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Abstract. We study the simultaneous embeddability of a pair of partitions of
the same underlying set into disjoint blocks. Each element of the set is mapped
to a point in the plane and each block of either of the two partitions is mapped
to a region that contains exactly those points that belong to the elements in the
block and that is bounded by a simple closed curve. We establish three main
classes of simultaneous embeddability (weak, strong, and full embeddability) that
differ by increasingly strict well-formedness conditions on how different block
regions are allowed to intersect. We show that these simultaneous embeddability
classes are closely related to different planarity concepts of hypergraphs. For each
embeddability class we give a full characterization. We show that (i) every pair of
partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide
the existence of a strong simultaneous embedding, and (iii) the existence of a full
simultaneous embedding can be tested in linear time.

1 Introduction

Pairs of partitions of a given set of objects occur naturally when evaluating two alter-
native clusterings in the field of data analysis and data mining. A clustering partitions
a set of objects into blocks or clusters, such that objects in the same cluster are more
similar (according to some notion of similarity) than objects in different clusters. There
are a multitude of clustering algorithms that use, e.g., an underlying graph structure or
an attribute-based distance measure to define similarities. Many algorithms also pro-
vide configurable parameter settings. Consequently, different algorithms return differ-
ent clusterings and judging which clustering is the most meaningful with respect to
a certain interpretation of the data must be done by a human expert. For a structural
comparison of two clusterings several numeric measures exist [20], however, a single
numeric value hardly shows where the clusterings agree or disagree. Hence, a data an-
alyst may want to compare different clusterings visually, which motivates the study of
simultaneous embeddability of two partitions.

We provide fundamental characterizations and complexity results regarding the si-
multaneous embeddability of a pair of partitions. While simultaneous embeddability
can generally be defined for any number k& > 2 of partitions, we focus on the basic case
of embedding two partitions, which is also the most relevant one in the data analysis
application. We propose to embed two alternative partitions of the same set U into the
plane R? by mapping each element of U to a unique point and each block (of either
of the two partitions) to a region bounded by a simple closed curve. Each block region
must contain all points that belong to elements in that block and no point whose element
belongs to a different block. Hence, in total, each point lies inside two block regions.



A simultaneous embedding of two partitions shares certain properties with set visu-
alizations like Euler or Venn diagrams [8l/12l/19]]. Its readability will be affected by well-
formedness conditions for the intersections of the different block regions. Accordingly,
we define a (strict) hierarchy of embeddability classes based on increasingly tight well-
formedness conditions: weak, strong, and full embeddability. We show that (i) any two
partitions are weakly embeddable, (ii) the decision problem for strong embeddability
is NP-complete, and (iii) there is a linear-time decision algorithm for full embeddabil-
ity. We fully characterize the embeddability classes in terms of the existence of a planar
support (strong embeddability) or in terms of the planarity of the bipartite map (full em-
beddability). Interestingly, both concepts are closely related to hypergraph embeddings
and different notions of hypergraph planarity. Our NP-completeness result implies that
vertex-planarity testing of 2-regular hypergraphs is also NP-complete.

1.1 Related Work

In information visualization there are a large variety of techniques for visualizing clus-
ters of objects, some of which simply map objects to (colored) points so that spatial
proximity indicates object similarity [6,|16]], others explicitly visualize clusters or gen-
eral sets as regions in the plane [9,|19]. These approaches are visually similar to Euler
diagrams [8l|12], however, they do not give hard guarantees on the final set layout, e.g.,
in terms of intersection regions or connectedness of regions, nor do they specifically
consider the simultaneous embedding of two or more clusterings or partitions.
Clustered planarity is a concept in graph drawing that combines a planar graph lay-
out with a drawing of the clusters of a single hierarchical clustering. Clusters are repre-
sented as regions bounded by simple closed and pairwise crossing-free curves. Such a
layout is called c-planar if no edge crosses a region boundary more than once [11]].
The simultaneous embedding of two planar graphs on the same vertex set is a topic
that is well studied in the graph drawing literature, see the recent survey of Blisius et
al. [2]. In a simultaneous graph embedding each vertex is located at a unique position
and edges contained in both graphs are represented by the same curve for both graphs.
The remaining (non-shared) edges are embedded so that each graph layout by itself is
crossing-free, but edges from the first graph may cross edges in the second graph.
Some of our results and concepts in this paper can be seen as a generalization of
simultaneous graph embedding to simultaneous hypergraph embedding if we consider
blocks as hyperedges: all vertices are mapped to unique points in the plane and two hy-
peredges, represented as regions bounded by simple closed curves, may only intersect if
they belong to different hypergraphs or if they share common vertices. Several concepts
for visualizing a single hypergraph are known [4}5}/14,(15}/17], but to the best of our
knowledge the simultaneous layout of two or more hypergraphs has not been studied.

1.2 Preliminaries

LetU = {uy,...,u,} be afinite universe. A partition P = { By, ..., B, } of U groups
the elements of U into disjoint blocks, i.e., every element v € U is contained in exactly
one block B; € P. In this paper, we consider pairs {Py, P1} of partitions of the same
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Fig. 1: Examples of simultaneous embeddings of two partitions.

universe U, i.e., each element © € U is contained in one block of Py and in one block
of P;. In the following we often omit to mention U explicitly.

Let S be a collection of subsets of U. An embedding I" of S maps every element
u € U to a distinct point I'(u) € R? and every set S € S to a simple, bounded, and
closed region I'(S) C R? such that I'(u) € I'(S) if and only if u € S. Moreover,
we require that each contiguous intersection between the boundaries of two regions is
in fact a crossing point p € R?, i.e., the local cyclic order of the boundaries alternates
around p. A simultaneous embedding I of a pair of partitions { Py, P; } is an embedding
of the union Py UP; of the two partitions. We define Rp = I'(B) as the block region of
a block B and denote its boundary by R p. Figure[I| shows examples of simultaneous
embeddings in the three different embedding classes to be defined in Section[2]

A simultaneous embedding I" induces a subdivision of the plane and we can derive a
plane multigraph G 1 by introducing a node for each intersection of two boundaries and
an edge for each section of a boundary that lies between two intersections. Furthermore,
a boundary without intersections is replaced by a node with a self loop nested inside its
surrounding face. We call G the contour graph of I" and its dual graph G'}- the dual
graph of I'. The faces of G belong to zero, one, or two block regions. We call a face
that belongs to no block region a background face, a face that belongs to a single block
region a linking face, and a face that belongs to two block regions an intersection face.
Only intersection faces contain points corresponding to elements in the universe, and
no two faces of the same type are adjacent in the contour graph.

Alternatively, the union of the two partitions Py U P; can also be seen as a hy-
pergraph H = (U, Py U P1), where every element v € U is a vertex and every block
defines a hyperedge, i.e., a non-empty subset of U. The hypergraph H is 2-regular since
every vertex is contained in exactly two hyperedges. We denote H = H (P, P ) as the
corresponding hypergraph of the pair of partitions {Py, P; }.

Hypergraph supports |[15] play an important role in hypergraph embeddings and
their planarity. A support of a hypergraph H = (V,S) is a graph G, = (V,E) on
the vertices of H, such that the induced subgraph G,[S|] of every hyperedge S € S is
connected. We extend the concept of supports to pairs of partitions, i.e., we say that a
graph G, = (V, E) is a support for {Py, P1 }, if it is a support of H(Py, P1).

We call a support path based, if the induced subgraphs of all hyperedges are paths
and tree based, if all hyperedge-induced subgraphs are trees, i.e., they do not contain

3 Brandes et al. [4] used a slightly different definition and called a support path based if the
induced subgraph of each hyperedge has a Hamiltonian path.



any cycles. For any support G, of a pair of partitions {Py, P1} we can always create
a tree-based support G; by removing edges from cycles: Suppose there exists a block
B € Py such that G,,[B] contains a cycle K. If the vertices in K are also contained in
a common block of P, we can just remove a random edge from K without destroying
the support property. Otherwise, we can remove an edge from K that connects vertices
in two different blocks of P; without destroying the support property.

The bipartite map Gy(H ) of a hypergraph H = (V,S) is defined as the bipartite
graph G (H) = (VUS, E}) that has a node for each vertex in V" and for each hyperedge
in S [21]]. A node v € V is adjacent to anode S € S if v € S. We say that G,(H) is
the bipartite map of a pair of partitions {Po, P1} if H = H (P, P1).

Finally, we define the block intersection graph G (P, P1) as the graph with vertex
set Vs = PoUP; and edge set B, = {{B, B’} | BN B’ # (}. Thus G, has a vertex for
each block and an edge between any two blocks that share a common element. Since
only blocks of different partitions can intersect, we know that G is bipartite.

2 The Main Classes of Embeddability

We define three main concepts of simultaneous embeddability for pairs of partitions.
We will see that these concepts induce a hierarchy of embeddability classes of pairs of
partitions. We begin with weak embeddability, which is the most general concept.

Definition 1 (Weak Embeddability). A simultaneous embedding of two partitions is
weak if no two block regions of the same partition intersect. Two partitions are weakly
embeddable if they have a weak simultaneous embedding.

Prohibiting intersections of block regions of the same partition is our first well-formed-
ness condition. A weak embedding emphasizes the fact that the blocks in each partition
are disjoint. Since the blocks of any partition are disjoint by definition, it is not surpris-
ing that any pair of partitions is weakly embeddable (see Fig. [I(a)| for an example).

Theorem 1. Any two partitions of a common universe are weakly embeddable on any
point set.

Proof. A spanning forest (in fact, any planar graph) on n nodes can always be drawn in
a planar way on any fixed set of n points in the plane [18]. Let now P be a partition. We
choose arbitrary, but distinct points in the plane for the elements of U. We then generate
a spanning tree on the elements in each block and embed the resulting forest in a planar
way on the points. Slightly inflating the thickness of the edges of the trees yields simple
bounded block regions. We can do this independently for a second partition on the same
points and obtain a weak simultaneous embedding. (]

Although the concept of weak embedding does not seem to provide interesting in-
sights into the structure of a given pair of partitions, it guarantees at least the existence
of a simultaneous embedding for any pair of partitions that is more meaningful than
an arbitrary embedding. An obvious drawback of weak embeddings is that the block
regions of disjoint blocks are allowed to intersect, as long as both blocks belong to



different partitions—even if they do not share common elements. Following the gen-
eral idea of Euler diagrams [8]], which do not show regions corresponding to empty
intersections, we establish a stricter concept of embeddability. In a strong embedding
block regions may only intersect if the corresponding blocks have at least one element
in common, and even more, each intersection face of the contour graph must actually
contain a point, see Fig. This is our second well-formedness condition.

Definition 2 (Strong Embeddability). A simultaneous embedding I" of two partitions
is strong if each intersection face of the corresponding contour graph contains a point
I'(u) for some u € U. Two partitions are strongly embeddable if they have a strong
simultaneous embedding.

Obviously, a strong embedding is also weak, since blocks of the same partition have
no common elements, and thus, cannot form intersection faces. The class of strongly
embeddable pairs of partitions is characterized by Theorem [2; we show in Section
that deciding the strong embeddability of a pair of partitions is NP-complete.

Theorem 2. A pair of partitions of a common universe is strongly embeddable if and
only if it has a planar support.

Proof. Let {Py,P1} be a pair of partitions and let G be the contour graph resulting
from a strong embedding I" of {Py, P1}. We construct a planar support of {Py, P1}
along G as follows. First recall that the elements of the universe, which correspond to
the nodes in a support, are represented in I” by points that are drawn inside intersection
faces. Vice versa, since I is strong, each intersection face contains at least one point.
Hence, we choose one point in each intersection face as the center of this face. We now
create a dummy vertex for each linking face (observe that one block region may induce
several linking faces) and link it to the centers of all adjacent intersection faces. The
resulting graph is a subgraph of the dual graph of the contour graph G and therefore
planar. We now connect all remaining vertices in a star-like fashion to the center of
their intersection face, routing the edges in a non-crossing way. We finally remove the
dummy vertices by merging them to an adjacent center, linking all adjacent vertices to
that center. This graph remains planar. It also has the support property, since all inter-
section and linking faces of any block region are connected into a single component,
and with them all vertices of that block region.
Now we construct a strong embedding from a planarly embedded support of { Py, P; }.

To this end, we first construct a tree-based support by deleting edges from cycles as de-
scribed in Section[I.2] Then, we simply inflate the edges of each block-induced subtree.
Since the underlying support is embedded in a planar way, this yields a simple block
region for every block in {Py, P1 } such that two block regions only intersect at the po-
sitions of the nodes. Hence, the constructed block regions together with the nodes of the
support form a strong embedding of { Py, P; }. We note that the support graph as a pla-
nar graph can in fact be embedded on any point set [[18]]. Hence, a strongly embeddable
pair of partitions can be strongly embedded on any point set. O

In a strong embedding, a single block region may still cross other block regions and
intersect the same block regions several times forming distinct intersection faces—as
long as each intersection face contains at least one common point. The last of our three



embeddability classes prevents this behavior and requires that the block regions form a
collection of pseudo-disks, i.e., the boundaries of every pair of regions intersect at most
twice and the boundaries of two nested regions do not intersect. See Fig for an
example. This implies in particular that every block intersection is connected, which is
a well-formedness condition widely used in the context of Euler diagrams [8]], and that
block regions do not cross and are thus more locally confined.

Definition 3 (Full Embeddability). A simultaneous embedding of two partitions is full
if it is a strong embedding and the regions form a collection of pseudo-disks. Two par-
titions are fully embeddable if they have a full simultaneous embedding.

Using a linear-time algorithm for planarity testing [13]], the following characterization
of fully embeddable pairs of partitions directly implies a linear-time algorithm for de-
ciding full embeddability. The proof of Theorem |3| constructs a bipartite map along a
given full embedding, and vice versa. It uses similar techniques as the proofs of Theo-
rems [I]and 2] and is found in the full version of this paper [[1].

Theorem 3. A pair of partitions of a common universe is fully embeddable if and only
if its bipartite map is planar.

A full embedding is strong by definition and we have seen above that a strong em-
bedding is also weak. Hence, the three embeddability classes introduced in this section
induce a hierarchy of embeddability classes. In the full version [I]] we show that this
hierarchy is strict. The weak embeddability class forms the basis of the hierarchy and
contains all pairs of partitions. The strong embeddability class and the full embeddabil-
ity class are characterized by the existence of a planar support and the planarity of the
bipartite map of a pair of partitions, respectively, where the latter directly implies a
linear time algorithm for the corresponding decision problem. Moreover, these char-
acterizations reveal close relations to the hypergraph planarity concepts of Zykov and
vertex planarity.

A hypergraph H = (V,S) is Zykov-planar [22], if there exists a subdivision of
the plane into faces, such that each hyperedge S € S can be mapped to a face of the
subdivision, and each vertex v € V can be mapped to a point on the boundary of all
faces that represent a hyperedge containing v. Walsh [21]] showed that a hypergraph is
Zykov planar if and only if its bipartite map is planar.

In contrast, a hypergraph H = (V, S) is vertex-planar [14] if there exists a subdivi-
sion of the plane into faces, such that every vertex v € V' can be mapped to a face and
for every hyperedge S € S, the interior of the union of all faces of the vertices in .S is
connected. Kaufmann et al. [[15]] showed that a hypergraph is vertex planar if and only if
it has a planar support. This shows that the class of fully embeddable pairs of partitions
is a subclass of Zykov planar hypergraphs, and the class of strongly embeddable pairs
of partitions is a subclass of vertex planar hypergraphs.

3 Complexity of Deciding Strong Embeddability

In this section we show the NP-completeness of testing strong embeddability. As a
consequence, testing whether the corresponding hypergraph of a pair of partitions has
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(a) Removing a linking face. (b) Removing a background face.

Fig. 2: Two cases for transforming a strong embedding into a proper strong embedding.

a planar support is also NP-complete by Theorem [2| This seems not very surprising
considering the more general hardness results of Johnson and Pollak [[14]] and Buchin et
al. [5] who showed that deciding the existence of a planar support and a 2-outerplanar
support in general hypergraphs is NP-hard. However, we consider a restricted subclass
of 2-regular hypergraphs, thus, the NP-hardness of our problem does not directly follow
from the previous results. Moreover, other special cases, e.g., finding path, cycle, tree,
and cactus supports are known to be solvable in polynomial time [3}|5}/14]. Together
with the characterization of Theorem 2] Theoremd]immediately implies that testing the
vertex planarity of a 2-regular hypergraph is NP-complete.

Theorem 4. Deciding the strong embeddability of a pair of partitions is NP-complete.

The existing hardness results [5/14] rely on elements that are contained in more than
two hyperedges and could not be adapted to our 2-regular setting. Instead we prove the
hardness of deciding strong embeddability by a quite different reduction from the NP-
complete problem MONOTONE PLANAR 3SAT [|10]. A monotone planar 3Sat formula ¢
is a 3Sat formula whose clauses either contain only positive or only negated literals (we
call these clauses positive and negative) and whose variable-clause graph H, is planar.
A monotone rectilinear representation (MRR) of ¢ is a drawing of H, such that the
variables correspond to axis-aligned rectangles on the x-axis and clauses correspond to
non-crossing E-shaped “combs” above the x-axis if they contain only positive variables
and below the x-axis otherwise; see Fig.

An instance of MONOTONE PLANAR 3SAT is an MRR of a monotone planar 3Sat
formula (. In the proof of Theorem we will construct a pair of partitions {Po, P1 },
that admits a strong embedding if and only if ¢ is satisfiable.

For the sake of simplicity, we restrict the class of strong embeddings to the sub-
class of proper strong embeddings, which is equivalent, as we can argue that a pair
of partitions has a strong embedding if and only if it also has a proper one. A strong
embedding is proper if the contour graph does not contain background or linking faces
that are adjacent to only two other faces. Figure [2illustrates how background or linking
faces violating this condition can be removed, transforming a strong embedding into
a proper one. We say that two proper strong embeddings are equivalent if the embed-
dings of their contour graphs are equivalent, i.e. if the cyclic order of the edges around
each vertex is the same. A pair of partitions has a unique strong embedding if all proper
strong embeddings are equivalent. Note that, analogously to the definition of equiva-
lence of planar graph embeddings, two equivalent proper strong embeddings may have
different unbounded outer background faces. Our construction in the hardness proof is
independent of the choice of the outer face.



(oxoxol?. . Q QO
| ()%

Fig. 3: Graph G2 3 and the partitions { Qo, Q1 } sketched for the top-left grid cell marked in gray.

Next we define a special pair of partitions that has a unique grid-shaped embedding
as a scaffold for the gadgets in the subsequent proof of Theorem [] The first step is
to construct a base graph G, ,, for two integers m and n. The graph G, ,, is a grid
with mn + 1 columns and 2m + 2 rows of vertices with integer coordinates (3, j) for
0 <i<mnand0 < j < 2m+ 1. Each vertex v with coordinates (i, j) is connected to
the four vertices at coordinates (i — 1,7), (¢ + 1, 7), (4,5 — 1), (4,4 + 1) (if they exist).
Between the middle rows m and m + 1 we remove all vertical edges except for those in
columns 0, m, 2m, ..., nm. This defines n larger grid cells of width m in this particular
row. Figure (left) shows an example.

From G,, , we construct a pair of partitions {Qy, Q1} as follows (see Fig. .
For each vertex v with coordinates (i,j) we create a vertex block B, in partition
Q(i+5) (mod 2)- For each edge (u,v) in G, , we create a chain of four edge blocks
B, ,. B2 .,. By . By . such that B, and B  are in the same partition as B,, and

Bg:v and By, are in the same partition as B,,. We distribute five distinct elements
among the edge blocks of (u, v) and the vertex blocks for u and v such that they form
the desired chain pattern and each intersection face contains one common element. The
pair {Qp, Q1} is indeed a pair of partitions as every element belongs to exactly one
block of each partition. Edge blocks contain two and vertex blocks up to four elements
(depending on the degree of the corresponding vertex in G, ). Below we will add the
gadgets of the reduction on top of {Qg, Q1 }, for which it is required that there is an
edge block in each partition that does not share any element with a vertex block. This
explains why we link blocks of adjacent vertices by chains of four blocks.

The next lemma shows that {Qg, Q1} has a unique embedding (proof in the full
version [1]]), which is a consequence of the fact that G,,, ,, is a subdivision of a planar
3-connected graph (assuming n > 2) and thus it has a unique embedding. This property
is inherited by {Qg, Q1 } in our construction.

Lemma 1. The pair of partitions {Qq, Q1} has a unique embedding.
Now we have all the tools that we need to prove our main theorem in this section.

Proof (of Theorem[d). First we show that the problem is in NP. By Theorem 2] we know
that a pair of partitions is strongly embeddable if and only if it has a planar support.
Thus we can “guess” a graph on U and then test its planarity and support property in
polynomial time. This shows membership in NP. It remains to describe the hardness
reduction.

Let ¢ be a planar monotone 3Sat formula together with an MRR. First we construct
the pair of partitions {Qg, Q1} for the base graph G, ,,, where m is the number of
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Fig. 4: Illustration of the NP-hardness reduction

clauses of ¢ and n is the number of variables of ¢. By Lemma{Qo, Q1 } has a unique
proper grid-like embedding. We call {Qq, Q1} the base grid and the n special cells
between rows m and m + 1 the variable cells of the base grid.

Next we augment the pair of partitions { Qg, Q; } by additional blocks, one for each
clause, where positive clauses are added to Qg and negative clauses to Q;. The defini-
tion of these clause blocks closely follows the layout of the given MRR, see Fig. A(a)]
Let Cq,Co, ..., C} be the positive clauses of ¢ ordered so that if C; is nested inside
the E-shape of C; in the given MRR then ¢ < j. Analogously let Cj1,...,C), be
the ordered negative clauses. We describe the definition of the block B; for a positive
clause C; (1 <4 < ); blocks for negative clauses are defined symmetrically. We create
an intermediate embedding of B; (which is not yet strong but serves as a template for
a later strong embedding) by putting B; on top of the base gri<ﬂ and adding new ele-
ments to B; and to certain edge blocks in Q. This fixes B; to run through two mirrored
E-shaped sets of grid cells of our choice (Fig. A(D)). In the upper half of the base grid,
B; is assigned to run between rows m — ¢ and m — ¢ + 1. Furthermore, B; is assigned
to three columns leading towards the variable cells from the top. Let x; be a variable
contained in C; and assume that C; is the k-th positive clause from the right connecting

4 The idea of fixing paths to an underlying grid is inspired by Chaplick et al. .



to z; in the embedding of the given MRR. Then B; runs between columns jm — k and
jm — k + 1. In the lower half of the base grid we translate and mirror the resulting
E-shape as follows. We let B; occupy the cells between rows 2m + 2 — [ + ¢ — 1 and
2m+2—1+1 and the three columns are shifted to the left by the number of occurrences
of the respective variable in negative clauses (Fig. A(b)). Since each variable cell is m
columns wide, we can always assign each clause to a unique column of z; in the top
and bottom half of the grid in this way.

We actually fix B; to the base grid by adding one shared element for each crossed
edge of a grid cell to both B; and the respective edge block of Q; that does not share
an element with a vertex block in Qg (recall that {Qg, Q;} contains such a block in
each partition and for each grid edge). No two blocks of the same clause type (positive
or negative) intersect, but blocks of different type do intersect in certain grid cells. For
each grid cell shared between a positive and negative block (except for the n variable
cells) we add one shared element (black dots in Fig. and call the respective grid
cell the home cell for this element. Recall that the orders of the incoming blocks from
the top and the bottom of each variable cell are inverted. Thus, within each variable
cell the blocks of each pair of a positive and negative clause using the corresponding
variable intersect, but no shared element is added. We denote the resulting new pair of
partitions as {Py, P1 }, and observe that its size is polynomial in the size of .

Next we argue about the strong embedding options in contrast to the immediate em-
bedding for a clause block B; in {Py, P; }w- In the intermediate embedding each block
has three connections through variable cells linking the upper E-shape with the lower
E-shape. Any element shared with an edge block of the uniquely embedded base grid
must obviously be reached by the block region of B;. Since the block region must be
simple, any strong embedding of B; results from opening the intermediate embedding
of B; in exactly two grid cells so that the resulting block region of B; is connected and
has no holes. Additionally, a shared element must be placed in any intersection of the
block region of B; with block regions of other clause blocks.

First we assume that ¢ is a satisfiable formula and a satisfying variable assignment
is given. We need to show that {Py, P, }, has a strong embedding. If a variable z; has
the value frue in the given assignment we open all blocks of negative clauses using z;
in the corresponding variable cell; if x; is false we open all blocks of positive clauses
using x;. Thus no blocks intersect in variable cells any more. If a clause contains more
than one true literal, we open all but one connection in its variable cells of true literals.
Since the assignment satisfies ¢, we know that each clause block is opened exactly
twice in its variable cells and thus forms a valid simple block region. Moreover, we
place all shared elements in their home cells so that every block intersection contains
an element and the embedding is strong. We call a strong embedding of {Py, P1 }, with
the above properties a canonical embedding.

Now assume that {Pg, P; }, has a strong embedding. We know that the base grid
has its unique embedding and that each block is embedded as a simple region that
results from opening the intermediate embedding (with its two E-shapes linked through
three variable cells) in exactly two cells. If the embedding is already canonical, we
can immediately construct a satisfying variable assignment for (: if a variable cell is
crossed by clause blocks in Qy we set the variable to true, otherwise we set it to false.



Since every clause block is connected we know that this assignment satisfies all clauses.
If the embedding is not canonical we show that it can be transformed into a canonical
embedding as follows. In a non-canonical embedding it is possible that two blocks B;
and B; intersect in a variable cell z; and have a shared element in their intersection face
in the cell of x;, rather than in the home cell of that element. This means, on the other
hand, that in some shared home cell v of B; and B;, say in the upper half, at least one of
the two blocks is opened (as there is no more shared element to put into an intersection
face). Thus the grid cell ~ splits the E-shaped block region of one or both blocks in the
upper half into two disconnected components, meaning that each opened block crosses
at least two variable cells in order to connect both components via the lower half. Hence
we can safely split any block that is opened in « in the cell of variable x, re-connect it
inside v, and place the shared element of B; and B; into its home cell . This removes
the block intersection in the cell of x;. Once all block crossings within variable cells
are removed, the resulting embedding is a canonical embedding and we can derive the
corresponding satisfying variable assignment. (]

4 Extensions and Conclusion

We have characterized three main embeddability classes for pairs of partitions, which in
fact form a strict hierarchy (see full version [1]), and we have shown NP-completeness
of deciding strong embeddability. From a practical point of view the class of strong
embeddings is of particular interest: it guarantees that every intersection between block
regions is meaningful as it contains at least one element, but, in contrast to full embed-
dings, it allows multiple disconnected intersection regions between the same two blocks
and it allows two blocks to cross.

There are interesting subclasses of strong embeddings that further structure the
space between strong and full embeddability. They are discussed in more detail in the
full version [1]]. In single-intersection strong embeddings we adapt the unique intersec-
tion region condition of full embeddings, but still permit that two blocks cross in the
embedding. This new class is a true subclass of strong embeddings. It is open whether
the corresponding decision problem is still NP-complete since the proof of Theorem
is based on the existence of multiple intersection regions between pairs of blocks. In
strong grid embeddings, a true subclass of single-intersection strong embeddings, the
blocks of Py and P; are embedded as horizontal and vertical ribbons, respectively,
which intersect in a matrix-like fashion.

It is an interesting direction for future work to generalize our embeddability con-
cepts to k > 2 partitions. While weak embeddability and its properties extend readily
to any number of partitions, it is less obvious how to generalize strong and full em-
beddability. One possibility is to require the properties in a pairwise sense; otherwise
constraints for new types of faces in the contour graph belonging to more than one but
less than £ block regions might be necessary. On the practical side, future work could
be the design of algorithms that find visually appealing simultaneous embeddings of
two or more partitions. Finally, if the partitions are clusterings on a graph, one would
ideally want to simultaneously draw both the partitions and the underlying graphs.
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