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Abstract

This thesis examines algorithms for the drawing of metro maps. The most important
elements of a metro map are stations and lines connecting the stations. In the context
of this thesis, we restrict the elements used for representing lines to one of two classes:
On the one hand, circular segments lying on circles with a common center S are
allowed. On the other hand, line segments lying on lines passing through S are
allowed.

To make the metro maps as legible as possible, we try to create a drawing in which
the lines bend as little as possible. To plan a journey in the metro network, the users
of metro maps must be able to quickly and correctly follow the lines visually. In this
undertaking, bends are a disturbance. To this end, we adapt the Topology-Shape-
Metrics framework by Roberto Tamassia, the purpose of which originally is bend
minimization in orthogonal drawings of graphs. A second objective is producing
drawings that take up as little space as possible. For doing so, we present a compaction
approach based on Simulated Annealing. The compaction metaheuristic proposed by
us is also suitable for performing the Shape step of the unaltered Topology-Shape-
Metrics framework, too. Thus, we present a general improvement of this framework
in itself.

We practically evaluate the adapted framework for drawing metro maps with con-
centric circles and demonstrate its usability even for complex metro networks such
as Berlin or London, at the same time also determining reasonable values for the
parameters of our framework.

For two subproblems that must be solved when drawing metro maps, we show NP-
hardness: First, a given metro network must be converted into a graph of maximum
degree 4 since vertices with a larger degree cannot be represented in the desired
drawing style. It would be desirable to do so in such a way that the best drawing
of the resulting graph has as few edge-bends as possible; we show this problem to
be NP-hard. Second, the final step of our framework compactifies a preliminary
drawing. We show that achieving an optimal compaction is also NP-hard.

Furthermore, we examine another naturally arising idea: While the framework used
by us minimizes the number of edge-bends for an orthogonal drawing style, which
we then transform into the desired drawing style, it would be desirable to perform
bend-minimization with a concentric-circle drawing style directly. We model the
problem and illustrate some arising difficulties which make direct transferral of the
used techniques from the orthogonal case impossible.

Deutsche Zusammenfassung

In dieser Arbeit geht es um das algorithmische Zeichnen von Nahverkehrsnetzplänen.
Die wichtigsten zu zeichnenden Elemente eines solchen Netzplanes sind Stationen
und Linien, die diese Stationen verbinden. In dieser Arbeit beschränken wir uns
darauf, die Linien nur mit den folgenden zwei Elementen darzustellen: Zum einen
sind Kreissegmente erlaubt, die auf Kreisen mit einem gemeinsamen Zentrum S
liegen. Zum anderen sind Strecken erlaubt, die auf Linien durch S liegen.

Um die Netzpläne möglichst lesbar zu gestalten, versuchen wir eine Zeichnung zu
erzeugen, in der die Linien möglichst selten abknicken. Beim Planen von Fahrten
müssen die Benutzer der Pläne in der Lage sein, diesen Linien schnell und sicher
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zu folgen, wobei Knicke störend wirken. Hierzu passen wir das Topology-Shape-
Metrics-Framework von Roberto Tamassia an, welches in seiner ursprünglichen
Form für die Knickminimierung in orthogonalen Graphzeichnungen gedacht ist. Des
Weiteren möchten wir möglichst kompakte Zeichnungen erstellen. Hierfür stellen
wir einen auf Simulated Annealing basierenden Ansatz vor. Die von uns für die
Kompaktifizierung vorgestellte Metaheuristik ist auch geeigneit, den Shape-Schritt in
einem nicht modifizierten Topology-Shape-Metrics-Framework zu übernehmen. Damit
stellen wir also auch eine generelle Verbesserung dieses Frameworks vor.

Das sich mit unseren Änderungen insgesamt ergebende Framework für das Zeichnen
von Netzplänen mit konzentrischen Kreisen evaluieren wir praktisch und demon-
strieren seine Praktikabilität auch für komplexe Netzwerke wie zum Beispiel Berlin
und London. Gleichzeitig bestimmen wir so auch sinnvolle Parameter für unser
Framework.

Von zwei Teilproblemen, die zur Erstellung einer guten Zeichnung gelöst werden
müssen, zeigen wir die NP-Schwere: Zum einen muss ein gegebenes Verkehrsnetz
in einen Graphen mit Maximalgrad 4 umgewandelt werden, da Knoten mit einem
höheren Grad im gewünschten Zeichenstil nicht darstellbar sind. Wir zeigen, dass es
NP-schwer ist, den Graphen so in einen Graphen mit Maximalgrad 4 umzuwandeln,
dass die bestmögliche Zeichnung möglichst wenige geknickte Kanten aufweist. Zum
anderen möchten wir in einem abschließenden Schritt eine vorläufige Zeichnung
kompaktifizieren. Wir zeigen, dass dies ebenfalls NP-schwer ist.

Außerdem gehen wir kurz auf eine weitere, sich natürlich ergebende Idee ein: Während
das von uns verwendete Framework die Knickminimierung in einem orthogonalen
Zeichenstil durchführt, den wir dann später in den gewünschten Zeichenstil über-
führen, wäre es wünschenswert, die Knickminimierung direkt für eine Zeichnung mit
konzentrischen Kreisen durchzuführen. Wir modellieren dies und zeigen Probleme
auf, die die direkte Übertragung der Technik aus dem orthogonalen Fall verhindern.
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1. Introduction

Metro Maps are maps of public transit networks. These maps are primarily used by the
passengers of the transit network for navigation and route planning. Virtually any city
with a public transit network also has a variety of metro maps, differing in size, style and
the information displayed. Most of the time, metro maps are schematic maps, focusing on
the topology of the metro network instead of representing the topography of the city and
its surroundings. There are a variety of drawing styles used to draw these metro maps.
In the most common drawing style, metro lines are represented by straight lines running
vertically, horizontally or at 45◦ angles. This style is called an octolinear drawing style
(also called octilinear by some authors) because of the eight possible orientations for edges.
Stations are represented as disks or rectangles with rounded corners drawn upon the metro
lines.

Figure 1.1.: Excerpt from a
Berlin metro map using con-
centric circles. Image copy-
right by Maxwell J. Roberts.

Most of these maps do contain only a limited number
of other features, such as topographic information (like
the course of a river), tariff information or the like. An
example of such a drawing can be seen in Figure 1.1. How-
ever, many variations to the octolinear drawing style have
been used as well, for example styles that allow only six
different orientations of lines, called hexalinear drawings
(see an example in Figure 1.2a), or styles drawing metro
lines as Bézier curves (see an example in Figure 1.2b).
Recently, the circular nature of the London Underground
inspired Maxwell J. Roberts [RNC16] to try a drawing
style that emphasizes the existence of these circles, draw-
ing metro lines with concentric circles. The initial maps
produced by Roberts were featured in numerous media,
and thus sparked interest in drawing circular metro maps.
In this drawing style, a geometric point S is chosen as
center, and metro lines are drawn as a sequence of cir-
cular arc segments, the underlying circles of which have S as their center, and straight
line segments, the underlying lines of which pass through S; an example can be found in
Figure 1.2c. This is the drawing style that this thesis examines.

The tasks users try to solve with these schematic maps usually include locating single
metro stations, for example points of departure or arrival, and planning complex routes
that include interchanges at stations. Thus, the ability to quickly locate stations as well
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1. Introduction

(a) Hexalinear Design (b) Curvilinear Design (c) Concentric Circle Design

Figure 1.2.: Different drawing styles applied to the same excerpt of the Berlin metro map.
Images copyright by Maxwell J. Roberts, www.tubemapcentral.com

as being able to quickly find (shortest) routes within the depicted transit network are
objectives for which the drawing must be optimized.

Historically, the first metro maps to become famous were the maps of the London Un-
derground, first published by Henry Beck in the year 1933 [Gar94]. They adopted the
principles of the octolinear drawing style stated above, and have contributed to the fact
that this style of drawing metro maps has become the de-facto standard.

So far, all metro maps that are actually being used have been designed by hand, although
computer assistance might have been used. This is possible because the number of metro
networks in the world is manageable, and these networks change rarely. However, even
for human designers, the task of creating an easily understandable metro map is far from
trivial. An example for this this is the Paris metro: All its official metro maps up until
1982 were drawn mostly on top of topological maps, with stations at their topological
locations and metro lines following their actual course through the city (cf. [OPL08, p.
155]) - thus, these maps could not really be considered schematizations. There were plenty
of unofficial maps to be bought, even one map done by Henry Beck, which adhered to the
design principles he applied to his famous London Underground maps. However, all maps
not closely representing the topological layout of the city were refused by RATP, the Paris
metro authority, often arguing that these kinds of maps do "not suit Paris" [OPL08, p.
153]. Development of the Réseau Express Régional (Regional Express Network - RER) in
the 1960s and 1970s increased the density of the transit network in Paris considerably, and
forced RATP to reconsider changing the official map to something more abstract, leading to
the first official map loosely adhering to Beck’s principles in 1982. Since then, many more
official versions have been produced, with the latest dating from 2010. But even after many
generations of Paris metro maps and much manual optimization, experimentation, and
evaluation, the current Paris metro map is still subject to much criticism (cf. [RNL+13]).

But even though most metro mapping efforts are done manually, there are applications
where quickly-adapting metro map drawings would be desirable: For example, with the
widespread use of smart phones, which feature considerable computational power but
relatively small screens, it would be welcomed if it was possible to automatically adapt the
metro map displayed on a smart phone’s screen to the user’s wishes. Thinkable adaptions
include focusing the map on certain areas, highlighting or hiding map elements, rearranging
the map to make certain routes especially visible, and many others.

This thesis focuses on developing algorithms that produce metro maps adhering to the
circular style introduced above. To produce metro map drawings with a maximum legibility,
our primary concern is to minimize the number of bent metro lines, since this facilitates
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1.1. Contribution and Outline

quickly and correctly following the metro lines visually. In accordance with Roberto
Tamassia’s Topology-Shape-Metrics framework, we perform bend minimization in a first
step via a specialized flow network, producing a preliminary layout of the graph in which
the shape of all edges is fixed. In a second step, we compactify this preliminary drawing
using a metaheuristic approach based on Simulated Annealing. An experimental evaluation
practically determines good values for the parameters of our framework and demonstrates
the feasibility of our approach even for complex metro networks such as Berlin or London.

Finally, it should be mentioned that, although throughout this thesis we are always talking
about metro map drawings, the metro map layout problem can also be seen as a drawing
metaphor that may be applied to other types of information. For example, certain graphs
representing the interaction of proteins in cancer cells, so called metabolic pathways, have
a structure that is similar to the structure of metro networks [HW02]. Other examples of
information sets that potentially could be visualized using techniques intended for metro
maps include automated layouts of project plans [SRB+05], i.e. plans visualizing the
collaboration and the dependencies of different teams cooperating on a larger project,
overview maps of websites [SGSK01], or certain subproblems of VLSI design [Tei02]. In all
of these examples, the underlying information may change a lot faster than with metro
networks, which strengthens the need for an automated way of rapidly creating circular
maps.

1.1. Contribution and Outline
We now give a broad overview of the contents of this thesis and summarize the results
presented.

In Chapter 2, we present the model that forms the basis for all presented techniques. We
formally state the problems that our approaches are intended to solve and introduce some
frequently used definitions. Chapter 3 recapitulates some techniques introduced by other
authors, which are used and modified throughout this thesis.

In Section 4.1 throughout Section 4.3, we present multiple modifications of Tamassia’s
Topology-Shape-Metrics framework, adapting it to produce circular metro map drawings.
Section 4.1 introduces an extension allowing us to produce a circular metro map draw-
ing, while the Topology-Shape-Metrics framework originally was intended for orthogonal
drawings. In Section 4.2, we demonstrate techniques for adapting the pure edge-bend-
minimization approach of the framework to a setting more suited for metro maps, avoiding
bends on metro lines at stations as well as on edges.

To finally produce a compact drawing, we present a compaction approach based on simulated
annealing in Section 4.3. This approach is not specific to our use case and can therefore also
be used in unmodified versions of the Topology-Shape-Metrics framework. Our technique
not only improves on Tamassia’s original technique regarding area minimization, it also
makes it possible to optimize the drawing’s metrics for multiple criteria.

In Section 4.4, we show NP-hardness of the subproblem of producing an area-minimal
circular metro map drawing based on the intermediate results computed by the modified
Topology-Shape-Metrics framework. We proceed to show NP-hardness of another subprob-
lem in Section 4.5, namely converting the input data into a graph of maximum degree 4 so
that the number of edge-bends are minimized.

We conclude Chapter 4 with an experimental evaluation of the proposed techniques in
Section 4.6, in which we also give recommendations on how to parameterize our framework.

In Chapter 5, we consider the idea of transferring the bend-minimization technique used
throughout Chapter 4 from an orthogonal to a circular setting. We describe why the
intuitive way of doing so, while perhaps seeming obvious, does not lead to a valid drawing.

3



1. Introduction

Finally, Chapter 6 wraps up this thesis with a subjective assessment of the results presented
and an outlook to future work.

1.2. Related Work
This section gives an overview of related research that has already been conducted. First,
we give a broad overview of research regarding drawing metro maps in general, and second
we summarize research approaches into drawing metro maps algorithmically.

Drawing Metro Maps

Within the information visualization and the psychology communities, some research into
drawing metro maps in general has been conducted. For example, Galotti et al. [GPB15]
examined an information limit, i.e. a maximum amount of information that humans can
usually process while planning a trip; they state that in large cities, 80% of the trips
exceed this limit. On the other hand, Bartram [Bar80] confirms in a user study that a
schematic map is superior to a geographic map or textual descriptions regarding the route
planning performance of his study participants. Some publications also concern themselves
with advantages and disadvantages of actual official metro maps: For example Avelar and
Hurni [AH06] closely examine the official metro maps of Zürich, Madrid, and others.

Also of interest regarding this thesis is research comparing different drawing styles. Most
importantly, Roberts et al. [RNC16] compare a classic octolinear metro map of the Berlin
metro network to one drawn with concentric circles, i.e. in the drawing style this thesis
examines. They performed a user study, in which participants where asked to plan journeys
using maps of both types, and measured objective performance as well as subjective
assessments of both maps. Objectively, while both drawing styles resulted in similar
quality of the planned journeys, concentric-circle maps performed slightly worse in terms
of the time it took the participants to plan their journeys. The authors also discovered
a dissociation between objective and subjective measures, i.e. a tendency for map users
to subjectively rate maps contrary to the objective performance that these users achieve
with them. Subjective ratings also favored the octolinear drawing style. However, the
authors partially explain this with the exposure effect, which is a well-documented effect in
psychology (see for example Bornstein [Bor89]). It states that the mere familiarity with one
type of stimuli results in users favoring these stimuli over other, less familiar stimuli. Since
virtually all official metro maps today employ the octolinear style, this might partially
explain the participants’ bias towards this type of map. However, the authors explicitly
state that more research is necessary in this field; particularly studies comparing more than
just one fixed pair of actual maps would be desirable.

Drawing Metro Maps Algorithmically

The results outlined so far mostly concern themselves with metro maps and their quality
and usability, and can be a useful guideline for designers of metro maps. However, our aim
is to algorithmically draw metro maps. To apply results from the field of Graph Drawing,
we treat a metro map as a geometrically embedded graph, in which edges represent (possibly
multiple) metro lines, and vertices represent metro stations. With this interpretation,
drawing metro maps and similar graphs algorithmically has been studied to some extent.
Nöllenburg [Nö14] not only summarizes most results, but also gives a comprehensive list of
objectives and design principles usually applied to metro map drawing. A first important
result is also given by Nöllenburg [Nö05], namely that minimizing the number of edge-bends
while also preserving a given embedding is NP-hard in an octolinear metro map drawing.
Since minimizing the number of edge-bends is one of the primary concerns in many settings,

4



1.2. Related Work

no exact polynomial-time algorithms are to be expected for most metro map drawing
efforts.

Consequentially, some well-known graph drawing heuristics have been adapted to draw
metro maps: Hong et al. [HMdN06] adapt force-directed layout techniques to produce
octolinear drawings by adding a force pulling edges towards one of the allowed orientations.
Also using a force-directed approach, Fink et al. [FHN+13] present an approach for
representing metro lines with Bézier curves.

Aside from heuristic approaches, there are a number of publications evaluating Mixed-
Integer Programming (MIP) as a solution technique. Nöllenburg and Wolff [NW11] present
an MIP that not only computes provable optimal (regarding the authors’ quality criteria)
octolinear metro-map layouts within a maximum of several hours for complex metro
networks, but that also solves the label placement problem (see below). Based on this
MIP, Wu et al. [WTLY12][WTH+13] present approaches for generating map drawings that
highlight certain routes or are annotated with large labels. Finally, Fink et al. [FLW14]
introduce an MIP for concentric metro map drawings, taking into account a multitude of
quality criteria. However, the performance of their MIP limits the applicability of their
approach to rather small instances such as Vienna or Montréal.

Other Subproblems

There are some problems that must be solved when algorithmically drawing a metro map,
which we do not examine in this thesis. For one, after computing a geometric embedding
of the graph representing the metro network, it is usually desired to also place labels in
the drawing, denoting the names of the stations and other information. Most of the time,
the algorithm for placing such labels is tightly coupled with the algorithm computing
the geometric embedding, since the geometric embedding determines the space available
for the labels. However, if labels are to be placed after the geometric embedding of the
graph has been determined, the problem can be seen as a general map labeling problem.
There is plenty of research in this area; Wolff [Wol96] provides an extensive bibliography.
However, there are also approaches focusing specifically on labeling metro maps. Haunert
and Niedermann [HN15] not only show NP-hardness of labeling even a drawing of a single
metro line, but also give an efficient algorithm for a restricted version of the problem. Also,
the MIP presented by Nöllenburg and Wolff [NW11] produces a labeling of the map, as
does the force-directed approach by Hong et al. [HMdN06].

Another subproblem not being examined here is the problem of minimizing the number
of metro-line crossings that happen between metro lines running along the same edges.
This problem has been shown to be NP-hard even in some restricted cases by Fink and
Pupyrev [FP13].

5





2. Model

This thesis is about algorithms for drawing graphs. To reasonably discuss such algorithms,
it is necessary to formally specify what graphs are to be drawn, and what constraints apply
to the desired drawings. In the case of this thesis, the graphs to be drawn are graphs
derived from metro networks, and the primary purpose of the constraints applied to the
drawing is to make the resulting drawings as legible as possible for travelers using the map
to navigate the metro network.

We now formalize the model used throughout this thesis as well as some frequently used
definitions.

2.1. General

When drawing graphs algorithmically, one must formally specify what the desired output
of the algorithm is. We call these constraints the drawing criteria. Usually, one such
requirement limits the geometric objects available to the algorithm for representing the
graph’s elements. While vertices are usually just represented by small dots or boxes, the
question of how to represent the edges is more interesting. In this thesis, we use the
concepts of orthogonal and ortho-radial drawings. Both specify which geometric objects
may be used to represent edges of the graph.

Intuitively, in an orthogonal drawing, every edge must be represented by a connected
sequence of axis-aligned line segments, where the axes are two orthogonal, straight axes, i.e.
the axes of a common cartesian coordinate system. Conversely, in an ortho-radial drawing,
every edge must be represented by an alternating sequence of two possible geometric
objects:

• line segments, which all lie on lines going through a common point S

• circle segments, which all lie on circles that have S as their center

Figure 2.1a shows an example of such an ortho-radial drawing of a graph with S as the
center. Figure 2.1b shows an orthogonal drawing of the same graph.

We now first formalize requirements that the ortho-radial and orthogonal drawing style
both have in common. We call this a drawing with independent directions:

7



2. Model

(a) Example of an ortho-
radial drawing

(b) Example of an orthogo-
nal drawing

(c) Illustration of a small
neighborhood of a point
on an edge

Definition 2.1 (Drawing with Independent Directions). Given a graph G = (V,E), a
drawing with independent directions consists of:

• a function fV : V → R× R assigning two-dimensional coordinates to the vertices

• a function fE : E × [0, 1]→ R× R assigning a two-dimensional coordinate to every
point on an edge

so that

(1) ∀e ∈ E,∀s ∈ [0, 1) : ∃ε′ > 0, δ ∈ R : ∀ε ≤ ε′, ε > 0:
(fE(e, s) = fE(e, s+ ε) + (0, δ) ∨ fE(e, s) = fE(e, s+ ε) + (δ, 0))

(2) ∀e ∈ E : e = (v1, v2)⇒
(fE(e, 0) = fV (v1) ∧ fE(e, 1) = fV (v2)) ∨ ((fE(e, 1) = fV (v1) ∧ fE(e, 0) = fV (v2))

(3) ∀e ∈ E, s ∈ [0, 1) : lim
δ→0
|fE(e, s)− fE(e, s+ δ)| = 0

Condition (1) makes sure that all edges consist of just a sequence of segments, where
every segment is parallel to one of the two possible dimensions by requiring that for every
point on the edge, you find a small neighborhood of points on the edge around it, the
coordinates of which differ in one dimension only. For the case that the dimensions are
treated as cartesian coordinates, this is illustrated in Figure 2.1c: The edge shown consists
of a horizontal and a vertical segment. Still, for a point s on it, a small neighborhood
from s to s+ ε′ can be found, in which the edge is either only horizontal (as in the example)
or only vertical. Condition (2) ensures that every edge is routed to the position of its
respective vertices. Condition (3) requires all edges to be continuous.

With this in place, we can now formally define the ortho-radial and the orthogonal drawing
styles:

Definition 2.2 (Orthogonal Drawing). Given a graph G = (V,E), an orthogonal drawing
consists of two functions fV and fE as defined in Definition 2.1, in which all two-dimensional
coordinates are interpreted as cartesian coordinates, with the first coordinate representing
the x-dimension and the second coordinate representing the y-dimension.

Definition 2.3 (Ortho-Radial Drawing). Given a graph G = (V,E), an ortho-radial
drawing consists of two functions fV and fE as defined in Definition 2.1, in which all
two-dimensional coordinates are interpreted as polar coordinates, with the first dimension
representing the radius, and the second dimension representing the angle.

8



2.2. The Main Problem

We need two more definitions: While the outer face of a drawing in both cases is the face
that is unbounded, the center face only exists in an ortho-radial drawing and is the face
that contains S. Note that both terms may refer to the same face of a drawing.

Since we often deal with two-dimensional coordinates throughout this thesis, we establish
this notation for referring to individual coordinates: If c is a two-dimensional coordinate, c1
refers to the first element (the x- or r-dimension), and c2 refers to the second element
(the y- or θ-dimension).

2.2. The Main Problem

In this section, we define the main problem that we try to present approaches for.

Input Data

Everything in this thesis works on data derived from a metro network. A metro network is
the public transportation network of a certain region. It consists of stations, which may
be bus stops, train stations, etc., and lines, which are a fixed sequence of stations. Each
station is associated with a geographic coordinate.

Typical metro networks have a lot more information associated with them, such as timeta-
bles, metro lines that change the sequence of stations depending on the time, etc. We
ignore all this additional information throughout this thesis. We also assume that in a
metro line, every stop either appears only once, or appears twice and is the first and the
last stop of a metro line. In the latter case, we treat the metro line as a closed loop.

We transform this metro network into an undirected graph G = (V,E), vertices of which
represent the stations of the public transportation network, and two vertices have an
edge between them if at least one metro line contains both stations consecutively. Every
edge is annotated with the number of metro lines containing the respective two vertices
consecutively, i.e. the number of metro lines going from one stop to the other without
stopping in between. We also derive from the metro network L ⊆ {p | p ∈ V k, k ∈
{1, . . . |V |} ∧ ∀(pi, pi+1) : {pi, pi+1} ∈ E}, a set of paths on G, where every path in L
represents a metro line in the metro network.

Additionally, we derive a combinatorial embedding from the geographic positions given by
the stations. We do this by simply ordering the edges around a vertex in the order that
they would appear in in a straight-line drawing with the geographic positions as vertex
positions. We assume this embedding to be planar.

Note that the latter assumption might not be true instantly, since the graph derived from the
metro networks sometimes is non-planar. Also, the way we find the combinatorial embedding
may sometimes introduce new non-planarities. Consider the example in Figure 2.2a: Clearly,
a K4 is planar. If, however, with this positioning of the vertices, the edges are ordered
as they would be in a straight line drawing, the resulting combinatorial embedding is
non-planar. In these cases, for every pair of edges that would cross in a straight-line
drawing using the geographical coordinates, we insert a new vertex into the graph, and
subdivide both edges with this vertex. This way, all crossings become vertices of degree 4
and the graph is planar.

Hence, an instance of our problem consists of:

• a graph G = (V,E) with a combinatorial embedding

• a set L of paths on G, representing metro lines

9



2. Model

(a) Example of a graph that
would be non-planar if
all edges were drawn as
straight lines

(b) Example of an edge with
multiple lines bending

(c) Example of a metro line
bending at a station

Figure 2.2.: Illustrations of the problem model

The Drawing

We want to produce an ortho-radial drawing as defined above from this graph. To this end
it is desirable to be able to choose which face is drawn as the center face, i.e. the face that
contains the origin of the coordinate system in the final drawing. Aside from that, there
are a few drawing conventions, which are requirements that the drawing must fulfill, and
quality criteria which should be met as much as possible:

Drawing Conventions

(C1) The drawing must respect the geographical network topology, i.e. preserve the given
combinatorial embedding.

(C2) All vertices must be separated from each other and from all edges by a minimum
distance.

(C3) The drawing must be planar.

Quality Criteria

These are the quality criteria that we try to optimize:

(O1) Minimize the total area used. In case of an ortho-radial drawing, this is equivalent
to minimizing the largest radius used.

(O2) Minimize the number of edge-bends, i.e. minimize the total number of circular and
straight segments that all edges of the graph are composed of.

(O2a) Minimize the number of times a metro line bends on an edge.

(O3) Minimize the number of times a metro line bends at a station.

(O4) Minimize the standard deviation of the distance of two neighboring stations, where
distance is measured along the edge between neighboring stations.

The reasoning behind criterion (O1) is straightforward: Any usable metro map must be
printed or displayed on a limited area, thus must be scaled to fit. The less area the drawing
consumes, the larger the scaling factor can be, making the drawing more readable.

Criteria (O2) and (O2a) are closely related: While (O2) aims at minimizing the raw number
of times that an edge of the graph representing the metro network is bent, (O2a) weights
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each edge with the number of metro lines running via that edge. The fact that bends
should be avoided in the first place is not just intuitive, but also an important design
criterion for metro maps, as for example emphasized by Maxwell J. Roberts in his works on
metro map design (cf. [Rob12, p. 107]). That edges carrying a lot of metro lines are drawn
without bends with a higher priority than edges with less metro lines is also intuitive, since
these edges are not only looked at more often by people using the map, but the larger
number of metro lines creates a visual disturbance by itself, amplifying the disturbance
introduced by a bend. Figure 2.2b, in which different colors indicate individual metro lines,
illustrates the case that shall be avoided by (O2a): Here, bending e1 only bends one line.
If e2 was bent instead, this would bend two lines, which would be an inferior solution.

Criterion (O3) specifies that metro lines should pass straight through metro stations (or
rather: their graphical representations) instead of bending at the point where the metro
station is. Maxwell J. Roberts states that metro stations should always be placed on
straight metro lines if possible, since the visual clutter especially around larger metro
stations makes it hard to visually follow bent metro lines at these points. Figure 2.2c
illustrates (O3): Here, the green line has a 90◦ bend at the station, which is to be avoided.
However, if the green line was to be drawn without a bend, the red line would have a 90◦
bend at the same station. Thus, this drawing is optimal in terms of (O3).

Finally, criterion (O4) tries to make the appearance of the metro map drawing more
uniform by encouraging a uniform distribution of the metro stations over the course of
their respective metro lines.

Objective Function

The objective function we try to optimize combines the aforementioned quality criteria (O1) -
(O4). Since these criteria are competing with each other, we introduce a weighting factor
for every one of the criteria: ωarea is the weight of (O1), ωbends the weight of (O2), ωline
the weight of (O2a), ωstation the weight of (O3), and ωdist the weight of (O4).

The objective function is then:

Definition 2.4. Main Objective

OBJ = ωarea·max
v∈V

((fV (v))1)

+ ωbends· # of edge-bends in the drawing
+ ωline· # of line-bends in the drawing
+ ωstation· # of lines bending at stations in the drawing
+ ωdist· standard deviation of the distance of neighboring stations

In conclusion, we sum up our main problem in the following definition:

Definition 2.5. Circular Metro Maps Given a graph G = (V,E) with a planar
combinatorial embedding, a set L of paths on G and two not necessarily distinct faces fcenter
and fouter, find an ortho-radial drawing of G so that (C1) - (C4) are satisfied, fcenter is the
center face, fouter is the outer face, and OBJ is minimized.

2.3. Common Definitions

We now introduce and define some terms used commonly throughout this thesis.
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2. Model

2.3.1. Rotation

In an orthogonal or ortho-radial representation of a connected graph, it is often necessary
to talk about the shape of a path p, i.e. the question of how many right and left turns one
takes when traversing the path. We formalize this as the rotation of an edge and a simple
path p, which both are always defined in the context of an orthogonal (or ortho-radial)
representation:

Definition 2.6 (Edge Rotation). Given a graph G = (V,E) together with an orthogonal
representation, the edgerot : E → Z function is defined as the number of right bends on e
minus the number of left bends on e.

Please note that for this definition to be useful, edges must be assumed to be directed.
However, even in an undirected graph we can define a Path Rotation by inducing a direction
on the edges of the path:

Definition 2.7 (Path Rotation). Given a simple path p = (e1, . . . , ek), let the edges of the
path be directed as they are traversed in the path.

Then, the rotp : p→ Z function is defined as follows:

• rotp(e1) = 0

• if the path makes a bend left between el and el+1, then

rotp(el+1) = rotp(el) + edgerot(el)− 1

• if the path makes a bend right between el and el+1, then

rotp(el+1) = rotp(el) + edgerot(el) + 1

• if the path makes no bend between el and el+1, then

rotp(el+1) = rotp(el) + edgerot(el)

We then define the rotation of ei (on p) to be the value of rotp(ei).

If the path p is not simple, an edge might appear multiple times in p. If that is the case,
it it important to note that the same edge might have different induced orientations at
different occurrences in the path! We sometimes omit the index p if it is obvious which
path is the reference. We can now derive from this the notion of a rotation on a cycle.
Assume that p is a cycle, i.e. the start vertex of e1 and the end vertex of ek are the same.
We then define:

Definition 2.8 (Cycle Rotation). Given a simple cycle p = (e1, . . . , ek), the rotation of
the cycle p is:

• rotp(ek) + edgerot(ek) + 1 if the cycle makes a bend left between ek and e1

• rotp(ek) + edgerot(ek)− 1 if the cycle makes a bend right between ek and e1

• rotp(ek) + edgerot(ek) if the cycle makes no bend between ek and e1

And finally, since faces of a planar graph can be interpreted as cycles, we define a rotation
for them:

Definition 2.9 (Face Rotation). Given a face f , let p be the cycle of the face’s edges, in
clockwise order. The rotation of f is then the rotation of the cycle p.
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3. Preliminaries

In this chapter, we briefly summarize already existing techniques that we use and adapt
throughout this thesis. More specifically, in Section 3.1, we present the Topology-Shape-
Metrics framework proposed by Roberto Tamassia [Tam87], while in Section 3.2, we give
an overview over the metaheuristic Simulated Annealing.

3.1. Summary of the Topology-Shape-Metrics Framework
In this thesis, the Topology-Shape-Metrics framework originally developed by Roberto
Tamassia is used and modified extensively. This section briefly introduces the ideas behind
the framework first described in [Tam87]. For more details, see the original paper, on which
this section is based.

The Topology-Shape-Metrics framework’s aim is to produce a planar drawing of a (planar)
graph on a rectilinear grid. It does not fully specify an algorithm to do so, but rather a
framework consisting of building blocks of such an algorithm.

According to this framework, the drawing is computed in three separate steps:

1. Find a planar embedding of the input graph (Topology)

2. Compute the shape of all edges and how they are distributed around their vertices
(Shape)

3. Assign coordinates to all vertices and bends (Metrics)

The first step, finding a planar embedding, can be shown to be NP-hard should the
embedding be found in such a way that certain criteria (for example the number of edge-
bends) are optimal in the resulting drawing (cf. [GT01]). Therefore, we (and Tamassia)
just assume a combinatorial embedding to be given and do not further address this step.

In the following, we summarize steps two and three of Tamassia’s framework, since these
are the steps we use in our approach.

3.1.1. Orthogonal Representation

Of most interest to us is the second step, which results in what is called an Orthogonal
Representation. This orthogonal representation describes the shape of all edges, i.e. how
they bend, as well as the angles between all edges incident to a vertex. With this orthogonal
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3. Preliminaries

Figure 3.1.: Example of an orthogonal representation

representation, the drawing of the graph is almost fixed, with only the lengths of the edges
being unspecified.1

Computing the orthogonal representation is done in such a way that the total number of
bends on the edges is minimized. This minimality is an interesting property for our use
case.

Formally, an orthogonal representation is defined as follows:

Definition 3.1 (Orthogonal Representation). Given a graph G = (V,E), and a planar
embedding of G resulting in the set of faces F . An orthogonal representation is a func-
tion H : F → {E × {0, 1}? × {90, 180, 270, 360}}∗, assigning to every f ∈ F a circularly
ordered list. All elements of these lists have the form (e, s, a), where

• e is an edge of G,

• s is a binary string,

• a is an integer in the set {90, 180, 270, 360}.

With this definition, the s field assigns every edge (on every face) a sequence of left and
right bends, where a 1 stands for a right and a 0 stands for a left bend. Note that, since
faces are always specified in clockwise order, a right bend is always an inwards bend and
a left bend is always an outwards bend for a face. Additionally, a specifies the angle
between e and the next edge in f . The rot(f) function, as defined in Section 2.3.1, can
then be computed by just looking at H(f) (with ZEROES(s) and ONES(s) being the
number of 1s and 0s in s, respectively):

rot(f) = rot(H(f)) =
∑

(e,s,a)∈H(f)
ZEROES(s)−ONES(s) + (2− a/90)

We illustrate this with an example in Figure 3.1. Here, the orthogonal representation looks
as follows:

H(f) = ( (e1, (), 90),
(e2, (0), 90),
(e3, (1), 180),
(e4, (1), 90))

An orthogonal representation is valid if:

(1) The e lists for all faces conforms to the planar embedding of G, i.e.

∀f ∈ F : ((ei, ·, ·), (ej , ·, ·)) ∈ H(f)⇒ (ei, ej) ∈ f
1Also, strictly speaking, it is not specified how the drawing is rotated.
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(2) Let (e, s, a) ∈ H(f) and (e, s′, a′) ∈ H(f ′) (note that e is the same in both entries),
then s can be obtained from s′ by reversing the string and exchanging 0’s and 1’s

(3) All faces are properly closed, i.e.

∀f ∈ F :
∑

(e,s,a)∈H(f)
rot(s, a) =

{
−4 if f is the external face
4 if f is an internal face

(4) For every vertex, the sum of angles between its incident edges is 360.

Property (1) makes sure that the representation describes the given graph. Property (2)
states that the lists of bends of the same edge on two different faces must be consistent
with each other. Observe that for every edge holds: If it appears in one direction on one of
its incident faces, it appears in the other direction on its other incident face. With that in
mind, consistent in this context means that the order as well as the direction of the bends
must be reversed. In property (3), the fact that every face must be closed is enforced (with
a special notion of closed for the outer face). Property (4) ensures that the incidences of
every vertex are consistent.

3.1.2. Computing an Orthogonal Representation

The algorithm presented by Tamassia for computing such an orthogonal representation is
designed to minimize the number of bends. Since we adapt the algorithm for our purposes,
we now summarize the original version for the reader’s convenience. Again, for full details,
please refer to the original paper by Tamassia [Tam87].

Tamassia’s algorithm works by computing an integer flow network on a graph that is a mix
of the original graph and its dual. The basic idea is to represent 90◦ angles as one unit of
flow in that integer flow network. We first introduce the Min-Cost-Flow problem, and
then specify an instance of Min-Cost-Flow that computes an orthogonal representation.

Definition 3.2 (Min-Cost-Flow). Given

• a directed Graph Gf = (Vf , Ef )

• a demand function d : Vf → Z,

• a cost function c : Ef → N0,

• an upper bound for the flow per edge: u : Ef → N0 ∪ {∞},

• a lower bound for the flow per edge: l : Ef → N0.

find a flow function f : Ef → N0 such that

(1) ∀e ∈ Ef : f(e) ≤ u(e)

(2) ∀e ∈ Ef : f(e) ≥ l(e)

(3) ∀v ∈ Vf :
∑

(u,v)∈Ef
f((u, v))−

∑
(v,u)∈Ef

f((v, u)) = d(v)

(4)
∑

(u,v)∈Ef
c((u, v))f((u, v)) is minimal among all f that satisfy (1) - (3)

In this definition, requirements (1) and (2) enforce the per-edge capacities, while require-
ment (3) enforces that the demand (or surplus, which is modeled as negative demand) of
every vertex is satisfied. Condition (4) is the minimality criterion. Solving a Min-Cost-
Flow instance is in P, as shown by Lawler [Law76].

We now specify an instance of Min-Cost-Flow that computes an orthogonal representation
with a minimum number of bends:
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Definition 3.3 (Min-Cost-Flow to compute an Orthogonal Representation). Given a
graph G = (V,E) with an embedding and the resulting bidirected dual graph G′ = (V ′, E′),
let v′0 be the dual vertex of the outer face.

We set:

(1) Vf = V ∪ V ′

(2) Ef = E′ ∪ {(v, f) : v ∈ V, f ∈ V ′ ∧ v is incident to the face represented by f}

(3) c(e) =
{

1 if e ∈ E′
0 otherwise

(4) ∀v′ ∈ V ′ : d(v′) = 4− deg(v′)

(5) ∀v ∈ V : d(v) = deg(v)− 4

(6) ∀e ∈ Ef : u(e) =∞
l(e) = 0

Here, condition (3) is used to minimize the number of bends in the orthogonal representation.
Since every unit of flow on an edge between two faces later results in a bend on an edge of
the orthogonal representation, we set the costs for these units of flow to 1. Condition (4)
enforces that the correct number of additional 90◦ angles is distributed around every vertex
in V (additionally to the one 90◦ angle that every incident face must be assigned in any
case). With condition (5), the vertices representing faces get demand or surplus so that
they have the correct amount of bends on their boundary, as explained below.2

An example is found in Figure 3.2: While Figure 3.2a shows an embedded example graph
with four vertices and three faces, Figure 3.2b shows the flow network resulting from that
graph.

Every vertex v has on any of its incident faces at least a 90◦ angle; we call this the
default case. This 90◦ angle corresponds to an inwards bend on that face, contributing 1
to the rotation of the face, see Figure 3.3a. If the vertex has degree 3 or less, it must
distribute 4−deg(v) additional 90◦ angles between its incident faces. It is important to note
that, although the first 90◦ angle contributed 1 to the face’s rotation, these additional 90◦
angles do not further increase the rotation of the face, but instead decrease it by 1 each.
If a vertex assigns a total angle of 180◦ to a face, the rotation contributed by this vertex
is 0 (see Figure 3.3c), if it assigns 270◦, the contributed rotation is −1 (see Figure 3.3b),
and if it assigns 360◦, the contributed rotation is −2 (see Figure 3.3d). Thus, flow from a
vertex to a face decreases the total rotation of that face. Please note that since the edges
between vertices in V and vertices in V ′ are directed from V to V ′ only, no flow can be
pushed from vertices representing faces back to original vertices.

Flow on one of the dual edges (i.e. edges in E′) represents bends on the original edges in E:
If e′ ∈ E′ carries a flow of k units in the solution, the dual edge e of e′ has k bends in the
orthogonal representation. Every bend has a 90◦ and a 270◦ angle. In this case, the 90◦
angle is assigned to the face that the flow originated from. See Figure 3.4: Figure 3.4b
shows the resulting shape if the dual edge carries one unit of flow (in direction of the arrow),
Figure 3.4c shows the result of two units of flow. Thus, for every face, incoming flow from
one of the neighboring faces decreases the face’s rotation by 1 per flow-unit, and outgoing
flow to other faces increases the rotation by 1 per flow-unit. Altogether, any incoming flow,
be it from vertices or faces, decreases a face’s rotation, while any outgoing flow (which is
only possible to neighboring faces) increases the rotation.

2Note that a negative demand value is a surplus!
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3.1. Summary of the Topology-Shape-Metrics Framework

(a) Example Graph

(b) Resulting Flow Network. Gray dotted edges do not belong
to the flow network but are there to show the original graph.
Blue edges are the edges going from vertices in V to the
vertices representing incident faces. Red edges are the edges
of the dual graph G′. Note that these are bidirected, as
opposed to the blue edges.

Figure 3.2.: An example Graph and the resulting Flow Network

Now, if a face f has four vertices, it is by default supplied with a rotation of 4 by these
vertices, but if deg(f) < 4, then it needs 4− deg(f) additional rotation. This is solved by
making the face a source of 4−deg(f) units of flow, which it has to push to its neighboring
faces, resulting in a total rotation of 4 at this face. If, however, deg(f) > 4, then the
default case would supply f with a rotation that is deg(f) − 4 too large. Thus, we make f
a sink of deg(f) − 4 units of flow, which it has to draw either from its vertices or its
neighboring faces, resulting in a total rotation of 4.

Since the objective is to minimize the number of bends on edges, we make this problem
a minimum-cost flow problem, associating every edge between faces with a per-unit cost
of 1, and all other edges with a cost of 0. This results in the solution’s cost to exactly
correspond to the number of bends on edges in the resulting orthogonal representation.

3.1.3. Metrics

The final step in Tamassia’s framework computes coordinates for vertices, which is done
in two steps: First, all faces are rectangulated, i.e. subdivided into rectangles. Second, a
rectangle compaction technique is applied.

Rectangulation

We demonstrate Tamassia’s way of rectangulating faces with the example of Figure 3.5a.
Here, face f has an outward bend at vertex v0. Any face containing an outward bend can
obviously not be rectangular. On the other hand, any face that has no outward bend can
only have exactly four inward bends since it must have a rotation of 4. Thus, we show
how to eliminate these outward bends. Tamassia argues that, as long as a graph layout
contains at least one of these outward bends, it is always possible to find a bend such that

17



3. Preliminaries

(a) 90◦ angle (b) 270◦ angle

(c) 180◦ angle (d) 360◦ angle

Figure 3.3.: Illustrating the rotation contributed by all possible angles around a vertex. Numbers
specify the contributed rotation by the respective corner.

the next two bends following clockwise on its face (in the example of Figure 3.5a at v1
and v2) are inward bends. The proof for this can be found in [Tam87].

After these two inwards bends, we can find an edge (in our example e) such that we can
connect the outwards bend to a new vertex on e. Doing so removes one outward bend from
the graph. Tamassia repeats this until the orthogonal representation is rectangulated.

Rectangle Compaction

The Topology-Shapes-Metrics framework then uses a rectangle compaction algorithm first
described by Hsueh [Hsu80]. Another description is found in [BETT98, Chapter 5.4]. We
outline this technique only very roughly, since we will not be using it in detail throughout
this thesis.

The algorithm works by computing two flow networks on the graph’s dual: One for
determining the x-, and one for determining the y-coordinates. The basic idea is that, for
every rectangle in the layout, the lengths of its left and right (or top and bottom) sides
must be equal, and also must be composed of (partial) lengths of its neighboring rectangles.
Figure 3.5b shows an excerpt of the network used for determining the y-coordinates. This
network uses only those edges of the dual graph which are dual to a vertical edge. Also, all
edges (and thus all flow) is directed from left to right in this network. Finally, the flow on
each edge is used as the length of the corresponding dual edge. It is easy to see that this
results in the left and right sides of f0 having equal lengths, and that these lengths are
compatible with the heights of the neighboring rectangles. The network for determining
the x-coordinates works accordingly. Assigning unit costs to all edges results in the lengths
being chosen minimally.
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(a) Flow on a Dual Edge (b) Result of One Unit of Flow (c) Result of Two Units of
Flow

Figure 3.4.: Relationship between flow on dual edges and the resulting shape of the edges

(a) Rectangulation of a face (b) A part of the flow network for determining y-coordinates.
Black is the original graph with its rectangulated orthogo-
nal representation, blue is the flow network on the dual
graph.

Figure 3.5.: Illustrations of Rectangulations

Please note that this technique of finding coordinates is not optimal regarding the space
the drawing is taking up (and probably many criteria more), although the compaction
algorithm is. The resulting coordinates depend on how the faces of the original graph have
been rectangulated, and rectangulating the graph as presented above is not guaranteed to
be a good choice.

3.2. Introduction to Simulated Annealing
Parts of this thesis use the black-box metaheuristic Simulated Annealing, which can be
used to approximate the global optimum of a function. This section shortly describes the
ideas behind simulated annealing.

The annealing process that this heuristic is simulating is a technique for processing steel.
Raw steel is heated and then slowly cooled again, which causes the steel molecules to form
a very strong crystal lattice. From a physical point of view, this special crystal lattice is
in a state of low energy (compared to other lattices), making it stable. Since this process
minimizes the energy of the overall system by controlled cooling, simulated annealing often
uses the terms temperature and energy.

When using simulated annealing to minimize an optimization problem, the energy usually
refers to the objective function to be minimized. Each feasible solution has such an energy
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associated with it that the optimal solution has the lowest energy. For minimization
problems, the value of the objective function is usually used as energy. Simulated annealing
is an iterative process. In each iteration, a new solution is generated from the current one.
This solution is then accepted (i.e. made the current solution) if it has less energy, or, if
it has more energy than the current solution, it is accepted with a probability based on
the difference between the energies of the current and the new solution and the current
temperature. A widely used probability function is (with T being the current temperature,
and ∆ being the difference in energies):

f(∆) = e−∆/T

Clearly, the acceptance probability decreases with increasing ∆ and decreasing T . With
this, the simulated annealing process is able to pick solutions from all over the solution
space at first (when T is still large). However, when the temperature decreases, it becomes
gradually less likely that solutions that have a higher energy than the current solution are
accepted.

For a successful application of simulated annealing, it is important to find a good cooling
schedule. The cooling schedule determines the start temperature, as well as how fast the
temperature is lowered and how many iterations are computed per temperature step.

In conclusion, simulated annealing can be described with Algorithm 3.1.

Algorithm 3.1: Simulated Annealing outline
Input: energy function f

1 solution = generate_random_solution();
2 t = initial_temperature();
3 repeat
4 repeat
5 new_solution = find_neighbour(solution);
6 if accept(t, f(new_solution), f(solution)) then
7 solution = new_solution;
8 until enough steps on this temperature;
9 t = cool_down(t);

10 until stop criterion;

While it is nontrivial to find a good cooling schedule for simulated annealing, there are
schedules for which can be shown that the probability of the simulated annealing process
finding the optimal solution converges against 1 with the number of iterations (cf. Aarts
and Van Laarhoven [AVL85]). However, these schedules usually are not well-suited for
practical applications.
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In this chapter, we present an approach for drawing metro maps on concentric circles
that works by first producing an orthogonal drawing, and then applying a transformation
resulting in an ortho-radial drawing.

Minimizing the number of bends in the final drawing (see (O2) in Section 2.2) is a very
important criterion according to Roberts [Rob12, p. 107]. We therefore adapt Tamassia’s
Topology-Shape-Metrics framework (explained in its basic form in Section 3.1), the primary
objective of which is to minimize the number of bends in the layout.

In Section 4.1, we first describe some preprocessing steps as well as the transformation that
is used to transform the orthogonal drawing into an ortho-radial drawing, since having this
transformation in mind is important for some of the reasoning in the following sections.
Section 4.2 then presents our version of Tamassia’s Shape step, resulting in an orthogonal
representation. In Section 4.3, we describe a way of assigning coordinates to vertices and
bends, thereby presenting an improved version of Tamassia’s Metrics step.

Section 4.4 and Section 4.5 show the details of two NP-hardness proofs that we refer to
from the preceding sections, and which make some of the presented heuristics necessary.

Finally, in Section 4.6 we present an implementation of the proposed solution and its
variations and evaluate it experimentally and determine reasonable values for the parameters
of our framework.

4.1. Preparations and Transformation
This section first shows the transformation we use to produce an ortho-radial drawing from
an orthogonal drawing, since having seen the transformation is useful for understanding
the techniques we propose below. We then introduce a number of preprocessing steps.

4.1.1. Transformation from Orthogonal to Ortho-radial

We now describe how to transform an orthogonal drawing into an ortho-radial drawing.1
We assume the input layout to be given in cartesian coordinates, i.e. (x, y) pairs, and
want the resulting layout to be specified in polar coordinates, i.e. (r, θ) pairs. Such a
transformation is illustrated in Figure 4.1.

1For a formal definition of both drawing styles, refer to Definition 2.2 respectively Definition 2.3.
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4. Topology-Shape-Metrics in the Plane

(a) A square grid with a graph drawn orthogo-
nally

(b) A circular grid with the same graph, trans-
formed into an ortho-radial drawing. The
red striped area is the blank space intro-
duced by ε.

Figure 4.1.: Example of a transformation from a orthogonal drawing into an ortho-radial
drawing

Let P be the set of all points to be transformed. Then, for some small ε > 0 the
transformation T is defined as:

T : P ⊆ (R+ × R+)→ (R+ × [0; 2π])

xmax = max
(x,y)∈P

x+ ε

T (x, y) =
(
y,

2πx
xmax

)

The projection T works by simply using the y-coordinate as the new radial coordinate, and
linearly projecting the x-coordinate into the interval [0; 2π

1+ε ] for the orbital coordinate.

We add ε to xmax so that after the transformation no points are located on the 0/2π
boundary, because this could lead to crossings or overlaps. The blank space introduced by
this is shown as a red striped area in Figure 4.1b. Note that this transformation maps a
vertex pair with equal x coordinates to a vertex pair with equal θ coordinates. Because
of this, vertical edges in the input layout become (straight) radial edges in the output.
Similarly, horizontal edges in the input become orbital edges in the output. Thus, if the
input is a valid orthogonal drawing, the output is a valid ortho-radial drawing.

This transformation has two immediate consequences that are relevant for our approach:
First, let p1 = (r1, θ1) and p2 = (r2, θ2) be two points, and without loss of generality assume
that r1 ≥ r2. Then, their distance (as illustrated in Figure 4.2a) is:

dist(p1, p2) =
√

(sin(θ2 − θ1) · r1)2 + (cos(θ2 − θ1) · r1 − r2)2

The larger radius r1 thus is a positive factor for the distance. Consequently, enforcing a
minimum distance of points in the ortho-radial case requires that in the reverse-transformed
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4.1. Preparations and Transformation

(a) Distance in Polar Coordinates

(b) An example of how to transform G
into Gcut. Black is the original G, with
green being the parts that are cut out. Red
is the shortest path in the dual graph.

Figure 4.2.

orthogonal drawing, lower points (with smaller y-coordinate) must maintain a larger
minimum distance than points with larger y-coordinate.

The second consequence of this simple transformation is that we do not utilize the circular
nature of the θ coordinate, since that coordinate is determined by a linear projection from
the (not circular) x dimension of the orthogonal drawing. For example, if we have two
points p1 = (r, θ1) and p2 = (r, θ2) representing two vertices, and assume θ1 > θ2, these
two vertices can not have an edge going clockwise from p1 to p2. We address this problem
in Section 4.1.2.

4.1.2. Closing the Gap

We now try to mitigate the problem that no edges can be routed crossing the 0 / 2π
boundary for a drawing derived from the transformation presented in Section 4.1.1. A
consequence of this problem is that this approach cannot draw a graph such that any cycle
in the graph has the point S = (0, 0) (the center of the ortho-radial coordinate system) on
one side and the outer face on the other side. However, being able to draw cycles in such a
way is highly desirable to fully exploit the possibilities offered by an ortho-radial drawing
style. Thus, we now present a technique that enables us to compute drawings with cycles
separating the center of the drawing from the outer face.

If we are given an embedding of the graph G (which we assume throughout this thesis), and
a face f in which S should be positioned (called the center face), we can determine which
cycles would have to cross the 0 / 2π boundary: These are exactly all cycles separating the
outer from the center face. Knowing this, we are able to transform G into a graph Gcut, in
which all these cycles have been cut open. If we now lay out Gcut geometrically in such a
way that the cut-open parts are laid out on the boundary of the drawing, we are able to
close the cycles again across the boundary.

To identify the edges to be cut (i.e. removed from the graph), we perform a simple shortest
path search in the dual of G, starting with the vertex representing the center face, and
ending in the vertex representing the outer face. For every dual edge that is part of this
shortest path, the corresponding edge is part of the cut, see Figure 4.2b. Clearly, this cuts
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4. Topology-Shape-Metrics in the Plane

Figure 4.3.: Assembly of the frame around Gcut. Gray elements are dummies to enforce
proper layout. Red vertices are ports, while green vertices v1 - v6 are endpoints
of edges that have been cut, and correspond to their counterparts in Figure 4.2b.
The cut edges are shown as dotted green lines, but only for illustration. These
are not parts of Gcut or G′′.

all cycles separating the center from the outer face, and also is minimal among all such
cuts. Let the cut edges be Ẽ = (ẽ1, ẽ2, ẽ3, . . . ). We assume the ẽi to be ordered from inner
to outer, i.e. ẽ1 is the edge that corresponds to the first dual edge in the shortest path, ẽ2 is
the edge that corresponds to the second dual edge, etc. Call the new graph G′ = (V,E \ Ẽ).

We now need to make sure that in the final embedding, we can again close the cycles
that we cut open. For this, we modify the input graph G′ of Tamassia’s flow network (cf.
Section 3.1.2) and also the flow network itself. First, observe that in G′, the endpoints of
all edges in Ẽ lie on the outer face of G′.

Now we put G′ in a rectangular frame made out of four vertices v̂0, v̂1, v̂2, v̂3, see Figure 4.3.
We also add dummy vertices around each of these four vertices so that we can control how
the four 90◦ angles around the vertices are distributed - these are the unnamed gray vertices
in Figure 4.3. To make sure that the endpoints of edges in Ẽ (just called endpoints for the
rest of this section, shown in green in Figure 4.3) end up on the left and right boundary of
the drawing, respectively, we now connect them to the left respectively right boundary of
the frame, by adding one vertex per endpoint on the frame (call them the ports, shown
in red in Figure 4.3) and connecting these to the endpoints in the correct order. Again,
dummy vertices enforce the correct layout around the inserted port vertices by making
sure that these vertices have degree 4, and thus leaving no choice for the embedding of
their neighbors around them. Call this final graph G′′.

We finally need to make sure that the frame around G′ actually stays rectangular, i.e. has
no edge-bends. To achieve this, consider the dual edges of all edges that form the frame.
Setting the capacity of these dual edges in the flow network to 0 results in no edge-bends
being assigned to the edges of the frame, forcing the frame to stay a rectangle.
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4.1. Preparations and Transformation

(a) The situation before e1 and e2 were
merged

(b) The situation after e2 was merged
into e1

Figure 4.4.: Example of merging two edges to reduce vertex degree

Formally, the flow network given in Section 3.1.2 is modified as follows:

• the network Graph Gf is G′′ = (V ′′, E′′),

• the upper bound for the flow per edge, u, is:

u(e) = u(v, w) =


∞ if e ∈ E
∞ if {v, ·} ∈ Ẽ ∨ {w, ·} ∈ Ẽ
0 if e is part of the frame

It is easy to see that this modified flow network is always solvable. Clearly, any valid layout
of the graph induces a feasible solution to the flow network by assigning flows based on
the actual shape of the edges and the distribution of angles around the vertices. Thus,
every layout that keeps the edges making up the frame straight induces a feasible solution.
If, however, a valid layout for G exists,2 then G′, from which only some edges have been
removed, can be laid out, too. Ignoring the edges connecting G′ to the frame for a moment,
this valid layout can then be embedded in the space inside the frame. Since all endpoints
appear on the outer boundary of G′ and keep their order in the layout, we can easily route
the edges connecting these endpoints to the port vertices on the frame.

Closing the Cycles

Since we forced the frame to be laid out as a rectangle, after the transformation described
in Section 4.1.1, the left and right borders of the frame are assigned polar coordinates with
angles of 0 and 2π

1+ε , respectively. Note that as depicted in Figure 4.1b, the area between
the orbital coordinates 2π

1+ε and 2π is empty. We can use this area to route the edges that
we have cut from the original graph.

4.1.3. Limiting the Degree to 4

The drawing style used throughout this thesis allows for only four edges per vertex. The
input graphs derived from metro networks however do usually include vertices with larger
degrees. When reducing the degree of a vertex, we cannot just remove edges. This would
leave metro lines disconnected, and the map would be unusable. What we do instead is
this: We merge two (or more) edges of a vertex, and split them up again a short distance
away from the vertex. Formally, merging and splitting of two edges e1 and e2 is done by

2Which we may assume, since our input graph G is required to be planar, and as Tamassia [Tam87] shows,
a valid layout is found for every planar graph with this technique.

25



4. Topology-Shape-Metrics in the Plane

inserting a new vertex in one of them, and then re-hanging the other edge to that vertex.
Consider the example in Figure 4.4: Figure 4.4a illustrates the situation before anything
was merged. We decided to merge e1 and e2. Figure 4.4b shows how e2 was merged into e1.

We must now show how to select the edges for merging. It would be desirable to make that
choice in such a way that the best possible drawing of the resulting graph has a minimal
number of edge-bends. However, we can show this problem to be NP-hard in Section 4.5.
Therefore, we propose a simple way of limiting the degree. This technique does not have
any guarantee as to the number of edge-bends introduced by the degree limitation.

Aside from edge-bends, it is reasonable to assume that edges carrying too many metro
lines create visual disturbances, especially at points where these metro lines split or merge.
Therefore, we propose the following steps to transform a vertex of degree larger than 4 into
a vertex of degree 4: Let v be a vertex with deg(v) > 4. For all consecutive pairs e1, e2 of
edges incident to v, compute the union of the set of metro lines running via e1 and the
set of metro lines running via e2. Merge that pair e1, e2 for which the cardinality of that
union is minimal. Repeat this until the degree of v is 4.

This way, the number of metro lines per edge is minimized.

4.2. Shape - Computing an Orthogonal Representation
This section describes how we compute an orthogonal representation, i.e. perform the
Shape step of Tamassia’s framework. We summarize the original version of the algorithm
in Section 3.1.1.

We first present a modification that minimizes the number of metro lines bending at metro
stations, which is something that Tamassia’s framework cannot do, since it has no notion of
metro lines. Then we show another modification that changes the framework’s optimization
from minimizing the number of bent edges to minimizing the number of bent metro lines,
considering that an edge of the graph can support more than one metro line.

4.2.1. Avoiding Bends at Stations

As stated (and motivated) in Section 2.2 as quality criterion (O3), we want to avoid the
bending of metro lines at stations. We do so by smartly arranging the incidences of vertices
around the vertices. To this end, we modify Tamassia’s flow network, respectively the
already modified version we presented in the previous sections. We have to distinguish
between vertices of different degrees. For vertices of degree 1 or 4, we have only one way
of distributing the four 90◦ angles around the vertices. Thus we only examine vertices of
degree 2 or 3 here.

Please note that in the following, we treat a vertex of degree d to have d incident faces.
This is obviously not always true, and in fact, this is an element of Tamassia’s flow network
that is under-specified: Take a vertex of degree 2 that has only one incident face. Obviously,
this vertex gives its two surplus units of flow to the only face to which it is incident.
In such a case, Tamassia’s flow network does not specify what the distribution of the
two 90◦ angles around the vertex should look like. See the three different possibilities
in Figure 4.5 for an example: For every one of the three different results, the flow in
Tamassia’s flow network is the same. Tamassia probably left this out because any of
the three possible distributions (180◦/180◦, 90◦/270◦, 270◦/90◦) yield a valid orthogonal
representation. However, in the following, this makes a difference. In such cases, we just
introduce two proxy vertices for the vertex representing the face in the flow network, see
the red parts of Figure 4.5: Now, flow flowing from v to f via r can be distinguished from
flow via l, and the corresponding angles can unambiguously be assigned. For vertices of
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4.2. Shape - Computing an Orthogonal Representation

(a) 180◦/180◦ assignment of an-
gles

(b) 90◦/270◦ assignment of an-
gles

(c) 270◦/90◦ assignment of an-
gles

Figure 4.5.: Different possibilities of assigning angles around a degree-two vertex v. Blue
parts are parts of Tamassia’s original flow network, red parts are parts of our
modification. Numbers show the flow on the edges.

degree 3, we use an analogue transformation, in which we need to insert three dummy
vertices instead of two.

We now show how to minimize the number of lines bending at stations for vertices of
degree 2 or 3.

Vertices of Degree 2

For a vertex v of degree 2, the question of what distribution of the two edges around
the vertex is optimal is easy to answer. Let e1 and e2 be the edges incident to v. Let p
be a path in G. In the following, we write (ei, ej) @ p if and only if p = (. . . , ei, ej , . . . )
or p = (. . . , ej , ei, . . . ), thus if p contains ei and ej consecutively.

If there is at least one line passing through v, thus a path p exists in the set3 L
with (e1, e2) @ p, then both faces incident to v should be assigned an 180◦ angle at v
so that the lines can pass straight through v.

Figure 4.6.: Modification to avoid station-
bends for a degree-two vertex. Black parts
are parts of G, while blue parts are parts of
the resulting flow network.

In Tamassia’s flow network, this would cor-
respond to v giving one unit of flow to those
two vertices that represent the faces inci-
dent to v. Let the two incident faces of v
be represented by f1 and f2 in the flow net-
work. If we set the cost of the lines passing
through v bending at v to c, we modify
the flow network around v as seen in Fig-
ure 4.6: The dummy vertices d1 and d2
are added and connected between v and f1
and f2, respectively. The edges used to do
so (e5, e6, e7 and e8) are all assigned capac-
ity 1 and cost 0. Edges e3 and e4, which
were originally responsible for flow from v
to the faces, are assigned infinite capacity
and a cost of c, with c being the price to pay
for the lines bending at v. When later deter-
mining the distribution of angles around v,
the flow on e5 is considered as if it was flow
on e3, while the flow on e6 is considered as
if it was flow on e4.

3L is a set of paths on G, specifying the individual metro lines. See Section 2.2 for the formal definition
of L.
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Figure 4.7.: Possible ways of arranging edges around a vertex of degree 3

This way, the desired situation, namely v giving one unit of flow to each of its incident
faces, can be achieved with a cost of 0, since one unit of flow can pass without cost via d1
and d2, respectively. If, however, the flow network made the lines passing through v bend
in v, this would mean that either f1 or f2 receives two units of flow, forcing one unit of
flow to use either e3 or e4 and thus incurring a cost of c.

It remains to be said how to chose c. It is plausible that a station-bend involving lots of
lines is worse than a station-bend involving only few lines. Thus, we set c to the number of
lines bending at v times the station-bend optimization factor ωstation (see Definition 2.4):

c = ωstation · |{p ∈ L | p A (e1, e2)}|

Vertices of Degree 3

Vertices of degree 3 are handled very similarly to vertices of degree two. If v has degree 3
(with the three edges e1, e2, e3), it has to assign one additional 90◦ angle to one of its three
incident faces, resulting in three possible choices as illustrated in Figure 4.7. For each
choice, one pair of the three edges is laid out in a straight line. In each of the cases, it is
easy to compute how many lines are bent at v and thus derive a badness in accordance with
the definition above. Assume that e2 and e3 are the two straight edges (as seen leftmost
in Figure 4.7). Then, the number of bent lines is |{p ∈ L | p A (e1, e2)}|+ |{p ∈ L | p A
(e1, e3)}|. Since this situation is the result of v giving one unit of flow to f3, we use this
badness together with the constant ωstation as cost c3 to be assigned to the edge leading
from v to f3. Similarly, we can define costs ci for all edges leading from v to fi:

c1 = ωstation · (|{p ∈ L | p A (e2, e1)}|+ |{p ∈ L | p A (e2, e3)}|)
c2 = ωstation · (|{p ∈ L | p A (e3, e2)}|+ |{p ∈ L | p A (e3, e1)}|)
c3 = ωstation · (|{p ∈ L | p A (e1, e2)}|+ |{p ∈ L | p A (e1, e3)}|)

This way, we can set the cost incurred to the flow network to be the number of lines bending
at stations weighted by the desired factor. We later determine good values for ωstation
experimentally in Section 4.6.

4.2.2. Minimizing the Number of Bent Metro Lines

We now introduce a further modification, which can be applied to Tamassia’s Topology-
Shape-Metrics framework in addition to the adaption shown in the previous section. The
aim of this modification is to minimize the number of times a metro line is bent on an
edge. For an illustration, refer back to Figure 2.2b: Here, bending edge e1 only induces
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one line-bend, while bending e2 would cause two metro lines to bend. This corresponds to
the quality criterion (O2a) introduced in Section 2.2.

The only change necessary is a simple change to the edge costs in the constructed flow
network: As described in Section 3.1.2 and in Definition 3.3, in the flow network, the cost of
every edge in G’s dual graph are 1 per flow unit. Flow on edges of G’s dual represents the
bends on the edges of G’s orthogonal representation. For details, refer back to Section 3.1.2.
Thus, every edge-bend incurs a cost of 1 in the flow network.

We first define a function assigning to every edge the number of metro lines running via
that edge. Let the set L of paths on G be defined as in Section 2.2, with every path in L
representing one metro line.

Definition 4.1 (Line-Count function). Given a graph G = (V,E) and a set L of paths
on G. Then, the line-count function is

δ : E → N

with
δ(e) = |{p | p ∈ L ∧ e ∈ p}|

We now change the definition of c in the flow network:

Definition 4.2 (Min-Cost-Flow to compute an Orthogonal Representation minimizing
Line-Bends). Given a graph G = (V,E) with an embedding, a set L of paths on G, and δ
as defined in Definition 4.1. Let G′ = (V ′, E′) be the dual of G. Let a flow network be
defined as in Definition 3.3.

Given the cost function c, let the new cost function be c′, with

c′(e) =
{
c(e) + ωlineδ(e) if e ∈ E′
c(e) otherwise

With this definition, the cost incurred by flow on an edge of G’s dual, i.e. flow resulting in
an edge being bent in the orthogonal representation, incurs cost that include the number
of metro lines being bent weighted by the appropriate factor ωline. We later practically
determine good values for ωline; see Section 4.6.3.1.

4.3. Metrics - Assigning Coordinates
After an orthogonal representation has been computed, actual coordinates must be assigned
to the vertices. In the original Topology-Shape-Metrics framework, Tamassia proposes
the technique shown in Section 3.1.3. However, we can prove the problem of assigning
coordinates to be NP-hard (see Section 4.4), thus there can be no efficient optimal solution
algorithm.4 In fact, Tamassia’s solution in a way does no optimization at all: In the
following we present a space of possible solutions, from which Tamassia’s technique just
randomly picks one.

We present a way of exploring this solution space, and use this possibility to apply the
metaheuristic simulated annealing to the problem. In doing so, we not only demonstrate a
compaction technique that improves on Tamassia’s technique in terms of area minimization,
but it also enables us to optimize the drawing for multiple criteria.

We use the black-box metaheuristic simulated annealing for our approach, which has been
roughly outlined in Section 3.2. To do so, we need to specify three components:

4Under the assumption that P 6= N P.
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1. A cooling schedule

2. An energy function, i.e. an objective function on the graph layout

3. A way to randomly perturb the found solution

Here, we do not go into detail about the cooling schedule, since this choice is not (or at least
not necessarily) problem-specific. In practice (see Section 4.6), we are using an off-the-shelf
solution that includes a reasonable cooling schedule.

We do also not specify a fixed energy function here, but rather assume that a useful
energy function should reflect the objectives stated in Section 2.2. We evaluate different
energy functions practically in Section 4.6. Please note however that, since here we only are
optimizing the final step of assigning coordinates to the computed orthogonal representation,
not all criteria can reasonably be part of the energy function: For example, the number of
bends is fixed once the orthogonal representation has been computed, thus including it in
the energy function would not be useful.

More interesting is the question of how to randomly generate a new solution from an
existing one.

Reaugmentation

We first define what, in the context of this optimization problem, we call an augmentation
of an orthogonal representation of the graph G = (V,E).

Definition 4.3 (Augmentation). Given a graph G = (V,E) together with an orthogonal
representation of G, an augmentation consists of:

• A set EA of edges added to the orthogonal representation

• A function oA : (u, v) ∈ EA → {1, 2, 3, 4} assigning an orientation to every added edge,
where 1 represents ”up”, 2 represents ”right”, 3 represents ”down” and 4 represents
”left”.

• A set VA ⊆ (EA ∪ E) of inserted vertices subdividing edges in E or edges in EA.
Since this may look peculiar, note that we are just identifying the inserted vertices
with the original edges that they subdivided. Also, since every vertex in VA subdivides
an edge, thereby removing and replacing it with two new edges, there must be at least
two edges in EA incident to each vertex in VA.

An augmentation is valid if, after applying all subdivisions in VA and inserting all edges in EA
with the orientation given by oA, every face of the augmented orthogonal representation is
a rectangle. Also, the result must of course still be a valid planar layout.

Strictly speaking, for the above definition of oA to be useful, the edges of the orthogonal
representation must be oriented, too, which they are not. But since their relative orientations
are fixed, arbitrarily orienting one edge induces an orientation on all edges. Also, since this
arbitrary choice only rotates the end result by multiples of 90◦, the quality of the solution is
not impeded by this choice. Also, for oA to be valid, clearly oA(u, v) ≡ oA(v, u) + 2 mod 4
must hold.

Figure 4.8a shows a simple example of this. Here, EA consists of the blue and green
edges, with the difference being that green edges are replacing original edges that have
been subdivided, while blue edges are inserted to slice the faces. VA consists of vA0

and vA1 , with vA0 being identified with the edge {v2, v3} and vA1 being identified with the
edge {v0, vA0}.
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(a) A simple augmentation example. Blue
edges and vertices are added in the aug-
mentation. Green edges are replacing an
original edge that was subdivided.

(b) An example for an augmentation that is not
minimal

Figure 4.8.: Examples of augmentations

Also, we are only considering minimal augmentations here. We call an augmentation
minimal if we cannot remove any element from EA or VA without either misrepresenting
the original graph (because we deleted an edge that is part of a subdivided original edge)
or making the resulting layout non-rectangulated. Figure 4.8b shows an example of a
non-minimal augmentation. Removing vA3 (and reinserting the original edge) does no
harm. Also, the edge between v0 and vA2 is unnecessary, resulting in vA2 also becoming
obsolete.

From the description in Section 3.1.3 it becomes immediately clear that the quality of the
compaction algorithm depends (only) on our choice of how to augment the graph until
every face is a rectangle, since the subsequent rectangle compaction algorithm is optimal.

While Tamassia proposes a way of augmenting the orthogonal representation, his suggestion
is by far not the only possibility. The metaheuristic that we want to apply later needs a
way of exploring the solution space, so we present a way of producing any possible valid
augmentation of the orthogonal representation that can be achieved by iteratively slicing
non-rectangular faces. With this, it is easy to produce a new augmentation of arbitrary
similarity to an existing augmentation: Given an augmented orthogonal representation,
select a set of edges that were introduced during the augmentation, and delete them
(and the vertices introduced by these edges). This results in some of the faces not being
rectangular anymore. Then, randomly select one of the possibilities of augmenting these
faces again. The number of edges deleted determines how similar the final augmentation is
to the original augmentation.

We therefore present a more general method of rectangulating faces: Instead of connecting
any outward bend to the next suitable edge (or more correctly, a vertex subdividing that
edge), we find a list of all possible edges for doing so and randomly select one of them.

First, we modify the problem a little: In the original form, for every vertex v with an
outward bend, we are looking for edges to which we can connect that vertex with an
axis-aligned line segment. Instead, we now consider the two edges incident to v on the face
that the outward bend is on. Call them ea and eb. We now look for edges that can be drawn
in such a way that we can connect these edges to either ea or eb with an axis-aligned line
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(a) An outward bend on a face
and arrows indicating all edges
reachable from it

(b) A straight path

Figure 4.9.: Illustrations for proof of Lemma 4.5

segment. See Figure 4.9a for an example. Here, f has an outward bend at v. Interesting
are all edges of f that can be reached by one of the blue arrows, i.e. could be connected to
one of the two edges incident to v by a straight horizontal respective vertical line segment.
These edges can then also be reached from v.

We therefore characterize which edges can be laid out in such a way relative to each other.
First, we need the notion of a straight path:5

Definition 4.4 (Straight Path). A path p = (e1, . . . , ek) of length k in G = (V,E) is a
straight path, if the last edge in p, ek, has rotation 0 on the path p, i.e. rotp(ek) = 0.

The above definition basically states that the path unwinds any bends it makes before
coming to an end.

In the following, we make a series of statements as to how such straight paths can be
drawn in an orthogonal drawing. To make matters easier, during the proofs we present we
sometimes handle edges as if there were no bends on the edges, i.e. as if all bends on the
path happened between the edges, not on the edges. While this of course is not the case in
general orthogonal representations, for the purpose of the following proofs, we can in fact
treat an edge with bends as a series of multiple bend-free edges that have been assigned
the correct orientations in the orthogonal representation. This does not change any results
throughout the next lemmas, since they only concern themselves with how paths can be
drawn, and in this undertaking it is negligible whether we draw a series of straight edges
or a single edge with multiple bends. The important consequence of this point of view,
which we use multiple times, is that the rotation of two consecutive edges on the path can
only differ by at most 1.

We start by proving the following lemma:

Lemma 4.5. Given a graph G = (V,E), a straight path p of length k in G, and two real
numbers w and h, we can find an orthogonal drawing of G so that the subpath (e2, . . . , ek−1)
is laid out inside a box B of dimensions w × h, and e1 and ek cross opposite borders of B.

You can find an example of such a layout in Figure 4.9b. Note that in this lemma, we
explicitly do not state that we are able to compute an orthogonal grid drawing of the
desired dimensions. To see that this would obviously not always be possible, just consider
an arbitrary path and w = 0.5 and h = 0.5 (assuming a grid size of 1.0).

5For the definition of a rotation, refer to Section 2.3.1.
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Figure 4.10.: Inductive construction of a straight path in a box in the case that the second
to last edge already has rot = 0

Figure 4.11.: General case of constructing a straight path inside a box

Proof. The fact that p can be laid out in a box of given dimensions can be shown by
induction over the path length k:

For k = 1, the path consists of just an edge, which can trivially be laid out as required.
Now assume that we have shown the lemma for all straight paths of length k − 1 and
have a straight path of length k. Let el be the last edge6n p before ek with rotp(el) = 0.
Note that, since rotp(e1) = 0 by definition, we can always find such an edge. In the case
that l = k− 1, i.e. the edge directly before ek already has rotation 0, this part of the proof
is easy: We draw the path p′ = (e1, . . . el), which is a path of length k − 1, inside a box
of dimensions w′ ≤ w − ε and h′ ≤ h, which we can as per induction hypothesis. We can
then just connect ek to el and are done. See Figure 4.10 for an illustration.

If l < k − 1, then the edge el+1 must either have a rotation of 1 or −1, since rotp(el) = 0
and the rotations of two consecutive edges can only differ by at most 1. Since both cases
are symmetric, without loss of generality we only consider the case rotp(el+1) = 1 here.
From this follows rotp(ek−1) = 1: The rotation of ek−1 can obviously only be −1 or 1.
Since the rotation does not jump along the path, but can only ever increase or decrease
by 1, rotp(ek−1) = −1 would mean that there is an edge between el+1 and ek−1 with a
rotation of 0, which cannot be by the choice of el. Thus, rotp(ek−1) = 1.

With this, the subpath (el+1, . . . , ek−1) becomes a straight path itself, with length of at
most k − 1. Thus, by assumption, we can lay it out in a box of arbitrary size. The final
construction can be seen in Figure 4.11: Since we can determine arbitrary sizes for the two

6i

33



4. Topology-Shape-Metrics in the Plane

inner boxes (and the edges connecting them), we can also realize arbitrary sizes for the
outer box.

Now that we know this about straight paths, we return to our original problem: Which
edges can be drawn in such a way that they can be connected to a given edge e via a
straight line segment orthogonal to both edges? We can answer this question with the
following lemma:

Lemma 4.6. Given a graph G = (V,E) and an edge e1 on a face f , if a path p = (e1, . . . , ek)
with rotp(ek) = 2 exists on f , then an orthogonal layout of G can be found so that e1 and ek
can be connected by a line segment orthogonal to e1 and ek, and which splits f into two
faces.

Proof. Let p be a path such as above of length k. Since rotp(e1) = 0 and rotp(ek) = 2,
there must be a first edge with rotation of 1. Let that edge be ei. The same holds for a
rotation of 2: Let ej be the first edge with rotation of 2.

With these definitions, the paths p1 = (e1, . . . , ei−1), p2 = (ei, . . . , ej−1) and p3 =
(ej , . . . , ek) are straight paths as required in Lemma 4.5. Since we can lay them out
in boxes of arbitrary sizes, we can then piece them together as depicted in Figure 4.12a.

Now, since we can assign arbitrary heights to the two vertical boxes (and the edges e1
and ek), we can make sure that e1 and ek overlap vertically. Let the path p be called the
upper half of f . Since p is completely contained in the three boxes in this layout, no parts
of it can obstruct the space between e1 and ek. Let the rest of f (a path p′ from ek to e1)
be called the lower half of f . We must also show that no part of this lower half obstructs
the space between e1 and ek. However, since every face must have a rotation of 4, and p
had a rotation of 2, p′ must also have a rotation of 2. Thus, the same argument holds
for p′. In total, a layout as illustrated in Figure 4.12b results. In conclusion, no part of the
face f can obstruct the space between e1 and ek in such a layout.

We have now shown that all edges with a rotation of 2 relative to an edge e are candidates
for being drawn opposite to it, and thus candidates for an edge needed to rectangulate the
face at an endpoint of e. Now we show that these edges are in fact the only possible edges
for doing so.

Lemma 4.7. Given a graph G = (V,E) and an edge e1 on a face f , if the path p = (e1, . . . , ek)
that runs clockwise around f from e1 to ek results in rotp(ek) 6= 2, then no orthogonal
layout of G can be found so that e1 and ek can be connected by a line segment orthogonal
to e1 and ek, splitting f into two faces.

Proof. Assume p exists as required above, and also assume that it is possible to lay out G
orthogonally so that e1 and ek can be connected by a line orthogonal to e1 and ek. This
situation is illustrated in Figure 4.12c, in which the blue vertices v1 and vk and the
blue edge {v1, vk} are inserted to connect e1 to ek. This splits f into two parts, the
upper part of which includes p. Call that part f ′ as in the figure. Now, f ′ consists
of the edges (e1, e2, . . . , ek = ek, {vk, v1}). As illustrated in red in Figure 4.12c, the
part (ek, {vk, v1}, e1) has rotation of 2. Since we know by assumption that p, which forms
the rest of f ′, does not have a rotation of 2, the total rotation of f ′ cannot be 4. This
contradicts the requirement that every face in an orthogonal drawing must have a rotation
of 4. Thus, p cannot have anything but a rotation of 2 if such a connection is possible.
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(a) Piecing together three straight paths to make
one path of rotation 2. The blue arrow shows
the visibility between the first and the last
edge.

(b) The complete construction allowing e1
and ek to be drawn opposite each other.
The blue arrow shows the visibility be-
tween e1 and ek.

(c) Face f after connecting e1 to ek. Blue parts are inserted
to facilitate the connection. Red parts indicate the added
rotation.

Figure 4.12.: Decomposition of a face into straight paths so that edges can be laid out
opposite each other
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(a) A rectangulation that is never produced
by the proposed algorithm. Blue parts
are inserted for rectangulation.

(b) A rectangulation of the same orthogonal
representation that can be produced and
results in the same or better objective.
Blue is inserted first, then green, then
red.

Figure 4.13.: Illustrations of rectangulations

By combining Lemma 4.6 with Lemma 4.7, we have shown that every possible way of
connecting an outward bend in a face to an edge on that face can be computed by
enumerating all edges that have a rotation of 2 relative to the two edges participating in
that outward bend.

Wrapping this section up, we propose a metaheuristic approach for solving the coordi-
nate assignment problem: The different possible augmentations of the input orthogonal
representation are the solution space in which to find a solution that best fulfills certain
(to be specified) objectives such as required space. We have a simple way of generating
new solutions close to a given solution within that solution space by deleting edges used
for augmentation and then again randomly choosing an augmentation as described above.
This is all we need to apply simulated annealing.

One final remark: Initially, we stated that with the presented method it is possible to create
all augmentations that can be achieved by iteratively slicing not yet rectangular faces.
Clearly, this method does not produce all possible augmentations respective rectangulations:
See Figure 4.13a for an example of a rectangulation that is never produced by repeatedly
slicing faces. However, the method we propose is very general regarding the results: Consider
Figure 4.13b for a rectangulation that can be produced by our method. Here, the blue cut
was introduced first, then green, and then red. Now, if the compaction algorithm is adapted
slightly to remove the minimum distance around vertices introduced for rectangulation
(i.e. everything not black in Figure 4.13b), then the compaction algorithm on this graph
yields the same result as on the rectangulation in Figure 4.13a by moving the red and green
vertices as well as the blue and its neighboring black vertex on top of each other.

4.4. NP-hardness of Coordinate Assignment
After an orthogonal representation has been computed, coordinates must be assigned. In
the original Topology-Shape-Metrics framework, Tamassia solves this by computing two
flow networks, as presented in Section 3.1.3. However, this approach is not only not optimal
in terms of space usage by the resulting drawing, but also does not exactly reflect the
requirements in our case: We do not necessarily need integer coordinates along the x-Axis
(which becomes the θ-axis once we transformed into polar coordinates, cf. Section 4.1.1).
Tamassia uses integer coordinates to enforce a certain minimum distance between vertices,
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but in our case, this minimum distance is dynamic: For reasons explained in Section 4.1.1,
we need a larger minimum distance (in terms of polar coordinates) the closer we get to the
center, i.e. with decreasing y (or r after transformation).

Figure 4.14.: Illustration of
different minimum dis-
tances

We illustrate this with Figure 4.14: Here, v1 has the same
orbital coordinate as v3, and v2 has the same orbital coordinate
as v4. However, since the radius of v1 and v2 is smaller than
the radius of v3 and v4, no vertex can be placed between v1
and v2, while a vertex can fit between v3 and v4. Thus, in
terms of the orbital coordinates, we need a dynamic notion
of a minimum distance.

While Tamassia did not make a statement as to the compu-
tational complexity of the problem of assigning coordinates,
Patrignani [Pat99] proves NP-hardness not only of a com-
paction that has optimal area usage, but also for minimizing
the total or maximal edge length.

However, our problem is slightly different from an ordinary
compaction of an orthogonal representation, since we do not have to adhere to a fixed
minimum distance in the θ-coordinate, i.e. we are not limited to a fixed grid, as explained
above. On the other hand, our θ-coordinate is limited to the interval [0, 2π), since all
coordinates have to be drawn on a circle.

We now prove that this problem is still NP-hard. Following the naming scheme in [Pat99],
we formalize the problem to be solved as follows. Note that we work directly in polar
coordinates.

Definition 4.8 (Dynamic Distance Orthogonal Area Compaction). Given are

• a graph G = (V,E) together with an orthogonal representation of it, in which all
edges are oriented

• a function d : N→ R assigning a minimal orbital distance to every radial coordinate
with r > r′ ⇒ d(r) < d(r′)

• an integer K

Find two functions
fr : V → N

fθ : V → [0, 2π)

such that:

(1) treating fV (v) = (fr(x), fθ(v)) as the polar coordinate7 of v, a planar ortho-radial
drawing results that adheres to the given orthogonal representation

(2) for every v with fr(v) = k, the length of the minimal circular arc between v and any
other vertex with the same radius is at least d(k)

(3) ∀v ∈ V : fr(v) < K

Note that the additional requirement that an orientation must be given together with the
orthogonal representation removes the ambiguity of having four possible rotations of the
whole drawing. In fact, the following proof holds without this requirement, but becomes
more clear if we may assume fixed directions for the edges used in our construction.

7For the definition of fV , see Definition 2.3 in Section 2.1.

37



4. Topology-Shape-Metrics in the Plane

Also, in our case, the function d is as simple as d(r) = c/r, with c being some constant.
This results in the minimum distances between two vertices on the same radius (measured
along the circular segment connecting both) to be the same at every radius.

Theorem 4.9. Dynamic Distance Orthogonal Area Compaction is NP-hard.
This remains even if d is chosen as d(r) = c/r for some constant c.

First note that the restriction of d (to the case that is interesting when drawing in an ortho-
radial style) is important here: If the choice of d if not restricted, one can choose d(r) = 1,
making the problem equivalent to an ordinary orthogonal grid compaction, which has been
shown to be NP-hard in [Pat99].

We reduce from 3-SAT, which is stated as follows by Garey and Johnson [GJ79, p. 259]:

Definition 4.10 (3-SAT). Given are an instance consisting of a set U of variables and a
collection C of clauses over U such that each clause c ∈ C has |c| = 3. Is there a satisfying
truth assignment for C?

To show NP-hardness of Dynamic Distance Orthogonal Area Compaction, we
must transform any given 3-SAT instance into a graph G (together with an orthogonal
representation), an integer K and a function d(r) = c/r, such that if and only if G can be
laid out with the radius of every vertex at most K, the given 3-SAT instance is satisfiable.

The main task in doing so is constructing the graph G and its orthogonal representation,
which we show in detail here. We do not explicitly state how the orthogonal representation
is made up - in every step of the construction, the orientation of the edges should be clear.
Given an instance of 3-SAT, consisting of n variables and m clauses, we construct an
instance of Dynamic Distance Orthogonal Area Compaction in three steps: First,
we build a frame inside of which all other parts of the graph are placed. We then construct
gadgets for the variables xi, forming columns inside the frame. Last, we construct gadgets
for the occurrence of a variable in a clause, which form rows in the frame, and thus cross
the columns forming the variables. At these crossings, the usage of a variable in a clause is
encoded. Three of these occurrence gadgets then make up one clause gadget.

In the following, all our illustrations are drawn orthogonally, although we are working
with polar coordinates and an ortho-radial drawing style. Here, the x-coordinate of our
illustrations represents the θ-coordinate of the actual ortho-radial drawings, and the y-
coordinate represents the r-coordinate. We do this because the gadgets used in the proof
largely rely on rectangular shapes, and these are easier to see in an orthogonal drawing
style.

Note also that while in the following we specify widths and heights, measured in vertices, for
most of our gadgets, and enforce minimum widths and height by inserting enough vertices,
the gadgets could of course be drawn with larger widths and height, i.e. be extended. We
want to prevent this, and thus we make sure that no gadgets can extend without in turn
extending the frame. We then adjust K so that a drawing height of K can only be achieved
by embedding the bottom of the frame as low as possible, thus resulting in an infeasible
solution if the frame was extended by one of the gadgets contained within.

4.4.1. Frame and Variable Gadgets

The frame is constructed as seen in Figure 4.15a: It is simply a box of vertices plus two
edges. The two edges shown in blue each span the whole box at the very top and the very
bottom of it horizontally. We call these two edges the upper respective lower rail. The
variable gadgets are connected to these rails as well as to the upper and lower borders of
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(a) The frame around the graph generated
for the proof of Theorem 4.9 (b) The variable gadget for the proof of The-

orem 4.9. The blue edges are the rails
from Figure 4.15a. The green edge is the
switch edge of this gadget.

Figure 4.15.: Frame and variable gadget for the proof of Theorem 4.9

the frame. A variable gadget is itself a box, with an edge inside the box running from top
to bottom, called the switch edge of the gadget. The variable gadget is connected to both
rails such that the upper rail connects just below the top of the variable gadget, the lower
rail connects above the bottom of the variable gadget. The top (respective bottom) of the
variable gadget lies on the top (respective bottom) of the frame. The switch edge is then
just connected to the two rails, so that it can slide left or right inside the variable gadget.
See Figure 4.15b for an illustration.

4.4.2. Occurrence and Clause Gadgets

The gadget representing an occurrence of a variable in a clause is another box, this time
spanning the width of the frame. Every occurrence gadget crosses every variable gadget.
See Figure 4.16a for an example. Here, an occurrence of the variable x3 is shown. Note the
red and purple parts that are added inside the crossing area of the gadget for x3 and the
occurrence gadget: One vertex is attached to each side of the switch edge, shown in red,
and another vertex is attached to the inside of the occurrence gadget, shown in purple. In
this case, that additional purple vertex is attached right of the switch edge, representing a
positive occurrence, i.e. the positive literal of x3 occurring in the clause that the occurrence
gadget belongs to. A negative occurrence is represented by attaching that purple vertex to
the left of the switch edge, as illustrated in Figure 4.16b.

We say that an occurrence gadget and the variable gadget of this occurrence intersect.
Note that while an occurrence gadgets crosses all variable gadgets, it intersect with only
one variable gadget.

The idea is to encode the truth value of a variable in the position of the switch edge. If
the switch edge is drawn as far to the left as possible inside the variable gadget (as seen
in x3 in Figure 4.16a), this represents the assignment of true to the variable, if the edge
is drawn as far to the right as possible, this represents the assignment of false. We later
also make sure that the horizontal space inside the variable gadget is never (for any radius)
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(a) An occurrence gadget (shown in black) crossing three variable
gadgets (shown in gray / green). The variables x1 and x2 do not
participate in the occurrence, x3 does.

(b) A negative occur-
rence of x4

Figure 4.16.: Occurrence gadgets

large enough such that five vertices could be embedded within it horizontally next to each
other.8

With this, we can show that for a single variable gadget, the switch edge cannot be positioned
such that occurrence gadgets representing a negative occurrence of the respective variable
as well as gadgets representing a positive occurrence of the same variable can be laid out
without requiring an additional row, i.e. with both gadgets having a height of 3. This
situation is depicted in Figure 4.17a: The occurrence gadget drawn at radius r1 represents
a positive occurrence, while the gadget drawn at r2 represents a negative occurrence.
The switch edge is placed in the middle such that both gadgets can be drawn with a
height of 3. Consider the distance d1: Clearly, d1 ≥ 3 · d(r2) must hold. However, as
stated above, we assume that a variable gadget is never large enough for five vertices to
be laid out horizontally next to each other inside it, i.e. ∀r : dtotal < 6 · d(r). From this
follows d2 < 3 · d(r2) and thus d2 < d1. However, this means that d3 > d4 must also hold.
Since d4 > 3 · d(r1) is clearly required, that would result in d3 + d4 > 6 · d(r1), which may
not be as per our assumption.

Thus, if our assumption holds, only a drawing as illustrated in Figure 4.17b is possible:
One of either positive or negative occurrences must be drawn with at least height 4.

We now demonstrate the clause gadget. It is simply a frame of minimum height 13 (enforced
by stacking vertices on its left and right borders), and containing three occurrence gadgets,
as depicted in Figure 4.18. Now, if at most two of the occurrence gadgets have to be laid
out using a height of 4, the clause gadget can still be drawn with height 13. If, however,
all three occurrence gadgets need height 4 to be drawn, then the clause gadget needs at
least height 14 to be drawn.

4.4.3. Conclusion

We now show how to combine the gadgets and how to do so in a way that enforces the
assumption made above, namely that inside every variable gadget, there is never enough
space to lay out five vertices horizontally next to each other. Figure 4.19 shows the complete
graph resulting from a 3-SAT instance with three variables and two clauses. The insides
of the occurrence gadgets are not shown for clarity reasons. We are now interested in the
minimum width and height needed to draw this graph. We first consider the level indicated

8Keep in mind that while the gadget might have the same width at every radius, the minimum distance
between two vertices decreases with increasing radius.
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(a) A situation that cannot arise: A variable
gadget is laid out in such a way that both a
positive and a negative occurrence gadget
can intersect with it without requiring an
additional row

(b) A valid layout of a variable gadget with two
contrary occurrences

Figure 4.17.: An impossible and a possible drawing of a variable gadget with two contrary
occurrences

Figure 4.18.: The Clause Gadget containing three Occurrence Gadgets
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by the red arrow in Figure 4.19, where the variable gadgets are all connected to each other
and are forced to a minimum width of six vertices. As can be seen, on the left and right
side of the frame, there are three vertices in this level that do not belong to a variable
gadget, indicated by wfixed. The number of vertices in the middle, wdyn is 6n.

Ignoring the additional brown vertices for now, assume that this level is drawn with
radius rbase. Then, for all vertices to be embeddable, it must hold:

(wdyn + 2wfixed − 1)d(rbase) ≤ 2π

⇔ (4n+ 5) c

rbase
≤ 2π

⇔ (4n+ 5)c
2π ≤ rbase (4.1)

Unsurprisingly, a larger number of vertices causes a larger rbase to be needed to uphold the
minimum distance constraint. Thus, by adding wadd additional vertices to that level (the
brown vertices in Figure 4.19), we can enforce an even larger rbase:

(4n+ 5 + wadd)c
2π ≤ rbase (4.2)

We now take a look at the minimum height needed to draw the frame. As can be seen in
Figure 4.19, at the top and bottom, there are two rows each independent of the clause
gadgets. The two rows needed to draw these make up the height hfixed. Then, we assume
that every clause gadget can be drawn with its minimum height of 13, as shown above. Thus,
for the height hdyn holds: hdyn = 13m, and the total height is thus 2hfixed+hdyn = 13m+4.

We now must make sure what we assumed above: That the horizontal space inside a
variable gadget is never large enough for five vertices to be embedded next to each other.
We first make sure that in every valid solution, the bottom of the frame must really be
embedded at radius rbase (and not with larger radius) by setting:

K = rbase + 2hfixed + hdyn (4.3)

Here, rbase is the minimum value satisfying inequation 4.2. We now know that at the
bottom of the frame, every variable gadget has exactly enough room for four vertices to
be placed horizontally next to each other. Consider Figure 4.20: The width of a variable
gadget is thus:

w = 5d(rbase) = 5c
rbase

We must thus make sure that at any r2 still overlapping with the frame (thus r2 ≤ K for
any valid solution), it holds that w < 6d(r2). Thus:

w < 6d(r2)

⇔ w <
6c
r2

⇔ 5c
rbase

<
6c
r2

⇔ 5
6r2 < rbase (4.4)
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Figure 4.19.: The complete assembled graph with three variables and two clauses. Insides
of the occurrence gadgets are not shown. Occurrence gadgets are marked
magenta, clause gadgets orange. The brown vertices are added to achieve a
certain minimum width.

But since we know that r2 < K must hold in a valid solution, we can give another lower
bound for rbase:

5
6K < rbase

⇔ 5
6(rbase + 2hfixed + hdyn) < rbase

⇔ 5(2hfixed + hdyn) < rbase

⇔ 65m+ 20 < rbase (4.5)

Inequation 4.5 gives us the minimum rbase for which the assumption holds. As we have
shown above, we can use the wadd additional vertices illustrated in Figure 4.19 to force rbase
to become arbitrarily large. We can thus construct G such that the assumption holds.

Finally, we have to formally show how a valid instance of 3-SAT is being mapped to a
valid Dynamic Distance Orthogonal Area Compaction instance, and vice versa.
We also have to show that the transformation can be done in polynomial time.

3-SAT → Dynamic Distance Orthogonal Area Compaction

Given a valid 3-SAT instance, it is always possible to draw the graph G (and its associated
orthogonal representation) constructed above ortho-radially with maximum radius K:
Given a satisfying assignment of the variables xi, draw the switch edge inside every variable
gadget as far to the left as possible if the respective variable is assigned true, and as far
to the right as possible if the variable is assigned false. Since we assume a valid 3-SAT
instance, every clause gadget now must contain at least one occurrence gadget that is
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Figure 4.20.: Calculating the width of a variable gadget

satisfied and can be drawn with height 3, as shown in Section 4.4.2. The other two
occurrence gadgets may need a height of 4, but then, every clause gadget can still be
drawn with height 13. Since K was defined such that the height of the frame is exactly the
constant height plus 13m, a drawing of maximum height K can be achieved.

Dynamic Distance Orthogonal Area Compaction → 3-SAT

Given is a valid drawing of G (and its associated orthogonal representation) with maximum
radius K. Then, by the definition of K, every clause gadget can have a maximum height
of 13. To achieve this, at least one occurrence gadget per clause gadget must have maximum
height 3. For any variable not intersecting9 with any occurrence gadget, the assignment of a
truth value does not matter, since it is not part of any clause, thus we assign true. For any
variable gadget that intersects only with occurrence gadgets that are drawn with a height
of more than 3, assign true arbitrarily. For any variable gadget intersecting with at least
one occurrence gadget that is drawn with height 3, assign the truth value represented by
that occurrence gadget. Now, every clause is satisfied, since at least one of its literals was
represented by a occurrence gadget of height 3, and the respective variable was assigned
the truth value needed to draw that occurrence gadget with height 3, which is the truth
value also satisfying the literal of the clause.

Time Complexity of the Transformation

First, the number of vertices and edges required to form the cage is a constant plus the
number of vertices required for wadd as illustrated in Figure 4.19. By inequations 4.4 and
4.5, that number is limited by a polynomial. The vertices and edges required for a variable
gadget (without any clause or occurrence gadgets) are constant, so the total number of
vertices and edges required for all variable gadgets is linear in the number of variables. The
number of vertices and edges required to insert a clause gadget and its occurrence gadgets
is a constant plus the number of vertices necessary where the occurrence and clause gadgets
cross the variable gadgets. However, the number of vertices needed for a single crossing is
constant. Thus, the total number of vertices and edges required for all crossings is linear
in the product of the number of clauses and the number of variables. Finally, the structure
of every gadget and the composition of all gadgets is fixed and thus can be computed in
linear time. Therefore, the transformation can be computed in polynomial time.

Finally, from the proof of NP-hardness directly follows this corollary:

Corollary 4.11. Dynamic Distance Orthogonal Area Compaction is NP-hard in
the strong sense.

9Keep in mind the definition of intersect from Section 4.4.2: A variable gadget and an occurrence gadget
only intersect if the variable gadget represents the variable taking part in the occurrence.
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Proof. To show NP-hardness in the strong sense, it is sufficient to show that during the
transformation from 3-SAT, all numbers in the created Dynamic Distance Orthogonal
Area Compaction instance are bounded by some polynomial. The only number appearing
in an instance is K, which is determined in equation 4.3 as K = rbase + 2hfixed + hdyn.
Certainly, hdyn and hfixed are bounded by the number of vertices, which is polynomial.
The minimum value we can use for rbase is determined in inequation 4.5, which is also
polynomial in the size of the input instance. Thus, all numbers in the transformed instance
are polynomially bounded, and Dynamic Distance Orthogonal Area Compaction
is NP-hard in the strong sense.

4.5. NP-hardness of Degree Limitation
Since real metro networks have stations that are directly connected to more than four other
stations, resulting in a vertex with a degree of more than four, and since an orthogonal (or
ortho-radial) layout can never have a vertex of degree more than four, we need a way to
handle these stations. Here, we present some plausible rules for doing this, and show that
the problem of finding a solution that adheres to these rules and results in a drawing with
a minimum number of bends is NP-hard and even APX -hard.

4.5.1. Overview

Generally, the problem of having vertices with a degree of more than four can only be solved
by removing edges from these vertices, as already discussed in Section 4.1.3. However,
since edges are used to represent metro lines, we may not just omit them. We must
therefore move these edges to other, possibly new, vertices. Consider the example in
Figure 4.21a, where v has degree 5, and we want to rehang e away from v. Figure 4.21b
depicts the situation after e was rehung to the existing vertex u′. Now, every vertex has at
most degree 4. However, any metro line running from v to u must now be routed via u′,
resulting in a drawing that suggests that these metro lines run from v via u′ to u, instead of
running from v to u directly. Thus, moving edges to an existing vertex results in drawings
misrepresenting the metro network we want to draw. Now, consider Figure 4.21c, where
the edge was moved to a new vertex inserted into the edge (v, u′). Now, the metro lines
running from v to u can be routed without touching any other vertices representing stations.
Therefore, we only allow this method of moving edges. We formalize this in the following
rule:

Definition 4.12 (Edge-Moving Rule). Given a graph G = (V,E), a vertex v of at least
degree 5, an edge e = (v, u) incident to v and an orientation, which is either clockwise or
counterclockwise, the Edge-Moving Rule is:
Let e′ = (v, u′) be the edge that is clockwise (respectively counterclockwise, depending on
the selected orientation) of e at v, add a new vertex v′ to G. Then, replace e′ with the
edges (v, v′) and (v′, u′). Finally, replace e with the edge (v′, u).

The process of transforming G into a graph where all vertices have degree 4 or less then
consists of repeatedly selecting a vertex of degree 5 or more, selecting an edge incident to
this vertex, selecting an orientation and finally applying the rule laid out above.

We add one more detail: Additionally to the graph, the overall process takes as input a
function b : V → {X | X ∈ P(E) ∧ |X| ≤ 4}, specifying for every vertex a list of at most
four edges (which must be incident to that vertex). The edges in b(v) are treated as not
being eligible for being moved away from v. This function can be used to model important
incidences, for example for edges carrying a lot of metro lines, and which should not be
removed from their vertices. For an example, consider the map excerpt in Figure 4.22,
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(a) Example of a vertex of de-
gree 5, with an edge that
should be removed

(b) Example of moving an edge
to an existing vertex

(c) Example of moving an edge
to a new vertex

Figure 4.21.: Two possibilities to lower the degree of v.

taken from a metro map of the London Subway. The station King’s Cross St. Pancras has a
total of seven adjacent stations: Euston, Euston Square, Russell Square, Farringdon, Angel,
Highbury & Islington and Caledonian Road. However, these adjacencies carry different
numbers of metro lines each: While there are three lines running to Euston Square and
Farringdon, there are only two lines running to Euston, and only one line to all other
adjacent stations. Now, if the adjacency between Kings’s Cross St. Pancras and Euston
Square was to be moved away from King’s Cross St. Pancras, and was to be moved in
clockwise order, a new vertex would be inserted into the edge between King’s Cross St.
Pancras and Euston, and a total of five metro lines would be routed over this edge, then
to be split up before being routed to Euston and Euston Square, respectively. This could
lead to an impaired readability of the metro map at the point where that many metro
lines split. Thus, it probably would be preferable to have edges carrying only one metro
line moved away from King’s cross St. Pancras. To achieve this, the edges between King’s
Cross St. Pancras and Euston respectively Euston Square could be added to b(v) (with v
being the vertex representing King’s cross St. Pancras).

While limiting the graph to a degree of 4, we want to minimize the number of bends in a
bend-optimal drawing of the resulting graph. We formalize the problem as follows:

Definition 4.13 (Maxdegree-4). Given a graph G = (V,E), a function
b : V → {X | X ∈ P(E) ∧ |X| ≤ 4}, and an integer K, is it possible to transform G into G′
such that every vertex in G′ has at most degree 4, the number of bends in a bend-minimal
orthogonal drawing of G′ is at most K, by doing the following repeatedly:

1. Select a vertex v of degree at least 5

2. Select an edge e incident to v, such that e 6∈ b(v)

3. Select a direction, either clockwise or counterclockwise

4. Apply the rule from Definition 4.12

The operations left unspecified by this approach are how to select the next vertex, how
to select an edge for removal, and how to select whether to move that edge clockwise or
counterclockwise.

We now show that making these choices such that the minimum number of bends in an
orthogonal layout of the resulting graph is minimized is NP-hard. We do so by reducing
from Planar 3-SAT:

46



4.5. NP-hardness of Degree Limitation

Figure 4.22.: Excerpt from a hexalinear metro map of London’s metro by Maxwell J.
Roberts. The station King’s Cross St. Pancras has may adjacent stations.

Figure 4.23.: Example drawing of a Planar 3-SAT instance

Figure 4.24.: Different possible bends of paths of length 3. The gadget allows possibilities
(a) and (b), and disallows e.g. (c) and all others.
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Definition 4.14 (Planar 3-SAT). Given are an instance consisting of a set U of variables
and a collection C of clauses over U such that each clause c ∈ C has |c| = 3, where the
following graph G = (V,E) is planar:

• In V , there is a vertex for every clause c ∈ C

• In V , there are two vertices xi and xi for every variable xi ∈ U

• If the positive literal of xi appears in clause cj, then {xi, cj} ∈ E

• If the negative literal of xi appears in clause cj, then {xi, cj} ∈ E

• For every variable xi, the two representative vertices are connected: {xi, xi} ∈ E

• Every vertex representing a negative literal is connected to the vertex representing the
positive literal of the next variable: {xi, xi+1} ∈ E

Is there a satisfying truth assignment for C?

This problem states that a form of 3-SAT remains NP-hard, in which a planar graph, and
in fact even a drawing of a planar graph as illustrated in Figure 4.23, can be derived from a
problem instance in the following way: The two possible literals of all variables x1, x2, . . . xn
become vertices and are drawn as boxes of fixed height. These boxes are all aligned vertically
and connected into a path (see the turquoise path in Figure 4.23). The clauses C1, C2, . . . Cm
also become vertices and are drawn as boxes above or below the row of variables. Clauses
then connect to the variables that appear in them via a vertical line segment. Note that
this also means that every clause-box connects to all of its variable-boxes either only from
above or only from below.

This problem was shown to be NP-hard by Lichtenstein [Lic82] in its basic form, where
only one vertex represents each variable. The form used here, where every variable is
represented by two vertices, one per literal, and where the variable-representing vertices
form a connected backbone (see the turquoise edges in Figure 4.23), was shown to be still
NP-hard by de Berg and Khosravi [dBK10].

Big Picture

To prove NP-hardness in our case, we transform a Planar 3-SAT instance into a
Maxdegree-4 instance by constructing a graph that can be laid out like the example in
Figure 4.23 without any edge-bends if and only if the Planar 3-SAT instance is satisfiable.
To this end, we introduce three gadgets: One for the variables, one for the clauses, and
one helper gadget that allows us to restrict the way that edges may bend at vertices.
Throughout the whole construction, it is important to keep in mind that we only consider
completely edge-bend-free drawings as valid (by setting K appropriately).

4.5.2. 0◦/180◦-Gadget

The first gadget forces a path of length 3 to have one of two possible configurations: either
the first and the last edge of that path have an angle of 0◦, or they have an angle of 180◦
between them (or, in terms of rotation: have either rotation 2 or rotation 0). Figure 4.24
illustrates this: While (a) and (b) represent the two permitted shapes of the path, (c) is an
example for something that the gadget prevents. The gadget is presented in Figure 4.25.
The function b for the vertices of this gadget is defined as follows:

b(v) =
{
{e3, e4, e5, e6} if v = v0
∅ otherwise
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Figure 4.25.: Gadget to enforce 0◦/180◦ angles

Figure 4.26.: A way in which e1 and e2 cannot be removed from v0. Only an excerpt from
the gadget is shown.

The gadget mainly consists of two paths, the black and the red paths, plus some green
path connecting to v0. The green path ends in two edges that must be removed from v0.
Note that all other edges incident to v0 cannot be moved away from v0 because of our
choice of b(v0). Also note the two purple edges connecting the rest of the gadget to the
path of length 3 (actually length 5, since it is subdivided by two purple vertices, shown
in blue) which should be forced into one of the two allowed configurations. The gadget
ensures that the only possible layouts, i.e. the only layouts that can be drawn without a
bend on an edge, are layouts in which both blue arrows point in the same direction, or
layouts in which both blue arrows point away from each other.

With the definition of b, e1 and e2 are the only edges that can be removed from v0, and
both edges must be removed to have maximum degree 4 at v0. Note that the red path
and the black path are incompatible in the sense that the face enclosed by the red and
black path (ignoring the green path for a moment) would not have rotation 4 in a drawing
without bent edges: Simple counting results in a rotation of 6. The broad idea is now
that e1 and e2 can be moved clockwise or counterclockwise, thereby inserting two new
vertices into e3 or e4, and thus permitting two more bends (which are outward bends for
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Figure 4.27.: The gadget in the 0◦ layout

the face enclosed by the black and red path) on the black path without having to bend an
edge.

We now evaluate the effect of different orders and directions in which e1 and e2 are moved
away from v0. First, if e1 is selected first, and clockwise is selected as direction, then e1
would be moved to a vertex inserted into e2. However with this, only at most one additional
vertex can be inserted into the black path (by moving e2 later), which is not enough to
facilitate a drawing without an edge-bend. The same situation arises if e2 is selected first
together with the direction counterclockwise. Thus, these choices never lead to the desired
edge-bend-free drawing.

Now, if e1 is moved counterclockwise and e2 is moved clockwise (regardless of the order),
the situation depicted in Figure 4.26 arises: Edges e1 and e2 can now have at most a 90◦
angle between them (if no edge is to be bent), which is not sufficient to draw the green
path without an edge-bend.

Thus, the only two possible ways of removing e1 and e2 from v0, that can possibly lead to
a drawing without any bent edges are:

Case 1 First move e1 counterclockwise, then move e2 counterclockwise

Case 2 First move e2 clockwise, then move e1 clockwise

It is now important to note that the blue path consisting of el, em and er is forced to be
parallel to e4 by the purple parts of the graph (again under the assumption that no edge is
to be bent). Thus, we must now evaluate how the edge e4 (and maybe a subdivision of e4)
can be shaped in a layout without edge-bends.

Case 1 leads to the situation drawn in Figure 4.27: Here, e1 and e2 introduce new possible
bends in e3, i.e. not on e4. Note how both blue arrows still point away from each other,
since e4 is straight and the blue path must be parallel to it.
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Figure 4.28.: The gadget in the 180◦ layout

(a) The gadget forcing some path to have
rotation 0

(b) The gadget forcing some path to have
rotation 2

Figure 4.29.: Illustrations of how to connect the gadget to the rest of the graph. Only the
blue path is shown in detail, all other parts of the gadget are hidden inside
the green box.

Case 2 leads to what is illustrated in Figure 4.28: Now, e1 and e2 introduce the two bends
in e4. Note that now, both blue arrows point in the same direction, again in accordance
with the requirement that the blue path must be parallel to the subdivision of e4.

When using this gadget in the construction of G, we usually hide its complexity and only
show the gadget as a box, with the blue path consisting of el, em and er sticking out of
the box; see Figure 4.29. Here, only the edges el and er are shown in detail, and it is
connected to some other part of the graph (again a path in this case), forcing it into one of
two possible configurations.

In these figures, note the additional turquoise arrow pointing out of the gadget. We call
this the anchor of the gadget. For use in the variable gadget, we must be able to connect
something to the bottom of this gadget, i.e. in the direction that the turquoise arrow
points, which is opposite direction of the direction that the blue arrows have when pointing
in the same direction. Unfortunately, the gadget itself has no element that reliably is
drawn in this way. We circumvent this problem by adding another path of length 3 (see
the turquoise part in Figure 4.30) that is forced to be parallel to the blue path. Here, the
anchor can be attached as illustrated in Figure 4.30.
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Figure 4.30.: Extension of the 0◦/180◦-gadget to have an anchor point that always points
down. Original gadget shown with gray background.

4.5.3. Variable and Clause Gadgets
We now show how we represent variables and clauses in our transformed graphs. The
gadgets used for variables are depicted in Figure 4.31, where the layout in Figure 4.31a is
interpreted as a variable assigned with true, and the layout in Figure 4.31b represents false.
In the center of the gadget is a 0◦/180◦-gadget hidden in a box that forces the variable
gadget into one of these two configurations. The turquoise lines indicate how the variable
gadgets are connected to each other: Since we can line them up horizontally (as shown
in [dBK10])), we link them into one long line using their anchors. We also define horizontal
to be the direction of that line.

Please note that although we could, we do not split the variable gadgets into one gadget
for the positive and one gadget for the negative literal of each variable. Rather, every
variable gadgets has four separate areas where clause gadgets may connect: Two for clauses
using the positive literal of the variable, and two for clauses using the negative literal of
the variable. The dashed arrows illustrate how the clause gadgets connect to the variable
gadgets. Similar to the drawing in Figure 4.23, our clause gadgets explained below have
three legs connecting to the respective variable gadgets. Each of the legs represents an
occurrence of a variable in a clause, which can either be positive or negative. In Figure 4.31,
we colored the legs representing negative occurrences (called negative legs) and the points
where they connect to the variable gadget in red. Positive legs are colored green. Note how
in both possible layouts, either only negative legs or only positive legs connect vertically to
the gadget, while the other set of legs must connect horizontally.

The clause gadget follows the idea of drawing a Planar 3-SAT instance as illustrated in
Figure 4.23. An example can be seen in Figure 4.32: Here, vc has degree 6 and must have
two edges removed. We also specify b for this gadget:

f(v) =
{
{el, em, er, ea} if v = vc
∅ otherwise

The algorithm can thus only move e1 and e2 away from vc. The edges drawn as arrows
in Figure 4.32 are used to connect the gadget to other parts of the graph. While el, em
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(a) The gadget representing a variable, in a
configuration representing true.

(b) The gadget representing a variable, in a
configuration representing false.

Figure 4.31.: The gadget used to represent a variable, in its two possible configurations.
Dashed arrows indicate how the clause gadgets connect their legs. Red legs
represent negative usages of this variable, green legs positive usages. Dotted
edges indicate how the variable gadgets are chained. The green box hides
a 0◦/180◦-gadget.

Figure 4.32.: The clause gadget
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(a) Possible situation in the em leg can rotate
in both directions.

(b) Possible situation in which the em and
the er legs can rotate clockwise.

(c) Possible situation in which the em and
the el legs can rotate counterclockwise.

(d) Possible situation in which the el leg can
rotate counterclockwise and the er leg
can rotate clockwise.

Figure 4.33.: Illustrations of all four possible ways of moving e1 and e2 away from vc in
the clause gadget. The dotted arrows indicate in which directions the legs
can rotate.

and er are the connections to the three variable gadgets belonging to the corresponding
clause, ea is used to enforce a certain alignment of the clause gadgets. Later on, we show
that we can force ea to always be laid out vertically. If we now ignore e1 and e2 for a
moment, this would mean that el, er and em must also be laid out vertically if we allow
for no bends. Now, e1 and e2 can be moved to any two of e′l, em and e′r, thereby inserting
two new vertices in at most two of e′l, em and e′r. We call em, er together with e′r, and el
together with e′l the three legs of this gadget.

As illustrated in Figure 4.33, every one of the four possibilities of moving e1 and e2 results
in a situation where up to two of the legs can (but do not have to) rotate by 90◦, but
never all three of them. Together with the fact that we assume ea to always point down,
this means that one leg always has to point up. We now show how to connect the clause
and the variable gadgets. As depicted in Figure 4.23, the clauses can be partitioned in
a set being drawn above the variables and a set being drawn below the variables, called
the upper respective lower set. For the lower set, we use the clause gadget as illustrated
in Figure 4.32, for the upper set we use a vertically mirrored version of it, i.e. with ea
pointing up instead of down.

Assuming that ea is laid out vertically, this results in at least one leg having to connect
to the variable gadget vertically. Together with the fact that at the variable gadget, only
positive legs can connect vertically if the variable gadget is laid out in the configuration
representing true, and only negative legs can connect vertically if the variable gadget is
laid out representing false, this leg forced to connect vertically represents a satisfied literal
in the respective clause.

54



4.5. NP-hardness of Degree Limitation

Figure 4.34.: Modification to the clause gadget to facilitate connection to the variables.

We need to make two more modifications to the clause gadget. First, when the el or er
leg are rotated outwards, they have no way anymore of reaching toward the middle of the
drawing, where the variable gadgets are. We fix that by inserting a series of U-shaped
bends into the er leg, and a mirrored version into the el leg. You can see the modification
in Figure 4.34: The orange parts have been inserted. In er, the structure is not used. It
can easily be seen that this structure does not change the possible orientations of the legs.
In el, the structure is used to move the el leg towards the middle of the drawing.

The second modification makes sure that any leg that is able to rotate can rotate in such
a way that it is able to connect bend-free to its variable gadget. If a leg represents a
satisfied literal in a clause, it stays vertical and connects vertically to the variable gadget. If,
however, a leg represents an unsatisfied literal, it rotates by 90◦ and connects horizontally.
The problem here is that the direction in which the leg points does not have to match the
direction required for connecting to the variable gadget. For example, an er leg can only
rotate clockwise, and thus point right, while an el leg can only rotate counterclockwise and
point left. For em it even depends on which of e1 and e2 were moved to em. We thus must
make sure that if a leg was rotated, it is able to point in both of the horizontal directions.
Here, we use the 0◦/180◦-gadget shown in Section 4.5.2. With this, we can change a leg that
points right to a leg pointing left. Figure 4.35 illustrates this situation: One 0◦/180◦-gadget
has been inserted into em and er each. In this case, er demonstrates how it is now possible
to point er left without any bends although it was rotated clockwise. At em it can be seen
that, since neither e1 nor e2 was moved to em, even with the inserted 0◦/180◦-gadget, the
leg can still only be directed vertically.

4.5.4. Anchoring the Clause Gadgets

So far, we always assumed that we can fix the ea edge of the clause gadgets to point down
(or up, in the case of the upper set). We now show how this is achieved. In a planar
layout of a Planar 3-SAT instance as depicted in Figure 4.23, the clauses are nested:
Some clauses, like C2 in the example, are drawn in between two legs of another clause.
We now first show how to anchor a clause gadget under the assumption that we can find
some edges e′a1 and e′a2 definitely pointing down between the el and the em leg as well
as between the em and the er leg. Figure 4.36a illustrates this situation: The blue parts
are the anchors we have assumed. To them, e1 and e2 are attached such that they must
always be laid out vertically. We must now show that this does not interfere with the way
that the clause gadget should be laid out. Refer back to Figure 4.33, showing all possible
distributions of e1 and e2. With both e1 and e2 pointing up, the situation illustrated in
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Figure 4.35.: Using the 0◦/180◦-gadget to enable a clause gadget to point all legs left if
they can rotate at all. The 0◦/180◦-gadget itself is hidden in the green box.
Refer to Section 4.5.2 for details on that gadget.

Figure 4.33a is clearly not possible anymore. Also, in the situations depicted in Figure 4.33c
and Figure 4.33b, the bend on em is not optional anymore.

This is not a problem. We only need a valid layout for every set of up to two rotated
legs. If no leg should rotate, if one of er and el or if both er and el should be rotated, the
situation in Figure 4.33d yields a valid layout with both e1 and e2 pointing up. In case
only em should be rotated, the situation in Figure 4.33b yields a valid result with e1 and e2
pointing up. If em should be rotated together with el respectively er, the situations in
Figure 4.33c respectively Figure 4.33b yield valid layouts and have e1 and e2 pointing up.
Thus, for every necessary case, we can still find a valid layout.

We now show how connecting e1 and e2 to the anchors forces ea to point down: Assume
that ea points right. We still assume both anchors e′a1 and e′a2 to point down. Since e1
must be pointing toward e′a1, the clockwise angle between e1 and ea must now be 90◦. But
at the same time, there are at least em and er clockwise between e1 and ea at vc. Thus, this
could not be embedded without bends. The case that ea points left follows from symmetry.

It remains to be shown that we can always find the anchors e′a1 and e′a2. For any clause
gadget that has no further clause gadgets nested in it, we can run an edge down to the
string of horizontally connected variable gadgets. This gives us two anchors that always
point down. If a clause gadget has further clause gadgets nested between its legs, the ea
edges of these nested gadgets can be used recursively.

4.5.5. Conclusion

To conclude the proof, we must finally show that the transformation is polynomial, and that
the resulting Maxdegree-4 instance is an accepted yes-instance if and only if the original
Planar 3-SAT instance was a yes-instance. It is easy to show that the transformation is
polynomial: The clause and 0◦/180◦ gadgets each have a constant number of vertices and
edges. The variable gadget has a number of edges and vertices that is linear in the number
of clauses, which is polynomial. Certainly, the number of gadgets used is polynomial in
the number of variables respectively clauses in the Planar 3-SAT instance. Thus, the
graph in total contains a number of edges and vertices that is polynomial in the size of the
Planar 3-SAT instance. Also, all gadgets can be constructed in constant time once a
planar embedding is computed on the Planar 3-SAT instance, which is also polynomial.
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(a) Anchoring a clause based on two an-
chors. The blue parts are the two anchors
assumed to always point down. They
have e1 and e2 attached to them such
that they must always be vertical.

(b) Layout made impossible by anchoring e1
and e2.

Figure 4.36.: Illustrations for anchoring the clause gadget

If a planar layout without bends is possible, we can look at every variable gadget and
assign the truth value it represents (cf. Section 4.5.3). Then, in the layout, every clause
gadget must have one leg vertically connecting to a variable gadget. However, as we have
shown, a leg can only connect vertically to a variable gadget if the literal that the leg
represents is satisfied. Thus, the inferred solution to the Planar 3-SAT instance is valid.
On the other hand, if the Planar 3-SAT instance has a solution satisfying all clauses,
we can find a bend-free layout by laying out the variable gadgets according to the truth
assignments of the Planar 3-SAT instance. Then, every clause gadget can connect at
least one leg vertically, while its other two legs may connect horizontally to the variable
gadgets, as shown.

In conclusion, we have shown the following theorem:

Theorem 4.15. NP-hardness of Maxdegree-4
The Maxdegree-4 problem is NP-hard.

From here, it as also easy to show this corollary:

Corollary 4.16. APX -hardness of Maxdegree-4
The Maxdegree-4 problem is APX -hard.

Proof. Assume there is an approximation algorithm for Maxdegree-4 with approximation
factor α. Transform any Planar 3-SAT instance into a Maxdegree-4 instance as
described above. If the Maxdegree-4 instance is solvable for K = 0 edge-bends, the
approximation algorithm must find a solution with αK = 0 edge-bends with polynomial
time complexity. From this, we could again derive a solution to the original Planar
3-SAT instance as shown above. Thus, no polynomial-time approximation algorithm can
exist under the assumption P 6= NP.

4.6. Implementation and Experimental Evaluation
We implemented and practically evaluated the approach discussed in Section 4. We first
describe the implementation and the input datasets in Section 4.6.1. We then present the
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City Vertices Edges Metro Lines Maximum Degree

Montréal 68 69 4 5
London 209 236 11 7
Berlin 331 380 26 7

Table 4.1.: Properties of the instances used in the experimental evaluation

experimental setup and the metrics we wanted to explore in Section 4.6.2. In Section 4.6.3
we then discuss the measured results. That section is further subdivided into Section 4.6.3.1,
which examines the parameters that take effect during the Shape step of the framework,
and Section 4.6.3.2, examining the parameters that influence the Metrics step. We conclude
the experimental evaluation with a subjective assessment of our results in Section 4.6.4.

4.6.1. Implementation and Data

Since precise performance measurements were not among the chief objectives of our
experiments, Python was chosen as development language.

The software roughly works in four steps: First, data is read, parsed and preprocessed.
In the second step, we perform Tamassia’s Shape step by computing the modified flow
network described in Section 4.2. In the third step, we compute actual positions for vertices,
thereby executing Tamassia’s Metrics step. For this, we use the simulated-annealing-based
technique described in Section 4.3. We use a cooling schedule with quadratic cooling and a
pre-set number of annealing steps (see parameters below).

All experiments were computed on machines with 48 2.1 GHz AMD Opteron CPU cores
and 256 GB of RAM. However, since our implementation does not use parallelism, we
usually computed 48 instances in parallel on these machines.

As input, the software processes transportation data supplied in General Transit Feed
Specification (GTFS) format. This format, originally developed by Google, has become
somewhat of a standard since it allows transport agencies to supply information about
their networks to Google Maps. In fact, there even exist sites collecting large amounts of
these GTFS datasets. Unfortunately, most of these datasets require customized filtering
and preprocessing to be usable. For example, many datasets do not just include one type
of transportation, e.g. a metro transportation network, but include under- and overground
railways of different types, buses, etc. Also, since the purpose of these datasets usually
is to allow public-transportation routing, many maps have quirks that must be handled.
For example, in the official Berlin dataset, many subway stations are modeled not as one
station, but as a collection of stations with differing names, positions, and connections.

We cleaned up the datasets of Berlin, London and Montréal to the extent that they became
usable for our purposes. While Montréal is a rather small instance, Berlin and London
both have large and complex metro networks. Table 4.1 lists the size of the graphs derived
from the metro networks before any planarization or degree limitation was done, as well as
the number of actual metro lines the respective metro network has.

4.6.2. Experimental Setup

The framework we implemented has a number of parameters, mostly balancing different
optimization criteria against each other. The procedure of our experiments is as follows:
Depending on what we were interested in examining, we first decided on a parameter space
to explore, i.e. a set of values for every parameter. Then, for every possible combination of
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these values, multiple instances were computed, i.e. multiple drawings were produced. We
then determined the values that our metrics assumed for these instances.

We now briefly describe the parameters as well as the metrics used in our evaluation.

Parameters ωbends, ωline, and ωstation

As defined in Definition 2.4 and described in Section 4.2, these parameters control the costs
incurred to the flow network used for computing the shape. Here, ωbends specifies the costs
of an edge-bend, ωline represents the costs of a metro line bending on an edge, and ωstation
gives the costs of a metro line bending at a station.

Parameters ωarea and ωdist

During the final compaction step, we use a metaheuristic that treats the problem as a
black box. We can therefore try to optimize multiple criteria during this step. In our case,
we use the simulated annealing process to minimize the maximum height of the drawing
(which is the only factor determining the used area in a circular drawing) as well as the
standard deviation of the distances between neighboring metro stations. To do so, ωarea is
the weight (i.e. priority) of minimizing the height, while ωdist is the weight of the standard
deviation of the distances between neighboring stations.

Parameters #anneal and reaugment-percentage

As explained in Section 3.2 and Section 4.3, simulated annealing is an iterative process,
which in every iteration generates a solution similar to the last solution. To achieve this in
practice, we need to specify how many of these iterations we compute. We call this number
#anneal. In Section 4.3, we describe that producing a similar solution is done by removing
some edges and vertices used for augmentation and then augmenting the graph again. The
parameter reaugment-percentage specifies what fraction of G’s faces are unaugmented.

Please note that the parameters ωbends, ωline, and ωstation are rather independent from
the parameters ωarea, ωdist, #anneal, and reaugment-percentage, since the two groups take
effect during two separate steps of the framework. We do evaluate their interplay, but
primarily focus on evaluating the results when varying the parameters within one of those
two groups.

Metrics

The metrics we measured are closely connected to quality criteria from Section 2.2 and
thus the objective function from Definition 2.4. Our metrics are:

height The maximum radius used in the final circular drawing. Note that in a circular
drawing, the maximum radius alone determines the area usage. This corresponds
to (O1).

edge-bends The number of times that an edge bends in the drawing. This corresponds
to (O2).

line-bends The sum of all edge-bends weighted by the number of metro lines running on
the edge of the respective edge-bend. This corresponds to (O2a).

station-bends The number of times that a metro line bends at a metro station. This
corresponds to (O3).

standard deviation of station distance Given the distances between all pairs of ver-
tices that have an edge between them, we compute the standard deviation of this set.
This corresponds to (O4).
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4. Topology-Shape-Metrics in the Plane

Parameter Name Values # of measurements per value
City Berlin, London 9000
ωstation 0.0, 1.0, 3.0, 5.0, 10.0 3600
ωedge 1.0 18000
ωline 0.0, 1.0, 5.0 6000
ωheight 1500, 2000, 2500 6000
ωdist 100, 300 9000
#anneal 0, 10, 100, 1000, 5000 3600
reaugment-percentage 0.03, 0.02 9000

Table 4.2.: Parameter Space of Dataset 1. The first column specifies the parameter, the
second column lists the values tried for that parameter. The third column
indicates how many measurements were taken for every value of the parameter
in this row.

Normalization

In our experimental runs, we varied all of the parameters, and, for every combination of
parameters, computed multiple instances. When evaluating the effect of one parameter
on one metric, it is desirable to eliminate the effects that the other parameters have on
the metric. As an example, assume for the moment that we had just two parameters:
#anneal and the city of the dataset we are using. We want to evaluate the height of the
final drawing. Now, since Montréal is far smaller than London and Berlin, and London
is somewhat smaller than Berlin (in terms of the metro network’s size), it is highly likely
that the drawings of Montréal are smaller than the drawings of London or Berlin, and
the drawing of London is smaller than the drawing of Berlin - regardless of the value of
#anneal. Thus, our measurements would always form three separate clusters, which would
distort our statistics.

Therefore, we normalize the data in the following way: When evaluating the effect of a
parameter on a metric, we take the set of all parameters minus the parameter we are
evaluating. For these parameters, we take every possible combination of values. For every
such combination, we get a set of measurements for the metric under consideration. Within
this set of measurements, we determine the median value and divide all other values in the
set by the median.

4.6.3. Results

The first dataset we present constitutes an overall evaluation of the parameter space.
Table 4.2 lists the values we tried for each of the parameters. We conducted preliminary
experiments to narrow down the range of interesting values per parameter. For each possible
configuration, ten instances were computed, resulting in a total of 18000 measurements.
Note that since Montréal has a very simple metro network, it did not turn out to be useful
for this exploratory type of experiment.

Please also note that the two parameter groups ωstation, ωedge, ωline, and ωheight, ωdist,
#anneal, reaugment-percentage take effect in two separate steps of the framework. The fact
that the parameters ωheight and ωdist are far larger than the other weighting factors does
thus not influence the results of the Shape metrics. The rather large values are technically
motivated, since the simulated annealing algorithm needs some scaling to its objective
function.

We first look at the parameters taking effect during the Shape phase, and then look at the
parameters which influence the Metrics phase.
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4.6. Implementation and Experimental Evaluation

4.6.3.1. Parameters influencing Shape

We first take a look at the effect of the parameters concerned with edge- and line-bends.
We start by examining the effects of the ωline parameter. Figure 4.37 shows a box-whisker
plot of the ωline parameter value against the normalized number of lines bending on edges,
while Table 4.3 displays the actual values. We can see that by raising ωline from 0.0
to 5.0 we can reduce the normalized number of lines bending on edges by a factor of
about 2. We performed a Wilcoxon Signed-Rank Test on the data to determine whether the
measurements were pairwise significantly different for different values of ωline. Table A.6 in
the appendix lists the p-values of this experiment. Applying the standard significance level
of 0.05, we may assume that all measurements were pairwise significantly different.

Figure 4.37.: Evaluation of ωline’s influence on
the number of lines bending on edges

No. of line-bends on edges

ωstation Average Median Std. Dev.

0.0 1.43 1.19 0.569
1.0 0.999 1 0.0911
5.0 0.687 0.8 0.309

Table 4.3.: Evaluation of ωline’s influence
on the number of lines bending on edges

To further evaluate which values are reasonable for ωline, we computed another set of
experiments, this time only varying the ωline parameter. The exact set of parameters used
can be found in Table A.1 in the appendix. Table 4.5a shows values for an induced metric:
For every instance, we subtract the number of edge-bends from the number of line-bends.
Note that a value of 0 implies that every edge-bend happens on an edge carrying only one
metro line. As we can see, for a value of ωline = 5.0, the maximum difference is already 0,
implying that across all 1000 computed instances with ωline = 5.0, no edge-bend happened
on any edge carrying more than one metro line. Thus, we assume that (at least for the
metro networks under consideration), setting ωline to a value larger than 5.0 is not useful.

Next, we examine whether ωstation is similarly successful in reducing the number of metro
lines bending at stations. As before, Figure 4.38 is a box-whisker plot of the normalized
number of lines bending at stations against the value of ωstation. Table 4.4 lists the
actual values. We can see that, without any incentive to avoid lines bending at stations
(i.e. ωstation = 0), the normalized number of lines doing so is about two times higher than it
is even for ωstation = 1.0. However, by raising ωstation to 10.0, we can reduce the normalized
number of lines bending at a station by another factor of about 1.4.
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4. Topology-Shape-Metrics in the Plane

Figure 4.38.: Evaluation of ωstation’s influence
on the number of lines bending at stations

No. of line-bends at stations

ωstation Average Median Std. Dev.

0.0 2.27 2.09 0.456
1.0 1.15 1.11 0.129
3.0 0.99 0.995 0.0253
5.0 0.975 0.981 0.0244
10.0 0.91 0.973 0.11

Table 4.4.: Evaluation of ωstation’s influ-
ence on the number of lines bending at
stations

Line-Edge-Bend Difference

ωline Average Maximum

0.0 5.49 12
1.0 1.34 6
2.0 1.3 5
3.0 0.048 1
4.0 0.024 1
5.0 0 0
7.5 0 0
10.0 0 0

(a) Listing the difference between the
number of line-bends and edge-
bends by value for ωline.

# Lines bent at Stations

ωstation Average Median Std.Dev.

0.0 2.42 2.41 0.0492
1.0 1.18 1.17 0.0297
5.0 1.11 1.1 0.0319
6.0 1 1 0.0357
7.0 0.814 0.817 0.023
8.0 0.816 0.817 0.0233
10.0 0.817 0.817 0.023

(b) Evaluation of ωstation’s influence on the number of
lines bending at stations under the condition ωline =
5.0

Table 4.5.: Evaluation of metro lines bending on edges

We again performed a Wilcoxon-Test on the data to determine whether the measurements
were pairwise significantly different. Table A.5 in the appendix lists the p-values of this
experiment. All pairwise p-values are below 10−50, thus we may assume pairwise statistically
significant differences.

However, since we determined a desired value of ωline = 5.0 above, we were especially
interested in how the number of lines bending at stations behaves if ωline is chosen as
desired. We computed an additional dataset for this case, the parameter space of which is
listed in Table A.2 in the appendix. Table 4.5b and Figure 4.40a present normalized number
of lines bending at stations for different choices of ωstation. We can see that ωstation = 7.0
seems to be the largest useful value of ωstation, since the number of lines bending at stations
does not fall further for larger values. In fact, for all consecutive pairs of values up to 7.0,
the Wilcoxon-Test reports significant difference, while it does not report that for any
consecutive pair of values larger than 7.0 (see Table A.8 in the appendix).

However, the value 7.0 is somewhat special insofar as that with the choice of ωline, the
flow network’s costs for bending a single edge with a single line on it are ωline + ωedge =
5.0 + 1.0 = 6.0. Thus, setting ωstation = 7.0 indicates that if a bend at a station can be
avoided by introducing a bend on an edge carrying a single line, it should be done so, while
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4.6. Implementation and Experimental Evaluation

Figure 4.39.: A complete drawing of the London Underground without any manual tuning.
Note that assigning colors to the metro lines such that contrast between
parallel-running lines is maximized is a problem that is not within the scope
of this thesis. Also, minimizing the number of times that metro lines running
along the same edges must cross is a separate problem. Thus, these criteria
are not optimized in this drawing.
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4. Topology-Shape-Metrics in the Plane

(a) The influence of ωstation on the number of
lines bending at stations with ωline = 5.0

(b) The influence of ωstation on the number of
lines bending on edges with ωline = 5.0

Figure 4.40.: Plots evaluating good values for ωstation

# Lines bent on Edges

ωstation Average Median Std.Dev.

0.0 0.412 0.389 0.0458
1.0 0.414 0.389 0.0465
5.0 0.562 0.556 0.0527
6.0 1.04 1 0.154
7.0 1.7 1.67 0.128
8.0 1.71 1.67 0.13
10.0 1.71 1.67 0.127

(a) Evaluation of ωstation’s influence on the
number of lines bending on edges under
the condition ωline = 5.0

Drawing Height

ωstation Average Median Std.Dev.

0.0 0.908 0.907 0.158
1.0 0.918 0.911 0.151
3.0 1.03 1.02 0.171
5.0 1.04 1.04 0.181
10.0 1.1 1.09 0.198

(b) Evaluation of ωstation’s influence on the
drawing height. Only instances with #an-
neal = 5000 are considered.

Table 4.6.

setting ωstation = 6.0 indicates that bends at stations and bends on single-line edges are
considered equally bad. Taking this into consideration, we had a look at how the number
of metro lines bending on edges in influenced by the choice of ωstation (again under the
assumption ωline = 5.0). Figure 4.40b and Table 4.6a show the results, indicating that the
number of lines bending on edges in fact rises again significantly when 6.0 or 7.0 is chosen
for ωstation. It is interesting to note that setting ωstation = 1.0 gets rid of about half of all
line-bends at stations without increasing the number of lines bending on edges.

We now first examine the interplay of ωstation and the compaction efforts, before looking
closer at the parameters influencing the annealing process. Interestingly, the effect described
in the following only appears in London’s metro map, not in Berlin’s drawings. We still
consider the effect to be disadvantageous enough to mention it here. Figure 4.41 shows the
normalized heights of the produced drawings with different values for ωstation, now again
from the first dataset as introduced in Table 4.2, but only considering the instances based
on the London Underground. While Figure 4.41a includes all measurements, Figure 4.41b
only considers those measurements where 5000 annealing steps were made. In Figure 4.41b,
the increase in height is clearly visible. Table 4.6b indicates that raising ωstation from 0.0
to 10.0 comes with a 12% increase in average normalized drawing height. The p-values
resulting from a Wilcoxon-Test can be seen in Table A.7. Clearly, the increase in height
when increasing ωstation is significant.
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Drawing Height

#anneal Average Median Std.Dev.

0 1.23 1.22 0.161
10 1.16 1.15 0.153
100 0.998 0.996 0.133
1000 0.859 0.857 0.128
5000 0.815 0.808 0.128

(a) #anneal’s influence on the drawing height

Station-Distance Std.Dev.

#anneal Average Median Std.Dev.

0 1.97 1.93 0.43
10 1.64 1.61 0.358
100 1.02 0.999 0.198
1000 0.689 0.675 0.13
5000 0.621 0.611 0.12

(b) #anneal’s influence on the standard de-
viation of distances between neighboring
stations

Table 4.7.: Evaluation of #anneal

This effect is easily explained with two metro map drawings. Consider Figure 4.42a, which
shows a metro map drawing of Montréal. This drawing was created with ωstation = 0.0 (and
#anneal = 5000). Compare this drawing to the one in Figure 4.42b also showing Montréal,
but in a drawing generated with ωstation = 7.0. Clearly, in the latter drawing, sequences of
degree-two vertices are drawn in a straight path to avoid bending a metro line at a station.
However, by chance some of these sequences, namely the vertices on the red and the blue
lines, have been drawn on radial lines. Comparing this to the drawing in Figure 4.42a, it
stands out that the same lines tend to ‘coil up’ in the left part of the drawing. These radial
sequences as seen in Figure 4.42b tend to force larger radii when ωstation is larger than 0.
In fact, the maximum radius in Figure 4.42a is about 10% smaller than the maximum
radius in Figure 4.42b, resulting in a drawing with almost 20% less area usage.10 However,
following the recommendations by Maxwell Roberts [Rob12], we assume that a high number
of lines bending at stations is worse than a slightly increased area. Thus, we recommend
setting ωstation ≥ ωline + ωedge, in our case 7.0.

4.6.3.2. Parameters influencing Metrics

We now take a look at the effects of altering the parameters #anneal and reaugment-
percentage. The first, non-surprising result is that increasing #anneal, the number of steps
taken during the annealing process reduces the height and the station-distance deviation.
Figure 4.43a and Table 4.7a show the (normalized) measurements of the drawings’ heights by
different values for #anneal. Clearly, increasing the number of annealing steps is an effective
way of improving the drawing height. With 5000 annealing steps, the normalized height of
the drawings is reduced by more than 35% compared to drawings without any annealing.
A Wilcoxon-Test reports a p-value of less than 10−35 for each pair of measurements, so
all differences are statistically significant. A similar picture emerges for the influence of
#anneal on the standard deviation of distances between neighboring stations, as can be
seen in Figure 4.43b and Table 4.7b. Again, increasing the number of annealing steps
effectively reduces the standard deviation. In this case, the Wilcoxon-Test reports p-values
of less than 10−40 for every pair of measurements, thus we may assume significance in every
case.

We performed further experiments with 10000 and 20000 annealing steps. However, these
experiments did not yield statistically significant differences in terms of height minimization
or minimization of the standard deviation of distances between neighboring stations.

10Please note that because of scaling these proportions are not reflected by the depicted drawings.
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4. Topology-Shape-Metrics in the Plane

(a) Considering the full dataset (b) Considering only runs with 5000 annealing
steps

Figure 4.41.: Evaluation of ωstation’s influence on the height of the drawing. Only instances
based on the London dataset are considered here.

(a) A metro map of Montréal with
ωstation = 0.0

(b) A metro map of Montréal with
ωstation = 3.0

Figure 4.42.: Example of ωstation’s influence on the height of the drawing

(a) #anneal’s influence on the drawing height (b) #anneal’s influence on the standard deviation
of distances between neighboring stations

Figure 4.43.: Evaluation of #anneal
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Figure 4.44.: ωdist’s influence on the drawing
height

Drawing Height

ωdist Average Median Std.Dev.

250 0.948 0.943 0.153
500 0.974 0.987 0.146
750 0.992 1.01 0.137
1000 0.981 0.992 0.15
1500 0.998 1.01 0.138
2000 1.01 1.03 0.151
3000 0.986 1 0.162
5000 0.996 1 0.146

Table 4.8.: ωdist’s influence on the drawing
height

The next set of parameters that we evaluate are the weights ωheight and ωdist. Since they
just weigh up optimizing height against optimizing the standard deviation of distances
between neighboring stations, the absolute values of both parameters do not matter. We
therefore performed a set of experiments where ωheight was set to 2000, and we varied ωdist.
The exact parameter space can be found in Table A.3. The first surprising result is that we
could not find any statistically significant differences in the normalized standard deviations
of distances between neighboring stations when varying ωdist. The exact p-values can be
found in Table A.9. Although some of these values are below 0.05, a Dunn-Bonferroni
correction must be applied to the data, since we perform pairwise comparisons, resulting in
a quadratic number of hypotheses. The corrected p-level of 0.05/32 ≈ 0.0016 is not met by
any of the pairs.11 When considering the height of the drawings, the results are minimally
different. Figure 4.44 and Table 4.8 show the normalized drawings’ heights for different
values of ωdist. On average, there is a 6.5% increase in normalized drawing height when
going from ωdist = 250 to ωdist = 2000. In fact, this difference is statistically significant
even after a Dunn-Bonferroni correction, as can be seen from Table A.10.

Thus, we can conclude that while high values of ωdist seem not to improve optimization of the
station distance standard deviation, they might minimally deteriorate height minimization.
Therefore, it seems prudent to choose a rather small value for ωdist. This result might
indicate that optimizing drawing height and optimizing station-distance standard deviation
is not mutually impeditive.

Finally, we examine the influence of the parameter reaugment-percentage, specifying for
which fraction of the graph’s faces the augmentation is changed in every step of the
annealing process. For this, we computed an experiment with the parameter space listed
in Table A.4. Figure 4.45a and Table 4.9a present the data generated in this experiment.
Most of the pairwise differences are not statistically significant, as can be seen from
Table A.11. However, the values 0.02, 0.03, 0.04 and 0.06 do produce drawing heights
that are significantly lower than the largest value in the set, 0.3. When we compare
this with the normalized time needed to perform 1000 annealing steps at the various
reaugment-percentage values, shown in Figure 4.45b and Table 4.9b, we can see that the
11The reader might wonder why we did not apply a Dunn-Bonferroni correction to the other sets of p-values.

In fact, one would have to do so. However, we did not want to complicate things by specifying a different
significance level in each case. Since the Dunn-Bonferroni correction factor would be below 100 in each
of our cases, and in all cases where we would have had to apply such a correction, all significant p-values
were below 10−5, all statements about significance still retain their validity.
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Drawing Height

Average Median Std.Dev.

0.01 0.999 1.01 0.132
0.02 0.97 0.974 0.123
0.03 0.967 0.975 0.16
0.04 0.978 0.986 0.139
0.06 0.965 0.966 0.157
0.10 1.01 1.02 0.146
0.20 1 1 0.161
0.30 1.06 1.05 0.149

(a) reaugment-percentage influence on the
normalized drawing height

Time spent in Annealing

Average Median Std.Dev.

0.01 0.568 0.565 0.026
0.02 0.697 0.684 0.0465
0.03 0.818 0.801 0.0671
0.04 0.919 0.903 0.0825
0.06 1.14 1.13 0.139
0.10 1.42 1.38 0.121
0.20 1.92 1.89 0.158
0.30 2.21 2.18 0.16

(b) reaugment-percentage influence on the
normalized time spent in simulated an-
nealing at 1000 iterations

Table 4.9.

(a) reaugment-percentage influence on the draw-
ing height

(b) reaugment-percentage influence on time spent
in the annealing process

Figure 4.45.: Evaluating the effect of reaugment-percentage

necessary time increases drastically with the value of reaugment-percentage. Thus, 0.03
seems a good value for reaugment-percentage to us.

At last, we take a quick look at the performance of our implementation. Please note that
our implementation is meant as a proof of concept. We did not perform any optimizations,
and several data structures (most notably the data structure for holding the graph’s
planarity information) are implemented rather inefficiently. Optimizing these, respectively
implementing complex but efficient data structures, was outside the scope of this thesis.

The time needed to create a metro drawing is dominated by the time spent in the annealing
process. In fact, the time spent for all other computations can be neglected for reasonable
values of #anneal, thus we focus on the time spent in the annealing process.

Table 4.10 lists the time spent in the annealing process as well as the time per annealing
iteration for various values of#anneal (only considering London instances, with a reaugment-
percentage of 0.03). The first thing that stands out is the fact that the average time per
iteration increases slightly with the number of iterations.12 Although the increase is small,

12With the measurement for 10 iterations being an outlier; it is plausible that the time spent initializing
the simulated annealing process dominates these timings.
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Time (in Seconds) spent in Annealing Time (in Seconds) spent per Iteration

#anneal Average Median Std.Dev. Average Median Std.Dev.

10 7.2 7.2 0.8 0.72 0.716 0.0763
100 63.9 62.1 5.9 0.639 0.621 0.0585
1000 630.9 627.6 52.2 0.631 0.628 0.0522
5000 3553.8 3441.9 550.5 0.711 0.688 0.11
10000 7154.9 6762.9 1274.3 0.715 0.676 0.127
20000 14497.4 13816.5 2425.3 0.725 0.691 0.121

Table 4.10.: Time requirements of the annealing process for different values of #anneal (at
a reaugment-percentage of 0.03)

it is in fact statistically significant, as can be seen from the p-values in Table A.12.13 This
suggests that the time complexity is superlinear in the number of annealing iterations,
a fact that can most likely be explained by the inefficiencies in our implementation. In
absolute terms, a drawing with 5000 annealing steps (which is the value we recommended
above) can be produced in about one hour.

4.6.4. Subjective Evaluation

We now present our subjective evaluation of the drawing results. Figure 4.39 shows a
drawing of the London Metro that was created with ωstation = 7.0, ωline = 5.0 and 5000
annealing steps. The drawing is passably compact. Note that assigning colors to metro lines
such that contrast between parallel-running metro lines is maximized is its own NP-hard
problem, the solution of which is not within the scope of this thesis. Aside from such
contrast problems, most lines are reasonably easy to follow visually. Figure A.1 is another
drawing of the London Metro, with the same set of parameters.

However, there are a number of problems we identified:

Radial Sequences

In Figure 4.39, the center-wards end of the yellow metro line consists of a sequence of
degree-two vertices. This sequence is drawn radially, pushing everything else outwards.
If this sequence was drawn orbitally, a lot of space could be saved towards the center of
the drawing. However, to control how such sequences are drawn, it would be necessary to
introduce some global notion of direction into the flow network computing the orthogonal
representation. It is not clear how that could be achieved.

Station-Bends

Figure A.2 shows another Metro Map of the London Underground, this time with ωstation =
0.0. The measurements we took suggested that setting low values for ωstation might result
in more compact drawings. However, the zigzagging metro lines especially in the upper
and lower parts create a lot of visual disturbance when trying to follow the lines visually.
Also, drawings with ωstation = 0.0 tend to have very long orbital segments, which we feel
make it hard to follow the metro lines visually. We therefore do not recommend turning off
the station-bend minimization.
13Note that even though some of the pairs do not reach pairwise significance, we may assume that the

overall increase is significant.
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Choice of the Center Face

Something that is not directly reflected by any metric is the effect that the choice of the
center face has on the results. In this evaluation, we chose the center face randomly for
every instance, hoping that any effect that this choice has averages out over the number
of measurements. Looking at many drawings, we got the impression that this choice has
in fact a major influence on the quality of the drawings. However, we assume that when
creating a circular metro map of an actual metro network, the user might want to select
the center of the drawing manually. Thus, this should not present a problem in practice.

Spacing based on the Number of Metro Lines

Something that our approach does not yet take into consideration when computing the
minimum space between two vertices or edges is the number of metro lines running via the
edges or vertices. However, particularly for stations, the number of metro lines connected
to them varies a lot in practice, resulting in metro stations that are drawn with rather
large symbols, and stations depicted by rather small symbols. It would be desirable to
differentiate between them when computing minimum distances.
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5. Topology-Shape-Metrics on a Cylinder

5.1. Introduction
In this thesis, we try to draw graphs ortho-radially. One primary concern in doing so
is minimizing the number of bends in the drawing. In Chapter 4, we demonstrated an
approach that first uses bend-minimization techniques for an orthogonal drawing and then
transforms this orthogonal drawing into an ortho-radial one. However, the obvious question
is whether this bend-minimization can also directly be done in an ortho-radial setting.

This chapter briefly looks into this question. We first illustrate differences between
orthogonal and ortho-radial bend minimization. Then, we present an intuitive adaption of
the Topology-Shape-Metrics framework in Section 5.2. In Section 5.3 we then illustrate why
these changes are not enough to ensure that the result is always embeddable, presenting
some non-trivial problems that must be solved if the Topology-Shape-Metrics framework
was to be transferred to the ortho-radial case.

We were able to find surprisingly little research related to bend-minimization for graphs
embedded on cylinders. Hasheminezhad et al. [HHT09] not only present something similar
to an ortho-radial representation (see below), but also give a way of deciding for paths,
cycles and certain combinations of paths whether the graphs can be embedded on a cylinder
adhering to a given ortho-radial representation. Hasheminezhad et al. [HHMT10] give
a characterization of graphs that have a straight-line embedding on cylinders, but only
for cubic rectangulated graphs. Tamassia and Tolis [TT91] give a characterization of
graphs admitting a visibility representation on a cylinder, where vertices are represented by
intervals along the axis of the cylinder, and edges are represented by overlapping intervals.
However, we were not able to find any prior work examining bend-minimization for graphs
embedded on cylinders.

Drawing graphs ortho-radially, as defined in Definition 2.3 of Section 2.1, and as already
discussed in Chapter 4, is equivalent to drawing graphs on a grid embedded on a cylinder,
on which one set of grid lines runs parallel to the cylinder’s rims, and one set of grid lines
runs parallel to the cylinder’s axis. We call this a cylindrical grid. Such a cylindrical grid
can be seen in Figure 5.1a. Even though this point of view is equivalent to an ortho-radial
grid,1 for some illustrations throughout this chapter, the cylinder model makes matters

1Actually, this is not entirely true, since drawing on an ortho-radial grid allows for edges to be routed
through the center S, which would correspond to an edge crossing the rim of the cylinder. However, we
did not exploit this possibility, and thus we may assume equivalence for our purposes.
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(a) A grid on a cylinder

(b) Two non-homotopic types
of cycles on a cylinder

(c) The grid from Fig-
ure 5.1a unrolled

Figure 5.1.: Illustrations of embedding graphs on a cylindrical grid

more clearly. Therefore, we sometimes use this drawing style. Occasionally, we simplify
drawings even further by unrolling the grid into the plane, as illustrated in Figure 5.1c.
Here, the dotted grid lines indicate at what point the grid from Figure 5.1a was cut open.

When drawing a graph on an ortho-radial grid (or a cylindrical grid), there are two special
faces: The center face, containing the origin of the ortho-radial grid, and a face that is
the outer face. On the cylinder, these two faces contain the upper and lower rims of the
cylinder. This differs from the embedding in an orthogonal grid, in which just an outer
face is fixed. It is however possible to select the same face for both, thus having a face
that contains both the lower and the upper rim of the cylinder. In this case, it would be
possible to cut open the cylinder from one rim to the other without cutting the embedded
graph, and flattening the resulting surface into a plane. Conversely, the embedding would
be equivalent to orthogonally embedding the graph into the plane and then rolling it up
on a cylinder. Since this is well researched, in this section we only concern ourselves with
embeddings in which two different faces have been selected for upper and lower rim.

More to the point, there are two non-homotopic ways of drawing a cycle on a cylinder:
Type A is having both rims on one side, Type B is separating both rims from each other.
Figure 5.1b shows examples of both types of cycles. While a cycle of Type A can be
embedded in the plane with the same shape it has on the cylinder (i.e. the same bends on
its edges, and the same angles between the edges of the respective vertices), Type B cycles
cannot. This is easy to see using the example in Figure 5.1b: Clearly, when embedding
a cycle in the plane, it must use bends. We therefore only care for graphs that contain
Type B cycles.

5.2. Adapting Topology-Shape-Metrics
Since Tamassia’s Topology-Shape-Metrics framework is the standard technique for mini-
mizing edge-bends in an orthogonal drawing, the obvious idea is to try to adapt it to the
ortho-radial, respective cylindrical, case. In this section, we present the intuitive way of
doing so. Later, we show which problems arise in this case.
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5.3. Drawability

Because of the different topology of a cylinder (when compared to a plane), the rotation
which cycles in the drawing may have changes: While in an orthogonal drawing, all
(clockwise) cycles have rotation 4, this is not the case when drawing ortho-radially or on a
cylinder. All Type A cycles still have rotation 4, but any Type B cycle has rotation 0 in a
valid drawing. See Figure 5.1b again for two examples. If we assume that G is connected,
every inner face is always a Type A cycle, thus the idea on which Tamassia’s flow network
(and the orthogonal representation) is based, namely that every face must be assigned a
rotation of 4, still holds for the inner faces. However, the center and the outer face are
cycles of Type B. For them, we must adapt the flow network (and the requirements of the
orthogonal representation) in such a way that they must be assigned a rotation of 0. With
this, we define an ortho-radial representation analogous to the orthogonal representation
from Definition 3.1:

Definition 5.1 (Ortho-Radial Representation). Given a graph G = (V,E), and a planar
embedding of G resulting in the set of faces F . An ortho-radial representation is a func-
tion H : F → {E × {0, 1}? × {90, 180, 270, 360}}|F |, assigning to every f ∈ F a circularly
ordered list. All elements of these lists have the form (e, s, a), where

• e is an edge of G,

• s is a binary string,

• a is an integer in the set {90, 180, 270, 360}.

Likewise analogous to the definition in Section 3.1, we say such an ortho-radial representation
is valid if:

(1) The e lists for all faces conforms to the planar embedding of G, i.e.

∀f ∈ F : ((ei, ·, ·), (ej , ·, ·)) ∈ H(f)⇒ (ei, ej) ∈ f

(2) Let (e, s, a) ∈ H(f) and (e, s′, a′) ∈ H(f ′) (note that e is the same in both entries),
then s can be obtained from s′ by reversing the string and exchanging 0’s and 1’s

(3) All faces are properly closed, i.e.

∀f ∈ F :
∑

(e,s,a)∈H(f)
rot(s, a) =

{
0 if f is the outer or center face
4 if f is an internal face

(4) For every vertex, the sum of angles between its incident edges is 360◦.

The only change of this definition compared to the definition of an orthogonal representation
is condition (3), where the outer and the center face are required to have rotation 0.

To compute such an ortho-radial representation, we again use a flow network similar to the
one used to compute an orthogonal representation. Refer to Section 3.1.2 for details on
how that flow network was built. The only changes we have to make are the demands of
the vertices representing the outer and center face. Instead of having a surplus of 4, as in
the orthogonal case, both vertices have a demand of 0.

5.3. Drawability
We now examine the question of whether such an ortho-radial representation is drawable
on a cylinder, respectively in an ortho-radial way. Drawability here means that we
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5. Topology-Shape-Metrics on a Cylinder

(a) A rectangulation that is not drawable. Blue parts
are added for rectangulation. One edge is drawn
curved because of the impossibility to draw this
graph. Dotted edges wrap around the cylinder.

(b) Illustration of a circular radial de-
pendency

Figure 5.2.: Illustrations of drawability problems

can find functions fV and fE as defined in Definition 2.3 such that no crossings occur,
i.e. ∀e, e′ ∈ E : ∀s ∈ (0, 1) : f(e, s) 6= f(e′, s) and ∀v, v′ ∈ V : fV (v) 6= fV (v′)

In the case of an orthogonal representation, Tamassia shows that the result is always
drawable in a constructive way: He first demonstrates a way to subdivide all faces into
rectangles (cf. Section 3.1.3), and then refers to a rectangle compaction algorithm that
always results in a valid drawing. However, this approach does not necessarily result in a
drawable ortho-radial representation, as Figure 5.2a demonstrates: Here, both blue edges e1
and e2 and the blue vertices are added to rectangulate the graph. However, because of
the circular nature of the θ-dimension, these edges introduce a circular dependency on
the radial coordinates of v1 and v2. The placement of e1 forces v1 to have a larger radial
coordinate than v2, while e3 forces v2 to have a larger radial coordinate than v1.

Thus, we must have a closer look at drawability in the ortho-radial case. We demonstrate
two problems which can cause ortho-radial representations to be not drawable.

5.3.1. Problems
We now illustrate two kinds of problems that impede drawability in the ortho-radial case.

Problem 1: Finding a wrapping rotation
For the first of the two problems, consider the graph depicted in Figure 5.3a, and let f1
be the center and f2 the outer face. The bend-optimal ortho-radial representation of this
graph is bend-free: The red and green cycles are wrapped around the cylinder without any
bend, and the black path is laid out in between. However, because of the the two additional
black vertices cause the path between the two cycles must bend. Consider the drawing
in Figure 5.3b, illustrating a bend-free ortho-radial representation where f1 is the center
and f2 is the outer face. Here, faces f1 and f2 have rotation 0, while f3 has rotation 4.
Thus, this is a valid ortho-radial representation. However, this can obviously not be drawn
on a cylinder, since the two cycles around f1 and f2 are twisted by 90◦ against each other,
and thus at least one of them has no edge running around the cylinder.
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5.4. Conclusion

(a) A graph the optimal ortho-
radial representation of which
is twisted and not drawable

(b) Illustration of a non-drawable ortho-radial representation

Figure 5.3.: Illustrations of drawability problems

Problem 2: Circular Radial Dependencies

The second problem we look into is depicted in Figure 5.2b: Here, the curvy line should
actually be a straight edge. Looking at the cycle, it has two bends right, and two bends
left, thus both the upper and the lower face have a valid rotation of 0. However, since
when traversing all edges of the cycle, one never moves toward the lower rim (or never
toward the upper rim, depending on the direction of traversal), no valid r-coordinates can
be assigned here.

5.4. Conclusion
We have presented the intuitive way of transferring the bend-minimization technique used
in Tamassia’s Topology-Shape-Metrics framework to an ortho-radial setting and have shown
that in this setting problems arise which are not existent in the orthogonal case.

We pointed out two problems that we perceive to be the main problems impeding drawability,
and we think that overcoming these problems results in an ortho-radial representation that
is always drawable. We have some ideas as to mitigate the problems. Roughly speaking,
Problem 1 presented above corresponds to a circulation in the flow network that is used to
compute the ortho-radial representation. We hope that by either prohibiting circulations
in this flow network, or by searching the residual flow network for an (bend-optimal)
circulation in the opposite direction, we can solve this problem. However, further research
is needed in this area.
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6. Conclusion

This thesis examines ways to draw metro maps using an ortho-radial drawing style, resulting
in a drawing employing concentric circles and radial spokes algorithmically. Prior to this
thesis, the only known algorithm was limited to rather restricted instances (cf. Fink et
al. [FLW14]).

We formalized the problem in a way that models the optimization problem according to
the quality criteria for metro maps identified by research in the information visualization
and psychology communities.

We then presented an algorithmic framework based on the Topology-Shape-Metrics frame-
work by Roberto Tamassia, which is capable of producing metro map drawings even for
complex instances, as we demonstrated in the experimental evaluation. The framework
is able to compute an orthogonal representation that is tailored to the user’s preferences
regarding the question in which places bends should be located if necessary. We not only
modified the framework to account for the peculiarities of drawing usable metro maps, but
also added steps to transform the orthogonal representation into an ortho-radial drawing
that actually takes advantage of the circular dimension. As part of our modification of
Tamassia’s framework, we presented a compaction technique that improves on the technique
suggested by Tamassia in terms of area minimization as well as flexibility.

In our experimental evaluation, not only did we show that it is possible to efficiently
produce reasonable metro map drawings, but we were also able to describe the effects that
different combinations of weighting parameters have on the drawings. With this knowledge,
we are able to adapt our drawings to different requirements and give recommendations on
how to parameterize our framework.

Furthermore, we were able to show NP-hardness for the subproblems of compacting an
ortho-radial representation on the one hand and to reduce the maximum degree of the
graph to 4 in such a way that the number of bends in the resulting drawing is minimal on
the other hand. This justifies using non-optimal approaches for solving these subproblems.

While the drawings produced by our framework might not yet be suitable for being used
as a metro map without any further manual modification, we are positive that drawings
produced by our framework can serve as support for human designers trying to produce
circular metro maps. We also hope that future research, as outlined below, might further
improve the drawings up to the point where they can immediately compete with hand-made
drawings.
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6. Conclusion

We are positive that the ability to rapidly produce circular metro maps with certain desired
properties supports research efforts such as user studies looking into the usability of circular
metro maps.

6.1. Future Work
We think that future work in improving the framework presented in Chapter 4 should
primarily focus on finding ways to globally control the relative layout of long sequences of
degree-two vertices. As discussed in Section 4.6.4, the fact that many such sequences are
drawn radially in the center of the drawing is the most severe impediment to producing
compact drawings. Also, a more in-depth evaluation of good cooling schedules for the
simulated annealing process would most likely be worthwhile, together with a more
efficient implementation of the supporting data structures; We see a lot of room for
improvement in this step. Since we are using a black-box metaheuristic that includes a
way of exploring a solution neighborhood at this step, it would also be thinkable to swap
the simulated annealing technique for other metaheuristics that are based on exploring a
solution neighborhood in a similar way, e.g. evolutionary algorithms.

Also, while we could identify the interactions of weighting parameters in Section 4.6.3,
we did not have sufficient information on the optimal relation between the different ways
that metro lines can bend. It would be beneficial to conduct a user study to evaluate
the usability of metro map drawings resulting from different parameter configurations in
practice.

Aside from further work on the presented framework, the field of carrying out bend
minimization in a drawing embedded on a cylinder, as briefly outlined in Chapter 5, seems
to present a lot of open questions. We intend to focus future research on finding ways of
mitigating the drawability problems discussed.

An interesting problem that came up, but which went beyond the scope of this thesis, is
whether it is possible to identify which face should be chosen as center face to optimize a
given criterion in a smarter way than just trying out all faces.

Finally, to actually produce complete metro maps, additional problems must be solved,
most notably the problem of placing station labels in the drawing. While there are some
approaches of doing so for drawing styles working with straight lines at various angles (cf.
Section 1.2), these techniques are probably not applicable to a circular drawing style. To
produce ready-to-use metro map drawing algorithmically, a solution to this problem must
be found.
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Appendix

A. Experimental Results

Parameter Name Values # of measurements per value
City London 8000
ωstation 3.0 8000
ωedge 1.0 8000
ωline 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0 1000
ωheight 1500 8000
ωdist 100 8000
#anneal 0 8000
reaugment-percentage 0.03 8000

Table A.1.: Parameter Space of the dataset used to evaluate reasonable values for ωline.
Note that since the number of line bends is fixed before any simulated annealing
takes place, the parameters pertaining simulated annealing are irrelevant.

Parameter Name Values # of measurements per value
City London 6000
ωstation 0.0, 1.0, 5.0, 6.0, 7.0, 12.0, 17.0 1000
ωedge 1.0 6000
ωline 5.0 6000
ωheight 1500 6000
ωdist 100 6000
#anneal 0 6000
reaugment-percentage 0.03 6000

Table A.2.: Parameter Space of the dataset used to evaluate reasonable values for ωstation
under the condition ωline = 5.0. Note that since the number of line bends is
fixed before any simulated annealing takes place, the parameters pertaining
simulated annealing are irrelevant.
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6. Appendix

Figure A.1.: A complete drawing of the London Subway without any manual tuning. Note
that assigning colors to the metro lines such that contrast between parallel-
running lines is maximized is a problem that is not within the scope of this
thesis. Also, minimizing the number of times that metro lines running along
the same edges must cross is a separate problem. Thus, these criteria are not
optimized in this drawing.
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A. Experimental Results

Figure A.2.: A complete drawing of the London Subway without any manual tuning. In
this drawing, we chose ωstation = 0.0.
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6. Appendix

Parameter Name Values # of measurements per value
City London 1600
ωstation 7.0 1600
ωedge 1.0 1600
ωline 5.0 1600
ωheight 2000 1600
ωdist 250, 500, 750, 1000, 1500, 2000, 3000, 5000 200
#anneal 1000 1600
reaugment-percentage 0.03 1600

Table A.3.: Parameter Space of the dataset used to evaluate reasonable values for ωdist. Note
that since only the relation between ωheight and ωdist influences the simulated
annealing process, it is reasonable to fix ωheight to one value.

Parameter Name Values # of measurements per value
City London 1700
ωstation 7.0 1700
ωedge 1.0 1700
ωline 5.0 1700
ωheight 2000 1700
ωdist 200 1700
#anneal 1000 1700

reaugment-percentage 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04,
0.05, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 100

Table A.4.: Parameter Space of the dataset used to evaluate reasonable values for reaugment-
percentage.

0.0 1.0 3.0 5.0 10.0

0.0 — < 10−50 < 10−50 < 10−50 < 10−50

1.0 < 10−50 — < 10−50 < 10−50 < 10−50

3.0 < 10−50 < 10−50 — 0.38 0.12
5.0 < 10−50 < 10−50 0.38 — 0.038
10.0 < 10−50 < 10−50 0.12 0.038 —

Table A.5.: p-values for the evaluation of ωstation’s influence on the number of lines bending
at stations

0.0 1.0 5.0

0.0 — < 10−50 < 10−50

1.0 < 10−50 — < 10−50

5.0 < 10−50 < 10−50 —

Table A.6.: p-values for the evaluation of ωline’s influence on the number of lines bending
on edges
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A. Experimental Results

0 1 3 5 10

0 — 0.23 < 10−5 < 10−5 < 10−5

1 0.23 — < 10−5 < 10−5 < 10−5

3 < 10−5 < 10−5 — 0.48 < 10−5

5 < 10−5 < 10−5 0.48 — < 10−4

10 < 10−5 < 10−5 < 10−5 < 10−5 —

Table A.7.: p-values for the evaluation of ωstation’s influence on the height of the drawing
when doing 5000 annealing steps

0.0 1.0 5.0 6.0 7.0 8.0 10.0

0.0 — < 10−100 < 10−100 < 10−100 < 10−100 < 10−100 < 10−100

1.0 < 10−100 — < 10−100 < 10−100 < 10−100 < 10−100 < 10−100

5.0 < 10−100 < 10−100 — < 10−100 < 10−100 < 10−100 < 10−100

6.0 < 10−100 < 10−100 < 10−100 — < 10−100 < 10−100 < 10−100

7.0 < 10−100 < 10−100 < 10−100 < 10−100 — 0.093 0.014
8.0 < 10−100 < 10−100 < 10−100 < 10−100 0.093 — 0.4
10.0 < 10−100 < 10−100 < 10−100 < 10−100 0.014 0.4 —

Table A.8.: p-values for the evaluation of good values for ωstation at ωline = 5.0

250 500 750 1000 1500 2000 3000 5000

250 — 0.25 0.15 0.42 0.23 0.25 0.22 0.37
500 0.25 — 0.72 1 0.82 0.88 0.79 0.64
750 0.15 0.72 — 0.65 0.72 0.63 0.78 0.3
1000 0.42 1 0.65 — 0.84 0.86 0.76 0.53
1500 0.23 0.82 0.72 0.84 — 0.7 0.97 0.42
2000 0.25 0.88 0.63 0.86 0.7 — 0.5 0.49
3000 0.22 0.79 0.78 0.76 0.97 0.5 — 0.74
5000 0.37 0.64 0.3 0.53 0.42 0.49 0.74 —

Table A.9.: p-values for the evaluation of good values for ωdist at ωheight = 2000.0 if the
goal is to minimize neighboring stations’ distances’ standard deviation. Note
that no Dunn-Bonferroni correction has been applied to this data. Doing so
would mean that for statistic significance at 95% confidence, any value would
have to be less than 0.05

32 ≈ 0.0016. This requirement is not met by any of the
above values.
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250 500 750 1000 1500 2000 3000 5000

250 — 0.085 0.005 0.025 0.0016 2.1e-05 0.01 0.0029
500 0.085 — 0.28 0.76 0.052 0.026 0.28 0.14
750 0.005 0.28 — 0.46 0.67 0.096 0.72 0.63
1000 0.025 0.76 0.46 — 0.29 0.037 0.4 0.21
1500 0.0016 0.052 0.67 0.29 — 0.49 0.45 0.9
2000 2.1e-05 0.026 0.096 0.037 0.49 — 0.32 0.39
3000 0.01 0.28 0.72 0.4 0.45 0.32 — 0.64
5000 0.0029 0.14 0.63 0.21 0.9 0.39 0.64 —

Table A.10.: p-values for the evaluation of good values for ωdist at ωheight = 2000.0 if
the goal is to minimize the drawings height. Note that no Dunn-Bonferroni
correction has been applied to this data. Doing so would mean that for
statistic significance at 95% confidence, any value would have to be less than
0.05
32 ≈ 0.0016. This requirement is only met by the pairs (250, 1500) and

(250, 2000).

0.01 0.02 0.03 0.04 0.06 0.10 0.20 0.30

0.01 — 0.13 0.085 0.36 0.08 0.6 0.95 0.0061
0.02 0.13 — 0.92 0.6 0.46 0.043 0.3 < 10−3

0.03 0.085 0.92 — 0.58 0.74 0.056 0.092 < 10−3

0.04 0.36 0.6 0.58 — 0.61 0.26 0.52 < 10−3

0.06 0.08 0.46 0.74 0.61 — 0.022 0.067 < 10−3

0.10 0.6 0.043 0.056 0.26 0.022 — 0.8 0.077
0.20 0.95 0.3 0.092 0.52 0.067 0.8 — 0.021
0.30 0.0061 < 10−3 < 10−3 < 10−3 < 10−3 0.077 0.021 —

Table A.11.: p-values for the evaluation of good values for reaugment-percentage if the goal
is minimizing the drawings height. Note that no Dunn-Bonferroni correction
has been applied to this data.

10 100 1000 5000 10000 20000

10 — < 10−5 < 10−5 0.41 0.66 0.78
100 < 10−5 — 0.38 0.0014 0.0049 0.00024
1000 < 10−5 0.38 — < 10−5 0.00028 < 10−5

5000 0.41 0.0014 < 10−5 — 0.65 0.18
10000 0.66 0.0049 0.00028 0.65 — 0.85
20000 0.78 0.00024 < 10−5 0.18 0.85 —

Table A.12.: p-values for the evaluation of the time per annealing iteration for different
values of #anneal

.
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