyverti
es on the level i − 1 are kept on level i. Additionally, the remaining subgraph gets
ontra
ted in some way. The query uses a modi�ed version of Dijkstra's algorithm thatis run on the prepro
essed, hierar
hi
al graph and strongly prunes the sear
h spa
e.3.6.1 Data Stru
tureThe usage of highway hierar
hies requires the notion of 
anoni
al shortest paths. Al-though in [SS05℄ the 
anoni
al shortest path is de�ned more general than in this work werestri
t here to our de�nition and always think of the version that 
omputes 
anoni
alshortest paths when we talk of Dijkstra's algorithm.To distuingish whi
h edge is far enough to the ends of a shortest path to keep it on thenext level, we �rst have to de�ne the notion of H-neighbourhood: given the 
ase that thepriority queue used by Djikstra's Algorithm 
ontains more than one minimal element,we �x an arbitrary but deterministi
 rule whi
h vertex to take. Then, the Dijkstra rank
rs(v) is the number of verti
es already �nished by a Dijkstra's algorithm starting at s atthe time the vertex v gets marked as �nished. For a given vertex s and an integer H,we denote by dH(s) the distan
e of the H-
losest vertex from s. The H-neighbourhood
NH(s) is de�ned as NH(s) := {v ∈ V | D(s, v) ≤ dh(S)}. From now on we �x anarbitrary H and only write N(s).Now we are able to des
ribe an iterative pro
eeding that 
onstru
ts a sequen
e of graphs
(Gi)i=0...n 
alled highway hierar
hy. Ea
h graph in that sequen
e represents one level ofour hierar
hi
al graph used for the sear
h. As mentioned, the �rst graph in the sequen
eis the original one. Ea
h following graph is 
omputed by building the highway network
Gi+1 of a 
ontra
ted version G′

i of its prede
essor. This is done in two steps:The �rst step removes all edges (u, v) from G′
i that do not belong to a (
anoni
al) shortestpath P = (s, . . . , u, v, . . . , t) with v 6∈ N(s) and u 6∈ N(t). Furthermore all verti
es thatbe
ame isolated are also removed. The resulting graph is the highway network Gi+1.In the 
ontra
tion step G′

i+1 is built: the graph is split into its maximal vertex indu
edsubgraph with minimum degree two (we 
all that the 2-
ore of the graph) and all atta
hedtrees (that are trees whose roots belong to the 2-
ore, but all other verti
es do not belongto it). Then all atta
hed trees are removed. The remaining graph may 
ontain paths
(u0, u1, . . . , uk) where ea
h inner vertex u1, u2, uk−1 has degree 2. We 
all that pathslines and repla
e every line by a new edge (u0, uk). The resulting graph is the 
ontra
tedhighway network G′

i+1.
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CHAPTER 3. SPEED-UP TECHNIQUES3.6.2 QueryThe query used by this te
hnique is a modi�ed bidire
tional Dijkstra's algorithm that isrun on a graph G̃ = (Ṽ , Ẽ). This graph 
onsists of all graphs G0, G1, . . . , GL. Note thatfor every vertex v and every level l with v ∈ Gl the graph G̃ 
ontains a 
opy vl of v.For all verti
es v ∈ G and all pairs vl, vl+1 ∈ G̃ additional edges (vl, vl+1) with length 0are inserted. These edges are 
alled verti
al edges and 
onne
t the instan
es of the samevertex in 
onse
utive levels. We 
all all other edges (those are all 
ontained in Gi for an
i ≤ L) horizontal edges.The graph is enri
hed with the following information: for ea
h vertex v ∈ G and ea
hlevel l ≤ L the distan
e to the H-
losest node in level l, dl

H(v) is given. By de�nition weset dl
H to be in�nity if l = L or v 6∈ G′

l. We 
all the H-neighbourhood of a vertex v ∈ G′
l

N l(v) = {v′ ∈ V ′
l | d(v, v′) ≤ dl

H(v)}.To answer an s-t-query, both dire
tions of the bidire
tional Dijkstra's algorithm areexpanded by the following rules:
• A vertex v is an entran
e point if it either has been settled via an verti
al edge orif v ∈ G′

i and has been �nished from an horizontal edge starting at a vertex in Gi.The 
orresponding entran
e point of a �nished vertex v is the last entran
e pointon the path to v. In ea
h level l, no horizontal edge is relaxed that would leave theneighbourhood N l(v∗) of the 
orresponding entran
e point v∗.
• Never visit a vertex v ∈ Gi \ G′

i by a horizontal edge starting at a vertex v′ ∈ G′
i.Furthermore a di�erent abort 
riterion is used: pro
eed the sear
hes until both sear
hs
opes have met. Pro
eed further and abort as soon as for ea
h dire
tion starting from

d ∈ {s, t} the sear
h from d has no rea
hed but unsettled vertex on levels i where i islower or equal to the level of an horizonal edges that has been skipped by the oppositesear
h.3.6.3 CommentsA proof of the 
orre
tness, further improvements on that pro
eeding and a des
ription ofthe highway network's 
onstru
tion and 
ontra
tion 
an be found in the original works.An interesting formulation of the highway-hierar
hy te
hnique that shows the 
onne
tionbetween this te
hnique and rea
h-based pruning is stated in [GKW05℄.
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CHAPTER 3. SPEED-UP TECHNIQUES3.7 Rea
h-Based PruningRea
h is an edge measure value introdu
ed by Gutman in [Gut04℄. The rea
h of an edgeis high, if it lies in the middle of long shortest paths. This 
an be used for pruning edgeswhen performing Dijkstra's sear
h: if the sear
h is far enough from target and sour
e onlyedges with high rea
h have to be 
onsidered. This way, the sear
h spa
e is sparsi�
atedusing the rea
h value. The de�nition of rea
h, des
ribed in the original work is a verygeneral one. The de�nition, 
onstru
tion- and pruning-strategies we use in this paperhold mainly to a modi�
ation of the original rea
h des
ribed in [GKW05℄. Se
tion 4.8,page 57 shortly reports the di�eren
es between this des
ription and the des
riptions in[Gut04℄ and [GKW05℄. Chapter 4, page 44 explains how to 
onstru
t rea
h values andupper bounds for rea
h values while Chapter 5, page 59 des
ribes a dynami
 algorithmthat e�
ently updates prepro
essed upper bounds for rea
h values.3.7.1 De�nitionDe�nition 2 (Rea
h) Let P be a path from s to t and (v,w) be an edge on P . Wedenote by P(s,w) the subpath of P from s to w and by P(v,t) the subpath of P from
v to t. Then the rea
h of (v,w) with respe
t to Prea
hP (v,w) = min{len(P(s,w)), len(P(v,t))}is the minimum of the length of the pre�x of P and the length of the su�x of P .The rea
h of an edge (v,w) (within a graph G) is de�ned asrea
h(v,w) = max

P is 
anoni
al path on G
P 
ontains(v,w)

{rea
hP (v,w)}the maximum over all shortest paths P through (v,w), of the rea
h of (v,w) withrespe
t to P . We 
all a path P responsible for the rea
h of an edge (v,w) if the rea
hof (v,w) with respe
t to P is the rea
h of (v,w).
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Fig. 3.10: Rea
h values of a sample graph. Bla
k numbers represent edge lengths, rednumbers rea
h values. 40



CHAPTER 3. SPEED-UP TECHNIQUES
10 30 25 40

10 40 65 40Fig. 3.11: Rea
h values of a sample path. Bla
k numbers represent edge lengths, rednumbers rea
h values.An algorithm that 
omputes rea
h values 
an be found in the next se
tion. As 
omputingrea
h values is very time-expensive while upper rea
h values 
an be 
omputed in mu
hshorter time, these are used for rea
h-based pruning. Their 
onstru
tion 
an also befound in the next se
tion.3.7.2 QueryWe modify a distan
e balan
ed bidire
tional Dijkstra's sear
h to sparsi�
ate the sear
hspa
e using upper rea
h-bounds. It is obvious that an edge (u, v) 
an only be on a shortestpath from s to t if dist(s, u) + len(u, v) or dist(v, t) + len(u, v) is lower or equal to therea
h of (u, v). If lower bounds dist(s, u) for the distan
es from s to (u, v), dist(v, t) forthe distan
es from (u, v) to t and an upper bound reach(u, v) for the rea
h of (u, v) areknown, we 
an ex
lude all edges (u, v) with
dist(s, u) + len(u, v) > reach(u, v) and dist(v, t) + len(u, v) > reach(u, v)from the sear
h. When the edge (u, v) is relaxed by the dire
tion that starts at s, theexa
t distan
e from s to u is known by the distan
e label dist(s, u) of u. If v has notbeen �nished by the opposite dire
tion the minimal distan
e of all verti
es in the queueof the opposite dire
tion is a lower bound for the distan
e from v to t. We 
all a distan
ebalan
ed bidire
tional sear
h using that arguments a bidire
tional bound algorithm:De�nition 3 (Bidire
tional Bound Algorithm) Given a single-sour
e single-target problem with sour
e s and target t on a graph G = (V,E) and upper rea
h-bounds reach(u, v) for ea
h (u, v) ∈ E.By the bidire
tional bound algorithm we denote the distan
e balan
ed bidire
tionalDijkstra's algorithm whose forward sear
h does not relax every edge (u, v) with

dist(s, u) + len(u, v) > reach(u, v) and γ + len(u, v) > reach(u, v)and whose ba
kward sear
h does not relax every edge (u, v) with
dist(v, t) + len(u, v) > reach(u, v) and γ + len(u, v) > reach(u, v)where γ denotes the smallest distan
e label of all verti
es in the priority queue of theopposite sear
h.
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CHAPTER 3. SPEED-UP TECHNIQUES
s

t

u

v

Fig. 3.12: S
hemati
 view of a Dijkstra's sear
h from s to t. The area around the edge
(u, v) represents all verti
es with distan
e to (u, v) lower than the rea
h of theedge. The edge 
an be pruned by both, the bidire
tional bound algorithm andthe self-bounding algorithmA variant of that pro
eeding where both sear
hes are more independent from ea
h otheris the self-bounding algorithm. Here, an edge (u, v) is not relaxed if dist(s, u)+len(u, v) >

reach(u, v). The reverse sear
h starting at t pro
eeds a

ordingly. Note, that an edgeon a shortest s-t-path that is not relaxed by one sear
h may be relaxed by the opposite.To assure the 
orre
tness of the algorithm the stopping 
riterion must be modi�ed.De�nition 4 (Self-Bounding Algorithm) Given a single-sour
e single-targetproblem with sour
e s and target t on a graph G = (V,E) and upper rea
h-bounds
reach(e) for every e ∈ E.By the self-bounding algorithm we denote the distan
e-balan
ed bidire
tional Dijk-stra's algorithm whose forward sear
h does not relax every edge (u, v) with

dist(s, u) + len(u, v) > reach(u, v)and whose ba
kward sear
h does not relax every edge (u, v) with
dist(v, t) + len(u, v) > reach(u, v)and that uses the following stopping 
riterion: stop the sear
h in a given dire
tion ifthere are either no visited verti
es or the minimal distan
e label of all visited verti
esis at least half the length of the shortest path seen so far.The implementation of both algorithms 
an be improved by sorting the outgoing edges

(u, v) of ea
h vertex u des
ending by the value reach(u, v)−len(u, v). For ea
h edge (u, v)whi
h has been pruned from the sear
h, all edges (u,w) with minor value reach(u,w) −
len(u,w) also have to be pruned. Therefore, the sorting enables the implementation toskip these edges without 
he
king the pruning 
ondition.42



CHAPTER 3. SPEED-UP TECHNIQUES
s

t

u

v

Fig. 3.13: S
hemati
 view of a Dijkstra's sear
h from s to t. The area around the edge
(u, v) represents all verti
es with distan
e to (u, v) lower than the rea
h of theedge. The edge 
annot be pruned by the bidire
tional bound algorithm but bythe sear
h starting at t when performing the self-bounding algorithm3.7.3 Corre
tnessThe 
orre
tness of the algorithms mainly transfers from the 
orre
tness of the bidire
-tional sear
h. To prove the 
orre
tness of the self-bounding algorithm, the existen
e oftwo 
ases must be ex
luded additionally:

• There exists an edge e on a shortest s-t-path that is pruned by both sear
hes.
• There exists an edge e on a shortest s-t-path that is pruned by one sear
h and thestopping 
riterion of the opposite sear
h holds before e 
an be relaxed.The main argument to ex
lude both 
ases is that an edge e on a shortest s-t-path 
anonly be pruned by the sear
h starting at the vertex p ∈ {s, t} that is further away from

e.
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4 Stati
 Rea
h Prepro
essingWe pre
isely des
ribe a simpli�ed version of the prepro
essing used in [GKW05℄ to getupper rea
h-bounds for the speed-up te
hnique des
ribed in se
tion 3.7.4.1 Exa
t Rea
hComputing rea
h values is very time-expensive. Just applying the plain de�nitions, theshortest paths between any two verti
es u, v must be 
onsidered. That leads to solvenearly n2 single-sour
e single-target shortest path problems. The following algorithmmerges these problems to n single-sour
e all-target problems and therefore grows a fullshortest paths tree Tx on ea
h vertex x. After a shortest paths tree Tx has been grown we
ompute for ea
h edge e on the tree the rea
h with respe
t to the longest path through
e that is 
ontained in Tx. After building all shortest paths trees we have 
onsidered allshortest paths that are responsible for the rea
h of at least one edge. Therefore, givenan edge e we gain the exa
t rea
h value of e by taking the maximum of its formerly
omputed rea
h values.Algorithm 5: Exa
t Rea
hforall edges e ∈ E do1 initialize rea
h(e)=02 forall verti
es x in V do3 grow full shortest path tree Tx with root x4 forall edges (u, v) in Tx do5

d = farthest des
endant of v in Tx6
height(u, v) = dist(x, v)7
width(u, v) = dist(u, d)8
reach(u, v) = max(reach(u, v),min(height, width))9Unfortunately, this strategy is unsuitable for large graphs. As mentioned, we solve thatproblem by 
omputing upper rea
h-bounds instead of the exa
t ones. From now on, wewill refer to rea
h values as exa
t rea
hes and, as no lower bounds are used, to upperrea
h-bounds as rea
h-bounds.44



CHAPTER 4. STATIC REACH PREPROCESSING4.2 MotivationThe main idea of the rea
h-bound 
omputation algorithm is similar to the one for exa
trea
hes. Shortest paths trees are grown from every vertex v. But other than in the exa
t
ase the trees are not grown over the whole graph but will be `
ut' at a 
ertain length.We 
all the resulting tree a partial tree. But we are only able to 
ompute rea
h-boundsfor every edge with exa
t rea
h lower than a 
ertain treshold ǫ when we use partial treesinstead of full shortest paths trees.These edges will now be removed from the graph and new, bigger partial trees are grownon the resulting, sparsi�
ated graph. Then we will use a penalty-fun
tion to take thedeleted edges into a

ount and are able to 
ompute rea
h-bounds for edges with rea
hlower than a new, bigger threshold ǫ2. This pro
ess will be iteratively repeated untilenough rea
h-bounds are 
al
ulated.4.3 OutlineGiven a graph G = (V,E) with length fun
tion len : E → R+, two as
ending sequen
esof numbers ǫi and δi whi
h are tuning parameters that restri
t the size of the partialtrees, the stati
 rea
h-bound 
omputation algorithm works as follows:
Initialization Iteration Step Break Condition

yes

no

G0 = G = (V, E)

∀e ∈ E :

enough reach bounds computed
or
maximal iteration level reached

Input:
reachbounds[]

Output: Gi+1 = (Vi+1, Ei+1)
updated reachbounds[]

Gi = (Vi, Ei)

compute reachbounds by
growing partial trees on
each vertex v in Gi

reachbounds[e] = ∞

At initialization, we set G0 := (E0, V0) := G and denote for every edge e ∈ E with
reachBoundi(e) the 
omputed rea
h-bound of e at iteration step i. reachBound(e)0is set to in�nity for ea
h e in E. Then the algorithm iteratively performs (rea
h-bound
omputation-)steps until a break 
ondition is ful�lled. We 
ount these steps starting withzero. The break 
ondition needs two more tuning parameteres maxIt and desiredBoundsand splits into two parts: stop the algorithm if either a 
ertain number of iterations maxItis rea
hed or rea
h-bounds have been found for at least desiredBounds edges.We now des
ribe the pro
eeding within a single step: the input of the i-th rea
h-bound
omputation-step 
onsists of the original graph and the 4-tupel (Gi, reachBoundi(·), ǫi, δi).The output of the i-th rea
h-bound 
omputation-step is a graph Gi+1 ⊆ Gi and a validrea
h-bound reachBoundi+1(e) of ea
h edge e ∈ E \ Ei+1. Formerly 
omputed rea
h-bounds lower than in�nity stay the same while rea
h-bounds remain in�nity for edges45



CHAPTER 4. STATIC REACH PREPROCESSINGstill in the new graph Gi+1. Be
ause of that we will often write reachBound(u, v) insteadof reachBoundi(u, v).The i-th step 
omputes the rea
h-bounds impli
itely by 
omputing valid upper boundsfor a variant of the original rea
h on the graph Gi whi
h we 
all penalty rea
h. In thisvariant penalty fun
tions 
alled in-penalty and out-penalty are added to the original rea
hon Gi to 
ompensate the removed edges.The step does so by growing shortest paths trees whose size (`size' in the sense of lengthof the 
ontained shortest paths) is 
ontroled by the tuning parameter ǫi. To prevent thesepartial trees from growing too big (`big' in the sense of 
ontained verti
es) the threshold
δi blo
ks all edges that have lengths greater than δi from being pro
essed.After all partial trees are grown we identify all edges e for whi
h valid penalty-rea
heshave been determined. We remove these edges from the graph to get the input graph
Gi+1 of the next 
omputation-step and save their values as a

ording rea
h-bounds
reachBoundi(e). We furthermore remove all isolated nodes from Gi+1.Canoni
al Shortest Paths. We want to stress that we restri
t ourselves to 
ompute
anoni
al shortest paths (des
ription on page 10). In this and the following 
hapter we arethinking of a 
anoni
al shortest path when we speak of a shortest path. Consequently,when we speak of Dijkstra's algorithm we are thinking of the variant that 
omputes
anoni
al shortest paths.4.4 Penalty Rea
hAs mentioned before, we have to transform the deleted edges into some form of penaltyfun
tion.

u

v w

Consider the situation in the left �gure. We areat the beginning of an arbitrary iteration step i,the dotted edge (u, v) has been removed from thegraph G be
ause a valid rea
h-bound reach(u, v)has been found in a former step. When we tryto determine the rea
h of the edge (v,w) in theoriginal graph the problem o

urs that the path
P responsible for the original rea
h of (v,w) may
ontain the deleted edge (u, v). We 
an 
omputean upper rea
h-bound for (v,w) the following way: either P lies fully on Gi and 
anbe 
omputed only 
onsidering edges on Gi or P 
ontains the edge (u, v). Then we 
anestimate (what we justify in se
tion 4.7, page 54) the length of the pre�x of P (thesubpath from the start vertex to w) by reachBound(u, v) + len(v,w) and 
ompute thelength of the su�x of P (the subpath from v to the endpoint) only 
onsidering edgeson Gi. The rea
h-bound is 
omputed by taking the minimum of su�x and pre�x of P .Sometimes we have to deal with more than one removed, in
oming edge. This is doneby taking the greatest rea
h-bound among all in
oming edges. The same pro
eeding46



CHAPTER 4. STATIC REACH PREPROCESSINGsymmetri
ally works for outgoing edges.As des
ribed in the last se
tion we do not pro
ess edges higher than a threshold δi. Whenwe reinterpret the edge (u, v) of the last example to be su
h an edge our pro
eeding staysnearly the same: instead of estimating the pre�x by reach(u, v) we set that bound toin�nity.Now, we summarize these ideas in the following de�nitions of in-penalty, out-penalty andpenalty-rea
h. The in/out penalties assign to ea
h vertex v on the graph a penalty-valuerepresenting the former possible shortest paths that 
ontain the removed or forbiddenedges.De�nition 5 (Penalty)Given valid upper bounds reachBound(u, v) for the rea
h of ea
h edge (u, v) ∈ G\Giwe de�ne the in-penalty at iteration step i of a vertex v ∈ Vi asiPi(v) =

{

∞ ,∃(u, v) ∈ Ei : len(u, v) > δi

max(u,v)∈E\Ei
{rea
hBound(u, v)}. , otherwiseAnalogously, the out-penalty of v isoPi(v) =

{

∞ ,∃(v, u) ∈ Ei : len(u, v) > δi

max(v,u)∈E\Ei
{rea
hBound(v, u)}. , otherwiseWe de�ne max{∅} to be 0.Given a shortest path P = (s, . . . , v, w, . . . , t), the penalty-rea
h of (v,w) with respe
tto P adds the in-penalty of s to the length of the pre�x and the out-penalty of t tothe length of the su�x of P . The penalty-rea
h of (v,w) on Gi is the maximum of thepenalty-rea
h of (v,w) with respe
t to P over all shortest paths P that 
ontain (v,w).It is a valid rea
h-bound for the exa
t rea
h of e. A proof of that fa
t is given in se
tion4.7.De�nition 6 (Penalty Rea
h)Let P be a shortest path on Gi starting from vertex s and ending in vertex t. Givenan edge (u, v) on P we de�ne the penalty rea
h of (u, v) with respe
t to P aspenRea
hP/Gi

(u, v) = min{iPi(s) + len(s, v), len(u, t) + oPi(t)}Similar to the exa
t 
ase, the penalty rea
h of an edge (u, v) ∈ Ei is de�ned aspenRea
hGi
(u, v) = max

P is 
anoni
al path on Gi
P 
ontains (u,v)

{penRea
hP /Gi(u, v)}
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CHAPTER 4. STATIC REACH PREPROCESSINGNote that the penalty-rea
h of an edge (u, v) ∈ Ei+1 
an be di�erent from the penaltyrea
h of (u, v) ∈ Ei.4.5 Partial TreesWe now des
ribe how we 
an �nd penalty rea
h-bounds of iteration step i for (nearly)all edges e with penalty rea
h of iteration step i, penReachGi(e) lower than a threshold
ǫi. The idea is to grow a shortest paths tree on ea
h vertex v ∈ Gi with a spe
ial break
ondition.The break 
ondition of these partial shortest paths tree has to ensure the following two
laims, all values base on the graph Gi:

• Claim 1: For ea
h edge (u, v) with penReachGi(u, v) ≤ ǫi a shortest path Presponsible for the penalty rea
h of (u, v) shall be in
luded in at least one partialtree.
• Claim 2: For ea
h edge (u, v) with penReachGi(u, v) > ǫi, at least one shortestpath P with penReachP (u, v) > ǫ shall be in
luded in at least one partial tree.A partial tree is built as follows: start Dijkstra's algorithm and keep on pro
essing verti
esfrom the queue until all verti
es v that are at most ǫi away from the su

essor of theroot on the path to v are �nished. We 
all all verti
es v su
h that the distan
e from thesu

essor of the root to v is lower or equal to ǫi the inner 
ir
le. Keep on pro
essingverti
es from the queue until the su

essors of all verti
es that are at most ǫi away fromtheir nearest inner 
ir
le prede
essor are �nished. See the next �gure for an examplepath on su
h a partial tree.

v
w

≤ ǫ

≤ ǫ

> ǫ

> ǫ

We want to show the reason why the �rst edge outgoing from the root of the partial treemay not be 
ounted by the next �gure 4.1:48



CHAPTER 4. STATIC REACH PREPROCESSING
s1 s2

v w x t

ǫ 0.4ǫ 0.4ǫ 0.1ǫ 0.4ǫ 0.4ǫ 0.4ǫFig. 4.1: Minimal path responsible for the rea
h of (v,w). the partial tree rooted at s1without 
ounting the �rst edge 
ontains the full path. The partial tree rootedat s1 with 
ounting the �rst edge 
ontains only the subpath from s1 to x. Thepartial tree rooted at s2 
ontains only the subpath from s2 to t whi
h is notresponsible for the rea
h of (v,w).Now we 
an explain the reason why we do not want very long edges to be pro
essed.Assume that an edge outgoing from the root is a hundred times longer than every otheredge. Then the partial tree has to �nish many other edges until this edge 
an be relaxed.It therefore takes a long time to build su
h a partial tree. Figure 4.2 visualizes thatsituation by an example. Real-world data justify that pro
eeding: The distribution of theedge lengths of the graph of the road-map of Germany (where the edge lengths representthe Eu
lidean distan
e between two points, shown on Figure 6.1, page 83) approximatelyfollows a fun
tion of the form a · e−(length+t) where a and t are real numbers.
s

100

1.5

1.5

1

Fig. 4.2: Partial tree rooted at vertex s that was built without using the delta rule. Thered verti
es represent the partial tree that had been built with use of the deltarule. The a

ording value of epsilon is 1. All edge lengths not on the �gure are30 at most.We formalize the whole pro
eeding of building partial trees by the following de�nitionsof inner 
ir
le and partial tree:De�nition 7 (Inner Cir
le)Given a path P with sour
e x. Let v be a vertex on P and x′ the su

essor of x onthe path to v if exists. v is an element of the inner 
ir
le of P with respe
t to ǫ if itis either the sour
e x or dist(x′, v) ≤ ǫ. 49



CHAPTER 4. STATIC REACH PREPROCESSINGGiven a tree Tx rooted at x. Let v be a vertex on Tx. v is an element of the inner
ir
le of Tx with respe
t to ǫ if it is in the inner 
ir
le of the path from x to v.
De�nition 8 (Partial Tree)Given two numbers ǫ and δ. Let Tx be the shortest paths tree generated by Dijkstra'salgorithm rooted at x for whi
h the following two extra rules are applied:Stopping rule Stop growing the tree when the inner 
ir
le is �nished and for everyvertex v whi
h is less or exa
t ǫ away from the nearest inner 
ir
le prede
essorone of the following 
ondition holds: either it is a leaf and �nished or all dire
tsu

essors of it are �nished.Delta rule Do not relax edges e with len(e) > δ.The partial tree rooted at x with size ǫ and delta δ is the subgraph of Tx indu
ed bythe �nished verti
es.

≤ ǫ

< ǫ

> ǫ

Fig. 4.3: Example of a partial tree. Red and bla
k verti
es represent the inner 
ir
le,white verti
es represent `useless' verti
es that are in the partial tree be
auseother longer paths had to be �nished50



CHAPTER 4. STATIC REACH PREPROCESSINGAfter a partial tree Tx is built we 
an 
ompute reachTx(u, v) of ea
h edge (u, v) on thetree. This is done by taking the minimum of the exa
t depth of (u, v) in Tx (the lengthof the path from the root to v) and the exa
t height of (u, v) in Tx (the length of thelongest path starting at u).To 
ompute the a

ording penalty rea
h of edges 
ontained in Tx we have to 
onsiderea
h path P = (s, . . . , v, w, . . . , t) on Tx and must add the in-penalties and out-penaltieswhen 
omputing the rea
h of (v,w) with respe
t to P . As we are only interested in themaximal penalty rea
h over all partial trees, we 
an �nd a slightly faster way: we 
onsideronly paths (x, . . . , v, w, . . . , t) where x is the root of the partial tree. The 
orre
tness ofthis pro
eeding is easy to see: given a path P ′ = (x′, . . . , v, w, . . . , t) on Tx with x 6= x′that has a higher penalty-rea
h than P = (x, . . . , v, w, . . . , t) then this path (or a subpathof it resulting in the 
ompuation of the same rea
h bound) is also 
ontained in the partialtree rooted at x′. Therefore we have to add the in-penalty of the root vertex to the depthand the out-penalty of the last vertex of a 
onsidered path to the height. We 
all thenew values depth and height of (v,w).On
e again, we formalize that pro
eedingDe�nition 9 (Depth and Height)Given a partial tree Tx. The depth of an edge (u, v) on Tx is dist(x, v) + iP(x).To every vertex l in Tx a new vertex, the so 
alled pseudo leaf, is appended. Theedge-length to the pseudo-leaf shall be oP(l). The height of an edge (u, v) on Tx isthe distan
e between u and its farthest pseudoleaf.
u

v

in Penalty: 10

10

8

25

6

15

11

5

3

20

20

Fig. 4.4: Example for depth and height of an edge (u, v) in a partial tree. The exa
tdepth of (u, v) is 18, the depth 28. The exa
t height of (u, v) is 33, the height48.Summary. The whole 
omputation step i works as follows: grow a partial tree onea
h vertex of Vi. For ea
h edge (u, v) in Ei save the maximal penalty rea
h-bound
possibleReachBound(u, v) of all penalty rea
h-bounds 
omputed by the partial trees.Then, for ea
h edge (u, v) with possibleReachBound(u, v) ≤ ǫi is possibleReachBound(u, v)51



CHAPTER 4. STATIC REACH PREPROCESSINGa valid upper bound for both, the exa
t rea
h of (u, v) and the penalty-rea
h of the a
tualiteration step of (u, v).Theorem 1 (Iteration Step Corre
tness) Given a graph Gi = (Vi, Ei) ⊆ G =
(Vi, E), a length fun
tion len : E → R+, valid upper rea
h-bounds reachbound(u, v)for every edge (u, v) in G \ Gi and two positive numbers ǫi and δi.Let possibleReachBound(u, v) be the maximum of

min{depthTx(u, v), heightTx (u, v)}over all partial trees Tx rooted at x with size ǫi and delta δi.If possibleReachBound(u, v) ≤ ǫ then possibleReachBound(u, v) is a valid upperbound for the rea
h of (u, v) in G.
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CHAPTER 4. STATIC REACH PREPROCESSING4.6 Pseudo
ode of the Stati
 AlgorithmAlgorithm 6: Stati
Rea
hBoundComputation(G,epsilon[℄,delta[℄)input : Graph G = (V,E), len : E → R>0Array epsilon[℄, Array delta[℄ both of same dimensionouput: Rea
h[℄// stores the Rea
hBoundsRea
hIterationStep[℄// stores the iteration step in whi
h the rea
h-bound was 
omputedPartialTreeRoot[℄// stores the root of the partial tree responsible for the rea
h-bound
G′ := G1 forea
h edge e ∈ E do2

Reach[e] := 03
ReachIterationStep[e] := NULL4
PartialT reeRoot[e] := NULL5 forea
h index i, of epsilon, in as
ending order do6 forea
h vertex x in V ′ do7

Tx:=PartialTree(G′ ,x,epsilon[i],delta[i])8 forea
h edge e ∈ Tx do9 if min(depth(e),height(e))>Rea
h[e℄ then10 Rea
h[e℄=min(depth(e),height(e))11 PartialTreeRoot[e℄=x12 forea
h edge e ∈ E′ do13 if Reach[e] > epsilon[i] then14
Reach[e] := 015 else16 Rea
hIterationStep[e℄:=i17

E′ := {e | e ∈ E,bounds[e] = 0}18
V ′ := {v ∈ V | ∃(u, v) ∈ E′ or ∃(v, u) ∈ E′}19
G′ := (V ′, E′)20
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CHAPTER 4. STATIC REACH PREPROCESSING4.7 Proof of Corre
tnessTo guarantee that valid upper rea
h-bounds are 
omputed, we have to proof the followingtwo 
laims:1. Penalty-Rea
h is greater than rea
h: For ea
h Gt and ea
h e ∈ Et: penRea
hGt
(e) ≥rea
hG(e)2. The algorithm 
omputes upper bounds for penalty rea
hes 
orre
tly4.7.1 Penalty-Rea
h is greater or equal to Rea
hWe have to show that for ea
h Gt and ea
h e ∈ Et: penRea
hGt

(e) ≥ rea
hG(e). Wedo that by indu
tion over the iteration step i. In the following we assume that partialtrees are grown without the delta rule, the in- and out-penalties are never set to in�nitybe
ause of an edge with length greater than δ. Be
ause of G = G0 penRea
hG0
(e) equalsthe rea
h of e and the initial step is proven.To prove the indu
tion step we show that penRea
hGt+1

(v,w) is greater or equal topenRea
hGt
(v,w) for ea
h edge (v,w) in Gt+1.

s x’ v
w

y’ t
x yWe �x an arbitrary (v,w) in Gt+1 and 
onsider a 
anoni
al path P in Gt su
h that in

Gt: penRea
hP (v,w) = penRea
h(v,w). Let s be the �rst, t be the last vertex on P ,respe
tively. Let (x, . . . , v, w, . . . , y) be the maximal subpath of P in Gt+1 that 
ontains
(v,w). Let x′ be the prede
essor of x on P , y′ be the su

essor of x on P .All following values in this proof belong to step t if no other index is given. Our aim is toshow that the penalty rea
h of (v,w) with respe
t to the path (x, x2, . . . , xk, v, w, yk, . . . , y2, y)in Gt+1 is at least as high as penRea
hP (v,w).Then, be
ause of the later following Lemma 1:penRea
hGt

(v,w) ≤ min{penRea
h(x′, x) + lenP (x,w),penRea
h(y, y′) + lenP (v, y)}This transforms topenRea
hGt
(v,w) ≤ min{iPGt+1(x) + lenP (x,w), oPGt+1(y) + len(v, y)}

≤ penRea
hGt+1
(v,w)The indu
tion step is proven. Note, that the se
ond inequality uses both, the indu
tionhypothesis and the 
orre
t 
omputation of upper bounds for penalty rea
hes in Gt. The54



CHAPTER 4. STATIC REACH PREPROCESSING
laim is also 
orre
t when the delta rule is to be applied be
ause at any step the penaltyrea
h-bounds 
omputed using the delta rule are at least as big as the penalty rea
h-bounds 
omputed without.
�Lemma 1 With the requisites of this se
tion the follwing two inequalities hold:penRea
h(x′, x) + lenP (x,w) ≥ penRea
hP (v,w)penRea
h(y, y′) + lenP (v, y) ≥ penRea
hP (v,w)Proof 3 penRea
h(x′, x) ≥ penRea
hP (x′, x)

= min{lenP (s, x) + iP(s), lenP (x′, t) + oP(t)}penRea
h(x′, x) + lenP (x,w) ≥ min{lenP (s, x) + lenP (x,w) + iP(s), lenP (x′, t)

−lenP (x′, v) + oP(t)}
= min{iP(s) + lenP (s,w), lenP (v, t) + oP(t)}
= penRea
hP (v,w)The se
ond inequality is proven analogously.

�4.7.2 The algorithm 
omputes upper bounds for penalty rea
hes 
orre
tlyAt the beginning of an iteration step i we �x an arbitrary edge (v,w). Let
possibleReachBound(v,w) be the maximum of

min{depthTx(v,w), heightTx (v,w)}over all partial trees Tx rooted at x with size ǫ and delta δ.We want to show that if possibleReachBound(v,w) is lower or equal to epsilon then
possibleReachBound(v,w) is greater or equal to the penalty rea
h of (v,w) at iterationstep i.It is straightforward to prove that the rea
h of (v,w) on Gi is lower than ǫ if
possibleReachBound(v,w) ≤ ǫ. Therefore for all shortest paths P = (s, . . . , v, w, . . . , t)is either dist(s,w) or dist(v, t) lower or equal to ǫ.Let possibleReachBound(v,w) ≤ ǫ and P̃ = (s, . . . , v, w, . . . , t) be a path responsiblefor the penalty rea
h of (v,w). Let prefix denote the subpath from s to w and suffixdenote the subpath from v to t. 55



CHAPTER 4. STATIC REACH PREPROCESSINGFirst 
ase: len(prefix) < len(suffix). Then is (s, . . . , v, w) fully 
ontained in Ts and
P̃ is fully 
ontained in Ts or the height of (v,w) in Ts is greater than ǫ.Se
ond 
ase: len(prefix) < len(suffix). If len(prefix) ≤ ǫ is P̃ fully 
ontained in
Ps.Let len(prefix) be greater than ǫ. Consider the minimal subpath minprefix = (s̃, . . . , v, w)of the prefix su
h that len(minprefix) ≥ epsilon. Then is suffix fully 
ontained in
Ts̃ and the depth of (u, v) in Ts̃ is greater or equal to ǫ.

�
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CHAPTER 4. STATIC REACH PREPROCESSING4.8 Alternative Rea
h Pruning Strategies4.8.1 Gutman's Rea
hThe original 
on
ept of rea
h introdu
ed in [Gut04℄ di�ers from the one we use. Minorimportant is that Gutman's rea
h values are assigned to verti
es instead of edges andthat the query is only unidire
tional. The main di�eren
e is that Gutman's rea
h valueis indu
ed by a separate, alternative metri
 while the shortest paths responsible for theserea
h values remain shortest paths with respe
t to the original length fun
tion:Given a graph G = (V,E) with length fun
tion len : E → R+ Gutman assumes thata two-dimensional layout of G and a metri
 m : E → R+ is given su
h that for ea
hedge (u, v) in E the value m(u, v) is greater or equal to the Eu
lidean distan
e of bothend-verti
es. For road-maps the Eu
lidean distan
e of the end-verti
es is re
ommendedas su
h a metri
.The rea
h of a vertex v with respe
t to a path (x1, x2, . . . , xl = v = y1, . . . , yk) is de�nedas min{∑l−1
1 m(xi, xi+1),

∑k−1
1 m(yi, yi+1)}. The rea
h of a vertex v is de�ned to bethe maximum over all shortest paths (with respe
t to the len-fun
tion) P 
ontaining vof rea
hes with respe
t to P . Gutman also uses upper rea
h-bounds for the query, therea
h-bounds are 
omputed mu
h like in our des
ription. When performing the querya vertex v 
an be omitted if the rea
h of v is lower than the Eu
lidean distan
e of thesour
e vertex and v and lower than the Eu
lidean distan
e of the target vertex and v.4.8.2 Goldberg's AlgorithmOur version of rea
h-based pruning is a simpli�ed and slightly altered version of Gold-berg's des
ription in [GKW05℄. The di�eren
es are as follows:The most signi�
ant di�eren
e is that in [GKW05℄ an additional te
hnique is used tosparsi�
ate the graph and to speed-up the prepro
essing and the query: between theiteration steps a short
ut step is implemented that repla
es the in- and outgoing edgesof verti
es that have only two neighbour-verti
es by a short
ut edge. This pro
eedingdoes not in�uen
e the 
orre
tness of 
omputed rea
h values and Goldberg reports thatthe prepro
essing speeds up by fa
tor 15 when using short
uts. Further, a speed-up offa
tor 5 is reported when using the short
ut edges for the query.Se
ond, an additional version of rea
h-based pruning is sket
hed: rea
h-based pruning
an be 
ombined with the ALT-algorithm introdu
ed in [GH05℄. The landmarks used inthat te
hnique 
an be exploited as expli
it lower bounds for rea
h-pruning.Minor important is that in [GKW05℄ a heuristi
 earlier stopping 
ondition for partialtrees is applied that e�e
ts in shorter partial trees but a

epts the 
omputation of weakerupper bounds for the rea
h values.Further, Goldberg 
omputes rea
h values for edges but later transforms these edge rea
hvalues into vertex rea
h values. This is done to minimize the memory 
onsumption ofthe prepro
essed data while bene�ting from the stronger rea
h-bounds that result from
omputing edge rea
h values. This 
hange also requires a slightly di�erent handling of57



CHAPTER 4. STATIC REACH PREPROCESSINGthe query.To stronger the rea
h-bounds of edges with high rea
h a re�nement phase is appendedto the normal prepro
essing. This is done by performing an exa
t penalty-rea
h 
ompu-tation on a graph indu
ed by verti
es with high rea
h.Our version of rea
h uses 
anoni
al shortest paths to ensure the uniqueness and inheri-ten
e property of shortest paths while in [GKW05℄ small fra
tions are added to the edgelengths.Finally, Goldberg, Kaplan and Warwi
k do not expli
itely spe
ify how to treat very longedges when growing partial trees. We introdu
ed the delta rule and expanded the in-and out-penalties to handle that problem.
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5 Dynami
 Update of the Rea
hPrepro
essingIn this 
hapter we present an algorithm that e�
ently updates pre
omputed rea
h-boundsfor an altered graph while guaranteeing to get the same bounds that a full re
omputationfrom s
rat
h by the stati
 algorithm would provide. The algorithm handles the updateof multiple edges at the same time and takes advantage of updates `near to ea
h other'.5.1 A �rst Approa
hIn this se
tion we give a small example to show the main ideas of the update algorithm.To re
eive a �rst impression of the `lo
ality' of the partial tree 
omputation we take alook at the maximal height of a partial tree with size ǫ and delta δ.Consider a partial tree T and the last vertex v on T that gets �nished during the 
on-stru
tion of the tree. A

ording to the De�nitions 7 and 8, page 50 
an the path fromthe root of the tree to v be separated into three subpaths, listed in as
ending distan
efrom the root:
• the edge outgoing from the root
• all edges with inner 
ir
le targets without the edge outgoing from the root
• the remaining edges

≤ δ ≤ ǫ ≤ ǫ ≤ δ

. . . . . .

inner circleBe
ause of the delta rule the following boundaries hold: the length of the �rst subpathis at most δ, the length of the se
ond at most ǫ and the length of the third at most ǫ+ δ.This leads to the following lemma:Lemma 1 (Partial Tree Bounding Lemma) Let T be a partial tree of size ǫ anddelta δ. Then the length of every path P on T is at most 2ǫ + 2δ. 59



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGEa
h lemma in this 
hapter is proven at the end of the 
hapter in Se
tion 5.7, page 79.Example. Now, we 
onsider the following situation: rea
h-bounds have been 
omputedfor a graph Gold = (V,E) whi
h afterwards has been 
hanged to a graph Gnew by alteringthe length of one edge (u, v). Our aim is to re
ompute the rea
h prepro
essing's �rstiteration step without starting from s
rat
h. We 
an do so after identifying two sets:
• A set 
ontaining at least all edges whose rea
h-bounds 
omputed in the �rst iter-ation step has 
hanged due to the altered edge length. We 
all su
h a set a rea
hupdate area.
• A set 
ontaining at least all verti
es on whi
h partial trees have to be built tore
ompute proper rea
h-bounds for all edges of an asso
iated rea
h update area.We 
all su
h a set a rea
h re
omputation area (of the asso
iated rea
h update area).Identi�
ation of a Rea
h Update Area. To identify a rea
h update area we exploitthe former estimation of a partial tree's height. We do so by growing four spe
ial shortest-paths trees. Two partial trees are rooted at v and are grown on the reverse edge set (oneon Gnew the other on Gold). The other two partial trees are rooted at u and are grownon the normal edge set (one on Gnew, the other on Gold). Ea
h sear
h will be stoppedwhen the queue is empty or every visited vertex is at least 2ǫ + 2δ away from the root.Ea
h shortest path P that has the following two properties
• the altered edge (u, v) is 
ontained in P

• P is 
ontained in a partial tree of size ǫ and delta δ on Gnew or Goldis 
ontained in the �nished part of one of the four shortest paths trees. It is easy tosee that only edges on su
h paths 
an 
hange their rea
h-bounds when performing the�rst iteration step of a 
omplete new prepro
essing. Therefore the set of all edges thatis 
ontained in at least one of the four shortest paths trees is a rea
h update area.Identi�
ation of a Rea
h Re
omputation Area. To re
ompute the rea
h values ofea
h edge (u, v) 
ontained in the rea
h update area we have to 
onsider ea
h partial treewhose root r has a distan
e to the edge's target v of at most 2ǫ+2δ. For ea
h edge (u, v)on the rea
h update area we grow two shortest paths trees rooted at v: one on the reverseedge set of Gnew the other one on the reverse edge set of Gold. We stop growing thesetrees when ea
h visited vertex is more than 2ǫ + 2δ away from v. The set of all �nishedverti
es that are 
ontained in at least one of the grown trees ful�lls all requirements tobe a rea
h re
omputation area of the former stated rea
h update area.Re
omputation Pro
ess. The re
omputation itself is done by building partial treeson ea
h vertex of the rea
h re
omputation area and, for ea
h edge 
ontained in therea
h update area, estimating new rea
h-bounds as done in the stati
 algorithm. Figure6.8, page 90 shows a s
hemati
 representation of the rea
h update area and the rea
hre
omputation area. 60
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u

v

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

Fig. 5.1: S
hemati
 representation of the rea
h update area (inner area) and the rea
hre
omputation area (inner and outer area)Improvement. The rea
h update area 
an be imagined as the set of all edges thatlie within a ball of radius 2δ + 2ǫ (here, the distan
e between two verti
es shall be theminimal distan
e of the verti
es on Gold and Gnew) around (u, v). A

ordingly, the rea
hupdate area 
onsists of all verti
es that lie within a ball of radius 4δ + 4ǫ around (u, v).We observe (with Lemma 1, page 59) that only partial trees whose roots lie within a ballof radius 2δ + 2ǫ around the updated edge are in�uen
ed by the update of (u, v).We exploit that the following way: we split the rea
h re
omputation area into two areas:the �rst rea
h re
omputation area 
onsists of all verti
es w whose distan
e from w to uis 2δ + 2ǫ at most (these are the roots of partial trees that may 
hange be
ause of theupdate of (u, v)). The se
ond rea
h re
omputation area 
onsists of some verti
es w withdistan
e from w to u between 2δ+2ǫ and 4δ+4ǫ (all partial trees rooted at these verti
esstay the same as in the original 
omputation).We now re
ompute the rea
h values of all edges in the rea
h update area by growingpartial trees only on verti
es of the �rst rea
h update area. After this 
omputation weknow that all edges with tentative 
omputed rea
h bound greater than ǫ will be dumpedafter the iteration step. Therefore they do not have to be further 
onsidered. Assumethat we know for some edges that the rea
h we have 
omputed until now is already
orre
t. Then we do not have to 
onsider them for a further re
omputation.Let S be the set of all edges with still possibly un
orre
t rea
h bound lower than ǫ. These
ond rea
h re
omputation area 
onsists of all verti
es that are at most 2ǫ + 2δ awayfrom the target of an edge in S and that are not in the �rst rea
h re
omputation area.We get 
orre
t rea
h bounds for ea
h edge in S by growing partial trees on ea
h vertexof the se
ond rea
h re
omputation area and 
orre
ting the rea
h bounds of edges in S.61



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGThis pro
eeding is motivated by the fa
t that the rea
h re
omputation area 
onsists ofat least as mu
h verti
es as the union set of �rst and se
ond rea
h re
omputation area.Good speed-up 
an be a
hieved if the rea
h re
omputation area 
ontains many verti
esthat are not in the �rst or the se
ond rea
h re
omputation area be
ause we avoid buildingmany `useless' partial trees in this 
ase. Figure 5.2, page 62 visualizes that by a pi
ture.

u

v

reach recomputation area

reach update area

1st reach recomputation area

2nd reach recomputation areaFig. 5.2: S
hemati
 representation of the rea
h update area, the �rst rea
h re
omputationarea, the se
ond rea
h re
omputation area and the rea
h re
omputation area.Red arrows represent all edges of the rea
h update area that have a possibleun
orre
t rea
h bounds lower than ǫ after growing partial trees on the �rst rea
hre
omputation area.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.2 OutlineNotation. Given a graph G = (V,E) with length fun
tion lenold : E → R+ and two�nite sequen
es of as
ending, positive real numbers ǫi, δi, 1 ≤ i ≤ k. We assume thatrea
h-bounds have been 
omputed for edges in E using the stati
 algorithm des
ribedin the last 
hapter to whi
h we refer here as original 
omputation. The epsilon anddelta values applied to the original re
omputation are ǫi and δi. We denote by Gi/old =
(V,Ei/old) the subgraph pro
essed at iteration step i of the original 
omputation. Therea
h-bound of ea
h edge (u, v) 
omputed by the original 
omputation is denoted by
reachBoundold(u, v). We set reachBoundold(u, v) to in�nity for ea
h edge (u, v) withoutvalid original-
omputation rea
h-bound.We further assume that for ea
h edge (u, v) with rea
h-bound lower than in�nity theroot partialT reeRootold(u, v) of the partial tree responsible for the rea
h-bound of (u, v)
omputed by the original 
omputation is known. Note that this is additional data notne
essary in the stati
 
ase but 
an be 
omputed very easily. To do that, we alreadyadded the lines 5 and 14 to the pseudo 
ode of Algorithm 6, page 53.Given an updated length fun
tion lennew : E → R+ our aim is to update the rea
h-bound prepro
essing. We denote by U the set of all edges with altered length. To avoidany ambiguity we refer to the 
omputation from s
rat
h with respe
t to lengthnew, ǫiand δi using the stati
 algorithm as full re
omputation.The variable names when doing the full re
omputation remain the same but the subs
ripts
hange from old to new. Note that E0/old = E0/new = E.We will notate a partial tree with root x and grown on the graph Gi/new as Tx/new,grown on the graph Gi/old as Tx/old. We denote by penReachTx/new

(u, v) the maximumof penalty depth and penalty height of an edge (u, v) on Tx/new with respe
t to the graph
Gi/new. By 
onvention, penReachTx/new

(u, v) is set to in�nity if (u, v) is not in
luded in
Tx/new.Edge deletions and insertions. As de
ribed in the presentation of the problem,page 9, we regard edge deletions and edge insertions as spe
ial 
ase of updated edges bysetting the a

ording lengths to in�nity. We do not 
onsider su
h edges when we 
omputepenalties. This pro
eeding is justi�ed by the observation that both, exa
t rea
h valuesand the 
omputed rea
h-bounds do not 
hange be
ause of edges with length in�nity.Algorithm. Our algorithm updates the stati
 
omputation step-by-step using the same
ǫ and δ values as used in the original prepro
essing. The algorithm works as follows:
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING
identify changes in the input data

Iteration Step

all steps recomputed?
no

yes

identify a set of at least all roots of partial trees
that potentially alter because of the altered input
data (the 1st reach recomputation area)

compute reach bounds for all edges in the reach up-
date area by growing a partial tree on each vertex
in the 1st reach recomputation area

identify edges of the reach update area with possibly
still uncorrect reach bounds

identify a set of partial tree roots necessary to cor-
rect the possibly false reach bounds computed in the
last step (the 2nd reach update area)

correct reach bounds of edges in the reach update
area by growing partial trees on each vertex in the
2nd reach update area

identify a set of at least all edges with possibly
changing reach bounds (the reach update area)

Section 5.3

Section 5.4

Section 5.5

Section 5.6

Section 5.6

Section 5.6

Section 5.6

Fig. 5.3: Work�ow of the dynami
 re
omputation algorithm64



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.3 Update TypeAt the beginning of the iteration step the 
hanges between the original and the new inputof the iteration step have to be found. We assign to ea
h edge e on the graph one of thefollowing six update types:De�nition 10 (Update Typei) An edge e is said to be ofUpdateTypein
 (no 
hange) if the atta
hed edge data has not 
hanged at all.Formal de�nition: (e ∈ Ei/new, e ∈ Ei/old and lennew(e) = lenold(e)) or
(e 6∈ Ei/new, e 6∈ Ei/old and reachBoundold(e) = reachBoundnew(e)).UpdateTypeild≤ δ (lengths di�er) if the edge is 
ontained in the new and theold input graph of the iteration step but the edge length has 
hanged and bothedge lengths are lower or equal to δi. Formal de�nition: e ∈ Ei/new, e ∈ Ei/old,
lennew(e) <> lenold(e), lennew(e) ≤ δi and lenold(e) ≤ δi.UpdateTypeild> δ (lengths di�er) if the edge is 
ontained in the new and theold input graph of the iteration step but the edge length has 
hanged and bothedge lengths are greater than δi. Formal de�nition: e ∈ Ei/new, e ∈ Ei/old,
lennew(e) <> lenold(e), lennew(e) > δi and lenold(e) > δi.UpdateTypeild>< δ (lengths di�er) if the edge is 
ontained in the new and theold input graph of the iteration step but the edge length has 
hanged, oneedge length is greater than δi and one lower or equal to δi. Formal de�nition:
e ∈ Ei/new, e ∈ Ei/old, lennew(e) <> lenold(e) and ((lennew(e) > δi and
lenold(e) ≤ δi) or (lennew(e) ≤ δi and lenold(e) > δi)).UpdateTypeibd (rea
h-bounds di�er) if rea
h-bounds have already been 
om-puted in the old and the new input data but di�er. Formal de�nition:
e 6∈ Ei/new, e 6∈ Ei/old and reachBoundold(e) <> reachBoundi/new(e).UpdateTypei
s (
omputation status di�ers) if a rea
h-bound has alreadybeen 
omputed in the old input but not in the new one or the other wayaround. Formal de�nition: e 6∈ Ei/new, e ∈ Ei/old or e ∈ Ei/new, e 6∈ Ei/oldWe denote by Ui the subset of E that 
ontains all edges that do not haveUpdateTypei n
.We say an edge is of UpdateTypeild if it is of UpdateTypeild> δ, UpdateTypeild≤

δ or UpdateTypeild>< δ.Obviously every edge in Ei/old or Ei/new is of exa
t one UpdateTypei. We also observethat no rea
h-bound has been 
omputed for an edge of UpdateTypeild until step i.65



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.4 Rea
h Update AreaNow we are at the beginning of iteration step i. The input of the original 
omputationis the graph Gi/old and its output is Gi+1/old. The input of the full re
omputation is thegraph Gi/new and its output is Gi+1/new. We know the di�eren
es Ui between Gi/old and
Gi/new. If we know a set 
ontaining all edges that di�er in Gi+1/old and Gi+1/new (thatare all edges in Ui+1) we only have to re
ompute the rea
h bounds of these edges and
an 
opy the rea
h bounds 
omputed at iteration step i of all other edges from Gi+1/oldto Gi+1/new.Therefore the �rst task is to �nd a set 
ontaining at least all edges for whi
h the inputdata of iteration step i + 1 in the original 
omputation di�ers from the input data of thefull re
omputation. We 
all su
h an area a rea
h update area.De�nition 11 (Rea
h Update Area)A set 
ontaining at least all edges of Ui+1 (all edges whi
h are not ofUpdateTypei+1n
) is 
alled a rea
h update area (of iteration step i).5.4.1 Reverse Partial Trees and Max Partial TreesReverse Partial Trees. To �nd a rea
h update area we will often have to �nd pathsthat end at a given vertex u and are on partial trees performed in the original 
omputationor the full re
omputation. To do that we grow shortest-paths trees rooted at u on thereverse edge set. As des
ribed in the �rst se
tion of this 
hapter the length of a path ona partial tree with size ǫ and delta δ is at most 2δ + 2ǫ. Therefore we 
an stop growingthe shortest paths tree when the shortest paths to all verti
es with distan
e of at most
2δ + 2ǫ are known.We 
all su
h a shortest-paths tree a reverse partial tree. The next de�nition uses sets ofverti
es as roots. For the time being we will only use one vertex as root when growingreverse partial trees. The general de�nition will be helpful later in this se
tion.De�nition 12 (Reverse Partial Tree)Let N be a set of verti
es. The reverse partial tree rooted at N with size ǫ and delta δ(notation: RTN ) is the �nished part (the �nished part 
onsists of the �nished verti
esand the shortest paths edges 
onne
ting them) of the tentative shortest paths treegenerated by Dijkstra's algorithm for whi
h the following extra rules are applied:Set Initialization. For all verti
es v in N : set distan
e of v to zero and insert vinto the priority queue. 66



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGEdge Set Rule. Use the reverse edge set.Stopping Rule. Stop growing the tree when all verti
es with distan
e of at most
2ǫ + 2δ from the nearest vertex in N are �nished.Delta Rule Do not relax edges with length greater than δ.Canoni
al Rule Choose shortest paths that are 
anoni
al with respe
t to the nor-mal edge set.We will often omit size and delta of a (reverse) partial tree Tx if we grow Tx at iterationstep i, the size of Tx is ǫi and delta of Tx is δi. The most important property of reversepartial trees is stated in the next lemma.Lemma 2 Let P be a path on a partial tree rooted at a vertex x with size ǫ anddelta δ. Let u be a vertex on P . Then the subpath from x to u on P is 
ontained inthe reverse partial tree rooted at {u} with same size and delta.Max Partial Trees. The pendant of reverse partial trees on the normal edge set aremax partial trees. We will grow them when we want to �nd paths that start at a givenvertex v and are 
ontained in a partial tree.De�nition 13 (Max Partial Tree)Let N be a set of verti
es. The max partial tree rooted at N with size ǫ and delta δ(notation: MTN ) is the �nished part of the tentative shortest paths tree generatedby Dijkstra's algorithm for whi
h the following extra rules are applied:Set Initialization. For all verti
es v in N : set distan
e of v to zero and insert vinto the priority queue.Stopping Rule. Stop growing the tree when all verti
es with distan
e of at most
2ǫ + 2δ from the nearest vertex in N are �nished.Delta Rule Do not relax edges with length greater than δ.Here the lemma 
hanges to:
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGLemma 3 Let P be a path on a partial tree rooted at x. Then ea
h subpath
(u1, u2, . . . , un) of P is in
luded in the max partial tree rooted at {u1} with samesize and delta.Comments. Note that, in the graph theoreti
al sense, max partial trees and reversepartial trees are not trees but forests. We want to stress that Lemma 2 and 3 only holdbe
ause we 
ompute 
anoni
al shortest paths. When 
omputing arbitrary shortest pathsLemma 2 and 3 only hold on graphs where all shortest paths are unique.When growing partial trees without the delta-rule or if δi is greater than the length lenmaxof the longest edge on the graph then the length of every shortest path on a partial treewith size ǫi is 2ǫi+2lenmax at most. In this 
ase, the stopping rule of reverse/max partialtrees 
an be altered to: stop growing the tree when all verti
es with distan
e smaller than

2ǫi + 2lenmax are �nished. This 
hange does not a�e
t the 
orre
tness of Lemma 2 andLemma 3.5.4.2 Eager Constru
tion of a Rea
h Update AreaUnless stated otherwisely all 
laims in this subse
tion that 
on
ern (penalty) rea
hbounds, partial trees or reverse partial trees refer to rea
h bounds, partial trees or reversepartial trees 
omputed at the a
tual iteration step i.Aim. Our aim is to �nd a superset of Ui+1. We know that an edge with UpdateTypei+1ldmust also be of UpdateTypeild and it is therefore easy to �nd all su
h edges. Hen
e we
on
entrate on �nding edges of the other two types (that are edges (u, v) whose rea
hbounds reachBoundi+1(u, v) di�er in the original 
omputation and the full re
omputa-tion).We observe two reasons why an edge (w, z) may be in Ui+1. First, it 
an already bein Ui. Se
ond, an edge (u, v) ∈ Ui is adja
ent to (or 
ontained in) either a partial treeresponsible for the penalty rea
h of (w, z) on Gi/old or to a partial tree responsible forthe penalty rea
h of (w, z) on Gi/new.Plan. We 
onsider UpdateTypesi ld, bd and 
s separately and identify for ea
h edge
(u, v) in Ui a set of edges Ui+1(u, v) whose rea
h bounds 
omputed until the beginning ofstep i + 1 di�er (between the original 
omputation and the full re
omputation) be
auseof the 
hange of (u, v):
(u,v) is of UpdateTypeild> δ. In that 
ase the di�eren
e of the length of (u, v)between Gold and Gnew does not in�uen
e the rea
h 
omputation at iteration step i.Therefore Ui+1(u, v) is the empty set.Reason: until the beginning of iteration step i + 1, an edge (u, v) of UpdateTypeild> δis neither pro
essed in the original 
omputation nor in the full re
omputation. The in-penalty of u and the out-penalty of v is set to in�nity in both 
omputations. Thereforeno rea
h value 
omputed until the beginning of step i + 1 
hanges be
ause of an edge of68



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGthat update type.
(u,v) is of UpdateTypeild ≤ δ. Here, we grow four shortest paths trees: two maxpartial trees (one on Gi/old and one on Gi/new) rooted at u and two reverse partial trees(one on Gi/old and one on Gi/new) rooted at v. All edges that possibly 
hange their rea
hbounds 
omputed before iteration step i + 1 lie on the bran
h of one of the four shortestpaths trees that starts with the edge (u, v).Reason: an edge (u, v) of UpdateTypeild≤ δ must be 
ontained in a shortest path Presponsible for the penalty rea
h of an edge (w, z) (either on the old or on the new graph)to in�uen
e the penalty rea
h of (w, z). To �nd all edges (w, z) possibly a�e
ted by (u, v)we have to remember that (u, v) 
an be in front of or behind (w, z) on P . We do nothave to 
onsider shortest paths that are so long that they are not in
luded in a partialtree built on this iteration step.We get all su
h edges behind (w, z) by growing two max partial trees (one on Gi/old andone on Gi/new) rooted at u. Then all possibly a�e
ted edges are on the bran
h of theresulting shortest-paths trees that start with the edge (u, v). To get the edges in frontof (u, v) we grow two reverse partial trees (one on Gi/old and one on Gi/new) rooted at
v. All possibly a�e
ted edges (w, z) in front of (u, v) are 
ontained in the bran
h thatbegins with the edge (u, v) of one of both reverse partial trees.
(u,v) is of UpdateTypeibd. In that 
ase all edges of Ui+1(u, v) lie on either a maxpartial tree rooted at v or a reverse partial tree rooted at u that is grown on either
Gi/old or on Gi/new. We do not have to 
onsider the max partial trees if in G \ Gi/oldan edge (u, v) exists with reachboundold(u, v) > reachboundold(u, v) and in G \ Gi/newan edge (ũ, v) exists with reachboundnew(ũ, v) > reachboundnew(u, v). The same holdssymmetri
ally for the reverse partial trees.Reason: given an edge (u, v) of UpdateTypeibd. Let (u, v) in�uen
e the penalty-rea
h ofanother edge (w, z) with path P responsible for the penalty-rea
h of (w, z). Then either
v must be in front of w on P or u must be behind z on P . We �nd su
h edges (w, z) bygrowing max partial trees rooted at v and reverse partial trees rooted at u on Gi/old andon Gi/new.Given an edge (u, v) of UpdateTypeibd. This edge has no in�uen
e on the in-penaltyof v if in G \ Gi/old an edge (u, v) exists with reachboundold(u, v) > reachboundold(u, v)and in G\Gi/new an edge (ũ, v) exists with reachboundnew(ũ, v) > reachboundnew(u, v).The same holds symmetri
ally for out-penalty of u.
(u,v) is of UpdateType 
s or ld>< δ. In that 
ase all edges of Ui+1(u, v) lie on theunion of a max partial tree rooted at v and a reverse partial tree rooted at u that isgrown on either Gi/old or on Gi/new.Reason: given an edge (u, v) of UpdateTypei
s or ld>< δ. Let (u, v) in�uen
e thepenalty-rea
h of another edge (w, z) with path P responsible for the penalty-rea
h of
(w, z). Then either v must be on P in front of w or u must be on P behind z. We �ndsu
h edges (w, z) by growing a max partial tree rooted at v and a reverse partial treerooted at u on Gi/old and on Gi/new. 69



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGAlgorithm to 
ompute a rea
h update area. For ea
h edge (v,w) of Ui we knowhow to get a set of edges Ui+1(v,w) whose rea
h bounds 
omputed at iteration step idi�er between original re
omputation and full re
omputation be
ause of the 
hange of
(v,w). The union set of Ui and all Ui+1(v,w) where (v,w) is in Ui is a rea
h updatearea. We summarize that in the following theorem:Theorem 2 (Eager Constru
tion of Rea
h Update Area)Let

Nld = { v ∈ V | ∃(u, v) of UpdateTypeild ≤ δ}

Nbd,cs = { u ∈ V | ∃(u, v) of UpdateTypei
s or ld >< δ}∪
{ u ∈ V | ∃(u, v) of UpdateTypeibd,

∄(u, ṽ) ∈ E \ Ei/new with reachnew(u, ṽ) ≥ reachnew(u, v),

∄(u, v) ∈ E \ Ei/old with reachold(u, v) ≥ reachold(u, v)}

Ñld = { u ∈ V | ∃(u, v) is of UpdateTypeild ≤ δ}

Ñbd,cs = { v ∈ V | ∃(u, v) is of UpdateTypei
s or ld >< δ}∪
{ v ∈ V | ∃(u, v) is of UpdateTypeibd,

∄(ũ, v) ∈ E \ Ei/new with reachnew(ũ, v) ≥ reachnew(u, v),

∄(u, v) ∈ E \ Ei/old with reachold(u, v) ≥ reachold(u, v)}.Then the set of all edges 
ontained in
{e | e ∈ Ui}∪
{T | T is rev. par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Nbd,cs}∪
{B | B is a bran
h of the rev. par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Nld beginning with an edge (w, v) of UpdateTypei ld≤ δ}∪
{T | T is max par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Ñbd,cs}∪
{B | B is a bran
h of the max par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Ñld beginning with an edge (v,w) of UpdateTypei ld≤ δ}is a rea
h update area of iteration step i.To union an edge (u, v) with a subgraph G we identify (u, v) with the subgraph ({u, v}, {(u, v)}).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.4.3 Lazy Constru
tion of a Rea
h Update AreaIdentifying a rea
h update area using the eager 
onstru
tion is very time 
onsumingbe
ause many max partial trees and reverse partial trees have to be built. If many edgesin Ui are `near to ea
h other' the reverse/max partial trees rooted at the end verti
esof these edges often visit almost the same verti
es. We want to exploit this observationto speed-up the 
onstru
tion of the rea
h update area and a

ept to get a rea
h updatearea that may 
ontain more edges than the one 
omputed by the eager 
onstru
tion.Given a set of verti
es N . To �nd the set of all verti
es marked as �nished by at least onemax/reverse partial tree rooted at an element of N we 
an grow a max/reverse partialtree rooted at N . The next Lemma 4 gives the main argument for the 
orre
tness of thatpro
eeding.Lemma 4 (Monotony of Max Partial Trees and Reverse Partial Trees)Let v be a vertex on a max partial tree / reverse partial tree rooted at a set N1.Then, for every set N2, v is on the max partial tree / reverse partial tree rooted at
N1 ∪ N2 that uses the same ǫ and δ values.As spe
ial 
ase this implies that all verti
es on a partial tree with root x are 
ontainedin every max partial tree whose root set 
ontains x.We want to stress that though the union of all verti
es 
ontained in at least one maxpartial tree with root in N is in
luded in the set of verti
es 
ontained in a max partialtree with root N , the edges 
ontained in the set partial tree may be di�erent from theset of edges 
ontained in the a

ording partial trees. The same holds for reverse partialtrees.

Fig. 5.4: Sample Graph. The left pi
ture shows the max partial tree rooted at the bla
kvertex. The right pi
ture shows a max partial tree on the same graph with anadditional root. Edges that are on the left max partial tree but not on the rightare drawn green.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGLazy Constru
tion. To get a rea
h update area we remember the sets o

uring inTheorem 2 and grow a max partial tree rooted at Ñld ∪ Ñbd,cs and a reverse partial treerooted at Nld ∪ Nbd,cs on both, Gi/old and Gi/new. We know that we �nish the sameverti
es as in Theorem 2. Therefore the set of all edges 
omputed by Theorem 2 isin
luded in the set of all edges (u, v) in Gi/new where u and v are both 
ontained in thesame of one of the four max/reverse partial trees grown. We 
all the resulting pro
eedingthe lazy 
onstru
tion of a rea
h update area.

Fig. 5.5: Sample Graph. The red edge is in Ui. The blue edges represent the rea
hupdate area edges. The left pi
ture shows the eager 
onstru
tion, the rightpi
ture shows the lazy 
onstru
tion.Theorem 3 (Lazy Constru
tion of Rea
h Update Area)Let Nld, Nbd,cs, Ñld and Ñbc,cs be as in Theorem 2. Further, let
• RTold be the reverse partial tree rooted at Nld ∪ Nbd,cs built on Gi/old

• RTnew be the reverse partial tree rooted at Nld ∪ Nbd,cs built on Gi/new

• Told be the max partial tree rooted at Ñld ∪ Ñbd,cs built on Gi/old

• Tnew be the max partial tree rooted at Ñld ∪ Ñbd,cs built on Gi/newThen the union set of Ui and all edges for whi
h at least one of these subgraphs
ontains the sour
e and the target
Ui ∪

{(u, v) | u, v ∈ RTold, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ RTnew, (u, v) ∈ Ei/new} ∪
{(u, v) | u, v ∈ Told, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ Tnew, (u, v) ∈ Ei/new}is a rea
h update area (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGDe
remental or in
remental improvement for the lazy 
onstru
tion. The lazy
onstru
tion 
an be sped-up if the update on the original graph (or, more pre
ise, thedi�eren
e between Gi/old and Gi/new) was pure in
rementel or pure de
remental.If for ea
h edge (u, v) on Gi/new follows that (u, v) is in Gi/old and lennew(u, v) ≥
lenold(u, v) then the vertex set of a reverse/max partial tree grown on the new graph is
ontained in the vertex set of the a

ording reverse/max partial tree grown on the oldgraph. Therefore it su�
es to build all o

uring trees on Gi/old.The same argument justi�es to build all o

uring trees only on Gi/new when dealing withpure de
remental updates.Corollary 1 (De
r. and In
r. Lazy Rea
h Update Area Constru
tion)With the requisites of Theorem 3 follows: let Ei/new ⊆ Ei/old and for all edges (u, v)in Gi/new be lenold(u, v) ≤ lennew(u, v).Then is

Ui ∪ {(u, v) | u, v ∈ RTold, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ Told, (u, v) ∈ Ei/old}a rea
h update area. Let Ei/new ⊇ Ei/old and for all edges (u, v) in Gi/old be
lenold(u, v) ≥ lennew(u, v). Then is
Ui ∪ {(u, v) | u, v ∈ RTnew, (u, v) ∈ Ei/new} ∪ {(u, v) | u, v ∈ Tnew, (u, v) ∈ Ei/new}a rea
h update area (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.5 First Rea
h Re
omputation AreaWe now sear
h a set that 
ontains at least all verti
es from whi
h partial trees 
an begrown that are `in�uen
ed' by the 
hange of edges in Ui. We 
all su
h a set a �rstrea
h re
omputation area. We will later use that knowledge to shrink the area whi
h isne
essary to 
ompute the rea
h bounds of edges in the rea
h update area.De�nition 14 (First Rea
h Re
omputation Area)A set that 
ontains at least all verti
es x for whi
h
• either the partial tree Tx/old rooted at x and grown on Gi/old di�ers from (doesnot 
onsist of the same edge set as) the partial tree Tx/new rooted at x andgrown on Gi/new

• or Tx/old and Tx/new are equal with respe
t to the edge set but at least oneedge (u, v) exists su
h that penReachTx/new
(u, v) 6= penReachTx/old

(u, v)is 
alled a �rst rea
h re
omputation area (of iteration step i).The methods used to �nd a rea
h update area 
an also be used to �nd a �rst rea
hre
omputation area. Given an edge (u, v) in Ui the di�eren
e between �nding a rea
hupdate area and �nding a rea
h re
omputation area is that we only have to �nd paths
ontained in partial trees that end with u or v instead of �nding paths on partial treesthat 
ontain u or v. Therefore we only have to 
onsider the reverse partial trees grown toidentify a rea
h update area. The 
orre
tness of that pro
eeding follows from the samearguments as the eager 
onstru
tion of the rea
h update area in the last se
tion.The eager 
onstru
tion of a �rst rea
h re
omputation area uses the same reverse partialtrees as the eager 
onstru
tion of a rea
h update area but does not 
onsider the maxpartial trees:Theorem 4 (Eager Constru
tion of a First Rea
h Re
omputation Area)Let Nld, Nbd,cs, Ñld and Ñbd,cs be like in Theorem 2. The set of all verti
es 
ontainedin
{u | u ∈ Ui and u ∈ Gi/new}∪
{T | T is rev. par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Nbd,cs}∪
{B | B is a bran
h of the rev. par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Nld beginning with an edge (w, v) of UpdateTypei ld≤ ǫ}is a �rst rea
h re
omputation area (of iteration step i).74



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGThe same holds for the lazy 
onstru
tion:Theorem 5 (Lazy Constru
tion of a First Rea
h Re
omputation Area)Let RTold and RTnew be like in Theorem 3.The set of all verti
es 
ontained in RTold or RTnew is a �rst rea
h re
omputationarea (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.6 Se
ond Rea
h Re
omputation AreaBy now, we have identi�ed a rea
h update area R and a �rst rea
h re
omputation area N1.We 
an re
ompute rea
h-bounds of ea
h edge (u, v) ∈ R by growing a partial tree rootedat w for ea
h vertex w ∈ N1. The re
omputation is done like in the stati
 algorithm butwe only re
ompute the penalty rea
h-bounds of edges 
ontained in R.Our remaining problem is that the rea
h-bounds we 
ompute that way are not ne
essarilyvalid. In this se
tion we des
ribe how we 
an �nd a set of verti
es, the se
ond rea
hre
omputation area on whi
h partial trees have to be additionally grown to guarantee the
orre
tness of the 
omputed penalty rea
h-bounds.De�nition 15 (2nd Rea
h Re
omputation Area)Given a �rst rea
h re
omputation area N1 (of iteration step i) and a rea
h updatearea R (of iteration step i). A set of verti
es N2 su
h that for ea
h edge (u, v) in R

max
x∈N1∪N2

{

penReachTx/new
(u, v)

}

= max
x∈Gi/new

{

penReachTx/new
(u, v)

}or
max

x∈N1∪N2

{

penReachTx/new
(u, v)

}

> ǫiholds is 
alled a se
ond rea
h re
omputation area (of iteration step i with respe
t to
N1 and R).Basi
 Method. Given an edge (u, v) of the rea
h update area we already know apro
eeding to �nd a set N of verti
es on whi
h we have to grow partial trees to re
omputethe penReachGi/new

(u, v): we have to 
onsider all partial trees built on Gi/new that
ontain (u, v). We get the roots of these by growing a reverse partial tree rooted at v on
Gi/new. The set of all verti
es in
luded in the bran
h of the resulting `reverse' shortestpaths tree that starts with the edge (u, v) is su
h a set N and therefore N \N1 is a se
ondrea
h re
omputation area.We also know that we 
an �nd the a

ording verti
es of all edges by growing one partialtree initialized with the target verti
es of all edges. The handi
ap of this `lazy' methodis that we have to 
onsider all verti
es of the resulting reverse shortest paths tree and
annot restri
t ourselves to the verti
es in
luded in spe
ial bran
hes.Sophisti
ated Method. There is a simple way to identify edges of the rea
h update area
S whose penalty rea
h-bounds are already 
orre
t after the re
omputation by growingpartial trees rooted only at verti
es of the �rst rea
h re
omputation area N1. We denotethe penalty rea
h of an edge (u, v) 
omputed only by 
onsidering partial trees grownon Gi/new with roots in N1 as penReachN1(u, v) and the penalty rea
h of the a
tualiteration step on the original 
omputation as penReachold(u, v). We remember that we76



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGmodi�ed the stati
 rea
h 
omputation to store for ea
h edge (u, v) the root root(u,v) of apartial tree responsible for the penalty rea
h bound of (u, v).First of all we do not have to 
onsider ea
h edge (u, v) with penReachN1(u, v) greaterthan ǫi for further re
omputation be
ause the resulting rea
h-bound of (u, v) will bedumped anyway.We 
an assign to ea
h edge (u, v) ∈ R with penReachN1(u, v) ≤ ǫ and a valid rea
h-bound 
omputed in the original 
omputation until (and in
luding) the a
tual step (thatis an edge not in
luded in Gi+1/old) one of the following four 
ases:1. [ root(u,v) ∈ N1 and penReachold(u, v) > penReachN1(u, v) ℄In this 
ase there may be a partial tree Tx with root x outside of N1 su
h that (u, v) is on
Tx and penReachTx(u, v) > penReachN1(u, v). Therefore the tentative 
omputed penaltyrea
h-bound penReachN1(u, v) does not have to be 
orre
t and has to be 
onsidered fora se
ond re
omputation.2. [ root(u,v) ∈ N1 and penReachold(u, v) ≤ penReachN1(u, v) ℄In this 
ase the tentative 
omputed penalty rea
h-bound penReachN1(u, v) is already
orre
t: be
ause of the 
onstru
tion of N1 all partial trees that have 
hanged are rootedat an element of N1. We know by the result of the original 
omputation that no partialtree rooted outside N1 is responsible for a rea
h of (u, v) greater than the a
tual known.3. [ root(u,v) 6∈ N1 and penReachold(u, v) > penReachN1(u, v) ℄In this 
ase the tentative 
omputed penalty rea
h-bound penReachN1(u, v) is not 
orre
tbut we know that the old value penReachold(u, v) stays a 
orre
t penalty rea
h-bound:be
ause of the 
onstru
tion of N1 all partial trees that have 
hanged are rooted at anelement of N1. We know that no partial tree rooted at an element in N1 is responsiblefor a rea
h-bound greater than penReachold(u, v) and sin
e all other partial trees do nothave 
hanged penReachold(u, v) stays a 
orre
t bound.4. [ root(u,v) 6∈ N1 and penReachold(u, v) ≤ penReachN1(u, v) ℄In this 
ase the tentative 
omputed penalty rea
h-bound penReachN1(u, v) is already
orre
t, the argumentation is the same as in 
ase 2.Con
lusion. We summarize the results: assume penalty rea
h-bounds penReachN1(u, v)have been 
omputed for ea
h (u, v) on the rea
h update area R by growing partial treeson N1. Then the rea
h-bounds of all edges (u, v) are 
orre
t for whi
h a valid rea
h-boundhas been 
omputed until (and in
luding) the a
tual step of the original 
omputation andwhi
h either apply to 
ase 2 or 
ase 4. Edges whi
h apply to 
ase 3 keep their originalrea
h-bounds. For edges with penReachN1(u, v) greater than ǫ no rea
h-bound will be
omputed in the a
tual step. The rea
h-bounds 
omputed for the remaining edges of thegiven rea
h update area are possibly still un
orre
t.Hen
e we 
an 
ompute a se
ond rea
h re
omputation area using either the eager orthe lazy basi
 method but grow the reverse partial tree(s) 
onsidering only edges withpossibly still in
orre
t and unknown penalty rea
h-bounds.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGTheorem 6 (Constru
tion of 2nd Rea
h Re
omputation Area)Let R be a rea
h update area (of iteration step i). Let N1 be a �rst rea
h re
om-putation area (of iteration step i). Let R̃ be the set of all edges (u, v) in R with
penReachN1(u, v) ≤ ǫi. Let

R1 =
{

(u, v) | (u, v) ∈ R̃, (u, v) ∈ Gi+1/old

}

R2 =
{

(u, v) ∈ R̃, (u, v) 6∈ Gi+1/old, root(u,v) ∈ N1

}

H =
{

r | r ∈ V, r 6∈ N1,∃(u, v) ∈ R̃ : root(u,v) = r
}Let S be

{

(u, v) ∈ R2 | max
x∈N1

{

penReachTx/new
(u, v)

}

< max
x∈Gi/old

{

penReachTx/old
(u, v)

}

}Then the set of verti
es that lie on the bran
h of a reverse partial tree grown on
Gi/new and rooted at v that starts with the edge (u, v) where (u, v) ∈ R1∪S unionedwith H is a se
ond rea
h re
omputation area (eager 
onstru
tion).Then the set of all verti
es that lie on the reverse partial tree grown on Gi/new androoted at the end verti
es of edges in R1 ∪ S unioned with H is a se
ond rea
hre
omputation area (lazy 
onstru
tion).Improvement using more memoryThe sophisti
ated 
onstru
tion of the se
ond rea
h re
omputation area 
an only sort outedges whi
h either already have a tentative rea
h-bound greater than ǫ after buildingpartial trees on the �rst rea
h re
omputation area or for whi
h rea
h-bounds have been
omputed in the original 
omputation until (and in
lusive) the a
tual iteration step.We 
an sort out even more edges if we store for ea
h edge (u, v) and ea
h iteration step

i the root of a shortest path responsible for the penalty rea
h-bound of (u, v) at step i.Note that we store the root even if the rea
h-bound is greater than ǫ and will be dumped.Then we know that the rea
h-bound of ea
h edge (u, v) of the rea
h update area forwhi
h no rea
h-bound has been 
omputed in the a
tual step of the original 
omputationand for whi
h the stored partial tree root is outside the �rst rea
h re
omputation areawill not be 
omputed in the re
omputation at the a
tual step. Therefore we do not haveto 
onsider (u, v) when we 
onstru
t a se
ond rea
h re
omputation area.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.7 Proof of Corre
tnessWe have to show that all rea
h bounds re
omputed by an iteration step are valid.The 
orre
tness of the rea
h-bounds of edges not in the rea
h update area follows dire
tlyfrom the de�nition of rea
h update area. The 
orre
tness of the eager and the lazy
onstru
tion of a rea
h update area follows from Theorem 2, page 70 and Theorem 3,page 72. The 
orre
tness of Theorem 2 follows from the 
ase analysis in the same se
tion.The 
orre
tness of Theorem 3 follows dire
tly from Theorem 2 and Lemma 4, page 71.The 
orre
tness of the rea
h-bounds of edges in the rea
h re
omputation area followsfrom the de�nition of the se
ond rea
h re
omputation area. The 
orre
tness of the
onstru
tion of the se
ond rea
h re
omputation area is due to Theorem 6, page 78. Thistheorem is proven in the text of the same se
tion. To be able to apply Theorem 6, a �rstrea
h re
omputation area must be 
orre
tly identi�ed. The 
orre
tness of the lazy andeager 
onstru
tion of the �rst rea
h re
omputation area is due to Theorem 4, page 74,Theorem 4, page 74.We have used the following lemmata without proving them:Proof 4 (Proof of the Partial Tree Bounding Lemma 1, page 59)Denote by an un�nished path P on a partial tree (with size ǫ and delta δ) a paththat either 
ontains un�nished inner 
ir
le verti
es or verti
es with distan
e from theirnearest inner 
ir
le prede
essor of at most ǫ whi
h are un�nished or for whi
h un�nishedsu

essors exist. Obviously, a partial tree is grown until no un�nished paths exist.An un�nished path has length of at most 2ǫ + 2δ: the length of the edge outgoing fromthe root has length of at most δ, the sum of the lenghts of all other inner 
ir
le edgeshas length of at most ǫ. The length of the remaining edges is ǫ + δ at most.Let P̃ be a path on a partial tree. Then must either P̃ be un�nished or an un�nishedpath with length greater than the length of P̃ must be 
ontained in the partial tree. Letthe length of P̃ be greater than 2ǫ + 2δ. This is a 
ontradi
tion to the fa
t that thelength of ea
h un�nished path is 2ǫ + 2δ at most.
�Proof 5 (Proof of Lemma 2, page 67)Let P = (x = x0, . . . , xn = u) be a x-u-path on a partial tree with size ǫ and delta

δ rooted at x and grown on G = (V,Ei). Then P is a shortest path on the graph
G̃ = (V, Ẽi) where Ẽi = E \ {(u, v) | len(u, v) > δ}. Therefore (u = xn, . . . , x0) is ashortest path on the reverse graph of G̃. By Lemma 1 we know that the length of P is
2ǫ + 2δ at most.Therefore (u = xn, . . . , x0) is in
luded in the shortest paths tree rooted at u on thereverse graph of G̃ whi
h 
ontains all verti
es with distan
e from u of at most 2ǫ + 2δ.

�Proof 6 (Proof of Lemma 3, page 68)As subpath of a shortest path, (u1, . . . un) is also a shortest path. Be
ause of Lemma 179



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGis len(u1, . . . , un) lower or equal to 2ǫ + 2δ. Therefore it is in
luded in the max partialtree rooted at {u}.
�Proof 7 (Proof of Lemma 4, page 71)Given a set of verti
es N1. The max partial tree rooted at N1 with size ǫ and delta δ
ontains all verti
es that have a distan
e of at most 2ǫ + 2δ to at least one vertex n in

N1. Sin
e n is also 
ontained in N1 ∪ N2 for an arbitrary set of verti
es N2, v is also
ontained in the max partial tree rooted at N1 ∪N2. The same argumentation holds forreverse partial trees.
�5.8 Implementation of the Dynami
 AlgorithmHere we give the pseudo-
ode for the dynami
 re
omputation algorithm des
ribed in the
hapter. The 
ode refers to the lazy 
onstru
tion of a rea
h update area (Theorem 3,page 72), the lazy 
onstru
tion of a �rst rea
h re
omputation area (Theorem 5, page 75)and the sophisti
ated lazy 
onstru
tion of a se
ond rea
h re
omputation area (Theorem6, page 78). The improvement on the se
ond rea
h re
omputation area sket
hed on page78 is not in
luded.The following algorithm is a sub-routine used by Algorithm 8.Algorithm 7: ComputeRea
hinput: rea
h update area RUArea
h re
omputation area RRAforea
h vertex v in RRA do1

T := partial tree on Gi/new rooted at v2 forea
h edge e in T ∩ RUA do3 if ReachT (e) > Reachnew[e] then4
Reachnew[e] := ReachT (e)5
PartialT reeRootnew[e] := v6
ReachIterationStepnew[e] := i7

80



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGAlgorithm 8: Lazy Dynami
 Rea
h Bound Re
omputationinput : Graph G = (V, E), Lenold[], Lennew [] epsilon[], delta[]
Reachold[], ReachIterationStepold[], PartialT reeRootold[]ouput: Reachnew[], ReachIterationStepnew[], PartialT reeRootnew[]/* all max/reverse partial trees grown on iteration step i have size epsilon[i] anddelta delta[i] */Initialize Reachnew with Reachold, ReachIterationStepnew with ReachIterationStepold,1

PartialT reeRootnew with PartialT reeRootoldfor i := 1 to maxiterationstep do2 RUA=∅;RUA2=∅; RRA1=∅; RRA2=∅;3
Gnew = (V, Enew), Enew = {e ∈ E | ReachIterationStepnew[e] ≥ i}4
Gold = (V, Eold), Eold = {e ∈ E | ReachIterationStepold[e] ≥ i}5 UPDATE Ui, Nld, Nbc,cs, Ñld, Ñbc,cs6 /* Rea
hUpdateArea, 1stRea
hRe
omputationArea */
Told = max partial tree grown on Gold, rooted at Ñld ∪ Ñbd,cs7
Tnew =max partial tree grown on Gnew , rooted at Ñld ∪ Ñbd,cs8
RTold = reverse partial tree grown on Gold, rooted at Nld ∪ Nbd,cs9
RTnew = reverse partial tree grown on Gnew , rooted at Nld ∪ Nbd,cs10
RUA = set of edges (u, v) where u, v ∈ Told or u, v ∈ Tnew or u, v ∈ RTold or u, v ∈ RTnew11
RRA1 = set of all verti
es 
ontained in RTold, RTnew or Ui12 forea
h e in RUA do Reachnew(e) := 013 ComputeRea
h(RUA, RRA)14 /* 2ndRea
hRe
omputationArea */forea
h edge e in RUA do15 if (Reachnew[e] ≤ epsilon[i], ReachIterationStepold[e] ≤ i, Reachnew[e] < Reachold[e] and16

PartialT reeRootold[e] ∈ RRA1) or (ReachIterationStepold[e] > i and
Reachnew[e] ≤ epsilon[i]) theninsert e into RUA217 if Reachnew[e] ≤ epsilon[i], ReachIterationStepold[e] ≤ i, Reachnew[e] < Reachold[e] and18
PartialT reeRootold[e] 6∈ RRA1 then

Reachnew[e] := Reachold[e]19
PartialT reeRootnew[e] = PartialT reeRootold[e]20
ReachIterationStepnew = i21 RRA2=set of all verti
es 
ontained in a reverse partial tree rooted at RUA2 grown on Gi/new22 ComputeRea
h(RUA2, RRA2)23 /* delete rea
h bounds greater than epsilon[i] */forea
h edge e in RUA with Reachnew[e] > epsilon[i] and ReachIterationStepold[e] ≤ i do24

Reachnew[e] = 025
ReachIterationStepnew[e] = ∞26
PartialT reeRootnew[e] = null27 forea
h edge e in RUA with Reachnew[e] > epsilon[i] and ReachIterationStepold[e] > i do28
Reachnew[e] = Reachold[e]29
ReachIterationStepnew[e] = ReachIterationStepold[e]30
PartialT reeRootnew[e] = PartialT reeRootold[e]31
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6 ExperimentsRoad networks are extremly sparse and 
ontain a 
ertain hierar
hy (of importan
e withrespe
t to long shortest-paths) whi
h explains why rea
h-based pruning performs well onroad networks. Goldberg, Kaplan and Werne
k experimentally have shown the extremlygood performan
e of rea
h-based pruning on road networks in [GKW05℄.In this 
hapter we report the results of some own experiments 
omputing rea
h boundson road networks.6.1 Choi
e of tuning parametersIn [GKW05℄ the following strategy for sele
ting ǫi is proposed: given a parameter k,we 
hoose k verti
es at random and grow, for ea
h vertex, a shortest-paths tree withexa
tly ⌊n/k⌋ verti
es. ǫ0 is assigned to be twi
e the minimum of the distan
e labels ofthe last s
anned vertex over all shortest paths trees. Furthermore min{500, ⌈√n⌉/3} isproposed as good value for the parameter k. Given a se
ond parameter α, ǫi is 
omputedby ǫi = αiǫ0. Here α = 3.0 is reported to be a good value.Sin
e the delta-rule is not stated in [GKW05℄, no good values for delta are given. To geta �rst impression what good values for delta 
ould be, we have a look at the distributionof the edge lengths on the underlying road networks. Figure 6.1 shows the distribution ofthe edge lengths on a graph representing Germany. Values between epsilon fourth and
epsilon half turned out to give a good tradeo� between the speed of the prepro
essingand the quality of the 
omputed rea
h bounds.6.2 Des
ription of the tested graphsWe have tested the rea
h-bound prepro
essing and query on graphs mapping parts ofthe road network of Europe. The graphs were provided by the PTV AG and the lengthof an edge on a graph refers to the Eu
lidean distan
e between the sour
e and the targetvertex of the edge. The following table gives an overview and a short des
ription of allgraphs used.82



CHAPTER 6. EXPERIMENTSname #verti
es #edges des
riptionger 4.377.787 10.997.366 road network of germanydnk 473.537 1.075.012 road network of denmark�n 460.693 1.020.008 road network of �nlandka50.000 49.625 125.018 road network of a bounding box around karlsruheka100.000 99.529 252.530 road network of a bounding box around karlsruheka200.000 199.739 501.948 road network of a bounding box around karlsruhedkb100.000 99.878 250.490 road network of a rural area in fran
oniast100.000 99.928 258.072 road network of an urban area in stuttgartOn page 49 we justi�ed the delta rule by mentioning that most road networks 
ontainmany short and only few long edges. The following �gure 6.1 shows the distribution ofthe edge lengths on the graph ger.

edge.length

P
er

ce
nt

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

Fig. 6.1: Distribution of the lengths of 10000 randomly 
hosen edges of the germanygraph where edge lengths 
orrespond to travel times. The edge lengths aregiven relative to the length of the longest of the 10000 edges.We want to remind the reader that at iteration step i of the stati
 rea
h-bound prepro-
essing only valid rea
h bounds for edges with exa
t rea
h lower than ǫi 
an be 
omputed.Only edges with an already 
omputed valid upper rea
h bound are removed from theinput-graph of the next iteration step. The strategy used for the stati
 prepro
essingmainly depends on the assumption that the graph strongly sparsi�
ates after ea
h itera-tion step. The strategy used for the rea
h-query also mainly depends on the assumption83



CHAPTER 6. EXPERIMENTSthat most edges have low rea
h while only few edges with high rea
h exist. The next�gure 6.2 shows the distribution of the exa
t rea
h values on the graph KA50.000.
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Fig. 6.2: Distribution of exa
t rea
h values on KA50.000Figure 6.1 and 6.2 show that the distribution of the edge lengths and the distributionof the exa
t rea
h values are very similiar. We 
he
ked on a 
orrelation between edgelengths and exa
t rea
h values on KA50.000. The following s
atterplot and the little
orrelation 
oe�
ient of 0.165 suggest that su
h a 
orrelation does not exist.

Fig. 6.3: Correlation between edge length and exa
t edge rea
h on KA50.00084



CHAPTER 6. EXPERIMENTS6.3 Prepro
essing E�ort and Speed-Up of the Stati
AlgorithmWe re
all that the rea
h-bound 
omputation des
ribed in [GKW05℄ di�ers from the onedes
ribed in this work. Therefore we experimentally tested prepro
essing and query ofour algorithm on the graphs des
ribed in the last se
tion.The 
hoi
e of the tuning parameters des
ribed in [GKW05℄ turned out to be also a good
ompromise between prepro
essing time and quality of the 
omputed rea
h bounds forour variant of the rea
h-bound 
omputation. Furthermore we set δi to be 0.3ǫi.In order to be independent from 
on
rete implementations and hardware we measured theaverage speed-up by the average quotient of the number of verti
es visited by Dijkstra'salgorithm and the number of verti
es visited by the bidire
tional bound algorithm afterperforming 1000 randomly 
hosen s-t-queries. The prepro
essing e�ort is measured bythe number of partial trees built and the average number of verti
es visited by thesepartial trees.name #partial trees built avg #verti
es avg speed-updnk 778.606 11.513 10.1�n 641.637 14.359 11.4ka50.000 77.093 3571 7.0exa
t ka50.000 49.625 49.625 7.5ka100.000 135.939 11.216 7.0ka200.000 360.881 11.629 5.8dkb100.000 201.892 7.775 5.0st100.000 184.288 6.780 5.6
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CHAPTER 6. EXPERIMENTS6.4 Example for the sparsi�
ation during the rea
h-bound
omputation

Fig. 6.4: The graph KA50.000. The number of edges is 125.018.86
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Fig. 6.5: The sparsi�
ated KA50.000 after the �rst iteration step. The number of edgesis 31.177.
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Fig. 6.6: The sparsi�
ated KA50.000 after the se
ond iteration step. The number ofedges is 19.632.
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CHAPTER 6. EXPERIMENTS

Fig. 6.7: The sparsi�
ated KA50.000 after the third iteration step. The number of edgesis 7.020.
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Fig. 6.8: The sparsi�
ated KA50.000 after the fourth iteration step. The number of edgesis 16.
90



7 Final Remarks
Con
lusion. In this work, we gave an overview of some of the re
ent te
hniques usedto speed-up Dijkstra's algorithm exploiting additional, prepro
essed data. Consideringmost des
ribed speed-up te
hniques, we gave proposals how to dynami
ally update theprepro
essing after a set of edges on the underlying graph have 
hanged their lengths.Here, we fo
used on landmarks, multi-level graphs and pre
omputed rea
h-bounds.The prepro
essing algorithms of landmarks and multi-level graphs need a pre-sele
tion ofsome verti
es on the graph. The update strategies we proposed for both data stru
tures
ompute the same prepro
essed data as a re
omputation from s
rat
h by the stati
algorithm would provide if the 
hoi
e of these verti
es stayed the same. The stati
algorithm for 
omputing upper-bounds for rea
h values requires two tuning parametersthat usually are 
hosen using information on the underlying graph. The update strategywe proposed for these rea
h-bounds 
omputes the same bounds as a full re
omputationfrom s
rat
h by the stati
 algorithm would provide if these tuning parameters stayedthe same.Outlook. The runtime of all update algorithms is heuristi
. In the worst 
ase the usageof the update strategy may take more time than a full re
omputation from s
rat
h wouldneed. Therefore it is important to experimentally study the performan
e of the updatealgorithms when applying them to real-world data (that 
onsists of using real-worldgraphs and applying real-world edge updates).Another task is to �nd 
riteria that de
ide whether the sele
tion of the separator verti
esused to build multi-level graphs remains good after an update on the graph and thatare fast to determine. Strategies for re-
hoosing bad separator verti
es have to be foundand the update algorithm must be altered to be able to 
ope with re-
hosen separatorverti
es.The usage of short
uts is reported to speed-up the stati
 prepro
essing of rea
h-boundsby fa
tor 15 and the query by fa
tor 5. Therefore, the most promising improvement onthe rea
h-bounds update algorithm seems to be an enhan
ement that enables it to dealwith short
uts.Sin
e highway hierar
hies are one of the fastest available speed-up te
hniques (in bothquery and prepro
essing) a dynami
 variant of that te
hnique is desirable.Finally, we want to mention that we 
on
entrated on solutions using only few additionalmemory. The development of methods using more memory may further speed-up the91



CHAPTER 7. FINAL REMARKSupdate of the prepro
essed data.
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