Dynamic Speed-Up Techniques

for

Dijkstra’s Algorithm

Supervisor:

Co-Referee:

Advisor:
Advisor:
Advisor:

Diploma Thesis

by

Reinhard Bauer

July 31, 2006

Prof. Dr. Dorothea Wagner
Prof. Dr. Rudolf Scherer
Dipl.-Inform. Daniel Delling
Dipl.-Math. Martin Holzer
Dr. rer. nat. Frank Schulz

Faculty of Informatics
Faculty of Mathematics
Faculty of Informatics
Faculty of Informatics
Faculty of Informatics

Universitat Karlsruhe
Faculty of Mathematics

Acknowledgements

I would like to thank Prof. Dr. Dorothea Wagner for the opportunity to work on an
interesting and recent topic; Dr. Frank Schulz, Martin Holzer and Daniel Delling for their
steady helpfulness and the plenty of time they spent supporting me; Daniel Gentner for
proof-reading this thesis; finally I want to thank Prof. Dr. Rudolf Scherer, who told me
that he did not want to be thanked for doing his duty, for always doing his duty in his
friendly and helpful way.

Declaration

I declare that I have written this thesis by myself and have not used any sources or
assistance other than those listed.

Karlsruhe, July 31, 2006 e
Reinhard Bauer

Contents

Introduction

Fundamentals

2.1 Presentation of the problem
2.2 Canonical Shortest Paths
2.3 Dijkstra’s Algorithm
2.4 Updating Shortest Path Trees
Speed-Up Techniques

3.1 Bidirectional Search L
3.2 Goal-Directed Search
3.3 Landmarks
34 Edge Labels
3.5 Multi-Level Graphs
3.6 Highway Hierarchies
3.7 Reach-Based Pruning
Static Reach Preprocessing

4.1 Exact Reacho
4.2 Motivation e e e
4.3 Outline
44 Penalty Reach
4.5 Partial Trees e
4.6 Pseudocode of the Static Algorithm
4.7 Proof of Correctness
4.8 Alternative Reach Pruning Strategies
Dynamic Update of the Reach Preprocessing

5.1 A first Approach
5.2 Outline
5.3 Update Type
5.4 Reach Update Area
5.5 First Reach Recomputation Area

5.6 Second Reach Recomputation Area

10
12
14

19
19
21
24
26
30
38
40

44
44
45
45
46
48
93
54
o7

Contents Contents

5.7 Proof of Correctness
5.8 Implementation of the Dynamic Algorithm

6 Experiments
6.1 Choice of tuning parameters
6.2 Description of the tested graphs o000
6.3 Preprocessing Effort and Speed-Up of the Static Algorithm
6.4 Example for the sparsification during the reach-bound computation

7 Final Remarks

Bibliography

82
82
82
85
86

91

93

1 Introduction

Have you ever questioned the quality of a route-planning system’s output? You might
be surprised that popular route-planners do not always compute optimal itinery. Figure
1 shows an example of a non-optimal route computed by an automated route-planning
system. When talking of such a system we are thinking of the following, concrete appli-
cation: an online-working route-planner which has to answer a huge number of queries
each concerning the fastest connection between two places and each to be answered by
an exact solution.

In most cases, the reason for the non-optimality of the given routes is the usage of heuristic
algorithms to speed up the query. These heuristics do not guarantee the optimality of
the computed path. During the last years strong efforts have been made to develop fast
algorithms that also compute exact results. The achievements on this area, combined
with the advance in actual hardware, now make it imaginable to use output-optimal
methods in commercial applications.

Unfortunately, most of the established output-optimal algorithms are static in the fol-
lowing sense: in order to operate they need extra data computed by a time-consuming
preprocessing. This preprocessing can last days for huge input data and often only
fast computers are able to perform it. Therefore these techniques hardly arrange with
changes in reality such as traffic jams, road works or canceled trains even if these changes
are ‘small’ compared with the whole underlying graph. At worst this would effect in a
complete recomputation from scratch after the change of only one edge on the graph.

Therefore solutions are needed that compute optimal routes but are flexible enough to
deal with changes in the algorithm’s input. This work shows how to efficiently recompute
the preprocessed data of some of the recent output-optimal algorithms without starting
from scratch. As in real-world data those changes normally accumulate (think of a
traffic jam that slows down surrounding roads) we demand of the update routine to
process several updates in batch and to take advantage of the closeness of the updates if
possible.

Overview

In Chapter 2 the topic of this work, the (dynamic) single-source single-target shortest path
problem, is formally defined and Dijkstra’s algorithm, the basic algorithm solving that
problem, is introduced. As Dijkstra’s algorithm is fundamental for all later presented

CHAPTER 1. INTRODUCTION

ARCTIC OCEAN B S o
L OCEA #1705 1. MapPoint
at '.' : .. 2
ICELAND dend [2 =
i o b Ry
":. ._E "= g e
a0 B o RUSEIA
ATLANTIC . St "*rt:u.r= % e ey
QUEAN I'] art =1 -~
LT e Helsinki Tver .
[! ..‘_E =Ing rs :
oo Riga. . o
< kv, Srens
Edinburgh . e fiinius - =t
s, G ey
iy Bialstok 5 BELARUS .1
s POLAHD -1(.;-*‘“‘3‘5“’"@
o @ ITOCRW e RAINE
1 Al e
BEpLA S L Ehiginau g,
i HUHGARY i
i {ROMANIA ™
. .@ e e, E_L_.ﬂ
ER00S Misrsok Cotp B2004 HAYTED [-';q Fﬂ;u ch q&[ﬂﬂg

Fig. 1.1: Shortest path from Hausgesund to Trondheim (both in Norway) computed by
Microsoft MapPoint in 2005

techniques we analyze important properties of the algorithm. The chapter closes with a
dynamic variant of Dijkstra’s algorithm.

The next chapter gives an overview of the techniques used to speed up Dijkstra’s algo-
rithm while granting the optimality of the result. Furthermore, we sketch a dynamic
update method for most techniques.

Chapter 4 precisely describes the preprocessing of a speed-up technique using reach-
bounds. This is a relatively new, promising method by Gutman (2004) and improved by
Goldberg (2005).

In Chapter 5 we present our main contribution to the problem: an efficient method to
update the preprocessing used by the reach-bound speed-up technique. The method
only slightly increases the space-consumption of the preprocessed data, benefits from
batch-updating several changes and recomputes the same data as a full recomputation
from scratch would do. Chapter 6 shows the results of some own experiments concerning
reach-bounds.

The last chapter summarizes the results and points out several fields of research, the
author considers promising for a further development on the field of this topic.

2 Fundamentals

In this chapter we formally define the fundamentals of the topic of this thesis. The
most important notions are: single-source single-target problem, single-source all-targets
problem, speed-up technique and update of a speed-up technique. References to re-
lated problems and related work are being given. Then Dijkstra’s algorithm, the most
important algorithm for the solution of the single-source single/all-target(s) problem is
described and some important properties of that algorithm are analyzed. Finally, a
solution for the dynamic single-source all-targets problem is given.

2.1 Presentation of the problem

Let G = (V,E) be a weighted, directed graph with n vertices, m edges and lengths
len : £ — IR(J{. A path with source s and target t (or shorter an s-t-path) in G is a k-
tupel of vertices P = (s = ug, u1,...,up_1 = t) where for every i between 1 and k—1 the
edge (uj—1,u;) exists in E. The length of P is defined as len(P) := Efz_ll len(wi—1,u;).
An s-t path is called a shortest path if its length is minimal among the lengths of all
s-t-paths. Given two vertices s and t the distance from s and t is the length of a shortest
s-t-path.

The most fundamental problems when dealing with shortest paths are:

single-source single-target. Given two vertices s and ¢, find a shortest s-t-path.

single-source all-targets. Given a vertex s. For each other vertex ¢ in the graph, find
a shortest s-t-path.

all-pairs shortest-paths. For each (s,t) € V2, find a shortest s-t-path.

A graph is called connected if for each (s,t) € V2 an s-t-path exists. A graph is called
dense if the number of its edges is close to the maximal number of edges. A graph is
called sparse if it has only few edges. We call a class of graphs large if one can only
afford the consumption of O(n) memory.

In this work, we concentrate on the single-source single-target problem on connected,
large and sparse graphs. We can solve this problem efficently in O(mlogn) time using
Dijkstra’s algorithm which we present in the next section. As even this asymptotically

CHAPTER 2. FUNDAMENTALS

good runtime needs too much time for very large graphs, various variants of Dijkstra’s
algorithm have been developed that improve its runtime, often using additional, prepro-
cessed data. We call such algorithms speed-up techniques. Most of these speed-up tech-
niques work as follows: first, a preprocessing step is performed. The input of that step
consists of the graph, the graph’s edge lengths and sometimes additional data, attached
to the graph. Then, using the preprocessed data, concrete single-source single-target
queries are answered, most times significantly faster than through Dijkstra’s algorithm.

We want to emphasize that speed-up techniques work exactly concerning the problem’s
solution but are heuristic in the runtime. Therefore a query performed by a speed-up
technique may even take more time than a query performed by Dijkstra’s algorithm.

An update on the graph is a change in the graph’s length function. If for each edge of
the graph the new length of the edge is greater (lower) or equal to the old length the
update is called incremental (decremental). If both, at least one edge with increased and
one with decreased length exists, the update is called fully dynamic. Further, we will
abbreviate ‘update of an edge’s length’ with ‘edge update’.

We regard edge deletions and edge insertions as special case of updated edges: when we
want to delete an edge we simply set its length to infinity. As we want to keep our proofs
simple we assume that the graph remains connected after an edge has been deleted. To
insert an edge we consider it as already existent with length infinity in the unaltered
graph and set the edge’s length in the altered graph to the value given by the update.
This proceeding has to be justified separately for each speed-up technique but mostly
works well: unless stated otherwise the preprocessing of the speed-up techniques does
not change because of the insertion of an edge with length infinity.

The problem this work is about is that of efficiently updating the preprocessed data of a
speed-up technique after the underlying graph has been updated: let G be a graph with
non-negative edge lengths len,y and an altered (non-negative) length function lengeq .
Further let Dyjg (Dpew) be the data computed in the preprocessing step of a speed-
up technique using lenyy (lenpey). We say an algorithm alg(G,lengg, lenpew, Do) 18
an exact recomputation of (G,lenyq, lenpew, Doig) if its output is Dye,. We say (very
fuzzy) an algorithm alg(G,lengq, lennew, Doig) 18 a quality preserving recomputation of
(G, lengg, lennew, Doig) if its output is as good as Dyey, with respect to the runtime of
the queries speed-up technique.

Related work. Further reading on the static case of each speed-up technique can
be found at the beginning of the according section in the next chapter. Most of the
speed-up techniques described in this thesis are fairly new. Therefore only little re-
search has been made on the dynamic case of these techniques. Fundamental thoughts
about benchmarking dynamic shortest paths algorithms were published by Ramalingam
in [RR96]. The dynamic update of shortest paths trees has been studied by Frigioni,
Marchetti-Spaccamela and Nanni in [FMSN96|, [FMSN98| and [FMSNO00|. A solution
for the dynamic update of geometric containers was given by Wagner, Willhalm and
Zaroliagis in [WWZ04|. To our best knowledge no papers are available for the dynamic
update of multi-level graphs, highway hierarchies and reach-values so far.

CHAPTER 2. FUNDAMENTALS

Related problems. We consider only graphs with non-negative edge lengths. This
seems to be a small restriction, but enormously scales down the complexity of the single-
source (single/all)-target(s) problem. In fact, the general problem allowing negative edge
lengths is NP-hard, therefore efficent solutions are not likely to exist. The main problem
when dealing with negative edge lengths is the existance of negative cycles. If no negative
cycles exist, a problem with negative edge lengths can be transformed to one with non-
negative edge lengths in polynomial time. [AMO93]| gives a good overview of fundamental
shortest path problems and algorithms.

An area in which proceedings that help find solutions for the recomputation of speed-up
techniques may be found is the dynamic all-pairs shortest-paths problem. We refer to
Demetrescu’s and Italiano’s paper [DI05] for a list of related work on the topic and an
interesting, new algorithm solving this problem.

2.2 Canonical Shortest Paths

At this point, we want to remind the reader that a shortest path is not necessarily unique.
While some applications benefit from obtaining a list of all possible shortest paths for a
given problem many others are sufficiently solved by computing just one of such paths.
The requirement for knowing all shortest paths occurs particularly when an algorithm
first pre-selects some interesting paths and later determines the one to use.

In order to simplify the mathematical treatment of a shortest-path algorithm it is con-
venient to ensure the uniqueness of the shortest path for a given problem. We could
do so by adding fractions to each edge, all so small that they do not have any influence
further than determining which of all shortest paths for a given problem to choose. This
approach seems to be very uncomfortable because of the occuring numerical problems.
Another possibility is to use a deterministic rule that decides which of a set of paths to
take.

Fig. 2.1: Two shortest paths from s to t. The numbers within the vertices represent the
canonical ordering, the orange vertices induce the canonical shortest path

We use an injective mapping from every vertex to N to determine one path from the set
of all shortest s-t-paths. We call such a path a canonical shortest path:

10

CHAPTER 2. FUNDAMENTALS

Definition 1 (Canonical Shortest Paths) An injective mapping o : V' — N is
called a canonical ordering of V.

Given a canonical ordering o. A shortest path P with start vertex s and end vertex
t is said to be a canonical (shortest) path if for any shortest path P between s and ¢
follows:

Let (w,...,t) be the maximal subpath ending at ¢ that P and P have in common.

Further, let v (0) be the predecessor of w on P (P). Then

o(v) < o(0).

Figure 2.1 gives an example for choosing a canonical path in a graph with two shortest
paths between source and target. Note that a subpath consisting of only one vertex may
be possible and that a canonical ordering is implicitly given by the order in which the
vertices are put down in the computer’s memory.

When we describe the highway hierarchies technique (section 3.6) and reach-based prun-
ing (section 3.7, chapter 4, chapter 5) our aim is to compute only canonical shortest
paths and therefore we refer to canonical shortest paths as shortest paths. We
want to stress that all speed-up techniques described in this work can be modified for
handling all shortest paths. We do not do that in order to increase the readability of the
text and to emphasize the real idea behind the algorithms.

Further we will use the following properties of canonical paths without explicitly men-
tioning them:

Uniqueness The most important property of canonical paths is that they are unique.

Existence Furthermore we will use that on a connected graph for all pairs of vertices
s,t the existence of a canonical path is guaranteed.

Inheritance The subpaths of canonical paths are also canonical paths.

Computability In order to make Dijkstra’s algorithm choose the canonical out of all
shortest paths the algorithm has only to be slightly adapted. The changes will be
shown in the next section.

Proof 1 (Properties of Canonical Shortest Paths)
The uniqueness follows directly from the definition of the canonical shortest path.

To proof the inheritance-property of shortest paths we consider a canonical shortest

path P = (s1,82,...,8n,Ul,...,Un,t1,...tx) and assume that a canonical shortest path
Q = (Siy-evySnyV1y.cy0,t1, ... t,) with w3 # vy and wu,, # v; exists. Then must
o(v;) < o(uy,) and since Q = (81,82, 8n,V1,-..,U,t1,...t) is also a shortest path

can P not be a canonical shortest path. Therfore all subpaths of a canonical shortest path

11

CHAPTER 2. FUNDAMENTALS

that end with the same vertex are also canonical shortest paths. The same argumentation
holds for all subpaths that start with the same vertex. Applying both directions we know
that all subpaths of canonical shortest paths are also canonical.

To show the existence of a canonical shortest path we describe a construction of it. Given
two vertices s and t and the set Sy of all shortest s-t-paths (Sp can be constructed by a
variant of Dijkstra’s algorithm). Starting with ¢ = 0 we iteratively construct a sequence
of sets of paths S;: Let P; = (pg, p1,...,pr =t) be the maximal subpath that ends with
t and that all paths in S; have in common. We want S;11 to consist of exactly all paths
in §; for which the canonical ordering of the predecessor vertex of pg is minimal among
the canonical orderings of predecessor vertices of py of paths in S;. The construction
stops at iteration step j if #5; = 1. It is easy to see that the path included in §j is a
canonical s-t-path.

2.3 Dijkstra’s Algorithm

Dijkstra’s algorithm is one of the most fundamental algorithms for the single-source
single/all-target(s) shortest path problem. The output of the algorithm is a list, providing
for every vertex v the predecessor of v on the shortest path from the source to v and the
length of that path.

The algorithm has to store the output and some extra information on its progress travers-
ing the graph: it maintains for each vertex v a distance label d(v), a parent vertex p(v)
and a status marker representing one of the states unwisited, visited and finished. All
status markers are initialized to be unvisited, the distance labels to be infinity and the
parent to be nil. After that, the source vertex is set to be visited and its distance is set
to zero.

We provide a priority queue that contains all visited vertices keyed by the distance label,
the lower the better. While there are visited labels the algorithm removes the one with
the smallest distance label from the queue, marks it as finished and relazes all its outgoing
edges.

The relaxation of an edge (v, w) goes as follows: first it is tested if d(w) > d(v)+len(v, w)
or (d(w) = d(v) + len(v,w) and o(v) < o(p(w)). If that is true, the vertex w is marked
as visited, the parent of w is set to v, and the value of the distance label is changed to
d(v) +len(v,w). Finally, if the vertex w was unvisited before, it will be inserted into the
priority queue.

Note that the condition’s second possibility d(w) = d(v) + len(v, w) and o(v) < o(p(w))
is not a classical part of Dijkstra’s algorithm. We added it here to ensure that only the
canonical out of all shortest paths is chosen.

When a single-target problem is queried, the algorithm can break after the target-vertex
has been marked as finished.

12

CHAPTER 2. FUNDAMENTALS

Fig. 2.2: Weighted Digraph (left side) and its shortest paths tree rooted at s (right side)

Algorithm 1: DIJKSTRA

1 for v € V' \ {s} do d(v) := o0
2 d(s) =0

3 insert s in ()

4 while Q # 0 do

5 remove minimal Element v from Q

6 mark v as finished
7 for e := (v,w) € E do
8 if w is not marked as finished then
9 if d(v) +len(e) < d(w) or (d(v) + len(e) = d(w) and o(v) < o(p(w)))
then
10 d(w) := d(v) + len(e)
11 p(w) = v
12 if e ¢ @ then insert w in Q

Proof 2 (Correctness)

The correctness of Dijkstra’s algorithm relies on the fact, that at each step, the tentative
path from the source to the vertex minimal in the priority queue already is a shortest
path. A complete proof can be found in [AMO93].

Given a canonical ordering o and an s-t-query. In order to prove that only canonical
shortest paths are computed we assume that at least one path P = (uy,...,uy) is
contained in the shortest-paths tree that is not canonical. Let @) be the canonical s-t-
path and P = (ug, ..., u,) be the maximal subpath ending at ¢ that both paths have in
common. Let ¢ be the predecessor of ux on Q. Then is o(q) < o(ug_1) and the adaption
of Dijkstra’s algorithm would not have settled wg via up_1.

|

Later, we will use the following notation: given the tentative shortest paths tree at an
arbitrary step of Dijkstra’s algorithm. Then, the finished part of that tree is the tree’s
subgraph induced by all vertices marked as finished.

13

CHAPTER 2. FUNDAMENTALS

Runtime. Even if the worst-case runtime of the algorithm is O(n?) on dense graphs, one
can do much better on sparse graphs. The choice of the priority queue is a crucial point for
the performance. If the edge lengths are natural numbers bounded by a constant C', Dials
Implementation needs O(m + nC'), Johnson’s Implementation O(mloglog C') runtime.
Binary Heaps (runtime of O(mlogn)) and Fibonacci-Heaps (runtime of O(m + nlogn))
are the best performing priority queues that are known for general sparse graphs. |[CLL90|

contains a precise description of all these algorithms.

SetDijkstra. Dijkstra’s algorithm can also be used to find for each vertex on the graph
the shortest path from the nearest of a set of given vertices. We will face that problem
in Chapter 5 as a subproblem of a speed-up technique’s recomputation. A practical
application is to check the coverage of infrastructural facilities.

SetDijkstra works as follows: given a set of ‘source vertices” we run Dijkstra’s algorithm,
but initialize it using all source vertices instead of using only one source vertex. The
resulting output contains for each vertex the predecessor on the way from the nearest
source vertex. We refer to that variant as SetDijkstra.

2.4 Updating Shortest Path Trees

Based on the algorithms described by Frigioni, Marchetti-Spaccamela and Nanni in
[FMSNO00|, we present an algorithm that updates an existing shortest paths tree after a
set of edges has been updated. We assume that the shortest paths tree is identified by
a label containing the tree-predecessor of each vertex. Furthermore the distance of each
vertex to the source shall be given. The update algorithm proceeds much like Dijkstra’s
algorithm.

Notation. Given a graph G = (V, E) with length function len,g : E — R and a
subset of edges U with updated edge lengths. The new length function is denoted by
lenpew : B — RT. Let T,q be the shortest-paths tree on G with respect to len,g rooted
at a vertex s. Let T},¢, be the tentative shortest paths tree computed by our algorithm.
Initially Thew equals T,q. Let Poi(v)/Prew(v) be the predecessor of the vertex v on
Toid/Tnew- For each v € V' let distyq(v)/distpen(v) be the distance from s to v with
respect to the old/new length function. With D(v) we denote the tentative distance
from s to v currently computed by our algorithm. Initally D(v) equals distq(v).

Initialization. At the initialization step we update the distances of the target vertices
of edges in U. In order to do that we provide a priority queue H containing all edges
(u,v) of U keyed by the distance label D(u). We iteratively remove the minimal edge
(u,v) from H and set D(v) := D(u) + lenpew(u,v) if D(v) > D(u) + lenpew(u,v) or
Ppew(v) = u. We update the priority of an edge in the queue if the distance label of the
according source vertex has been updated.

We maintain a second priority queue @ that contains each vertex v with altered and
tentative distance label. The priority of v is D(v). When we change the distance label
of a vertex v which is not contained in @ we insert v into @ (with the new distance

14

CHAPTER 2. FUNDAMENTALS

after step 1 after step 2 after step 3

after step 4 after step 5 after step 6

Fig. 2.3: Example for the update of a shortest paths tree. Continous lines represent edges
on the (tentative) shortest paths tree, dashed lines the other edges. The vertices
currently in the queue are drawn red.

15

CHAPTER 2. FUNDAMENTALS

as priority) and the original distance of the vertex (the actual value of D(v) before the
change) is saved. We call that saved value DjnsQueuc(v). Each time the distance label of
this vertex is changed, the priority of the vertex has to be changed to the new distance.

Main Algorithm. At the main algorithm we remove the minimal vertex m from the
queue and ‘process’ it. We iteratively repeat that until the queue is empty. The processing
of a vertex depends on the relation of its original and its actual distance:

¢ DinsQueue(V) = D(v). If the original distance equals the actual one, nothing is to
be done.

¢ DinsQueue(V) > D(v). If the distance label of m has decreased we check for every
outgoing edge (m,t) if the path to ¢ containing the edge (m,t) is shorter than the
shortest path to ¢ found so far. In that case we update distance label D(¢) and
predecessor P(t) of t accordingly.

¢ DinsQueue(V) < D(v). If the distance label of m has increased, we check every
incoming edge (s,m) if a path using that edge is shorter than the shortest path
to m found so far. In that case we update distance label D(t) and predecessor
P(m) of m accordingly. Now the distance label of m is correct and we search every
outgoing edge (m,t) that is part of the tentative shortest paths tree Tyey. For each
found edge (m,t), we set the distance label of ¢ to dist(m) + len(m,t).

after processing a vertex it is removed from the queue (). The algorithm terminates when
Q@ is empty. Figure 2.3, page 15 shows the algorithm at work on an example graph.

Comparison with the algorithm in [FMSNO0O] Though the main ideas of the former
described algorithm are the same as that in [FMSNQO0O| we want to list the differences:

e The recomputation of our algorithm handles not only one edge update per time
but is a fully dynamic algorithm.

e In [FMSNOO] the existance of a special assignment of each edge to one of its end-
vertices is used in combination with a datastructure that sorts a subset of all edges
incident to a vertex in order to guarantee better worst case runtime.

e The algorithm in [FMSNOO| operates on undirected graphs.

Coarse sketch of the proof of correctness

The correctness for incremental or decremental updates is proven completely analogous
to the proofs in [FMSN96, RR96].

The proof of correctness for the fully dynamic case consists of two steps: first it is shown
that the algorithm would work correct if the priority of each vertex v in the queue @) was
the correct new distance of v. That sub-proof works much like the proof of correctness
for Dijkstra’s algorithm.

16

CHAPTER 2. FUNDAMENTALS

The second step is to show that the order in which the vertices are removed from the
queue does not have any influence on the final values of D, and (if shortest paths are
are supposed to be unique) has no influence on the final values of the shortest paths tree
predecessors P(v). The author wants to point out that he has not finished that sub-proof
in detail.

Algorithm 2: UPDATE DIJKSTRA
input: Graph G, len(-), Distance||, Predecessor||

/* init */
1 forall edges e in update set U do

2 insert e in queue H with priority distance|e.source]
3 while queue H is not empty do
a edge e := get minimal element from H
5 remove minimal element from H
6 if predecessorfe.target|=e.source or distancefe.target|>distancefe.source]+lenfe]
then
7 UPDATE DISTANCE(e.source, e.target)
8 forall h in H with h.source—e.target do
9 update H-priority of h
/* step down the tree */
10 while queue @ is not empty do
11 node n:—get minimal element from
12 remove minimal element from @

13 if oldDistance[n]<distance[n] then

14 forall edges e with e.target=n do

15 if distance[n]>distance[e.source[+lenfe] then

16 UPDATE DISTANCE(e.source, e.target)

17 forall edges e with (e.source—n and predecessorfe.target/-n) do
18 UPDATE DISTANCE(e.source, e.target)

19 if oldDistance[n|>distance[n] then

20 forall edges e with e.source=n do

21 if distance[e.target]>distancefe.source[+lenfe] then

22 UPDATE DISTANCE(e.source, e.target)

17

CHAPTER 2. FUNDAMENTALS

Algorithm 3: UPDATE DISTANCE(fromNode, toNode)

if not @) contains toNode then
oldDistance[toNode|:—distance[toNode|
distance[toNode|:=distance|fromNode|+len|(fromNode,toNode)|
predecessor[toNode|:—fromNode
if not) contains toNode then
insert toNode into Q with priority distance[toNode]|)
7 else
8 change priority of toNode in Q to distance[toNode])

(= T B N R

Heuristic variant to improve a batch update.

At this point we want to stress that the order how vertices are removed from the queue
does not influence the correctness of the algorithm. It is a heuristic strategy to improve
the runtime. Our strategy works well on decremental updates: the algorithm proceeds
like Dijkstra’s algorithm would do but shrinks the processed part of the graph if possi-
ble. However, on incremental or fully dynamic updates there are many cases where the
algorithm does not perform better than iteratively recomputing the shortest paths tree
edge-update by edge-update and performs worse than a full recomputation from scratch.
Figure 2.4 shows such an example.

1000 20
O—0O0—00—O—00—00—0
OO 070 1010

Fig. 2.4: Graph and shortest-paths tree rooted at s. The red numbers represent up-
dated edge lengths. The optimal order to process the vertices is: u,v,w,x,y,z.
Our update-algorithm would process the vertices in the following order:
W, X,V,%,U,V, W, X, V,Z.

To improve the performance on incremental or fully dynamic updates we propose a slight
change in the algorithm: the priority of an edge (u,v) in the initialization queue H is the
distance D(v) of (u,v)’s target vertex instead of its source vertex. At the initialization
only the first edge in H is processed, then the main algorithm is performed. The main
algorithm almost works as described. The only difference is that, before a minimal vertex
m from the queue is processed, the initialization step is performed for all elements of the
queue H with H-priority lower than the Q-priority of m.

18

3 Speed-Up Techniques

In this chapter we describe several techniques that are used to speed up Dijkstra’s search
when solving a single-source single-target problem. All described techniques except bidi-
rectional search and a goal-directed search variant require a preprocessing step to com-
pute data which is later used to speed up single-source single-target queries.

Goal-directed search and the landmark technique, which is a special case of goal-directed
search, alter the lengths of the original graph’s edges in a way that preserves the property
that shortest paths from source to target remain shortests paths but ‘direct’ Dijkstra’s
algorithm to arrive at the target while visiting fewer useless vertices.

The main idea of multi-level graphs and highway hierarchies is to build a new graph
whose shortest paths correspond to shortest paths on the original graph. The new graph
is built in a manner that aims to minimize the number of vertices visited by Dijkstra’s
algorithm. This is supported by a set of special rules which edges (not) to relax.

The edge-label technique and reach-based pruning attach additional data to each edge or
vertex. This data can be used to identify branches of a shortest-paths tree that are not
relevant for the solution of a given single-source single-target problem. Therefore these
branches can be omitted, resulting in a faster search.

Changing the underlying graph can result in a change of the preprocessed data. The
preprocessing is usually very time-consuming and a complete recomputation is often
not possible. Therefore it is important to find procedures which efficiently update the
preprocessing without recomputing from scratch when dealing with this situation. We
will show such dynamic update strategies for most of the described speed-up techniques.

3.1 Bidirectional Search

3.1.1 Query

A very common speed-up technique for the single-source single-target shortest paths
problem is the bidirectional search. This technique simultaniously performs two searches.
The first, a normal Dijkstra’s algorithm starts at the source and is called the forward
search. The second is rooted at the target and is also a Dijkstra’s algorithm, but applied
to the reverse graph, which is the graph with the same vertex set and the reverse edge
set B = {(u,v) | (v,u) € E}. We call it the backward search. The algorithm terminates

19

CHAPTER 3. SPEED-UP TECHNIQUES

N ST %
TSI AR

Ny
o
AP
oy
e
g“
‘a“
aV2

Ay
N
(<
o
A
K
/T

A
VN

X7

— O~

Fig. 3.1: Vertices visited (shown in red) by Dijkstra’s algorithm (left) and bidirectional
search (right)

when one vertex v is marked as finished by both directions. The shortest path between
source and target is composed by the shortest path from source to v found by the forward
search and the shortest path from v to target found by the backward search.

In [GKWO05] Goldberg proposes a better stopping criterion: stop the algorithm when the
sum of the minimum labels of visited vertices for the forward and reverse searches is at
least the length of the shortest path seen so far.

Although performing the two searches completely simultanious would be possible on
multi core/processor machines, alternating strategies must be used when using a single
processor machine. A simple approach is to swap to the contrary direction every time
after visiting a vertex. Another possibility is to keep the minimum distance label from
visited vertices of the forward search approximately equal to the minimum distance
label from visited vertices of the backward search. In order to do that the bidirectional
algorithm swaps to the contrary search when the distance label of the minimal queue
vertex is greater than the distance label of the minimal vertex of the contrary queue. We
call this alternating strategy distance balanced.

The reason why this technique achieves an improvement of the runtime is a very intuitive
one. The set of vertices which are visited by Dijkstra’s algorithm can be imagined as a
ball surrounding the source of the search. The unidirectional search needs one ball with
the distance from source to target as radius. The bidirectional search on the other hand
needs two balls with only half the radius, each. This diminishes the visited area, which
is nothing else than the number of visited nodes.

Note that this technique can be combined with several other speed-up techniques and is
an integral part of the later shown speed-up technique using reach values.

3.1.2 Dynamic Update

This speed-up technique requires no preprocessing and therefore no data has to be re-
computed after altering a graph.

20

CHAPTER 3. SPEED-UP TECHNIQUES

3.2 Goal-Directed Search

The goal-directed search, which is also called A* was introduced in [HNBR68|, the de-
scription here is based on [WWO06|. Its main idea is to stretch the ball of vertices visited
by Dijkstra’s algorithm in the direction of the target. This way, many vertices useless for
the solution of a given problem will not be visited and an improvement in the algorithm’s
runtime is achieved.

3.2.1 Query

The search is a normal Dijkstra’s algorithm but performed on an altered graph. The
vertex and the edge set of the original graph stay the same but the lengths of the edges
are altered in the following way:

The goal-directed search uses additional data in form of a function from the graph’s
vertices to reals. This function can differ for different targets. In this context, we call
such a function a potential function and denote it by p. The new length of an edge (u,v)
is assigned to lenpey(u, v) = lenggq(u, v) + p(v) — p(u).

Note, that a concrete implementation of the goal-directed search does not need to alter
the underlying graph at initialization. It only has to add the difference of the potential
function p(v) — p(u) to the length of (u,v) when this edge is relaxed. This way, only the
edges which get relaxed during the search have to be considered to the change, which
improves the runtime of the algorithm. Furthermore the search is easier to combine with
other algorithms if the underlying graph stays the same.

Remember that Dijkstra’s algorithm can only be applied if the underlying graph is free
from negative cycles. We ensure that by claiming all new edge lengths to be non-negative.
A potential function granting that property is called feasible:

Definition: given a weighted graph G = (V, E) and a length function len : V —]RE)F, a
potential function p: V' — R is called feasible if len(u,v) — p(u) + p(v) > 0 for all edges
(u,v) € E.

To find feasible potential functions it is useful to search tight lower bounds for the distance
to the target vertex t: if p(¢) < 0 then p(v) is a lower bound for the distance from v to
t. Hence, we can shift every feasible potential p to gain a new one ppey(v) = p(v) — p(t)
which is a valid lower bound and will result in the same search (will visit the same
vertices in the same order). As tighter lower bounds will push the search more into the
direction of the target, the main aim is to search those good potentials. A simple trick
to extract a better potential function from a set of others is to combine them by taking
the maximum:

If p1,pa, ..., py are feasible potential functions, then p(v) = max{pi(v), p2(v),...,pp(v)}
is a feasible potential function.

3.2.2 Correctness

Now, we are going to check the correctness of the algorithm: for each path P = (s =
v1,V2,...,0, = t) on the graph the length of the path applying the old edge lengths

21

CHAPTER 3. SPEED-UP TECHNIQUES

differs from the length of the path applying the new edge length by the same amount
p(t) — p(s):

lennew(P) = Y lennew(vi,vig1) =Y lenga(vi, vit1) — p(vi) + p(vig1)
=1 i=1

= —p(s)+pt)+ Z lenoid(vi, vis1)

i=1

= —p(s) +p(t) + lenyq(P)

Therefore a shortest path in the altered graph is also a shortest path in the original graph.
|

3.2.3 Example Potential Functions

For road maps or other graphs with a geographic origin good lower bounds can often
be found by exploiting the real-world coordinates of each vertex. These coordinates
determine a layout L : V — R? of the graph. We now assume that the length of an edge
(u,v) is the Euclidean distance ||L(u) — L(v)|| of the edge’s source and target vertex.
Then, the Euclidean distance to the target t, p(v) = ||L(v) — L(t)|| represents a feasible
potential.

O @)
target target

source source

Fig. 3.2: Part of a graph whose edge lengths are induced by the Euclidean distances of
the end vertices (left) and the same graph with altered edge lengths (by goal
directed search). The circles centered at the target vertex represent the potential
of each vertex.

Often however, problems are given where the edge lengths are not exactly proportional to
the Euclidean distances but correlate. A common example for that situation is the travel
time on a road map. There a corrective factor Vmee = max, ep {len(u,v) /|| L(u) — L(v)|}
has to be multiplied to p: peorr(v) = Umaa « || L(v) — L(t)]|.

Note that this proceeding will work in any normed vector space if appropriate edge
lengths are given.

22

CHAPTER 3. SPEED-UP TECHNIQUES

3.2.4 Dynamic Update of the Example Potential Functions

The first example where edge lengths are proportional to the Euclidean distances requires
no preprocessing and therefore is fully dynamic.

The only preprocessing used in the second example is figuring out vy,4,. Pure incremental
edge updates can recompute Umaa by calculating the maximum
Vmaz fupdate = MaX(y v)ev (len(u,v)/||L(u) — L(v)|| over all edges in the set of updated
edges U. The old value v,,4; has to be substituted by the maximum of v, and
Umag Jupdate- 1'his needs linear time in the number of updated edges.

For dealing with the fully dynamic case we propose a slight change in the data structure.
The edges shall be sorted by len(u,v)/||L(u) — L(v)||. This slows the preprocessing from
O(m) to O(mlogm) where m is the number of edges in the graph. Updated edges now
only have to be re-sorted. This is done in O(klogm) time, where k denotes the number
of updated edges and m the number of the edges in the graph. The new value for v,,q,
is the value of the last edge in the list.

23

CHAPTER 3. SPEED-UP TECHNIQUES

3.3 Landmarks

The landmark technique has been introduced in |[GH05| as main part of the ALT-
algorithms (ALT is an abbreviation for A-star, landmarks, triangular inequality). Tt
is a method to get potential functions for the goal-directed search only using the graph
and its length function as input. Therefore it can be applied in case no domain specific
information is given. Its idea is to grow full shortest-paths trees on a very small number
of vertices (which we call landmarks in that context) and exploit lower bounds for the dis-
tance to the target out of these trees using the triangular inequality for graphs. We want
to refer to [GHO5| for an experimental study on this technique and some optimizations
including the combination with bidirectional search.

3.3.1 Preprocessing

The preprocessing starts by choosing a small number of vertices of the graph, which we
call landmarks. Then, for each landmark L we grow a full shortest paths tree rooted at

Given a landmark L, the triangle inequality
dist(t, v) v on graphs, dist(v, L) — dist(t, L) < dist(v,t)
o) holds. The figure to the left is a schematic
= S dist(v, L) — dist(t, L) example of that inequality. Therefore p(v) =
. ’ dist(v, L) — dist(t, L) provides a lower bound

C for the distance dist(v,t) from a vertex v to
\ the target £ which we use as a feasible potential
o) L function.

As described in the last section, the poten-

tial functions p;(v) derived from different land-
marks can be combined to one, better potential function by taking the maximum
p(v) = max;{p;(v)}. For speeding-up the query it may be useful to identify a subset
of landmarks which provide strong lower bounds for the distance from source to target
of the search. Then the query is run only using these landmarks. Even though this
may effect in visiting slightly more nodes, the savings in the calculation of the potential
function p often lead to a faster query.

Picking the right landmarks is crucial for that technique. In [GHO05] good results are
reported for 1 to 16 landmarks at a graph size of 600.000 to 15 Mio edges. Some basic
selection strategies are:

By Random. Choosing by random is a simple way of selecting the landmarks. However,
the resulting potential function may be far away from being optimal.

Geometric. This approach can be used for graphs with two dimensional layouts like
the ones described in the last section. It derives from the observation that having
landmarks geometrically lying behind the destination tend to give good potential
functions. The algorithm first picks the vertex c that is most close to the center

24

CHAPTER 3. SPEED-UP TECHNIQUES

of the graph (here, all geometric statements are meant with respect to the given
2-dimensional layout). Then, the graph is divided into pie-slice sectors centered
at ¢, all of the sectors should contain approximately the same number of vertices.
Now, for each sector, the vertex farthest away from c is chosen as landmark.

Farthest Landmark. Starting at an arbitrary vertex as first landmark, this proceeding
iteratively adds new landmarks. The following condition has to be satisfied: each
new landmark is chosen such that the distance of the new landmark to the nearest
of all current landmarks is maximal.

3.3.2 Dynamic Update

The preprocessing of the landmark technique consists of two steps: first choosing the
landmarks and then performing Dijkstra’s algorithm for each landmark.

If the landmarks stay the same the preprocessing can be efficently updated by the algo-
rithm presented in section 2.4, page 14. Note that for most landmark selection strategies
only recomputing the shortest paths trees will not give the same result as a full recom-
putation from scatch would do, because the landmarks stay the same.

However, the landmarks that result from a complete re-choosing are near to the old
landmarks as long as the changes in the graph stay ’little enough’. In this case, the
recomputation is quality preserving. When updating the preprocessing without changing
the landmarks it is important to know wether the selection remains ‘good’. An indication
for that is the new distance between the landmarks which is explicitely known by the
shortest paths trees. Landmarks near to each other are inefficient and should by replaced
by new ones.

We do not have to apply that proceeding on the random and the geometric landmark
selection strategy: the edges have no influence on these strategies and therefore the
landmarks remain the same after an edge update.

To deal with the farthest landmark strategy we recompute the shortest paths trees with
the algorithm presented in section 2.4. Then we check on landmarks near to another.
If we find a pair of such landmarks, one of both is removed and replaced by a new one
selected by the farthest landmark criterion.

25

CHAPTER 3. SPEED-UP TECHNIQUES

3.4 Edge Labels

This technique needs a geometric layout of the underlying graph and tagges to each edge
(u,v) some preprocessed geometric information (the edge label) about the area of all
vertices that lie on a shortest path that begins with (u,v). When an edge (u,v) is to
be relaxed it is checked whether the target vertex t of the search is within the according
area of (u,v). The edge (u,v) can be ignored if ¢ is not within that area.

One can distuingish two types of edge labels: bit-vectors and geometric containers. When
using bit-vectors the whole graph is separated into several areas. Given an edge (u,v),
the bit-vector of (u,v) codes the information which areas contain at least one vertex
on a shortest path starting at (u,v). Further reading on bit-vectors can be found in
[KMS04, Lau04, MSST05].

Geometric containers are due to Schulz, Wagner and Weihe [SWW99| and have been im-
proved and experimental studied by Wagner, Willhalm and Zaroliagis in [Wil05, WWZ04,
WWO06]. The geometric container of an edge (u,v) is a geometric object that contains at
least all vertices to which a shortest path starts at (u,v).

3.4.1 Basics

If for each edge (u,v) the exact set H(u,v) of all vertices ¢ for which (u,v) is on the
shortest path from u to ¢ is known, good pruning can be achieved: Dijkstra’s algorithm
can leave out the relaxation of each edge for which the attached target set does not
contain the target of the search. It is easy to see that this pruning keeps the optimality
of the computed path from source to target.

As storing all these sets is prohibitive because of the memory consumption, appropriate
supersets have to be found. Such a superset H(u,v) has to satisfy three requirements:
first, it must be possible to determine very fast if a vertex is contained in H (u,v). Second,
H(u,v) should not contain too much vertices that are on no shortest path starting at
the edge (u,v). Finally, H(u,v) has to be storaged with constant or at least very few
memory. For real-world data with a given two-dimensional layout L : V — R? like
road-networks geometric objects seem to be a good choice.

Note that this proceeding also works without a given real-world justified layout. One
can also try to compute layouts that promise to effect in a good speed-up.

3.4.2 Geometric Containers

The geometric container of an edge (u,v) is a ‘simple’ geometric object that contains
at least all vertices of H(u,v). Out of convex objects like angular sectors or circles,
rectangles have been reported to produce the best results in the algorithms runtime.
The minimal, rectangular shaped, parallel to the axes geometric container of an edge is
called its bounding boz.

A bidirectional variant of pruning using bounding boxes is due to [WWZ04]. It uses two
different edge-labels:

The (consistent) target container T'(v,w) of an edge (v,w) is an rectangle (an area

26

CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.3: Bounding Box of the edge (u,v). The graph’s shortest paths tree rooted at w is
drawn with solid lines.

R C R? of the form {(2,9) € R? | Zimin < T < Tmaz, Ymin < ¥ < Ymae}) that contains
at least all vertices ¢ for which there is a shortest path from v to ¢ using the edge (v, w).
The (consistent) source container S(v,w) of an edge (v,w) is a rectangle that contains
at least all vertices s for which there is a shortest path from s to w using the edge (v, w).

We want to point out that such a container does not have to be minimal. It only has to
contain the according bounding box.

Preprocessing. To get the target containers we run for each vertex r on the graph a
slightly enhanced Dijkstra’s algorithm rooted at r. During the algorithm we keep, for
each labeled vertex v, the edge (r,u) on the tentative shortest path to v. When v is
finished we enhance the bounding box of (r,u) to contain v, if necessary. We use this
method on the reverse graph to get the source containers.

Query. To answer a single-source single-target problem with source s and target ¢ a
bidirectional Dijkstra’s search is used. The forward search is altered such that each edge
(u,v) is not relaxed if ¢ is not in T'(u,v), the backward search does not relax every edge
(u,v) with s not in S(u,v).

3.4.3 Bit-Vectors

This proceeding works as follows: first, we partition the graph into k areas. Then, we
assign to each edge a bit-vector with k bits. Each bit represents one of the precomputed
areas. We fix an arbitrary area A and an arbitrary edge (u,v). The bit of (u,v) that
represents A is set to false if (u,v) lies on no shortest path with at least one vertex in A.
Otherwise the bit is set to true.

According to |Wil05], useful partitions can be found through kd-trees when dealing with
road maps and through the method described in [HK00] in the general case.

Preprocessing. The preprocessing directly transfers from the preprocessing of geomet-

27

CHAPTER 3. SPEED-UP TECHNIQUES

ric containers. [WW06| mentions a great speed-up for the preprocessing of bit-vectors:
every shortest path incident to at least two different areas has to enter an area at one
vertex. Therefore it is sufficent to consider only vertices on the border of an area instead
of solving the complete all-pairs shortest-paths problem. We do that by solving, for each
vertex that is on the border of at least one area, the single-source all-targets problem of
the reverse graph.

Fig. 3.4: Sample partition in 4 areas. The graph’s shortest paths tree rooted at u is drawn
with solid lines. The bitvector of the edge (u,v)is (A =0,B=1,C =0,D =1).

3.4.4 Dynamic Update of Geometric Containers

A routine to update the preprocessing of the bidirectional variant of geometric containers
has been published in [WWZ04|. It handles one edge update per time and is split into a
decremental and an incremental proceeding. Both proceedings do not consider shortest
paths that have been destroyed by the update but only recompute all shortest paths that
have been created due to the edge update. Therefore existing edge containers cannot
shrink and the update routine is not an exact recomputation. The update method has
been reported to be four times faster than a recomputation from scratch would be.

Incremental Update. Given an edge (u,v) with increased length we want to limit
the area of all shortest paths that have been created by the update: if an s-t path has
been created by the increment of the length of the edge (u,v) then must (u,v) be on the
shortest s-t-path on the old graph. It follows that (u,v) is the last edge of a shortest
s-v-path and the first edge of a shortest u-t-path in the original graph. Therefore is s
contained in Syq(u,v) and ¢ in Tyg(u,v).

To update the geometric containers we grow a full shortest-paths tree on each vertex in
Sord(u,v) when computing the target containers and on each vertex in Tpq(u,v) when
computing the source containers. The existing geometric containers of vertices outgoing
from these vertices are augmented like in the static preprocessing routine.

28

CHAPTER 3. SPEED-UP TECHNIQUES

A second improvement is as follows. It can be shown that for each node x on a shortest
s-t-path created by the update of the edge (u,v):

distpew (8,) < distpew(s,w) 4+ lenpew (U, v) + distpew (v,)

Note that the inequality only holds in case shortest paths are unique. In the general
case the < has to be replaced by a <. To exploit the inequality we first run a Dijkstra’s
algorithm on the backward graph rooted w and a Dijkstra’s algorithm rooted at v. Then
distpew(s,u) and distpe,(v,x) are known for every s and xz. When we perform the
update algorithm this inequality can be checked everytime an edge is relaxed by Dijkstra’s
algorithm and we can omit those edges whose target vertices do not fulfill it.

Decremental Update. Now we deal with the situation that the length of an edge (u, v)
has been decreased. Here, the former statement changes to:

If an s-t path has been created by the decrement of the length of the edge (u,v) then
must (u,v) be on the shortest s-t-path on the new graph. It follows that (u,v) is the last
edge of a shortest s-v-path and the first edge of a shortest u-t-path on the new graph.
Therefore is s contained in Sy (u, v) and ¢ in Theq (u, v).

Since Spew(u,v) and Thew(u, v) are unknown at the beginning of the update the first step
of the algorithm is to recompute them like in the static case. Then we proceed like in
the incremental case only replacing Syq and Tyg by Spew and Thep-

The improvement changes to
distpew (s,) < distpew(s,u) + lengia(u, v) + distpew (v,)

and can also be applied like in the incremental case.

29

CHAPTER 3. SPEED-UP TECHNIQUES

3.5 Multi-Level Graphs

Multi-level graphs have been intensively experimentally studied since they were intro-
duced by Schulz, Wagner and Weihe in [SWW99, SWW00, SWZ02|. This description is
a summary of [HSWO06], the most recent paper on the topic. We enhanced it by a sketch
of a new update algorithm for the method.

The speed-up of this technique results from a preprocessing step at which the input graph
is decomposed into [+ 1 levels. This decomposition is used to limit the search space of
Dijkstra’s algorithm. Furthermore additional edges are inserted that represent shortest
paths connecting important vertices on the graph. These edges can be used as shortcuts
for Dijkstra’s Algorithm.

3.5.1 Data Structure

Given a graph G = (V, F) with non-negative edge lengths len : E — R™ and a subset
of the graph’s vertices S C V, we want to construct the shortest path overlay graph
G’ = (S, E') that is defined as follows: for each (u,v) € S x S there is an edge (u,v) in
E’ if and only if for any shortest u-v-path in G no internal vertex belongs to S (internal
vertices are all vertices on the path except u and v). The length of each edge in E’
is determined by the following condition: for each pair of vertices (u,v) € S x S the
distance from u to v on G’ equals the distance of the two vertices on G.

The construction of that graph can be done by the min-overlay algorithm:

Algorithm 4: min-overlay(G, len(), S)

forall vertices u € S do

e run Dijkstra’s algorithm on the graph G with root u

e the edge weights are pairs (len(e), s.), addition is done pairwise, the
—1 ;source(e) € S\ {u}

order is lexicographic, s, = { 0 otherwise
5 w
?

e break if all vertices in the queue have distance of at most (-, —1)

forall vertices v € S\ {u} do
if dist(u,v) = (-,0) then
introduce an edge (u,v) in E’ with weight dist(u,v)

Given a sequence of [subsets of vertices S; (1 <i <) withV =5,D>5, 25 D...D5
the basic multi-level graph is the result of iteratively applying the min-overlay algorithm:
starting with G and Sy, the min-overlay algorithm inserts a set Fy of edges. KEach
following step 4, min-overlay is applied to (S;, E;) and S;11 and inserts the set E;;q1 of
edges. We call the subgraph (5;, E;) the level i. We say a vertex v is of level ¢ (or a
level-i vertex) if ¢ is the maximal level that contains v.

30

CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.5: Bidirected 2-level multilevel-graph. The quadratic vertices represent vertices in
S. The lower figure shows the original graph, the upper figure shows the edges
inserted by the min-overlay algorithm.

If the usage of more preprocessing time and memory consumption is acceptable, the
shortest-paths queries can further be sped up by inserting even more edges to the basic
multi-level graph. The resulting extended multi-level graph contains two new types of
edges: upward edges from vertices in S;_1 \ S; to vertices in S; and downward edges
from vertices in S; to vertices in S;—1 \ S;. As in the basic multi-level graph, the length
of an edge equals the length of a shortest path on the underlying graph. An upward edge
(u,v) with w € S;_1\ S; and v € S; (or an downward edge with v € S;_1\ S; and u € 5;)
is only inserted if and only if no other vertex w € S; is on a shortest path from u to v.

The min-overlay algorithm can be altered to construct the extended multi-level graph.
By changing the last step where the new edges are introduced we can construct downward
edges: we consider also vertices v € V'\ § and an edge is introduced if dist(u,v) = (-,0).
Upward edges are constructed by running Dijkstra’s algorithm for all vertices of the
underlying graph instead of running it only for vertices in S;, and by introducing an edge
(u,v) if and only if dist(u,v) = (-,0).

3.5.2 Query

To answer a given s-t-query, only a subgraph of the basic/extended multi-level graph has
to be searched. This subgraph is theoretically determined by a construct called tree of
connected components, whose description we want to omit because it is not of importance
for the update of the multi-level graph. Therefore, we only sketch the search algorithm.
The extra information of the tree of connected components that is used for the query is
a partition of each level ¢ — 1 that is induced by the vertices in S;. We use the following
notation: given an integer 1 < ¢ <[and a vertex v on the subgraph of the multi-level
graph that is induced by the vertices S;_; \ S;, then C} denotes the maximal connected
component on that subgraph containing v. From now on, we assume that the structure

31

CHAPTER 3. SPEED-UP TECHNIQUES

of the components C} is known.

Assume that s is a level-k, t is a level-h vertex. Starting a Dijkstra’s search at s, the
shortest s-t-path query on the basic multi-level graph has to consider only edges contained
in Fj, while searching in C}. The component C} may only be left to a vertex v of higher
level k 4+ n, n € Nsg. When relaxing the outgoing edges e of v, only those contained
in Eyy, are considered. The same holds for each following level: connected components
may only be left to a vertex of higher level.

When the search ascends to the highest level or a level ¢ on which s and ¢ are in the same
connected component on the subgraph of G induced by the vertices V' \ S;11, no higher
levels have to be considered. All edges of that level ¢ may be used and the search may
descend in direction of . Here, the search space is pruned analogously. When we relax
outgoing edges from a vertex of level k + n with k +n > ¢ we consider all edges of level
¢ instead of all edges of level k 4 n.

The query can be further improved by a similar search using the edges of the extended
multi-level graph.

Fig. 3.6: search-space for an s-t-query on the example 2-level multi-level graph

The important tuning parameter of this technique are number of levels and number
and selection of the vertices in S;. We refer to [HSWO06| for an experimental study of
different criteria for selecting these vertices. An exact description of the query algorithm
and proofs of the correctness of the method can be found in [SWZ02].

3.5.3 Dynamic Update
Motivation

We consider a graph G = (V, E) and its min-overlay graph MO induced by a set of
vertices S which we call separator vertices here. Intuitively speaking, the vertices in S
separate the graph and the subgraph G~ induced by the vertices V'\ S consists of many
little connected components if the vertices in S are ‘well’ chosen. It is obvious that an

32

CHAPTER 3. SPEED-UP TECHNIQUES

edge on the min-overlay graph either represents only one edge with end-vertices in S or
connects vertices adjacent to the same component of G7: a path containing more than
one edge between two separator-vertices that are not adjacent to the same component
has to traverse at least two components. Therefore it has to pass at least one other
separator-vertex and is not represented by an edge in the min-overlay graph.

Let us assume an edge u has been updated. To recompute the min-overlay graph of G, we
only have to consider separator vertices adjacent to the connected component containing
u. The overlay edges of all other vertices stay the same. We will later treat some special
cases where an edge u is not contained in any connected component.

As we allow edge insertions and deletions the structure of the connected components may
alter due to an edge udate: components can grow or shrink, be unioned, parted, created
or destroyed. In this case we have to identify these structure-altered components and
must consider all separator vertices adjacent to either the original or the altered/new
components.

We now present an algorithm that recomputes an existing multi-level graph level-by-level.
The min-overlay graph of each level is recomputed only considering separator vertices
adjacent to components with updated edges. We also give some strategies to further
diminish the set of separator vertices considered for recomputation.

Outline

Given a graph G = (V, E) with length function lenyq : E — R™T, a sequence of [subsets
of vertices S; (1 <4 <1) with V. =5p D 51 D S D ... D5 and the multi-level graph
ML of G with respect to that sequence. The update is given by a new length function
leNnew : E — RT. The set of all edges with altered length is denoted by U. We call G
the original graph if we apply the edge lengths lengy and call it the altered graph if we
apply the edge lengths len,eq-

To avoid that edges exist that are contained in no connected component we alter our
notion of connected component C}? (page 31): we want C} to include also all adjacent
separator vertices of that level and the edges between these vertices. If an edge connects
two separator vertices not adjacent to the same component we regard those two vertices
and the edge connecting them as a separate, degenerated component. We further assume
that for each vertex and each level, the vertex is contained in, a label is given that
identifies the according connected component(s) C7.

To recompute the multi-level graph of G the graph has to be updated level-by-level.
Starting with ¢ = 0, we know the set of all updated edges U; of level i and recompute
that level as follows: first, we update the vertices’ connected component labels. This
is necessary because edge insertions or edge deletions may affect the structure of the
connected components.

Then for each separator vertex s contained in at least one component C' that either
contains at least one element of U; or that has changed its form, we recompute the
min-overlay edges outgoing from s. We remove the min-overlay edges of deleted compo-

33

CHAPTER 3. SPEED-UP TECHNIQUES

nents. Finally, the changes U;;1 between the old and the new overlay graphs have to be
identified.

The correctness of this algorithm follows directly from the observation that the edges in-
serted by the min-overlay algorithm represent only paths within a connected component.

Recomputation of the min-overlay edges outgoing from a given separator vertex

We use the min-overlay algorithm to recompute the min-overlay edges outgoing from a
separator vertex s. The only change in the algorithm is to grow a shortest paths tree
only from s instead of growing a shortest-paths tree on each separator vertex. Therefore
the first line of Algorithm 4, page 30 changes to for vertex s do.

Full Recomputation of a Connected Component

When dealing with updates that ‘seem to have a great impact on the shortest path struc-
ture of a connected component C’, it is reasonable to recompute the overlay edges for each
separator vertex contained in that component. Especially in the case that many edges of
a component have changed their lengths, this approach is likely to be runtime-optimal
among all possibilities that use no extra information gathered for handling dynamic up-
dates.

Sophisticated Recomputation of a Connected Component

Basics. However, we believe that another strategy does better if the number of updated
edges within a connected component is small in relation to the component. For simplicity,
we restrict this description to components that have not changed their form. Given a
component C' on a graph G, the set of separator vertices S contained in C, old and new
length functions lengg, lenpew and the set U of edges with updated length. We call G
the original graph if we apply lenyq and call it the altered graph if we apply lenew-

Recomputation. We know that the update of an edge (u,v) can only influence an edge
between two separator vertices s and ¢ on the min-overlay graph if at least one shortest
path between s and ¢t has no other separator vertex on the subpath from s to v and no
other separator vertex on the subpath from v to t.

We use a modification of the min-overlay algorithm to identify all vertices S~ C S that
are source vertices of overlay edges that have to be considered for the recompution: to find
S~ we run, for each edge (u,v) in U, Dijkstra’s algorithm rooted at v on the backward
component (the component with the backward edge set) of the original graph. The edge
weights and addition are defined analogously to the edge weights and addition in the
min-overlay algorithm: the length of an edge (z,s) with s € S (that are all edges that
go out from a separator vertex on the backward edge set) is (len(x,s),—1). The length
of each edge (w,v) with w # w is (len(w,v), —1). The length of all other edges (z,y) is
(len(x,y),0). We stop the search when all vertices in the queue have distance of at most
(-,—1). We repeat the searches on the altered graph.

34

CHAPTER 3. SPEED-UP TECHNIQUES

Let S~ denote the set of all vertices w € S with distance (-, 0) visited in at least one of the
searches. By the construction of S~ we know that S~ contains all separator vertices from
which, either on the original or the altered graph, a shortest path starts that contains an
updated edge (u,v) and has no other separator vertex on the path from w to v.

5

Fig. 3.7: Schematic representation of S~ in a connected component containing an up-
dated edge.

Therefore, the outgoing overlay edges of all vertices in S\ S~ remain the same. We only
have to recompute the overlay edges outgoing from a vertex in S™. Figure 3.7 shows a
schematic example for S~ within a connected component.

If the extended multi-level graph is to be updated, we define S~ to consist of all vertices
v € S with distance (-,0).

Bidirectional Variant

Analogously, we can run the searches used to find S~ also on the original edge set (instead
of on the reverse edge set) of the original and the altered graph with the source vertex
of each updated edge as roots. We denote the resulting set by S* and know that ST
contains all separator vertices at which, either on the original or the altered graph, a
shortest path ends that contains an updated edge and has no other separator vertex on
the path from the updated edge to the separator vertex. To recompute the according
overlay edges, we can proceed as in the first case but have to run the algorithm on the
reverse edge set.

A promising heuristic to reduce the cost of the min-overlay recomputation is to compute
both sets, ST and S~. Then, the recomputation should be performed using the set
containing fewer vertices. Figure 3.8 shows an schematic example for S~ and ST within
a connected component.

35

CHAPTER 3. SPEED-UP TECHNIQUES

St

5

Fig. 3.8: Schematic representation of S~ and ST in a connected component containing
an updated edge

Improvement for the Bidirectional Variant. Assume that only one edge on the
graph has changed its length. Before performing the update of the basic multi-level
graph, S~ and ST can be further diminished. Once again we want to stress that the
update of an edge changes the min-overlay graph only if it lies on a shortest path, either
on the original or on the altered component.

After performing the algorithm to compute S~ and S, we know for each updated edge
(u,v) and each vertex s~ € S~ the distance from s~ to u on the original graph. For each
updated edge e and each vertex s™ € ST we know the distance from the v to s™.

We observe that the increment of an edge (u,v) can affect the min-overlay graph only if
(u,v) is on a shortest path between two separator vertices on the original graph. We can
exclude that (u,v) is on a shortest path (represented on the min-overlay graph) between
s7 €8 and st € ST if dist(s™,u) g + len(u, v)yq + dist(v,s1)yq is greater than the
length of the min-overlay edge between s~ and s*. Figure 3.9 visualizes that condition.

Fig. 3.9: Schematic representation of a connected component. The red edge cannot be
on a path responsible for the dashed overlay edge between s~ and s™.

A similar argument works for decremented edges. The decrement of an edge (u,v) can
only affect the min-overlay graph if a path between two separator vertices s~ and s is
smaller than the actual shortest path.

Concluding, to recompute the overlay graph, we only have to consider separator vertices

36

CHAPTER 3. SPEED-UP TECHNIQUES

s~ € S~ for which at least one edge with incremented length (u,v) and one vertex
st € ST exists such that an overlay edge between s~ and s exists and

distorg(s™,u) +lengthoq(u, v) + distyq(v, sT) = lengyg(overlay edge between s~ and s™)

or at least one edge with decremented length (u,v) and one vertex st € ST exists such
that either no overlay edge between s~ and s™ exists or

distpew (8™, u) + lengthpew (U, v) + distpew(v, sT) <
lengq(overlay edge between s~ and st)

Note that this strategy can be enhanced to handle updates containing multiple edges. The
proceeding for pure incremental or pure decremental updates is obvious. The possibility
to enhance it to handle the fully dynamic case results from the observation that a shortest
path that changes because of the update of a set of edges U must contain at least one
end vertex of an edge in U.

With Use of Additional Data. If we store, for each edge e of the overlay graph, all
shortest paths that are responsible for the existence of e, we can further speed-up the
update: we only have to consider all vertices v € S; from which such a shortest path
contains either an incremented edge or an end-vertex of a decremented edge. A problem
of this strategy is that it will effect in the consumation of a huge amount of memory.

Comments. Finally, we want to stress that the choice of the sets S; usually is dependent
on the underlying graph. Our update strategy does not update the sets .S; and therefore
all these proceedings are no exact recomputations of the preprocessing. However, the
proceedings are useful because they are quality preserving as long as the changes between
original and altered graph stay ‘little enough’.

37

CHAPTER 3. SPEED-UP TECHNIQUES

3.6 Highway Hierarchies

This fairly new technique is due to Sanders and Schultes [SS05] and works on undirected
graphs. A paper [SS06| presenting an improved version that also works on directed
graphs is to appear. Its main idea is to transform the original graph into a hierarchical
graph containing the original graph as first level. Each level i is like the former level ¢ — 4
but only edges and vertices that are in the middle of shortest paths that contain many
vertices on the level ¢ — 1 are kept on level i. Additionally, the remaining subgraph gets
contracted in some way. The query uses a modified version of Dijkstra’s algorithm that
is run on the preprocessed, hierarchical graph and strongly prunes the search space.

3.6.1 Data Structure

The usage of highway hierarchies requires the notion of canonical shortest paths. Al-
though in [SS05] the canonical shortest path is defined more general than in this work we
restrict here to our definition and always think of the version that computes canonical
shortest paths when we talk of Dijkstra’s algorithm.

To distuingish which edge is far enough to the ends of a shortest path to keep it on the
next level, we first have to define the notion of H-neighbourhood: given the case that the
priority queue used by Djikstra’s Algorithm contains more than one minimal element,
we fix an arbitrary but deterministic rule which vertex to take. Then, the Dijkstra rank
rs(v) is the number of vertices already finished by a Dijkstra’s algorithm starting at s at
the time the vertex v gets marked as finished. For a given vertex s and an integer H,
we denote by dp(s) the distance of the H-closest vertex from s. The H-neighbourhood
Np(s) is defined as Ng(s) := {v € V | D(s,v) < dp(S)}. From now on we fix an
arbitrary H and only write N(s).

Now we are able to describe an iterative proceeding that constructs a sequence of graphs
(Gi)i=0..n called highway hierarchy. Each graph in that sequence represents one level of
our hierarchical graph used for the search. As mentioned, the first graph in the sequence
is the original one. Each following graph is computed by building the highway network
Gi11 of a contracted version G} of its predecessor. This is done in two steps:

The first step removes all edges (u,v) from G, that do not belong to a (canonical) shortest
path P = (s,...,u,v,...,t) with v & N(s) and u ¢ N(t). Furthermore all vertices that
became isolated are also removed. The resulting graph is the highway network Gjyi.

In the contraction step G;Jrl is built: the graph is split into its maximal vertex induced
subgraph with minimum degree two (we call that the 2-core of the graph) and all attached
trees (that are trees whose roots belong to the 2-core, but all other vertices do not belong
to it). Then all attached trees are removed. The remaining graph may contain paths
(ug,uq,...,ur) where each inner vertex wuj,us,ur_1 has degree 2. We call that paths
lines and replace every line by a new edge (ug, ux). The resulting graph is the contracted
highway network Gj_ ;.

38

CHAPTER 3. SPEED-UP TECHNIQUES

3.6.2 Query

The query used by this technique is a modified bidirectional Dijkstra’s algorithm that is
run on a graph G = (f/, E‘) This graph consists of all graphs Gy, Gy, ...,Gr. Note that
for every vertex v and every level | with v € G; the graph G contains a copy v; of v.
For all vertices v € G and all pairs v, v;41 € G additional edges (v;,v;41) with length 0
are inserted. These edges are called vertical edges and connect the instances of the same
vertex in consecutive levels. We call all other edges (those are all contained in G; for an
i < L) horizontal edges.

The graph is enriched with the following information: for each vertex v € G and each
level [< L the distance to the H-closest node in level I, d4;(v) is given. By definition we
set le to be infinity if I = L or v ¢ G}. We call the H-neighbourhood of a vertex v € G|
N(w) = (o € V] | d(v,v') < d}y (0)}.

To answer an s-t-query, both directions of the bidirectional Dijkstra’s algorithm are
expanded by the following rules:

e A vertex v is an entrance point if it either has been settled via an vertical edge or
if v € G} and has been finished from an horizontal edge starting at a vertex in G;.
The corresponding entrance point of a finished vertex v is the last entrance point
on the path to v. In each level [, no horizontal edge is relaxed that would leave the
neighbourhood N'(v#) of the corresponding entrance point v.

e Never visit a vertex v € G; \ G, by a horizontal edge starting at a vertex v' € G..

Furthermore a different abort criterion is used: proceed the searches until both search
scopes have met. Proceed further and abort as soon as for each direction starting from
d € {s,t} the search from d has no reached but unsettled vertex on levels i where i is
lower or equal to the level of an horizonal edges that has been skipped by the opposite
search.

3.6.3 Comments

A proof of the correctness, further improvements on that proceeding and a description of
the highway network’s construction and contraction can be found in the original works.
An interesting formulation of the highway-hierarchy technique that shows the connection
between this technique and reach-based pruning is stated in [GKWO05].

39

CHAPTER 3. SPEED-UP TECHNIQUES

3.7 Reach-Based Pruning

Reach is an edge measure value introduced by Gutman in [Gut04|. The reach of an edge
is high, if it lies in the middle of long shortest paths. This can be used for pruning edges
when performing Dijkstra’s search: if the search is far enough from target and source only
edges with high reach have to be considered. This way, the search space is sparsificated
using the reach value. The definition of reach, described in the original work is a very
general one. The definition, construction- and pruning-strategies we use in this paper
hold mainly to a modification of the original reach described in [GKWO05]. Section 4.8,
page 57 shortly reports the differences between this description and the descriptions in
[Gut04| and [GKWO05]. Chapter 4, page 44 explains how to construct reach values and
upper bounds for reach values while Chapter 5, page 59 describes a dynamic algorithm
that efficently updates preprocessed upper bounds for reach values.

3.7.1 Definition

Definition 2 (Reach) Let P be a path from s to t and (v, w) be an edge on P. We
denote by P, the subpath of P from s to w and by P, ;) the subpath of P from
v to t. Then the reach of (v,w) with respect to P

reach p(v, w) = min{len (P), len(P,)}

is the minimum of the length of the prefix of P and the length of the suffix of P.
The reach of an edge (v,w) (within a graph G) is defined as

reach(v,w) = max {reachp(v,w)}
P is canonical path on G
P contains(v,w)

the maximum over all shortest paths P through (v,w), of the reach of (v,w) with
respect to P. We call a path P responsible for the reach of an edge (v, w) if the reach
of (v, w) with respect to P is the reach of (v, w).

Fig. 3.10: Reach values of a sample graph. Black numbers represent edge lengths, red
numbers reach values.

40

CHAPTER 3. SPEED-UP TECHNIQUES

10 10 65 10
30 25 40

Fig. 3.11: Reach values of a sample path. Black numbers represent edge lengths, red
numbers reach values.

An algorithm that computes reach values can be found in the next section. As computing
reach values is very time-expensive while upper reach values can be computed in much
shorter time, these are used for reach-based pruning. Their construction can also be
found in the next section.

3.7.2 Query

We modify a distance balanced bidirectional Dijkstra’s search to sparsificate the search
space using upper reach-bounds. It is obvious that an edge (u,v) can only be on a shortest
path from s to t if dist(s,u) + len(u,v) or dist(v,t) 4+ len(u,v) is lower or equal to the
reach of (u,v). If lower bounds dist(s, u) for the distances from s to (u,v), dist(v,t) for
the distances from (u,v) to ¢t and an upper bound reach(u,v) for the reach of (u,v) are
known, we can exclude all edges (u,v) with

dist(s,u) + len(u,v) > reach(u,v) and dist(v,t) + len(u,v) > reach(u,v)

from the search. When the edge (u,v) is relaxed by the direction that starts at s, the
exact distance from s to w is known by the distance label dist(s,u) of u. If v has not
been finished by the opposite direction the minimal distance of all vertices in the queue
of the opposite direction is a lower bound for the distance from v to t. We call a distance
balanced bidirectional search using that arguments a bidirectional bound algorithm:

Definition 3 (Bidirectional Bound Algorithm) Given a single-source single-
target problem with source s and target t on a graph G = (V, E) and upper reach-
bounds reach(u,v) for each (u,v) € E.

By the bidirectional bound algorithm we denote the distance balanced bidirectional
Dijkstra’s algorithm whose forward search does not relax every edge (u,v) with

dist(s,u) + len(u,v) > reach(u,v) and v + len(u,v) > reach(u,v)
and whose backward search does not relax every edge (u,v) with
dist(v,t) 4+ len(u,v) > reach(u,v) and vy + len(u,v) > reach(u,v)

where v denotes the smallest distance label of all vertices in the priority queue of the
opposite search.

41

CHAPTER 3. SPEED-UP TECHNIQUES

to

@)
S

Fig. 3.12: Schematic view of a Dijkstra’s search from s to t. The area around the edge
(u, v) represents all vertices with distance to (u,v) lower than the reach of the
edge. The edge can be pruned by both, the bidirectional bound algorithm and
the self-bounding algorithm

A variant of that proceeding where both searches are more independent from each other
is the self-bounding algorithm. Here, an edge (u, v) is not relaxed if dist(s,u)+len(u,v) >
reach(u,v). The reverse search starting at ¢ proceeds accordingly. Note, that an edge
on a shortest s-t-path that is not relaxed by one search may be relaxed by the opposite.
To assure the correctness of the algorithm the stopping criterion must be modified.

Definition 4 (Self-Bounding Algorithm) Given a single-source single-target
problem with source s and target ¢ on a graph G = (V, E) and upper reach-bounds
reach(e) for every e € E.

By the self-bounding algorithm we denote the distance-balanced bidirectional Dijk-
stra’s algorithm whose forward search does not relax every edge (u,v) with

dist(s,u) + len(u,v) > reach(u,v)
and whose backward search does not relax every edge (u,v) with
dist(v,t) + len(u, v) > reach(u,v)

and that uses the following stopping criterion: stop the search in a given direction if
there are either no visited vertices or the minimal distance label of all visited vertices
is at least half the length of the shortest path seen so far.

The implementation of both algorithms can be improved by sorting the outgoing edges
(u,v) of each vertex u descending by the value reach(u,v)—len(u,v). For each edge (u,v)
which has been pruned from the search, all edges (u,w) with minor value reach(u,w) —
len(u,w) also have to be pruned. Therefore, the sorting enables the implementation to
skip these edges without checking the pruning condition.

42

CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.13: Schematic view of a Dijkstra’s search from s to t. The area around the edge
(u, v) represents all vertices with distance to (u,v) lower than the reach of the
edge. The edge cannot be pruned by the bidirectional bound algorithm but by
the search starting at ¢ when performing the self-bounding algorithm

3.7.3 Correctness

The correctness of the algorithms mainly transfers from the correctness of the bidirec-
tional search. To prove the correctness of the self-bounding algorithm, the existence of
two cases must be excluded additionally:

e There exists an edge e on a shortest s-t-path that is pruned by both searches.

e There exists an edge e on a shortest s-t-path that is pruned by one search and the
stopping criterion of the opposite search holds before e can be relaxed.

The main argument to exclude both cases is that an edge e on a shortest s-t-path can

only be pruned by the search starting at the vertex p € {s,t} that is further away from
e.

43

4 Static Reach Preprocessing

We precisely describe a simplified version of the preprocessing used in [GKWO05] to get
upper reach-bounds for the speed-up technique described in section 3.7.

4.1 Exact Reach

Computing reach values is very time-expensive. Just applying the plain definitions, the
shortest paths between any two vertices u,v must be considered. That leads to solve
nearly n? single-source single-target shortest path problems. The following algorithm
merges these problems to n single-source all-target problems and therefore grows a full
shortest paths tree T, on each vertex x. After a shortest paths tree T, has been grown we
compute for each edge e on the tree the reach with respect to the longest path through
e that is contained in T,. After building all shortest paths trees we have considered all
shortest paths that are responsible for the reach of at least one edge. Therefore, given
an edge e we gain the exact reach value of e by taking the maximum of its formerly
computed reach values.

Algorithm 5: Exact Reach

1 forall edges e € F do
2 initialize reach(e)—0
3 forall vertices x in V do
grow full shortest path tree T, with root x
forall edges (u,v) in T, do
d = farthest descendant of v in T},
height(u,v) = dist(x,v)
width(u,v) = dist(u,d)
reach(u,v) = mazx(reach(u,v), min(height, width))

© 0 N o o s

Unfortunately, this strategy is unsuitable for large graphs. As mentioned, we solve that
problem by computing upper reach-bounds instead of the exact ones. From now on, we
will refer to reach values as exact reaches and, as no lower bounds are used, to upper
reach-bounds as reach-bounds.

44

CHAPTER 4. STATIC REACH PREPROCESSING

4.2 Motivation

The main idea of the reach-bound computation algorithm is similar to the one for exact
reaches. Shortest paths trees are grown from every vertex v. But other than in the exact
case the trees are not grown over the whole graph but will be ‘cut’ at a certain length.
We call the resulting tree a partial tree. But we are only able to compute reach-bounds
for every edge with exact reach lower than a certain treshold e when we use partial trees
instead of full shortest paths trees.

These edges will now be removed from the graph and new, bigger partial trees are grown
on the resulting, sparsificated graph. Then we will use a penalty-function to take the
deleted edges into account and are able to compute reach-bounds for edges with reach
lower than a new, bigger threshold e3. This process will be iteratively repeated until
enough reach-bounds are calculated.

4.3 Qutline

Given a graph G = (V, E) with length function len : E — R™, two ascending sequences
of numbers ¢; and §; which are tuning parameters that restrict the size of the partial
trees, the static reach-bound computation algorithm works as follows:

no

Initialization Iteration Step Break Condition
Input: G, = (Vi, E;
Go=G=(V,E) reachbounds enough reach bounds computed | yes
. or -
Vee I Output: Git1 = (Vig1, Fit1) maximal iteration level reached
reachbounds|e] = oo updated reachbounds(]

compute reachbounds by
growing partial trees on
each vertex v in G;

At initialization, we set Gg := (Ep, V) := G and denote for every edge e € E with
reachBound;(e) the computed reach-bound of e at iteration step i. reachBound(e)y
is set to infinity for each e in E. Then the algorithm iteratively performs (reach-bound
computation-)steps until a break condition is fulfilled. We count these steps starting with
zero. The break condition needs two more tuning parameteres maxIt and desiredBounds
and splits into two parts: stop the algorithm if either a certain number of iterations max It
is reached or reach-bounds have been found for at least desired Bounds edges.

We now describe the proceeding within a single step: the input of the i-th reach-bound
computation-step consists of the original graph and the 4-tupel (G;, reachBound;(+), €;, 0;).
The output of the i-th reach-bound computation-step is a graph G;11 C G; and a valid
reach-bound reachBound,;;(e) of each edge e € E \ E;+1. Formerly computed reach-
bounds lower than infinity stay the same while reach-bounds remain infinity for edges

45

CHAPTER 4. STATIC REACH PREPROCESSING

still in the new graph G;;1. Because of that we will often write reachBound(u, v) instead
of reachBound;(u,v).

The ¢-th step computes the reach-bounds implicitely by computing valid upper bounds
for a variant of the original reach on the graph G; which we call penalty reach. In this
variant penalty functions called in-penalty and out-penalty are added to the original reach
on (; to compensate the removed edges.

The step does so by growing shortest paths trees whose size (‘size’ in the sense of length
of the contained shortest paths) is controled by the tuning parameter €;. To prevent these
partial trees from growing too big (‘big’ in the sense of contained vertices) the threshold
d; blocks all edges that have lengths greater than d; from being processed.

After all partial trees are grown we identify all edges e for which valid penalty-reaches
have been determined. We remove these edges from the graph to get the input graph
Gi+1 of the next computation-step and save their values as according reach-bounds
reachBound;(e). We furthermore remove all isolated nodes from G;4;.

Canonical Shortest Paths. We want to stress that we restrict ourselves to compute
canonical shortest paths (description on page 10). In this and the following chapter we are
thinking of a canonical shortest path when we speak of a shortest path. Consequently,
when we speak of Dijkstra’s algorithm we are thinking of the variant that computes
canonical shortest paths.

4.4 Penalty Reach

As mentioned before, we have to transform the deleted edges into some form of penalty
function.

Consider the situation in the left figure. We are
at the beginning of an arbitrary iteration step 4,
the dotted edge (u,v) has been removed from the
graph G because a valid reach-bound reach(u,v)
has been found in a former step. When we try
to determine the reach of the edge (v,w) in the
original graph the problem occurs that the path
P responsible for the original reach of (v,w) may
contain the deleted edge (u,v). We can compute
an upper reach-bound for (v,w) the following way: either P lies fully on G; and can
be computed only considering edges on G; or P contains the edge (u,v). Then we can
estimate (what we justify in section 4.7, page 54) the length of the prefix of P (the
subpath from the start vertex to w) by reachBound(u,v) + len(v,w) and compute the
length of the suffix of P (the subpath from v to the endpoint) only considering edges
on G;. The reach-bound is computed by taking the minimum of suffix and prefix of P.
Sometimes we have to deal with more than one removed, incoming edge. This is done
by taking the greatest reach-bound among all incoming edges. The same proceeding

46

CHAPTER 4. STATIC REACH PREPROCESSING

symmetrically works for outgoing edges.

As described in the last section we do not process edges higher than a threshold §;. When
we reinterpret the edge (u,v) of the last example to be such an edge our proceeding stays
nearly the same: instead of estimating the prefix by reach(u,v) we set that bound to
infinity.

Now, we summarize these ideas in the following definitions of in-penalty, out-penalty and
penalty-reach. The in/out penalties assign to each vertex v on the graph a penalty-value
representing the former possible shortest paths that contain the removed or forbidden
edges.

Definition 5 (Penalty)
Given valid upper bounds reachBound(u, v) for the reach of each edge (u,v) € G\ G;

we define the in-penalty at iteration step i of a vertex v € V; as

iPy(v) = 00 , Hu,v) € E; : len(u,v) > 0;
S maxy e\ g {reachBound (u,)}, otherwise

Analogously, the out-penalty of v is

00 ,3(v,u) € E; :len(u,v) > 6;
max, ,)ep\ £ {reachBound (v, u)}. , otherwise

oP;i(v) = {

We define max{(}} to be 0.

Given a shortest path P = (s,...,v,w,...,t), the penalty-reach of (v,w) with respect
to P adds the in-penalty of s to the length of the prefix and the out-penalty of ¢ to
the length of the suffix of P. The penalty-reach of (v,w) on Gj; is the maximum of the
penalty-reach of (v, w) with respect to P over all shortest paths P that contain (v, w).
It is a valid reach-bound for the exact reach of e. A proof of that fact is given in section
4.7.

Definition 6 (Penalty Reach)

Let P be a shortest path on G; starting from vertex s and ending in vertex ¢t. Given
an edge (u,v) on P we define the penalty reach of (u,v) with respect to P as

penReachp,q, (u,v) = min{iF;(s) + len(s, v),len(u,t) + oP;(t)}
Similar to the exact case, the penalty reach of an edge (u,v) € E; is defined as

penReachs (u,v) = max {penReachp/G;(u,v)}
g P is canonical path on G;
P contains (u,v)

47

CHAPTER 4. STATIC REACH PREPROCESSING

Note that the penalty-reach of an edge (u,v) € E;;+1 can be different from the penalty
reach of (u,v) € Ej.

4.5 Partial Trees

We now describe how we can find penalty reach-bounds of iteration step ¢ for (nearly)
all edges e with penalty reach of iteration step i, penReachg, (e) lower than a threshold
€;. The idea is to grow a shortest paths tree on each vertex v € (G; with a special break
condition.

The break condition of these partial shortest paths tree has to ensure the following two
claims, all values base on the graph Gj:

e Claim 1: For each edge (u,v) with penReachg,(u,v) < € a shortest path P
responsible for the penalty reach of (u,v) shall be included in at least one partial
tree.

e Claim 2: For each edge (u,v) with penReachg,(u,v) > €, at least one shortest
path P with penReachp(u,v) > € shall be included in at least one partial tree.

A partial tree is built as follows: start Dijkstra’s algorithm and keep on processing vertices
from the queue until all vertices v that are at most ¢; away from the successor of the
root on the path to v are finished. We call all vertices v such that the distance from the
successor of the root to v is lower or equal to €; the inner circle. Keep on processing
vertices from the queue until the successors of all vertices that are at most ¢; away from
their nearest inner circle predecessor are finished. See the next figure for an example
path on such a partial tree.

o—O—o—0—g—0C0——>0

IN
M

IN
M

We want to show the reason why the first edge outgoing from the root of the partial tree
may not be counted by the next figure 4.1:

48

CHAPTER 4. STATIC REACH PREPROCESSING

€ 0.4e 0.4e 0.1¢ 0.4e 0.4e 0.4e
O——0——O0——0——0——0——0——0
51 59 v w x t

Fig. 4.1: Minimal path responsible for the reach of (v,w). the partial tree rooted at s;
without counting the first edge contains the full path. The partial tree rooted
at s; with counting the first edge contains only the subpath from s; to x. The
partial tree rooted at so contains only the subpath from so to ¢ which is not
responsible for the reach of (v, w).

Now we can explain the reason why we do not want very long edges to be processed.
Assume that an edge outgoing from the root is a hundred times longer than every other
edge. Then the partial tree has to finish many other edges until this edge can be relaxed.
It therefore takes a long time to build such a partial tree. Figure 4.2 visualizes that
situation by an example. Real-world data justify that proceeding: The distribution of the
edge lengths of the graph of the road-map of Germany (where the edge lengths represent
the Euclidean distance between two points, shown on Figure 6.1, page 83) approximately
follows a function of the form a - e=(€n9th+) where @ and ¢ are real numbers.

Fig. 4.2: Partial tree rooted at vertex s that was built without using the delta rule. The
red vertices represent the partial tree that had been built with use of the delta
rule. The according value of epsilon is 1. All edge lengths not on the figure are
30 at most.

We formalize the whole proceeding of building partial trees by the following definitions
of inner circle and partial tree:

Definition 7 (Inner Circle)

Given a path P with source z. Let v be a vertex on P and z’ the successor of x on
the path to v if exists. v is an element of the inner circle of P with respect to e if it
is either the source z or dist(z/,v) <e.

49

CHAPTER 4. STATIC REACH PREPROCESSING

Given a tree T, rooted at x. Let v be a vertex on T,. v is an element of the inner
circle of T, with respect to € if it is in the inner circle of the path from z to v.

Definition 8 (Partial Tree)

Given two numbers € and §. Let T}, be the shortest paths tree generated by Dijkstra’s
algorithm rooted at x for which the following two extra rules are applied:

Stopping rule Stop growing the tree when the inner circle is finished and for every
vertex v which is less or exact € away from the nearest inner circle predecessor
one of the following condition holds: either it is a leaf and finished or all direct
successors of it are finished.

Delta rule Do not relax edges e with len(e) > 4.

The partial tree rooted at & with size € and delta § is the subgraph of T, induced by
the finished vertices.

O
O O O
.0 O o O
e ®
O Q o O O
O O .. O O
O
O O~
® O
O O O
O O
o O
~ 5 o0—F—0—0
<€
.. <€
. > €
O ®
O
O ® Q—C O—0
Q ¢ O ®
0.. O
O
O O @ O ©

Fig. 4.3: Example of a partial tree. Red and black vertices represent the inner circle,
white vertices represent ‘useless’ vertices that are in the partial tree because
other longer paths had to be finished

20

CHAPTER 4. STATIC REACH PREPROCESSING

After a partial tree T, is built we can compute reachr, (u,v) of each edge (u,v) on the
tree. This is done by taking the minimum of the ezact depth of (u,v) in T, (the length
of the path from the root to v) and the ezact height of (u,v) in T, (the length of the
longest path starting at u).

To compute the according penalty reach of edges contained in T, we have to consider
each path P = (s,...,v,w,...,t) on T, and must add the in-penalties and out-penalties
when computing the reach of (v,w) with respect to P. As we are only interested in the
maximal penalty reach over all partial trees, we can find a slightly faster way: we consider
only paths (z,...,v,w,...,t) where z is the root of the partial tree. The correctness of
this proceeding is easy to see: given a path P’ = (2/,...,v,w,...,t) on T, with z # 2/
that has a higher penalty-reach than P = (z,...,v,w,...,t) then this path (or a subpath
of it resulting in the compuation of the same reach bound) is also contained in the partial
tree rooted at 2’. Therefore we have to add the in-penalty of the root vertex to the depth
and the out-penalty of the last vertex of a considered path to the height. We call the
new values depth and height of (v, w).

Once again, we formalize that proceeding

Definition 9 (Depth and Height)

Given a partial tree T,,. The depth of an edge (u,v) on T, is dist(z,v) + iP(z).
To every vertex [in T, a new vertex, the so called pseudo leaf, is appended. The
edge-length to the pseudo-leaf shall be oP(l). The height of an edge (u,v) on T, is
the distance between u and its farthest pseudoleaf.

in Penalty: 10

Fig. 4.4: Example for depth and height of an edge (u,v) in a partial tree. The exact
depth of (u,v) is 18, the depth 28. The exact height of (u,v) is 33, the height
48.

Summary. The whole computation step ¢ works as follows: grow a partial tree on
each vertex of V;. For each edge (u,v) in E; save the maximal penalty reach-bound
possible ReachBound(u,v) of all penalty reach-bounds computed by the partial trees.
Then, for each edge (u, v) with possible ReachBound(u,v) < €; is possible ReachBound(u, v)

ol

CHAPTER 4. STATIC REACH PREPROCESSING

a valid upper bound for both, the exact reach of (u,v) and the penalty-reach of the actual
iteration step of (u,v).

Theorem 1 (Iteration Step Correctness) Given a graph G; = (V;, E;) C G =
(Vi, E), a length function len : E — R ™, valid upper reach-bounds reachbound(u,v)
for every edge (u,v) in G\ G; and two positive numbers ¢; and 6;.

Let possible ReachBound(u,v) be the maximum of
min{depthr, (u,v), heightr, (u,v)}
over all partial trees T, rooted at x with size ¢; and delta d;.

If possible ReachBound(u,v) < e then possible ReachBound(u,v) is a valid upper
bound for the reach of (u,v) in G.

02

CHAPTER 4. STATIC REACH PREPROCESSING

4.6 Pseudocode of the Static Algorithm

Algorithm 6: StaticReachBoundComputation(G,epsilon||,deltal])

input : Graph G = (V, E), len : E — R~y
Array epsilon||, Array delta[] both of same dimension
ouput: Reach]|
// stores the ReachBounds
ReachlterationStepl|
// stores the iteration step in which the reach-bound was computed
Partial TreeRoot||
// stores the root of the partial tree responsible for the reach-bound
1 G =G
2 foreach edge e € E do
3 Reachle] :== 0
4 ReachlIterationSteple] := NULL
5 PartialTreeRoot[e] == NULL

6 foreach indez i, of epsilon, in ascending order do

7 foreach vertez x in V' do

8 T,:=PartialTree(G’ ,z,epsilon|i],deltali])
9 foreach edge e € T, do

10 if min(depth(e),height(e))>Reachfe] then
11 Reach|e]—min(depth(e),height(e))
12 PartialTreeRoot[e] —x

13 foreach edge ¢ € E' do

14 if Reachle] > epsilon[i] then

15 Reachle] :==0

16 else

17 ReachlterationStep|e|:=i

18 E':={e| e € Ebounds[e] = 0}
19 V'i={veV|3I(u,v) € E' or I(v,u) € E'}
20 G =V, FE)

93

CHAPTER 4. STATIC REACH PREPROCESSING

4.7 Proof of Correctness

To guarantee that valid upper reach-bounds are computed, we have to proof the following
two claims:

1. Penalty-Reach is greater than reach: For each Gy and each e € E;: penReachg, (e) >
reachg(e)

2. The algorithm computes upper bounds for penalty reaches correctly

4.7.1 Penalty-Reach is greater or equal to Reach

We have to show that for each G; and each e € Ey: penReachg,(e) > reachg(e). We
do that by induction over the iteration step ¢. In the following we assume that partial
trees are grown without the delta rule, the in- and out-penalties are never set to infinity
because of an edge with length greater than ¢. Because of G = G penReach, (e) equals
the reach of e and the initial step is proven.

To prove the induction step we show that penReaCthH(v,w) is greater or equal to
penReachg, (v, w) for each edge (v, w) in Gy41.

y X)
5 X v A

We fix an arbitrary (v,w) in Gy4+1 and consider a canonical path P in Gy such that in
Gy: penReachp(v,w) = penReach(v,w). Let s be the first, ¢ be the last vertex on P,
respectively. Let (z,...,v,w,...,y) be the maximal subpath of P in G;; that contains
(v,w). Let 2’ be the predecessor of x on P, y' be the successor of x on P.

All following values in this proof belong to step ¢ if no other index is given. Our aim is to
show that the penalty reach of (v, w) with respect to the path (z,za, ..., 2k, v, W, Yg, ..., Y2,Y)
in G4 is at least as high as penReachp(v, w).

Then, because of the later following Lemma 1:

penReachg, (v, w) < min{penReach(z’, z) + lenp(z, w), penReach(y,y') + lenp (v, y)}

This transforms to

penReachg, (v, w) min{iPg,,, (z) + lenp(z,w),oPg,,, (y) +len(v,y)}

<
< penReachg, (v, w)

The induction step is proven. Note, that the second inequality uses both, the induction
hypothesis and the correct computation of upper bounds for penalty reaches in Gy. The

o4

CHAPTER 4. STATIC REACH PREPROCESSING

claim is also correct when the delta rule is to be applied because at any step the penalty
reach-bounds computed using the delta rule are at least as big as the penalty reach-
bounds computed without.

|
Lemma 1 With the requisites of this section the follwing two inequalities hold:
penReach(z',x) 4+ lenp(z,w) > penReachp(v,w)
penReach(y,y') +lenp(v,y) > penReachp(v,w)
Proof 3
penReach(2’,z) > penReachp(z’,7)
= min{lenp(s,x) +iP(s),lenp(2’,t) + oP(¢)}
penReach(2’,x) + lenp(z,w) > min{lenp(s,z) + lenp(x,w) +iP(s),lenp(z’,t)
—lenp(z’,v) + oP(t)}
= min{iP(s) + lenp(s,w),lenp(v,t) + oP(t)}
= penReachp(v,w)
The second inequality is proven analogously.
[|

4.7.2 The algorithm computes upper bounds for penalty reaches correctly

At the beginning of an iteration step ¢ we fix an arbitrary edge (v, w). Let
possibleReachBound(v, w) be the maximum of

min{depthr, (v, w), heightr, (v,w)}

over all partial trees T, rooted at x with size € and delta 4.

We want to show that if possibleReachBound(v,w) is lower or equal to epsilon then
possible ReachBound(v,w) is greater or equal to the penalty reach of (v, w) at iteration
step 1.

It is straightforward to prove that the reach of (v,w) on G; is lower than e if
possible ReachBound(v,w) < e. Therefore for all shortest paths P = (s,...,v,w,...,t)
is either dist(s,w) or dist(v,t) lower or equal to e.

Let possibleReachBound(v,w) < ¢ and P = (s,...,v,w,...,t) be a path responsible
for the penalty reach of (v,w). Let prefiz denote the subpath from s to w and suf fix
denote the subpath from v to t.

95

CHAPTER 4. STATIC REACH PREPROCESSING

First case: len(prefiz) < len(suf fiz). Then is (s,...,v,w) fully contained in T and
P is fully contained in T or the height of (v,w) in Ty is greater than e.

Second case: len(prefiz) < len(suffiz). If len(prefiz) < e is P fully contained in
P..

Let len(prefix) be greater than e. Consider the minimal subpath minprefiz = (s, ...,v,w)

of the prefix such that len(minprefiz) > epsilon. Then is suf fix fully contained in

Ts and the depth of (u,v) in Ts is greater or equal to e.
[|

o6

CHAPTER 4. STATIC REACH PREPROCESSING

4.8 Alternative Reach Pruning Strategies

4.8.1 Gutman’s Reach

The original concept of reach introduced in |Gut04]| differs from the one we use. Minor
important is that Gutman’s reach values are assigned to vertices instead of edges and
that the query is only unidirectional. The main difference is that Gutman’s reach value
is induced by a separate, alternative metric while the shortest paths responsible for these
reach values remain shortest paths with respect to the original length function:

Given a graph G = (V, E) with length function len : E — R* Gutman assumes that
a two-dimensional layout of G and a metric m : E — R™ is given such that for each
edge (u,v) in E the value m(u,v) is greater or equal to the Euclidean distance of both
end-vertices. For road-maps the Euclidean distance of the end-vertices is recommended
as such a metric.

The reach of a vertex v with respect to a path (x1,x9,...,2; =v =1y1,...,yx) is defined
as min{zll_1 m(xi,xiﬂ),z]f_l m(yi,yi+1)}. The reach of a vertex v is defined to be
the maximum over all shortest paths (with respect to the len-function) P containing v
of reaches with respect to P. Gutman also uses upper reach-bounds for the query, the
reach-bounds are computed much like in our description. When performing the query
a vertex v can be omitted if the reach of v is lower than the Euclidean distance of the
source vertex and v and lower than the Euclidean distance of the target vertex and v.

4.8.2 Goldberg’s Algorithm

Our version of reach-based pruning is a simplified and slightly altered version of Gold-
berg’s description in [GKWO05]. The differences are as follows:

The most significant difference is that in [GKWO05]| an additional technique is used to
sparsificate the graph and to speed-up the preprocessing and the query: between the
iteration steps a shortcut step is implemented that replaces the in- and outgoing edges
of vertices that have only two neighbour-vertices by a shortcut edge. This proceeding
does not influence the correctness of computed reach values and Goldberg reports that
the preprocessing speeds up by factor 15 when using shortcuts. Further, a speed-up of
factor 5 is reported when using the shortcut edges for the query.

Second, an additional version of reach-based pruning is sketched: reach-based pruning
can be combined with the ALT-algorithm introduced in [GH05|. The landmarks used in
that technique can be exploited as explicit lower bounds for reach-pruning.

Minor important is that in [GKWO05| a heuristic earlier stopping condition for partial
trees is applied that effects in shorter partial trees but accepts the computation of weaker
upper bounds for the reach values.

Further, Goldberg computes reach values for edges but later transforms these edge reach
values into vertex reach values. This is done to minimize the memory consumption of
the preprocessed data while benefiting from the stronger reach-bounds that result from
computing edge reach values. This change also requires a slightly different handling of

o7

CHAPTER 4. STATIC REACH PREPROCESSING

the query.

To stronger the reach-bounds of edges with high reach a refinement phase is appended
to the normal preprocessing. This is done by performing an exact penalty-reach compu-
tation on a graph induced by vertices with high reach.

Our version of reach uses canonical shortest paths to ensure the uniqueness and inheri-
tence property of shortest paths while in [GKWO05| small fractions are added to the edge
lengths.

Finally, Goldberg, Kaplan and Warwick do not explicitely specify how to treat very long
edges when growing partial trees. We introduced the delta rule and expanded the in-
and out-penalties to handle that problem.

o8

5 Dynamic Update of the Reach
Preprocessing

In this chapter we present an algorithm that efficently updates precomputed reach-bounds
for an altered graph while guaranteeing to get the same bounds that a full recomputation
from scratch by the static algorithm would provide. The algorithm handles the update
of multiple edges at the same time and takes advantage of updates ‘near to each other’.

5.1 A first Approach

In this section we give a small example to show the main ideas of the update algorithm.
To receive a first impression of the ‘locality’ of the partial tree computation we take a
look at the maximal height of a partial tree with size € and delta §.

Consider a partial tree T and the last vertex v on T that gets finished during the con-
struction of the tree. According to the Definitions 7 and 8, page 50 can the path from
the root of the tree to v be separated into three subpaths, listed in ascending distance
from the root:

e the edge outgoing from the root
e all edges with inner circle targets without the edge outgoing from the root

e the remaining edges

<4 <e <e <4
F————— inner circle ———

Because of the delta rule the following boundaries hold: the length of the first subpath
is at most d, the length of the second at most € and the length of the third at most e+ 9.
This leads to the following lemma:

Lemma 1 (Partial Tree Bounding Lemma) Let T' be a partial tree of size € and
delta 6. Then the length of every path P on T is at most 2¢ + 2.

99

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Each lemma in this chapter is proven at the end of the chapter in Section 5.7, page 79.

Example. Now, we consider the following situation: reach-bounds have been computed
for a graph G,;q = (V, E) which afterwards has been changed to a graph Gy, by altering
the length of one edge (u,v). Our aim is to recompute the reach preprocessing’s first
iteration step without starting from scratch. We can do so after identifying two sets:

e A set containing at least all edges whose reach-bounds computed in the first iter-
ation step has changed due to the altered edge length. We call such a set a reach
update area.

e A set containing at least all vertices on which partial trees have to be built to
recompute proper reach-bounds for all edges of an associated reach update area.
We call such a set a reach recomputation area (of the associated reach update area).

Identification of a Reach Update Area. To identify a reach update area we exploit
the former estimation of a partial tree’s height. We do so by growing four special shortest-
paths trees. Two partial trees are rooted at v and are grown on the reverse edge set (one
on Gpey the other on G,q). The other two partial trees are rooted at u and are grown
on the normal edge set (one on Gpey, the other on Gq). Each search will be stopped
when the queue is empty or every visited vertex is at least 2¢ + 20 away from the root.

Each shortest path P that has the following two properties

e the altered edge (u,v) is contained in P

e P is contained in a partial tree of size € and delta § on Gy 0r Goig

is contained in the finished part of one of the four shortest paths trees. It is easy to
see that only edges on such paths can change their reach-bounds when performing the
first iteration step of a complete new preprocessing. Therefore the set of all edges that
is contained in at least one of the four shortest paths trees is a reach update area.

Identification of a Reach Recomputation Area. To recompute the reach values of
each edge (u,v) contained in the reach update area we have to consider each partial tree
whose root r has a distance to the edge’s target v of at most 2e+24. For each edge (u,v)
on the reach update area we grow two shortest paths trees rooted at v: one on the reverse
edge set of Gpey the other one on the reverse edge set of Gyq. We stop growing these
trees when each visited vertex is more than 2e¢ 4+ 26 away from v. The set of all finished
vertices that are contained in at least one of the grown trees fulfills all requirements to
be a reach recomputation area of the former stated reach update area.

Recomputation Process. The recomputation itself is done by building partial trees
on each vertex of the reach recomputation area and, for each edge contained in the
reach update area, estimating new reach-bounds as done in the static algorithm. Figure
6.8, page 90 shows a schematic representation of the reach update area and the reach
recomputation area.

60

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Fig. 5.1: Schematic representation of the reach update area (inner area) and the reach
recomputation area (inner and outer area)

Improvement. The reach update area can be imagined as the set of all edges that
lie within a ball of radius 29 4 2¢ (here, the distance between two vertices shall be the
minimal distance of the vertices on Goiq and Gpey) around (u,v). Accordingly, the reach
update area consists of all vertices that lie within a ball of radius 46 + 4e around (u,v).
We observe (with Lemma 1, page 59) that only partial trees whose roots lie within a ball
of radius 26 + 2¢ around the updated edge are influenced by the update of (u,v).

We exploit that the following way: we split the reach recomputation area into two areas:
the first reach recomputation area consists of all vertices w whose distance from w to u
is 20 + 2¢ at most (these are the roots of partial trees that may change because of the
update of (u,v)). The second reach recomputation area consists of some vertices w with
distance from w to u between 2§+ 2¢ and 40 4 4e (all partial trees rooted at these vertices
stay the same as in the original computation).

We now recompute the reach values of all edges in the reach update area by growing
partial trees only on vertices of the first reach update area. After this computation we
know that all edges with tentative computed reach bound greater than e will be dumped
after the iteration step. Therefore they do not have to be further considered. Assume
that we know for some edges that the reach we have computed until now is already
correct. Then we do not have to consider them for a further recomputation.

Let S be the set of all edges with still possibly uncorrect reach bound lower than e. The
second reach recomputation area consists of all vertices that are at most 2e 4+ 20 away
from the target of an edge in S and that are not in the first reach recomputation area.
We get correct reach bounds for each edge in S by growing partial trees on each vertex
of the second reach recomputation area and correcting the reach bounds of edges in S.

61

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

This proceeding is motivated by the fact that the reach recomputation area consists of
at least as much vertices as the union set of first and second reach recomputation area.
Good speed-up can be achieved if the reach recomputation area contains many vertices
that are not in the first or the second reach recomputation area because we avoid building
many ‘useless’ partial trees in this case. Figure 5.2, page 62 visualizes that by a picture.

reach recomputation area

reach update area

1st reach recomputation area

2nd reach recomputation area

Fig. 5.2: Schematic representation of the reach update area, the first reach recomputation
area, the second reach recomputation area and the reach recomputation area.
Red arrows represent all edges of the reach update area that have a possible
uncorrect reach bounds lower than e after growing partial trees on the first reach
recomputation area.

62

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.2 Qutline

Notation. Given a graph G = (V, E) with length function lenyg : E — RT and two
finite sequences of ascending, positive real numbers €;,9;, 1 < ¢ < k. We assume that
reach-bounds have been computed for edges in E using the static algorithm described
in the last chapter to which we refer here as original computation. The epsilon and
delta values applied to the original recomputation are ¢; and J;. We denote by G;/q =
(v, Ei/old) the subgraph processed at iteration step ¢ of the original computation. The
reach-bound of each edge (u,v) computed by the original computation is denoted by
reachBound,q(u,v). We set reachBoundyq(u, v) to infinity for each edge (u,v) without
valid original-computation reach-bound.

We further assume that for each edge (u,v) with reach-bound lower than infinity the
root partialTreeRoot,4(u,v) of the partial tree responsible for the reach-bound of (u,v)
computed by the original computation is known. Note that this is additional data not
necessary in the static case but can be computed very easily. To do that, we already
added the lines 5 and 14 to the pseudo code of Algorithm 6, page 53.

Given an updated length function lenpe, : £ — R our aim is to update the reach-
bound preprocessing. We denote by U the set of all edges with altered length. To avoid
any ambiguity we refer to the computation from scratch with respect to lengthpew, €
and ¢; using the static algorithm as full recomputation.

The variable names when doing the full recomputation remain the same but the subscripts
change from old to new. Note that Ey/oq = Eo/mew = E-

We will notate a partial tree with root z and grown on the graph G;/new as T /new,
grown on the graph G/, as T /4. We denote by penReacth/mw (u,v) the maximum
of penalty depth and penalty height of an edge (u,v) on T, new With respect to the graph
Gi/new- By convention, penReachr, , .. (u,v) is set to infinity if (u,v) is not included in
Tx/new'

/new

Edge deletions and insertions. As decribed in the presentation of the problem,
page 9, we regard edge deletions and edge insertions as special case of updated edges by
setting the according lengths to infinity. We do not consider such edges when we compute
penalties. This proceeding is justified by the observation that both, exact reach values
and the computed reach-bounds do not change because of edges with length infinity.

Algorithm. Our algorithm updates the static computation step-by-step using the same
€ and § values as used in the original preprocessing. The algorithm works as follows:

63

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Iteration Step

identify changes in the input data Section 5.3

identify a set of at least all edges with possibly Section 5.4
changing reach bounds (the reach update area)

identify a set of at least all roots of partial trees Section 5.5
that potentially alter because of the altered input
data (the 1st reach recomputation area)

compute reach bounds for all edges in the reach up- Section 5.6
date area by growing a partial tree on each vertex
in the 1st reach recomputation area

identify edges of the reach update area with possibly Section 5.6
still uncorrect reach bounds

identify a set of partial tree roots necessary to cor- Section 5.6
rect the possibly false reach bounds computed in the
last step (the 2nd reach update area)

correct reach bounds of edges in the reach update Section 5.6
area by growing partial trees on each vertex in the
2nd reach update area

no

all steps recomputed?

l yes

Fig. 5.3: Workflow of the dynamic recomputation algorithm

64

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.3 Update Type

At the beginning of the iteration step the changes between the original and the new input
of the iteration step have to be found. We assign to each edge e on the graph one of the
following six update types:

Definition 10 (Update Type;) An edge e is said to be of

UpdateType;nc (no change) if the attached edge data has not changed at all.
Formal definition: (e € Ej/pew, € € Ejjoq and lenpew(e) = lenga(e)) or
(e & Eijnew; € & Ejjoiq and reachBound,q(e) = reachBoundpey(e)).

UpdateType;ld< ¢ (lengths differ) if the edge is contained in the new and the
old input graph of the iteration step but the edge length has changed and both
edge lengths are lower or equal to ¢;. Formal definition: e € E; /00, € € Ej/o14,
lenpew(e) <> lengq(e), lenpew(e) < d§; and lenyg(e) < 9.

UpdateType;ld> § (lengths differ) if the edge is contained in the new and the
old input graph of the iteration step but the edge length has changed and both
edge lengths are greater than 4;. Formal definition: e € E;/pew, € € Ej/oa,
lenpew(€) <> lengg(e), lenpew(€) > & and lengg(e) > 6;.

UpdateType;ld>< 0 (lengths differ) if the edge is contained in the new and the
old input graph of the iteration step but the edge length has changed, one
edge length is greater than d; and one lower or equal to §;. Formal definition:
e € Eijnew, € € Ejjoiq; lennew(e) <> lenga(e) and ((lenpew(e) > 0; and
lenga(e) < 6;) or (lenpew(€e) < 8; and lengq(e) > 6;)).

UpdateType;bd (reach-bounds differ) if reach-bounds have already been com-
puted in the old and the new input data but differ. Formal definition:
e € Ejjnew, € € Eijoq and reachBound,a(e) <> reachBound, pe, ().

UpdateType;cs (computation status differs) if a reach-bound has already
been computed in the old input but not in the new one or the other way
around. Formal definition: € € Fj/pen, € € Ej/o1q OF € € Ejjpew; € € Ejjga

We denote by U; the subset of E that contains all edges that do not have
UpdateType; nc.

We say an edge is of UpdateType;ld if it is of UpdateType;ld> §, UpdateType;1d<
0 or UpdateType;ld>< 4.

Obviously every edge in Ej/,1q or Ej /e, 18 of exact one UpdateType;. We also observe
that no reach-bound has been computed for an edge of UpdateType;ld until step .

65

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.4 Reach Update Area

Now we are at the beginning of iteration step 4. The input of the original computation
is the graph G; /4 and its output is Gj1/04. The input of the full recomputation is the
graph G pe,, and its output is Gy q/pew- We know the differences U; between Gj/,q and
Gi/new- If we know a set containing all edges that differ in G /0q and Gy /e, (that
are all edges in U;;1) we only have to recompute the reach bounds of these edges and
can copy the reach bounds computed at iteration step 7 of all other edges from G104

to Gi—l—l/new-
Therefore the first task is to find a set containing at least all edges for which the input

data of iteration step ¢ + 1 in the original computation differs from the input data of the
full recomputation. We call such an area a reach update area.

Definition 11 (Reach Update Area)

A set containing at least all edges of U;y1 (all edges which are not of
UpdateType;+1nc) is called a reach update area (of iteration step).

5.4.1 Reverse Partial Trees and Max Partial Trees

Reverse Partial Trees. To find a reach update area we will often have to find paths
that end at a given vertex u and are on partial trees performed in the original computation
or the full recomputation. To do that we grow shortest-paths trees rooted at w on the
reverse edge set. As described in the first section of this chapter the length of a path on
a partial tree with size € and delta § is at most 29 4+ 2e. Therefore we can stop growing
the shortest paths tree when the shortest paths to all vertices with distance of at most
20 + 2¢ are known.

We call such a shortest-paths tree a reverse partial tree. The next definition uses sets of
vertices as roots. For the time being we will only use one vertex as root when growing
reverse partial trees. The general definition will be helpful later in this section.

Definition 12 (Reverse Partial Tree)

Let N be a set of vertices. The reverse partial tree rooted at IV with size € and delta §
(notation: RTy) is the finished part (the finished part consists of the finished vertices
and the shortest paths edges connecting them) of the tentative shortest paths tree
generated by Dijkstra’s algorithm for which the following extra rules are applied:

Set Initialization. For all vertices v in N: set distance of v to zero and insert v
into the priority queue.

66

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Edge Set Rule. Use the reverse edge set.

Stopping Rule. Stop growing the tree when all vertices with distance of at most
2¢ + 26 from the nearest vertex in N are finished.

Delta Rule Do not relax edges with length greater than 4.

Canonical Rule Choose shortest paths that are canonical with respect to the nor-
mal edge set.

We will often omit size and delta of a (reverse) partial tree Ty, if we grow T, at iteration
step i, the size of T}, is €; and delta of T, is §;. The most important property of reverse
partial trees is stated in the next lemma.

Lemma 2 Let P be a path on a partial tree rooted at a vertex x with size € and
delta §. Let u be a vertex on P. Then the subpath from = to v on P is contained in
the reverse partial tree rooted at {u} with same size and delta.

Max Partial Trees. The pendant of reverse partial trees on the normal edge set are
maz partial trees. We will grow them when we want to find paths that start at a given
vertex v and are contained in a partial tree.

Definition 13 (Max Partial Tree)

Let N be a set of vertices. The maz partial tree rooted at N with size € and delta §
(notation: MTy) is the finished part of the tentative shortest paths tree generated
by Dijkstra’s algorithm for which the following extra rules are applied:

Set Initialization. For all vertices v in N: set distance of v to zero and insert v
into the priority queue.

Stopping Rule. Stop growing the tree when all vertices with distance of at most
2¢ + 20 from the nearest vertex in N are finished.

Delta Rule Do not relax edges with length greater than 4.

Here the lemma changes to:

67

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Lemma 3 Let P be a path on a partial tree rooted at . Then each subpath
(u1,ug,...,uy,) of P is included in the max partial tree rooted at {u;} with same
size and delta.

Comments. Note that, in the graph theoretical sense, max partial trees and reverse
partial trees are not trees but forests. We want to stress that Lemma 2 and 3 only hold
because we compute canonical shortest paths. When computing arbitrary shortest paths
Lemma 2 and 3 only hold on graphs where all shortest paths are unique.

When growing partial trees without the delta-rule or if §; is greater than the length len,qz
of the longest edge on the graph then the length of every shortest path on a partial tree
with size €; is 2€;+2len,q, at most. In this case, the stopping rule of reverse/max partial
trees can be altered to: stop growing the tree when all vertices with distance smaller than
2€¢; + 2lenqe are finished. This change does not affect the correctness of Lemma 2 and
Lemma 3.

5.4.2 Eager Construction of a Reach Update Area

Unless stated otherwisely all claims in this subsection that concern (penalty) reach
bounds, partial trees or reverse partial trees refer to reach bounds, partial trees or reverse
partial trees computed at the actual iteration step 3.

Aim. Our aim is to find a superset of U; 1. We know that an edge with UpdateType;11d
must also be of UpdateType;ld and it is therefore easy to find all such edges. Hence we
concentrate on finding edges of the other two types (that are edges (u,v) whose reach
bounds reachBound;i1(u,v) differ in the original computation and the full recomputa-
tion).

We observe two reasons why an edge (w,z) may be in U;;q. First, it can already be
in U;. Second, an edge (u,v) € U; is adjacent to (or contained in) either a partial tree
responsible for the penalty reach of (w,z) on Gj/,q or to a partial tree responsible for
the penalty reach of (w, z) on G /pew-

Plan. We consider UpdateTypes; 1d, bd and cs separately and identify for each edge
(u,v) in U; a set of edges U;+1(u,v) whose reach bounds computed until the beginning of
step i + 1 differ (between the original computation and the full recomputation) because
of the change of (u,v):

(u,v) is of UpdateType;ld> 0. In that case the difference of the length of (u,v)
between G,q and Gpey does not influence the reach computation at iteration step 3.
Therefore U1 (u,v) is the empty set.

Reason: until the beginning of iteration step ¢ + 1, an edge (u,v) of UpdateType;ld> §
is neither processed in the original computation nor in the full recomputation. The in-
penalty of v and the out-penalty of v is set to infinity in both computations. Therefore
no reach value computed until the beginning of step ¢ + 1 changes because of an edge of

68

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

that update type.

(u,v) is of UpdateType;ld < ¢. Here, we grow four shortest paths trees: two max
partial trees (one on Gi/o1q and one on Gi/new) rooted at u and two reverse partial trees
(one on Gj/p1q and one on Gy pe,,) rooted at v. All edges that possibly change their reach
bounds computed before iteration step ¢ 4+ 1 lie on the branch of one of the four shortest
paths trees that starts with the edge (u,v).

Reason: an edge (u,v) of UpdateType;ld< 6 must be contained in a shortest path P
responsible for the penalty reach of an edge (w, z) (either on the old or on the new graph)
to influence the penalty reach of (w, z). To find all edges (w, z) possibly affected by (u,v)
we have to remember that (u,v) can be in front of or behind (w,z) on P. We do not
have to consider shortest paths that are so long that they are not included in a partial
tree built on this iteration step.

We get all such edges behind (w, z) by growing two max partial trees (one on G/, and
one on Gi/new) rooted at w. Then all possibly affected edges are on the branch of the
resulting shortest-paths trees that start with the edge (u,v). To get the edges in front
of (u,v) we grow two reverse partial trees (one on G/ and one on Gj/pe,) Tooted at
v. All possibly affected edges (w,z) in front of (u,v) are contained in the branch that
begins with the edge (u,v) of one of both reverse partial trees.

(u,v) is of UpdateType;bd. In that case all edges of U;11(u,v) lie on either a max
partial tree rooted at v or a reverse partial tree rooted at w that is grown on either
Gijoid Or 0N Gj/peyy- We do not have to consider the max partial trees if in G\ G} /014
an edge (W, v) exists with reachboundyq(t,v) > reachboundoq(u,v) and in G \ G /pey
an edge (4, v) exists with reachboundpey (@, v) > reachboundpey,(u,v). The same holds
symmetrically for the reverse partial trees.

Reason: given an edge (u,v) of UpdateType;bd. Let (u,v) influence the penalty-reach of
another edge (w, z) with path P responsible for the penalty-reach of (w, z). Then either
v must be in front of w on P or u must be behind z on P. We find such edges (w, z) by
growing max partial trees rooted at v and reverse partial trees rooted at u on Gj/,q and
on Gi/new'

Given an edge (u,v) of UpdateType;bd. This edge has no influence on the in-penalty
of vifin G\ Gj/pq an edge (,v) exists with reachboundyq(T, v) > reachboundyq(u, v)
and in G\ G} /peq an edge (@, v) exists with reachboundpe, (i, v) > reachboundpey (u,v).
The same holds symmetrically for out-penalty of w.

(u,v) is of UpdateType cs or ld>< §. In that case all edges of U;t;(u,v) lie on the
union of a max partial tree rooted at v and a reverse partial tree rooted at u that is
grown on either G;/yq or on Gj/peqw-

Reason: given an edge (u,v) of UpdateType;cs or ld>< 4. Let (u,v) influence the
penalty-reach of another edge (w,z) with path P responsible for the penalty-reach of
(w, z). Then either v must be on P in front of w or u must be on P behind z. We find
such edges (w, z) by growing a max partial tree rooted at v and a reverse partial tree
rooted at u on Gj/pq and on Gy /ey -

69

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Algorithm to compute a reach update area. For each edge (v,w) of U; we know
how to get a set of edges U;;1(v,w) whose reach bounds computed at iteration step 4
differ between original recomputation and full recomputation because of the change of
(v,w). The union set of U; and all U;y1(v,w) where (v,w) is in U; is a reach update
area. We summarize that in the following theorem:

Theorem 2 (Eager Construction of Reach Update Area)
Let

Ny = { v eV]3I(u,v) of UpdateType,]ld < §}

Npies = { weV|3(u,v) of UpdateType;cs or Id >< 4}U
{ weV|3I(u,v) of UpdateType;bd,
B(u,9) € E\ E; jpew With reachyey(u,v) > reachpew(u,v),
B(u,v) € E\ E; jo1a With reachgq(u, v) > reachoiq(u,v)}

Nig = { weV|3I(u,v)is of UpdateType;ld < §}
Npges = { v eV |3I(u,v) is of UpdateType,cs or Id >< §}U
{ veV|3(u,v) is of UpdateType;bd,
B(a,v) € E\ B new With reachpew (i, v) > reachpew(u, v),
B(u,v) € E\ E; jo1q With reachqq(U, v) > reachoa(u,v)}.

Then the set of all edges contained in

{e | eeU;}U
{T" | Tisrev. par. tree grown on Gj/gq Or on Gjjpeq; ToOted at v € Ny s U
{B | B isabranch of the rev. par. tree grown on Gj/pe, O on Gjjo14,

rooted at v € Ny beginning with an edge (w,v) of UpdateType; 1d< §}U
{T" | T is max par. tree grown on Gj/gq 0r on G /ey, rooted at v € Npg,es JU

{B | Bisa branch of the max par. tree grown on Gj/pe, Or 00 Gj /014,
rooted at v € Ny beginning with an edge (v, w) of UpdateType; 1d< §}

is a reach update area of iteration step 1.

To union an edge (u,v) with a subgraph G we identify (u, v) with the subgraph ({u, v}, {(u,v)}).

70

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.4.3 Lazy Construction of a Reach Update Area

Identifying a reach update area using the eager construction is very time consuming
because many max partial trees and reverse partial trees have to be built. If many edges
in U; are ‘near to each other’ the reverse/max partial trees rooted at the end vertices
of these edges often visit almost the same vertices. We want to exploit this observation
to speed-up the construction of the reach update area and accept to get a reach update
area that may contain more edges than the one computed by the eager construction.

Given a set of vertices N. To find the set of all vertices marked as finished by at least one
max/reverse partial tree rooted at an element of N we can grow a max/reverse partial
tree rooted at N. The next Lemma 4 gives the main argument for the correctness of that
proceeding.

Lemma 4 (Monotony of Max Partial Trees and Reverse Partial Trees)

Let v be a vertex on a max partial tree / reverse partial tree rooted at a set Nj.
Then, for every set Ny, v is on the max partial tree / reverse partial tree rooted at
N7 U Ny that uses the same ¢ and ¢ values.

As special case this implies that all vertices on a partial tree with root x are contained
in every max partial tree whose root set contains x.

We want to stress that though the union of all vertices contained in at least one max
partial tree with root in N is included in the set of vertices contained in a max partial
tree with root IV, the edges contained in the set partial tree may be different from the
set of edges contained in the according partial trees. The same holds for reverse partial
trees.

Fig. 5.4: Sample Graph. The left picture shows the max partial tree rooted at the black
vertex. The right picture shows a max partial tree on the same graph with an
additional root. Edges that are on the left max partial tree but not on the right
are drawn green.

71

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Lazy Construction. To get a reach update area we remember the sets occuring in
Theorem 2 and grow a max partial tree rooted at Nld U Nbd,cs and a reverse partial tree
rooted at Nig U Npgcs on both, Gj/pq and Gjjpe. We know that we finish the same
vertices as in Theorem 2. Therefore the set of all edges computed by Theorem 2 is
included in the set of all edges (u,v) in G /new Where u and v are both contained in the
same of one of the four max/reverse partial trees grown. We call the resulting proceeding
the lazy construction of a reach update area.

Fig. 5.5: Sample Graph. The red edge is in U;. The blue edges represent the reach
update area edges. The left picture shows the eager construction, the right
picture shows the lazy construction.

Theorem 3 (Lazy Construction of Reach Update Area)
Let Nig, Npd,cs Nld and Nbc’cs be as in Theorem 2. Further, let

e RT,4 be the reverse partial tree rooted at Nyjg U Npg cs built on Gi/old
e RT,c, be the reverse partial tree rooted at Nijg U Npg s built on Gi/new
e T,q be the max partial tree rooted at Nld U Nbd,cs built on Gi/old

e T,.w be the max partial tree rooted at Nld U Nbd,cs built on Gi/new

Then the union set of U; and all edges for which at least one of these subgraphs
contains the source and the target

U, U
{(u,v) ‘ u,v € RTpq, (u7v) S Ei/old} U {(u7v) ’ u, v € Rlpew, (u,v) S Ei/new} U
{(uvv) ’ u, v € Tola, (u7v) S Ei/old} U {(u7v) ’ U,V € Thew, (u,v) S Ei/new}

is a reach update area (of iteration step).

72

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Decremental or incremental improvement for the lazy construction. The lazy
construction can be sped-up if the update on the original graph (or, more precise, the
difference between G/, and Gj/pe,,) Was pure incrementel or pure decremental.

If for each edge (u,v) on Gjjpe, follows that (u,v) is in Gj/pq and lenpew(u,v) >
lengiqd(u, v) then the vertex set of a reverse/max partial tree grown on the new graph is
contained in the vertex set of the according reverse/max partial tree grown on the old
graph. Therefore it suffices to build all occuring trees on Gj/414-

The same argument justifies to build all occuring trees only on Gj /e, When dealing with
pure decremental updates.

Corollary 1 (Decr. and Incr. Lazy Reach Update Area Construction)

With the requisites of Theorem 3 follows: let Ej /.., C Ej/qq and for all edges (u,v)
in Gj/pew be lenga(u,v) < lenpew(u,v).

Then is
Ui U {(uv U) | u, v € RTy4, (u7 U) € Ei/old} U {(u7 U) | u, v € Toq, (uv ’U) € Ei/old}

a reach update area. Let FEjjney 2 Ejjqq and for all edges (u,v) in Gjjgq be
lenorg(u, v) > lenpew(u,v). Then is

Ui U{(w,v) | u,v € RTyew, (4,0) € Ejjpew} U{(1,0) | 14,0 € Thew, (4,v) € By pewt

a reach update area (of iteration step 7).

73

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.5 First Reach Recomputation Area

We now search a set that contains at least all vertices from which partial trees can be
grown that are ‘influenced’ by the change of edges in U;. We call such a set a first
reach recomputation area. We will later use that knowledge to shrink the area which is
necessary to compute the reach bounds of edges in the reach update area.

Definition 14 (First Reach Recomputation Area)

A set that contains at least all vertices x for which

e cither the partial tree T} /,q Tooted at z and grown on G4 differs from (does
not consist of the same edge set as) the partial tree T, /e, Tooted at x and
grown on G /peqy

® or Ty /oq and T} pe, are equal with respect to the edge set but at least one
edge (u,v) exists such that penReachr, ., (u,v) # penReachr,,,,(u,v)

/new

is called a first reach recomputation area (of iteration step).

The methods used to find a reach update area can also be used to find a first reach
recomputation area. Given an edge (u,v) in U; the difference between finding a reach
update area and finding a reach recomputation area is that we only have to find paths
contained in partial trees that end with u or v instead of finding paths on partial trees
that contain u or v. Therefore we only have to consider the reverse partial trees grown to
identify a reach update area. The correctness of that proceeding follows from the same
arguments as the eager construction of the reach update area in the last section.

The eager construction of a first reach recomputation area uses the same reverse partial
trees as the eager construction of a reach update area but does not consider the max
partial trees:

Theorem 4 (Eager Construction of a First Reach Recomputation Area)

Let Nig, Npg,cs: Nld and Nbd,cs be like in Theorem 2. The set of all vertices contained
in

{u | weU; andu€ Gi/new}u
{T" | Tisrev. par. tree grown on Gj/gq 0r on Gj /ey, rooted at v € Npg,es fU

{B | Bisa branch of the rev. par. tree grown on Gj/pe, OF 00 Gj/g1,
rooted at v € Ny beginning with an edge (w,v) of UpdateType; 1d< €}

is a first reach recomputation area (of iteration step 7).

74

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

The same holds for the lazy construction:

Theorem 5 (Lazy Construction of a First Reach Recomputation Area)
Let RT,q and RT,e, be like in Theorem 3.

The set of all vertices contained in RT,g or RT,ey is a first reach recomputation
area (of iteration step 7).

75

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.6 Second Reach Recomputation Area

By now, we have identified a reach update area R and a first reach recomputation area Nj.
We can recompute reach-bounds of each edge (u,v) € R by growing a partial tree rooted
at w for each vertex w € Ni. The recomputation is done like in the static algorithm but
we only recompute the penalty reach-bounds of edges contained in R.

Our remaining problem is that the reach-bounds we compute that way are not necessarily
valid. In this section we describe how we can find a set of vertices, the second reach
recomputation area on which partial trees have to be additionally grown to guarantee the
correctness of the computed penalty reach-bounds.

Definition 15 (2nd Reach Recomputation Area)

Given a first reach recomputation area Ny (of iteration step ¢) and a reach update
area R (of iteration step i). A set of vertices Ny such that for each edge (u,v) in R

max {penReachT U, v } = max {penReachT U, v }
Z'ENlUNQ z/new(?) IeGi/new z/new(Y)
or

max enReach w, v } S e
rEN1UN>2 {p Tx/new(’) 7

holds is called a second reach recomputation area (of iteration step ¢ with respect to

Ni and R).

Basic Method. Given an edge (u,v) of the reach update area we already know a
proceeding to find a set N of vertices on which we have to grow partial trees to recompute
the penReachg,,,,.., (u,v): we have to consider all partial trees built on Gj/pe, that
contain (u,v). We get the roots of these by growing a reverse partial tree rooted at v on
Gi/new- The set of all vertices included in the branch of the resulting ‘reverse’ shortest
paths tree that starts with the edge (u,v) is such a set N and therefore N\ Nj is a second
reach recomputation area.

We also know that we can find the according vertices of all edges by growing one partial
tree initialized with the target vertices of all edges. The handicap of this ‘lazy’ method
is that we have to consider all vertices of the resulting reverse shortest paths tree and
cannot restrict ourselves to the vertices included in special branches.

Sophisticated Method. There is a simple way to identify edges of the reach update area
S whose penalty reach-bounds are already correct after the recomputation by growing
partial trees rooted only at vertices of the first reach recomputation area N;. We denote
the penalty reach of an edge (u,v) computed only by considering partial trees grown
on Gj/pew With roots in Ny as penReachy, (u,v) and the penalty reach of the actual
iteration step on the original computation as penReachyq(u,v). We remember that we

76

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

modified the static reach computation to store for each edge (u,v) the root 700t (y 1) Of &
partial tree responsible for the penalty reach bound of (u,v).

First of all we do not have to consider each edge (u,v) with penReachn, (u,v) greater
than ¢; for further recomputation because the resulting reach-bound of (u,v) will be
dumped anyway.

We can assign to each edge (u,v) € R with penReachn, (u,v) < € and a valid reach-
bound computed in the original computation until (and including) the actual step (that
is an edge not included in G4 1/4) one of the following four cases:

1. [root(,) € N1 and penReachyq(u,v) > penReachy, (u,v) |

In this case there may be a partial tree T, with root = outside of Ny such that (u,v) is on
T, and penReachr, (u,v) > penReachy, (u,v). Therefore the tentative computed penalty
reach-bound penReachy;, (u,v) does not have to be correct and has to be considered for
a second recomputation.

2. [root(,) € N1 and penReachoq(u,v) < penReachy, (u,v) |

In this case the tentative computed penalty reach-bound penReachn, (u,v) is already
correct: because of the construction of /Ny all partial trees that have changed are rooted
at an element of N;. We know by the result of the original computation that no partial
tree rooted outside N is responsible for a reach of (u,v) greater than the actual known.

3. [root(, . & N1 and penReachyq(u,v) > penReachy, (u,v) |

In this case the tentative computed penalty reach-bound penReachy, (u,v) is not correct
but we know that the old value penReach,q(u,v) stays a correct penalty reach-bound:
because of the construction of Ny all partial trees that have changed are rooted at an
element of N;. We know that no partial tree rooted at an element in Ny is responsible
for a reach-bound greater than penReach,q4(u,v) and since all other partial trees do not
have changed penReachyq(u,v) stays a correct bound.

4. [rootq, . & N1 and penReachgq(u,v) < penReachpy, (u,v) |
In this case the tentative computed penalty reach-bound penReachy, (u,v) is already
correct, the argumentation is the same as in case 2.

Conclusion. We summarize the results: assume penalty reach-bounds penReachy;, (u,v)
have been computed for each (u,v) on the reach update area R by growing partial trees
on Ni. Then the reach-bounds of all edges (u, v) are correct for which a valid reach-bound
has been computed until (and including) the actual step of the original computation and
which either apply to case 2 or case 4. Edges which apply to case 3 keep their original
reach-bounds. For edges with penReachpy, (u,v) greater than e no reach-bound will be
computed in the actual step. The reach-bounds computed for the remaining edges of the
given reach update area are possibly still uncorrect.

Hence we can compute a second reach recomputation area using either the eager or
the lazy basic method but grow the reverse partial tree(s) considering only edges with
possibly still incorrect and unknown penalty reach-bounds.

7

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Theorem 6 (Construction of 2nd Reach Recomputation Area)

Let R be a reach update area (of iteration step i). Let Nj be a first reach recom-
putation area (of iteration step i). Let R be the set of all edges (u,v) in R with
penReachy, (u,v) < €. Let

Rl = {(U,U) ’ (u,v) S R? (U,U) S Gi—i—l/old}
Ry = {(u,v) € R) (u,v) ¢ Gi—l—l/oldvTOOt(u,v) € Nl}
H = {T\TEV,TQNl,EI(u,v) ERzroot(uﬂ,) :7‘}

Let S be

{(u, v) € Ry | max {penReachTz/new (u, v)} < xgcl;?/};d {penReachTz/old (u, v)}}

Then the set of vertices that lie on the branch of a reverse partial tree grown on
Gi/new and rooted at v that starts with the edge (u,v) where (u,v) € Ry US unioned
with H is a second reach recomputation area (eager construction).

Then the set of all vertices that lie on the reverse partial tree grown on G; e, and
rooted at the end vertices of edges in R; U .S unioned with H is a second reach
recomputation area (lazy construction).

Improvement using more memory

The sophisticated construction of the second reach recomputation area can only sort out
edges which either already have a tentative reach-bound greater than e after building
partial trees on the first reach recomputation area or for which reach-bounds have been
computed in the original computation until (and inclusive) the actual iteration step.

We can sort out even more edges if we store for each edge (u,v) and each iteration step
i the root of a shortest path responsible for the penalty reach-bound of (u,v) at step i.
Note that we store the root even if the reach-bound is greater than € and will be dumped.

Then we know that the reach-bound of each edge (u,v) of the reach update area for
which no reach-bound has been computed in the actual step of the original computation
and for which the stored partial tree root is outside the first reach recomputation area
will not be computed in the recomputation at the actual step. Therefore we do not have
to consider (u,v) when we construct a second reach recomputation area.

78

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

5.7 Proof of Correctness

We have to show that all reach bounds recomputed by an iteration step are valid.

The correctness of the reach-bounds of edges not in the reach update area follows directly
from the definition of reach update area. The correctness of the eager and the lazy
construction of a reach update area follows from Theorem 2, page 70 and Theorem 3,
page 72. The correctness of Theorem 2 follows from the case analysis in the same section.
The correctness of Theorem 3 follows directly from Theorem 2 and Lemma 4, page 71.

The correctness of the reach-bounds of edges in the reach recomputation area follows
from the definition of the second reach recomputation area. The correctness of the
construction of the second reach recomputation area is due to Theorem 6, page 78. This
theorem is proven in the text of the same section. To be able to apply Theorem 6, a first
reach recomputation area must be correctly identified. The correctness of the lazy and
eager construction of the first reach recomputation area is due to Theorem 4, page 74,
Theorem 4, page 74.

We have used the following lemmata without proving them:

Proof 4 (Proof of the Partial Tree Bounding Lemma 1, page 59)

Denote by an unfinished path P on a partial tree (with size € and delta ¢) a path
that either contains unfinished inner circle vertices or vertices with distance from their
nearest inner circle predecessor of at most € which are unfinished or for which unfinished
successors exist. Obviously, a partial tree is grown until no unfinished paths exist.

An unfinished path has length of at most 2¢ + 29: the length of the edge outgoing from
the root has length of at most 4, the sum of the lenghts of all other inner circle edges
has length of at most €. The length of the remaining edges is € + J at most.

Let P be a path on a partial tree. Then must either P be unfinished or an unfinished
path with length greater than the length of P must be contained in the partial tree. Let
the length of P be greater than 2¢ 4+ 25. This is a contradiction to the fact that the
length of each unfinished path is 2e 4+ 26 at most.

|

Proof 5 (Proof of Lemma 2, page 67)

Let P = (z = x¢,...,x, = u) be a z-u-path on a partial tree with size ¢ and delta
0 rooted at x and grown on G = (V,E;). Then P is a shortest path on the graph
G = (V,E;) where E; = E\ {(u,v) | len(u,v) > §}. Therefore (u = x,,...,z0) is a
shortest path on the reverse graph of G. By Lemma 1 we know that the length of P is
2¢ 4+ 20 at most.

Therefore (v = xp,...,2p) is included in the shortest paths tree rooted at u on the
reverse graph of G which contains all vertices with distance from w of at most 2e + 24.
|

Proof 6 (Proof of Lemma 3, page 68)
As subpath of a shortest path, (uq,...u,) is also a shortest path. Because of Lemma 1

79

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

is len(uq, ..., u,) lower or equal to 2¢ + 20. Therefore it is included in the max partial
tree rooted at {u}.
|

Proof 7 (Proof of Lemma 4, page 71)

Given a set of vertices V1. The max partial tree rooted at N7 with size € and delta §
contains all vertices that have a distance of at most 2¢ + 26 to at least one vertex n in
Ny. Since n is also contained in Ny U No for an arbitrary set of vertices Ny, v is also
contained in the max partial tree rooted at Ny U No. The same argumentation holds for
reverse partial trees.

5.8 Implementation of the Dynamic Algorithm

Here we give the pseudo-code for the dynamic recomputation algorithm described in the
chapter. The code refers to the lazy construction of a reach update area (Theorem 3,
page 72), the lazy construction of a first reach recomputation area (Theorem 5, page 75)
and the sophisticated lazy construction of a second reach recomputation area (Theorem
6, page 78). The improvement on the second reach recomputation area sketched on page
78 is not included.

The following algorithm is a sub-routine used by Algorithm 8.

Algorithm 7: ComputeReach
input: reach update area RUA
reach recomputation area RRA

1 foreach vertez v in RRA do

2 T':= partial tree on G; /e, rooted at v
3 foreach edge e in TN RUA do

4 if Reachr(e) > Reachnewle] then
5

6

7

Reachpeyle] := Reachr(e)
PartialTreeRoot,eple] == v
ReachlIterationSteppeyle] =1

80

CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING

Algorithm 8: Lazy Dynamic Reach Bound Recomputation

S Gk W N

®

10
11
12

13
14

15
16

17
18

19
20
21
22

23

24
25
26
27
28
29
30
31

input : Graph G = (V, E), Leno[], Lennew|] epsilon|], deltal|

Reachoia]], ReachlterationStepoial], PartialTreeRooto 4|

ouput: Reachnew|], ReachlterationStepnew|], PartialTree Rootnew||

/* all max/reverse partial trees grown on iteration step ¢ have size epsilon[i] and
delta deltali] */

Initialize Reachnew with Reachoid, ReachlterationStepnew with ReachlterationStepod,
PartialTree Rootpew with PartialTreeRootqq

for i := 1 to maziterationstep do

RUA=0:RUA2=0; RRA1=0; RRA2=0;

Grew = (V, Enew), Bnew = {e € E | ReachlterationSteppew(e] > i}
Goia = (V, Eoa), Eoila = {€ € E | ReachlterationStepoiale] > i}
UPDATE Ui, Nld! Nbc,cs:]\fldy Nbc,cs

/* ReachUpdateArea, 1lstReachRecomputationArea */
Toia = max partial tree grown on G4, rooted at Nld U Nbd,cs

Thew =max partial tree grown on Gpew, rooted at N U Nbd,cs

RT,i1q = reverse partial tree grown on G4, rooted at Njg U Npg,cs

RT,ew = reverse partial tree grown on Grew, rooted at Nig U Npg,cs

RUA = set of edges (u,v) where u,v € To1q or u,v € Thew OF U, v € RTp1q of u,v € RTpew
RRA1 = set of all vertices contained in RT,;q, RThew or U;

foreach e in RUA do Reachnew(e) :=0
ComputeReach(RUA, RRA)

/* 2ndReachRecomputationArea x/
foreach edge e in RUA do
if (Reachnewle] < epsilon[i], ReachlterationStepoiale] < i, Reachnewle] < Reachoale] and
PartialTreeRoot,qle] € RRA1) or (ReachlterationStepoiale] > i and
Reachnew(e] < epsilon[i]) then
insert e into RUA2
if Reachnewle] < epsilon[i], ReachlterationStepoiale] < i, Reachnewle] < Reachoiale] and
PartialTreeRootoqle] € RRA1 then
Reachnew(e] := Reachoale]
PartialTree Rootpew(e] = PartialTreeRootyqle]
ReachlterationStepnew =1
RRA2=set of all vertices contained in a reverse partial tree rooted at RUA2 grown on G;/new

ComputeReach(RUA2, RRA2)

/* delete reach bounds greater than epsilon]i] */
foreach edge e in RUA with Reachnewle] > epsilon[i] and ReachlterationStepyqle] < i do
Reachnewle] =0
ReachlterationSteppewle] = 0o
PartialTree Root,ew(e] = null
foreach edge e in RUA with Reachnewle] > epsilon[i] and ReachlterationStepyqle] > i do
Reachnew(e] = Reachoiale]
ReachlterationStepnewle] = ReachlterationStepoiale]
PartialTree Rootpew(e] = PartialTreeRootqiqle]

81

6 Experiments

Road networks are extremly sparse and contain a certain hierarchy (of importance with
respect to long shortest-paths) which explains why reach-based pruning performs well on
road networks. Goldberg, Kaplan and Werneck experimentally have shown the extremly
good performance of reach-based pruning on road networks in [GKWO05].

In this chapter we report the results of some own experiments computing reach bounds
on road networks.

6.1 Choice of tuning parameters

In [GKWO05]| the following strategy for selecting €; is proposed: given a parameter k,
we choose k vertices at random and grow, for each vertex, a shortest-paths tree with
exactly |n/k] vertices. €g is assigned to be twice the minimum of the distance labels of
the last scanned vertex over all shortest paths trees. Furthermore min{500, [\/n]/3} is
proposed as good value for the parameter k. Given a second parameter «, €; is computed
by € = a'ey. Here o = 3.0 is reported to be a good value.

Since the delta-rule is not stated in [GKWO05], no good values for delta are given. To get
a first impression what good values for delta could be, we have a look at the distribution
of the edge lengths on the underlying road networks. Figure 6.1 shows the distribution of
the edge lengths on a graph representing Germany. Values between epsilon fourth and
epsilon half turned out to give a good tradeoff between the speed of the preprocessing
and the quality of the computed reach bounds.

6.2 Description of the tested graphs

We have tested the reach-bound preprocessing and query on graphs mapping parts of
the road network of Europe. The graphs were provided by the PTV AG and the length
of an edge on a graph refers to the Euclidean distance between the source and the target
vertex of the edge. The following table gives an overview and a short description of all
graphs used.

82

CHAPTER 6. EXPERIMENTS

name #vertices | #edges description

ger 4.377.787 10.997.366 | road network of germany

dnk 473.537 1.075.012 | road network of denmark

fin 460.693 1.020.008 | road network of finland

ka50.000 49.625 125.018 road network of a bounding box around karlsruhe
ka100.000 99.529 252.530 road network of a bounding box around karlsruhe
ka200.000 199.739 501.948 road network of a bounding box around karlsruhe
dkb100.000 | 99.878 250.490 road network of a rural area in franconia
st100.000 99.928 258.072 road network of an urban area in stuttgart

On page 49 we justified the delta rule by mentioning that most road networks contain
many short and only few long edges. The following figure 6.1 shows the distribution of
the edge lengths on the graph ger.

30
|

20
|

Percent

10

0.0 0.2 0.4 0.6 0.8 1.0

edge.length

Fig. 6.1: Distribution of the lengths of 10000 randomly chosen edges of the germany
graph where edge lengths correspond to travel times. The edge lengths are
given relative to the length of the longest of the 10000 edges.

We want to remind the reader that at iteration step ¢ of the static reach-bound prepro-
cessing only valid reach bounds for edges with exact reach lower than ¢; can be computed.
Only edges with an already computed valid upper reach bound are removed from the
input-graph of the next iteration step. The strategy used for the static preprocessing
mainly depends on the assumption that the graph strongly sparsificates after each itera-
tion step. The strategy used for the reach-query also mainly depends on the assumption

83

CHAPTER 6. EXPERIMENTS

that most edges have low reach while only few edges with high reach exist. The next
figure 6.2 shows the distribution of the exact reach values on the graph KA50.000.

Percent
20 40 50
I

10

0.0 0.2 0.4 0.6 0.8 10

reach.value

Fig. 6.2: Distribution of exact reach values on KA50.000

Figure 6.1 and 6.2 show that the distribution of the edge lengths and the distribution
of the exact reach values are very similiar. We checked on a correlation between edge
lengths and exact reach values on KA50.000. The following scatterplot and the little
correlation coefficient of 0.165 suggest that such a correlation does not exist.

length
6000 8000 10000
Il Il 1
°
°

4000

2000
1

Fig. 6.3: Correlation between edge length and exact edge reach on KA50.000

84

CHAPTER 6. EXPERIMENTS

6.3 Preprocessing Effort and Speed-Up of the Static
Algorithm

We recall that the reach-bound computation described in [GKWO05] differs from the one
described in this work. Therefore we experimentally tested preprocessing and query of
our algorithm on the graphs described in the last section.

The choice of the tuning parameters described in [GKWO05] turned out to be also a good
compromise between preprocessing time and quality of the computed reach bounds for
our variant of the reach-bound computation. Furthermore we set d; to be 0.3¢;.

In order to be independent from concrete implementations and hardware we measured the
average speed-up by the average quotient of the number of vertices visited by Dijkstra’s
algorithm and the number of vertices visited by the bidirectional bound algorithm after
performing 1000 randomly chosen s-t-queries. The preprocessing effort is measured by
the number of partial trees built and the average number of vertices visited by these
partial trees.

name #partial trees built | avg #vertices | avg speed-up
dnk 778.606 11.513 10.1

fin 641.637 14.359 114

ka50.000 77.093 3571 7.0

exact kab0.000 | 49.625 49.625 7.5

ka100.000 135.939 11.216 7.0

ka200.000 360.881 11.629 5.8
dkb100.000 201.892 7.775 5.0

st100.000 184.288 6.780 5.6

85

CHAPTER 6. EXPERIMENTS

6.4 Example for the sparsification during the reach-bound
computation

Fig. 6.4: The graph KA50.000. The number of edges is 125.018.

86

CHAPTER 6. EXPERIMENTS

Fig. 6.5: The sparsificated KA50.000 after the first iteration step. The number of edges
is 31.177.

IMENTS

CHAPTER 6. EXPERIMENTS

Fig. 6.7: The sparsificated KA50.000 after the third iteration step. The number of edges
is 7.020.

89

CHAPTER 6. EXPERIMENTS

Fig. 6.8: The sparsificated KA50.000 after the fourth iteration step. The number of edges
is 16.

90

7 Final Remarks

Conclusion. In this work, we gave an overview of some of the recent techniques used
to speed-up Dijkstra’s algorithm exploiting additional, preprocessed data. Considering
most described speed-up techniques, we gave proposals how to dynamically update the
preprocessing after a set of edges on the underlying graph have changed their lengths.
Here, we focused on landmarks, multi-level graphs and precomputed reach-bounds.

The preprocessing algorithms of landmarks and multi-level graphs need a pre-selection of
some vertices on the graph. The update strategies we proposed for both data structures
compute the same preprocessed data as a recomputation from scratch by the static
algorithm would provide if the choice of these vertices stayed the same. The static
algorithm for computing upper-bounds for reach values requires two tuning parameters
that usually are chosen using information on the underlying graph. The update strategy
we proposed for these reach-bounds computes the same bounds as a full recomputation
from scratch by the static algorithm would provide if these tuning parameters stayed
the same.

Outlook. The runtime of all update algorithms is heuristic. In the worst case the usage
of the update strategy may take more time than a full recomputation from scratch would
need. Therefore it is important to experimentally study the performance of the update
algorithms when applying them to real-world data (that consists of using real-world
graphs and applying real-world edge updates).

Another task is to find criteria that decide whether the selection of the separator vertices
used to build multi-level graphs remains good after an update on the graph and that
are fast to determine. Strategies for re-choosing bad separator vertices have to be found
and the update algorithm must be altered to be able to cope with re-chosen separator
vertices.

The usage of shortcuts is reported to speed-up the static preprocessing of reach-bounds
by factor 15 and the query by factor 5. Therefore, the most promising improvement on
the reach-bounds update algorithm seems to be an enhancement that enables it to deal
with shortcuts.

Since highway hierarchies are one of the fastest available speed-up techniques (in both
query and preprocessing) a dynamic variant of that technique is desirable.

Finally, we want to mention that we concentrated on solutions using only few additional
memory. The development of methods using more memory may further speed-up the

91

CHAPTER 7. FINAL REMARKS

update of the preprocessed data.

92

Bibliography

[AMO93]

[BEO5]

[CLL90|

[DI05]

[FMSN96]|

[FMSNOS|

[FMSNOO]

[GHO5|

[GKWO5]

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows. Prentice Hall, 1993.

Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodolog-
ical Foundations [outcome of a Dagstuhl seminar, 13-16 April 2004/, volume
3418 of Lecture Notes in Computer Science. Springer, 2005.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest R. L. Introduction to Algo-
rithms. MI'T Press, 1990.

Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest
paths with real edge weights. To appear in Journal of Computer and System
Sciences, 2005. Special issue devoted to the best papers selected from the 42th
Annual TEEE Symposium on Foundations of Computer Science (FOCS’01).

Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully
dynamic output bounded single source shortest path problem. In SODA ’96:
Proceedings of the seventh annual ACM-SIAM symposium on Discrete algo-
rithms, pages 212-221, Philadelphia, PA, USA, 1996. Society for Industrial
and Applied Mathematics.

Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully
dynamic shortest paths and negative cycles detection on digraphs with ar-
bitrary arc weights. In European Symposium on Algorithms, pages 320-331,
1998.

Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully
dynamic algorithms for maintaining shortest paths trees. J. Algorithms,
34(2):251-281, 2000.

Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A
search meets graph theory. In SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 156 165, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied Mathematics.

A. V. Goldberg, Haim Kaplan, and Renato Werneck. Reach for A*: Efficient
point-to-point shortest path algorithms. Technical Report MSR-TR-2005-
132, Microsoft Research (MSR), October 2005.

93

Bibliography Bibliography

|Gut04|

[Hig98|

[HKO00]

[HNBRG6S]

|[Hol03|

[HSWO6]

[KMS04]

[Lau04]

[MSS*05]

[RR96]

[SchO5al

[Sch05b|

SS05)

Ronald J. Gutman. Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In ALENEX/ANALC, pages 100
111, 2004.

Nicholas J. Higham. Handbook of Writing for the Mathematical Sciences. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, second
edition, 1998.

David Harel and Yehuda Koren. A fast multi-scale method for drawing large
graphs. In AVI ’00: Proceedings of the working conference on Advanced visual
interfaces, pages 282 285, New York, NY, USA, 2000. ACM Press.

P. Hart, N. Nilsson, B., and Raphael. A formal basis for the heuristic de-
termination of minimum-cost paths. IEEE Trans. on Systems Science and
Cybernetics, SSC-4(2):100-107, July 1968.

Martin Holzer. Hierarchical Speed-up Techniques for Shortest-Path Algo-
rithms. Master’s thesis, Dept. of Informatics, University of Konstanz, Ger-
many, February 2003.

Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multi-
Level Overlay Graphs for Shortest-Path Queries. January 2006. To appear
at ALENEX 2006.

Ekkehard Kohler, Rolf H. Mohring, and Heiko Schilling. Acceleration of short-
est path computation. Article 42, Technische Universitat Berlin, Fakultat 11
Mathematik und Naturwissenschaften, 2004.

U. Lauther. An extremely fast, exact algorithm for finding shortest paths
in static networks with geographical background. In Geoinformation und
Mobilitdt - von der Forschung zur praktischen Anwendung, volume 22, pages
219 230. IfGI prints, Institut fiir Geoinformatik, Miinster, 2004.

Rolf H. Mohring, Heiko Schilling, Birk Schiitz, Dorothea Wagner, and
Thomas Willhalm. Partitioning graphs to speed up Dijkstra’s algorithm.
In WEA, pages 189 202, 2005.

G. Ramalingam and Thomas Reps. On the computational complexity of
dynamic graph problems. Theoretical Computer Science, 158(1 2):233 277,
1996.

Dominik Schultes. Highway hierarchies hasten exact shortest path queries.
Master’s thesis, Universitdt Karlsruhe (TH), Fakultat Informatik, 2005.

Frank Schulz. Timetable Information and Shortest Paths. PhD thesis, Uni-
versitat Karlsruhe (TH), Fakultdt Informatik, 2005.

Sanders and Schultes. Highway hierarchies hasten exact shortest path queries.
In ESA: Annual European Symposium on Algorithms, 2005.

94

Bibliography Bibliography

1SS06)

[Str00]
[SWW99)

[SWW00]

[SWZ02]

[Wil05]

[WW06]

[WWZ04]

Sanders and Schultes. Engineering highway hierarchies. In Draft, submitted
to ESA 2006, 2006.

Bjarne Stroustrup. Die C++ Programmiersprache. Addison-Wesley, 2000.

Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-
line: An empirical case study from public railroad transport. In Proceedings
of the 3rd International Workshop on Algorithm Engineering (WAE 1999),
volume 1668 of LNCS, pages 110 123. Springer, 1999.

Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-
line: An empirical case study from public railroad transport. J. Experimental
Algorithmics, 5(12), 2000.

Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using multi-level
graphs for timetable information in railway systems. In Proceedings 4th Work-
shop on Algorithm Engineering and Experiments (ALENEX), volume 2409 of
LNCS, pages 43 59. Springer, 2002.

Thomas Willhalm. Engineering Shortest Paths and Layout Algorithms for
Large Graphs. PhD thesis, Universitdt Karlsruhe (TH), Fakultdt Informatik,
2005.

Thomas Willhalm and Dorothea Wagner. Shortest path speedup techniques.
In Algorithmic Methods for Railway Optimization, LNCS. Springer, 2006. To
appear.

Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Dynamic
shortest path containers. In Proceedings of the 3rd Workshop on Algorithmic
Methods and Models for Optimization of Railways (ATMOS’03), volume 92
of Electronic Notes in Theoretical Computer Science, pages 65—84. Elsevier,
2004.

95

