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Abstract. Overlay applications are popular as they provide high-level functionality by masking
the intrinsic complexity of the underlay network. However, overlays rely on the underlay to pro-
vide them with basic connectivity. Therefore, the intrinsic features of the underlay network deter-
mine the efficiency of the overlay. Accordingly, studying the interdependency of the overlay and
underlay networks leads to a better understanding of overlay application behaviour. We present a
visualization-driven analysis technique for evaluating the overlay architecture with respect to the
underlay, inspired by the goal of overlay engineering. Using Gnutella as a case study, our analysis
confirms that Gnutella topology differs from a randomly generated network and that there is an
implicit correlation between the overlay and underlay topologies.

1 Introduction

In recent times, the design of many real-world applications has changed from a mono-
lithic structure to modular, yet highly customizable services. As an implementation
from scratch is usually too time-consuming and expensive, these services are superim-
posed as an overlay on an already existing underlay infrastructure.

A well-known example arises in logistics. The highways and streets we use every-
day constitute a huge transport network. However, traffic in this network is far from
structured. In fact, countless companies and institutions rely on this network to accom-
plish their regular shipping of commodities and services, and by doing so, they cause
the traffic on the road network to develop in certain patterns. In technical terms the
road network constitutes an underlay network while the commodity exchange network
of a set of companies implicitly building upon this network forms an overlay network.
The overlay network uses the underlay to actually realize its tasks.

Another underlay network of prime interest is the Internet, which serves as the
workhorse of countless data transfers, multimedia services and filesharing protocols.
Almost anytime we use the Internet, we participate in some overlay network that uses
the physical Internet (comprised of routers, links, cables, wires) to actually convey
the data packets. Interestingly enough, the Internet itself is an overlay built over the
telephone network underlay. Within the Internet, a particular breed of overlays that
has received a lot of attention lately are peer-to-peer (P2P) applications [25], which
range from file-sharing systems like Gnutella and Bittorrent, to real-time multimedia
streaming like IPTV, to VoIP phone systems like Skype and GoogleTalk. To get a
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better perspective on the importance of overlays in our life, consider that the mentioned
Internet applications currently comprise almost 75% of Internet traffic [15] and will
continue to dominate the Internet in the next generation, collectively referred to as
Web2.0. Such is the effect of overlays in today’s Internet, that many studies [27] have
contemplated that the underlay (physical Internet infrastructure) will just become a bit-
pipe and almost all services employed by us will be realised through overlays, which
will interact with the underlay as well as different overlays running over the same
underlay.

Clearly, there is a crucial interdependence between overlay and underlay networks.
In particular, the emergence of overly networks heavily affects and poses new require-
ments on the underlay. The major advantage of overlays is that they provide high-level
functionality while masking the intrinsic complexity of the implementation realized
in the underlay structure. However, this abstraction entails a certain trade-off, namely
independence versus performance. To gain a deeper understanding of the interdepen-
dency between the overlay and the underlay, this trade-off needs to be included in the
corresponding analysis.

Due to the explosive growth of P2P file sharing applications with respect to to-
tal Internet traffic [25], there has been an unprecedented interest in their analysis [2,
3,23]. There have also been attempts to investigate the overlay-underlay correlations
in P2P systems. Using game theoretic models, [18] studies the interaction between
overlay routing and traffic engineering within an Autonomous System (AS). An anal-
ysis of routing around link failures [23] finds that tuning underlay routing parameters
improves overlay performance. Most investigations tend to point out that the overlay
topology does not appear to be correlated with the underlay (e.g., [2]), but the routing
dynamics of the underlay do affect the overlay in ways not yet well understood. To
address the apparent lack of overlay-underlay correlation, some schemes, e.g. [19, 20],
have been proposed. More recently, [3] has made a case for collaboration between
ISPs and P2P systems as a win-win solution for both.

In this paper, we approach the problem of modelling overlay-underlay correlations
using a visualization-driven approach [7], to analyze the overlay in the context of the
underlay network. We briefly survey techniques from analytic visualzation and present
the used approaches in Section 2. In the following Section 3 our theoretical model
is introduced, alongside some examples. We then demonstrate the application of our
technique on a case study to study the correlation of Gnutella with the AS network,
as well as to compare Gnutella with a random network in Section 4. We first explain
how we sample the P2P network, followed by a comparison of the P2P network with
random networks. After pointing out several possible directions for sensitivity analysis
of the artificial generation of communications, we conclude in Section 5.

2 Analytic Visualization

Sets of data arising in a diversity of research areas exhibit a growing degree of com-
plexity and depth of properties. In addition to their automatic procession, one of the
central emerging challenges is the combination of extracting relevant information from
the data and at the same time, representing it in a way well-perceivable by a human.
Traditionally these two aspects are handled separately: data analysis and its more spe-



cific subject of network analysis concerns itself with the identification and the com-
putation of relevant pieces of information; while visualization focuses on perceivable
representations of networks. However, a fusion of the corresponding techniques sup-
ports the intuitive perception of known facts and enables the discovery of novel and
yet unknown characteristics. Many network analysis techniques highly benefit from,
or even depend on such information about structural properties of a network, in order
to properly guide or find starting points for an analysis.

Along the more general issues in the field of information visualization, visualiza-
tions of large networks naturally (and specifically) suffer a trade-off between the level
of detail and the amount of visible information. In other words, a detailed represen-
tation of a graph often antagonizes the immediate perceptibility of abstract analytic
information. A key task of the analytic visualization of complex networks is to tackle
the task of detailing a visualization while supporting high readability.

2.1 Decompostition Techniques

A common approach many visualization techniques rely on, is to decompose the input
network in order to extract the general structure which then serves as a blueprint for
the drawing technique. Generally this leads to the task of partitioning or clustering the
network, which is a field of ample diversity. For an overview of clustering techniques
we refer the reader to [8].

A concept related to density-based clustering is cores [5,24], which yield a hier-
archical decomposition of the network and can be computed in linear runtime with a
simple implementation, in contrast to many other clustering techniques. Briefly, the k-
core of an undirected graph is defined as the unique subgraph obtained by recursively
removing all nodes of degree less than k. A node has coreness /, if it belongs to the
¢-core but not to the (/+1)-core. The ¢-shell is the collection of all nodes having core-
ness /. The core of a graph is the non-empty k-core such that the (k+ 1)-core is empty.
Generally the core decomposition of a graph results in disconnected sub-graphs, but
in the case of the Internet Autonomous System (AS) network we observe that all k-
cores stay connected, which is a good feature regarding connectivity. Cores have been
frequently used for network analysis, e. g., [10, 11], due to the fact that cores can be
computed efficiently in linear time and space.

2.2 Approaches to Analytic Visualization

In the past, several layout techniques have been developed driven by the ambitious
goal to properly visualize complex networks such as the AS network. Two important
approaches are the landscape metaphor [7] and network fingerprinting [4], examples of
which are shown in Fig. 1 and Fig. 2, respectively. Introduced by Baur et al., the former
modifies a conventional layout technique by a framework of underlying constraints
that are based on analytic properties. The global shape of the network is induced by
the position of structurally important elements, which automatically conceal inferior
parts. Thus, it reflects the ‘landscape’ of importance, either in two or three dimensions.
The latter approach, LaNet-vi [4] uses analytic properties to define a suitable global
shape, which in this case consists of concentric rings of varying thickness, one for each
level of the core-decomposition (see Section 2.3). Then, the elements of the network



Fig. 1. A 2.5-dimensional layout of the AS network, uti- Fig.2. A fingerprint of the AS network made with
lizing the landscape metaphor [7]. LaNet-vi [4].

are placed within these bounds while the overall readability is achieved by showing
only a small sample of the edge set.

The nature of the above layout techniques is popularly referred to as a net-
work fingerprint. Such pseudo-abstract visualizations offer great informative poten-
tial by setting analytic characteristics of a network into the context of its struc-
ture, revealing numerous traits at a glance. A fingerprint drawing technique that
focuses on the connectivity properties of a network decomposition has been pre-
sented in [13]. This approach, coined LunarVis lays out each set of a decompo-
sition individually inside the segments of an annulus. An example using depart-
ments as the decomposition of a large set of coworkers is given in Figure 3.
The rough layout of LunarVis
is defined by analytic proper-
ties of the decomposition, allow-
ing the graph structure to de-
termine the details. By virtue
of a sophisticated application of
force-directed node placement,
individual nodes inside annular
segments reflect global and lo-
cal characteristics of adjacency
while the inside of the annulus
offers space for the exhibition of
the edge distribution.

Figure 4 is a visualization of
the NLANR web caching hierar- Fig. 3. Visua}lizaltion of a .IletW.O{k of email contacts. Nodes represent
computer scientists at Universitit Karlsruhe and edges are email con-

chy, created with the tool Plank-  tacts. The network is decomposed by departments, color indicates the
ton [1], which displays all nodes degree of the nodes, (red = high), while their size indicate their be-

and edges of the NSF-sponsored t™eenness centrality.

web caching network. This is an example of a highly application-specific approach
of analytic visualization. Although it has the look and feel of classic force-directed
methods (for an overview see [6]), it exploits the strongly hierarchical nature of this
particular network, and its relatively small size to directly determine a node’s position.
The low asymptotic complexity of the algorithm allows for an interactive emphasis



of geographical or topological properties, and for the visualization of temporal evolu-
tions. Figure 5 displays 50 stock prices from the Frankfurt stock index over a period

Fig. 4. Visualization of the growth and topology of the Fig.5. Circle Segments [14] are used for visualizing
NLANR caching hierarchy with Plankton [1] multidimensional data sets. Here, about 265000 data
values are drawn.

of 10 years. Thus, no actual graph is depicted, however, the drawing techniques from
the field of information visualization are related to the approaches in network analysis
since they share a set of crucial goals such as the readability of analytic properties of
the input data. Naturally, these two fields influence each other (for an introduction into
information visualization, see [16] or [28]). The so called pixel-per-value technique
in Figure 5 fills each segment with one dimension of the data (i.e. one stock item),
starting from the inside and coloring pixels according to the stock value.

2.3 Employed Techniques

The techniques presented in the past section have been applied in numerous tasks,
serving as an aid in network analyses. In this section, we describe the two visualiza-
tion techniques in more detail, that helped us immensely in the identification of key
features during our analyses. The two techniques, LunarVis [13] and the landscape
metaphor [7], both highlight a given hierarchical decomposition of the network while
displaying all nodes and edges. We use the concept of cores for the required hierarchi-
cal decomposition of the network.

The first technique employing the concept of cores was proposed by Baur
et.al. in [7]. More precisely, their algorithm lays out the graph incrementally start-
ing from the innermost shell, iteratively adding the lower shells. Their implementation
uses core decomposition and a combination of spectral and force-directed layout tech-
niques. A successful application of this visualization technique compares actual AS
graphs with generated AS graphs. The obtained layouts clearly reveal structural differ-
ences between the networks. In the following we shall mosly use top-down views of
these 2.5-dimensional drawings.

Roughly speaking, the algorithm of LunarVis splits up into three distinct phases,
the first of which sets out the abstract layout attributes of the annular layout, such as the



number of segments, their dimension and their placement. In our analysis we will again
use core decomposition. Based on these abstract layout attributes, a heuristic computa-
tion of suitable parameters follows, which will then be employed in the third and final
step. This last, and by far the most intricate and computationally demanding step can
be regarded as an iterative, segment-wise application of spring forces. These forces
determine the final placement of each single node based on neighborhood attraction
and repulsion both inside and between segments.

In the end, the annulus is
scaled to the desired angular
range and radial spreading and
finally edges are drwans as
straight lines with a high degree
of transparency. Optionally, the
size of a node and its color may
serve as additional dimensions
of information, yet ample use of
these potentially overburdens a
visualization.

Combined  with  well-
perceivable attributes, such as
the size and the color of a node,

the layouts made with LunarVis _ o .

. Fig.6. An example visualization of the core decomposition (seg-
offer remarkable readability of ments) of the AS network using LunarVis. Each nodes represent an
the decompositional connectiv- AS with size and color reflecting the size of its IP-space. Angular and
ity and are capable of revealing radial extent of a segment reflect the number of nodes and intra-shell

.. edges respectively.
subtle structural characteristics.
The key to this is the fact that the individual position of a node indicates both its affilia-
tion inside its own segment as well as its tendency of neighborhood to other segments.
Figure 6 shows an example of a LunarVis drawing of the AS network. Mentioning
only one of the observable insights, note the extremely large AS (upper left red node)
in the minimum shell.

3 Modelling Underlays and Overlays

In this section, we introduce our model and methodology for analyzing the relation
between under- and overlays as well as a first discussion about different modelling
aspects.

Basically, an overlay consists of network structure that is embedded onto another
one. More precisely, each node of the overlay is hosted by a node in the underlay and
every edge of the overlay induces at least one path between the hosting nodes (in the
underlay) of its end-nodes. The formal definition is given in Definition 1.

Definition 1. An overlay is given by a four-tuple 0 := (G,G’, ¢, x), where

- G=(V,E,w) and G' = (V' ,E',®") are two weighted graphs with ®: E — R
and ' : E' — R,
- ¢:V — V' is amapping of the nodes of G into the nodeset of G', and



- w: E — {p| pis a (un-/directed) path in G'} is a mapping of edges in G to paths
in G' such that {source(m({u,v})),target(w({u,v}))} = {o(u), o (v) }.

The interpretation of Definition 1 is that G models the overlay network itself, the
graph G’ corresponds to the hosting underlay, and the two mappings establish the
connection between the two graphs. An example is given in Figure 7. Since direct

communication in the overlay G communication in the overlay G
// é‘\\\ / // é,\\\ /
// T & / // T o ///
/ o—o :>< y Vs / / o—@ i g //
/ o— o / /S8 2] //
/ @ / / ® /
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/| —_— /// /// ///
// \\\ / / AN /
Y ~ / Yy /
/ \ / / \ /
Y, \ / / \ /
/ —H—H, / 4 /
underlying network G' underlying network G'

(a) Both networks G and G’ with the mapping ¢. (b) Highlighting one edge e in G and the corre-
sponding path 7(e) in G'.

Fig. 7. Example of an overlay € := (G,G’, ¢, 7). The mapping ¢ is represented by dash lines between nodes in G
and G'.

communications in the overlay, which corresponds to the edges of G, are realized by
routing information along certain paths in G’, not all parts of the underlay graph are
equally important. In order to focus on the relevant parts, we associate an induced
underlay with an overlay. The corresponding definition below.

Definition 2. Given an overlay 0 := (G = (V,E,®),G' = (V' ,E',®'), ¢, 7). The in-
duced underlay ¢ := H := (V" E"  ®") is a weighted graph, where

- V":={veV'|Je€E: n(e) contains v},
- E":={¢ €E'"|Je € E: n(e) contains e}, and
- o"(e):= Y w(e)- ¢ contained in 7(e)).

eck

The weight function @" is also called appearance weight.

The definition of @” is given in the Iverson Notation [17]. The term inside the squared
parentheses is a logical statement and depending on its value, the term evaluates to 1 if
its value is true, and to O otherwise. In other words, the induced underlay corresponds
to the subgraph of the underlay graph that is required to establish the communication
in the overlay graph. Note that the defined weight can be interpreted as the load caused
by the communication and thus is independent of a weighting in the underlay network.

3.1 Analysis of Overlays

In the analysis of overlays, we focus on two important aspects: the identification of key
features with respect to the underlay and the comparison of different overlays.



The first part, the identification of key features, consists of standard tasks of net-
work analysis, e.g., determining important and relevant nodes or edges, clustering
nodes with similar patterns, and detecting unusual constellations. As existing tech-
niques can be applied to the overlay network and the induced underlay, these standard
tasks are reasonably well understood in the case of the analysis of a single network.
However, these techniques do not incorporate the relationship between the two net-
works. An example showing such dependencies is given in Figure 8 with the corre-
sponding information about the degrees in Table 1. For illustration, we use the degree,

A B A B
—\
LN Iz L
[¢] [¢]
(=] []lE E
[+] [2]
=] 2]
D C D C
(a) star topology (b) path topology

Fig. 8. Examples of two overlays where only the topology in the underlay network G’ changes. Nodes in the overlay
network are numbered with integers and edges are drawn blue, while nodes in the underlay network are labeled with
characters and edges are drawn black. In both cases the routing 7 is done via shortest-path scheme.

property AB|C|D|E
number of hosting nodes 1|1{1]1]8
number of edge in the overlay network having|[3|3|3 |3 |12
an end-node in the node

UN weighted degree (star top.) 1|1{1]1]4
UN weighted degree (path top.) 112|221
IU weighted degree (star top.) 313(3(3(12
IU weighted degree (path top.) 319(15(21{12

Table 1. Table with degree information of the examples given in Figure 8. The weighted degree correspondes to the
weighted degree in the underlay network (UN) and the induced underlay (IU), respectively.

which is a popular feature, however, these observations carry over to other character-
istics as well. First note that the number of hosting nodes and the number of commu-
nications a node in the underlay participates in gives a first impression about its role
in the network. Both pieces of information can be read off the overlay graph G. How-
ever, they are completely independent from the routing structure in the underlay. As
the example illustrates, the degree of a node (in the induced underlay) heavily depends



on the routing structure. In the case of the star topology, both the weighted degree
in the underlying network and in the induced underlay are fairly similar, here they
are even proportional and clearly identify the center node of the star to be central for
the network. The situation drastically changes when using a path topology. Although
all communications start/terminate at node E, it is not very central. The nodes C and
D take on very active roles, due to the fact that most/all communication has to be
routed through them. In many cases, the information provided by the induced underlay
sufficiently codes the relation between the overlay and underlay networks, while still
enabling us to use standard notation of network analysis. On the other hand, there are
some scenarios where the provided view is too coarse. For example, it could make a
difference, whether a heavy edge is caused by a single heavy communication or by
a multitude of small communications or, conversely, whether all communication of a
node in the induced underlay have only one target in the overlay or are distributed over
many targets.

One motivation for identifying key features is to build a proper model that can be
used for extensive simulations. For example, simulations are used to predict scaling
behavior or to experimentally validate heuristics, enhancements, or novel techniques.
As such, it is a major issue to structurally compare different overlays with each other.
On the one hand, our model already reflects all dependencies between the underlay and
the overlay network and, thus, it does not require the underlay network, embedding, or
routing to be fixed for different instances. On the other hand, due to this elaboration of
our model, a simple matching of nodes or edges will not suffice. Our idea is to match
key features. For example, one can try to match the appearance weight of an edge with
structural properties of its end-nodes. If both overlays have a sufficient number of such
matches, it is reasonable to assume that they are created by the same mechanism.

Both parts, the identification of key features and the comparison of overlays, benefit
from proper analytic visualizations that emphasize relevant aspects of the correspond-
ing networks. Before presenting two visualization techniques (Section 2), we briefly
demonstrate our model and methodology with some experimentally generated exam-
ples.

3.2 Examples

In the following, we demonstrate our model and methodology with simple examples.
Before looking at a specific overlay, we give two further intuitions.

First, assume a fixed given underlying network. The overlay communication can
thus be interpreted as a sampling process of pairs in the underlay. Depending on the
application, different patterns occur. For example, in services such as Internet broad-
cast, one can expect few highly active nodes, which correspond to the hosts of the
service while the majority of nodes participate in only a few communications. Us-
ing the induced underlay, we can extract such patterns and reconstruct the sampling
parameters. Second, assume the underlying network is unknown and acts as a black
box, i. e., no information about routing policy and so on is available. By choosing uni-
formly at random a sample with sufficiently many communications as the overlay, we
can not only discover the underlay, but also partly reverse engineer the routing mech-
anism of 7. In the special case that the overlay network is complete, i.e., every pair



of node is connected, the appearance weight of the induced underlay is proportional to
the (edge-)betweenness of the original underlying network.

As an example, we consider an underlying network with 17 nodes and a 3-cycle
topology, i.e., nodes are cyclic-ordered and each node is connected to 3 of its imme-
diate predecessors and successors. Traffic is routed using shortest path scheme. For
simplicity, we set the nodeset of the overlay network to the nodeset of the underlay
and thus ¢ to be the identity function. We define two overlays: the first one & (uni-
form sampling) uses uniformly at random selected pairs of nodes for communication,
while in the second overlay &, (star-like sampling) the communication takes place
between three predefined nodes and all other nodes chosen uniformly at random. The
resulting induced underlays are displayed in Figure 9. As can be clearly seen, the short-

(a) uniform sampling (b) star-like sampling

Fig. 9. Example of induced underlays for different overlay networks in the same underlying network. In the left
figure, the communication is uniformly at random distributed over the network and the color codes the (relative)
amount of participation. In the right figure, all communications use at least on red node and select the other uni-
formly at random. In both cases, the thickness of an edge corresponds to the appearance weight.

cuts, i.e., edges that connect two nodes that have a distance of order three, have the
largest appearance weight and all other edges have relatively small weights for the
uniform sampling. This is not surprising as the appearance weight corresponds to the
betweenness of edges. The situation drastically changes, when modifying the sampling
mechanism. As in the case of the induced underlay of &, the edges relatively close
to the initial set have large weights and edges far away have small weights or do not
appear at all. For example, the non-existence of the edges {9, 10} is due to the fact
that no shortest path between a red node and any other node uses that edge. On the
other hand, the edge {6,7} is contained in a shortest path, namely between 3 and 7.
However, its absence reveals certain aspects of the underlay routing, i.e., the routing
between 3 and 7 will either use the path (3,4,7) or (3,5,7), but never the path (3,6,7).

The above examples showcase the ability of this model to scrutinize an overlay
application in the context of the required underlay functionality. This is particularly
powerful, if a lot of background knowledge about the underlay is at hand. Analytic
visualizations lend themselves well to this kind of analysis, since they are capable of
visually correlating diverse analytic properties.



4 Case Study: Overlay Graphs of P2P systems

In this section, we exemplify our analysis technique with a case study of a P2P overlay.
For our analysis we choose Gnutella [12], an unstructured file-sharing system which
relies on flooding connectivity pings and search queries to locate content. Each mes-
sage carries a TTL (time to live) and message ID tag. To improve scalability, nodes are
classified in a two-level hierarchy, with high-performance ultrapeer nodes maintaining
the overlay structure by connecting with each other and forwarding only the relevant
messages to a small number of shielded leaf nodes. Responses to pings and queries
are cached, and frequent pinging or repeated searching can lead to disconnection from
network. More details about Gnutella can be found at [12].

4.1 Sampling and Modelling the P2P Network

In order to analyze the overlay structure, we first need to identify a representative set
of connections, called edges, between nodes in the P2P network. To reduce the bias in
our sample, we identify edges where neither of the two end-nodes is controlled by us.
We refer to such nodes as remote neighbor servents.

Due to message caching and massive churn in P2P networks (we measured the
median incoming/outgoing connection duration to be 0.75/0.98 seconds), a simple
crawling approach using pings, e.g., as employed in [22], is not sufficient. However,
pings identify nodes that should have been remote neighbor servents at some point.

We thus deploy a combination of active and passive techniques to explore the
Gnutella network [2]. Our passive approach consists of an ultrapeer that participates
in the network and is attractive to connect to. It shares 100 randomly generated music
files (totalling 300 MB in size) and maintains 60 simultaneous connections to other
servents. The passive approach gives us a list of active servents. The active approach
consists of a multiple-client crawler that uses ping with TTL 2 to obtain a list of candi-
date servents. Since queries are difficult to cache, we use queries with TTL 2 to obtain
a set of remote neighbor servents. These servents are then contacted actively to further
advance the network exploration. This approach allows us to discover P2P edges that
existed at a very recent point of time. When interacting with other servents, our crawler
pretends to be a long-running ultrapeer, answering incoming messages, sharing con-
tent, and behaving non-intrusively. This pragmatic behaviour avoids bans. The client
uses query messages with broad search strings, e.g., mp3, avi, rar to obtain maximum
results. We then combine active and passive approaches by integrating the crawler into
the passive ultrapeer.

Using this setup, we sample the Gnutella network for one week starting on April 14,
2005. The ultrapeer logs 352,396 sessions and the crawler discovers 234,984 remote
neighbor servents, a figure significantly higher than most reported results during this
period. For each edge of the Gnutella network we map the IP addresses of the Gnutella
peers to ASes using the BGP table dumps offered by Routeviews [21] during the week
of April 14, 2005. This results in 2964 unique AS edges involving 754 ASes, after
duplicate elimination and ignoring P2P edges inside an AS. For the random graph
we pick end-points at the IP level by randomly choosing two valid IP addresses from
the whole IP space. These edges are then mapped to ASes in the same manner as
for the Gnutella edges. This results in 4975 unique edges involving 2095 ASes for



the random network at the AS graph level. The different sizes of the graphs are a
result of the generation process: we generate the same number of IP pairs for random
network as observed in Gnutella, and apply the same mapping technique to both data
sets, which abstracts the graph of IPs and direct communcation edges to a graph with
ASes as nodes and the likely underlay communcation path as edges. This way, the
characteristics of Gnutella are better reflected than by directly generating a random AS
network of the same size as Gnutella network.

For our analysis, we apply the model and methodology from Section 3 as follows.
The overlay & = (G,G’, ¢, ) as given in Definition 1 uses the direct communication
in Gnutella as graph G, the graph G’ corresponds to the hosting Internet, in our case
at the AS level. The mapping ¢ corresponds to the IP to AS mapping, while 7 de-
notes routing in the AS network. Apart from the already introduced induced underlay,
we also investigate the network of direct overlay communication, yet abstracted to the
level of ASes in order to be comparable to the induced underlay. Note that in a simpli-
fied model, where each communication causes uniform costs, the appearance weight
in the induced underlay (@") corresponds to the total load caused by the overlay rout-
ing in the underlay network. As exact traffic measurements on each underlay link are
non-trivial, this can be interpreted as an estimate of the actual load on underlay links
due to the overlay traffic.

4.2 Overlay-Underlay Correlation in a P2P system

Figure 10 shows visualizations of the direct overlay communication of both the
Gnutella network and a random network. Employing the LunarVis [13] technique de-
scribed in Section 2, these drawings focus on the decompositional properties of the
core hierarchy. Numerous observations can be made by comparing the two visualiza-

(a) P2P network (b) Random network

Fig. 10. Visualization of the core decomposition of the overlay communication networks. Core-shells are drawn
into annular segments, with the 1-shell at the upper left. Angular and radial extent of a segment reflect the number
of nodes and intra-shell edges respectively. Inside each shell nodes are drawn towards their adjacencies. Colours
represent the degree of a node while the size represents their betweenness centrality. Edges are drawn with 10%
opacity and range from blue (small weight) to red (large weight).

tions. Note, first, the striking lack of intra-shell edges for all but the maximum shell in



the Gnutella network (small radial extent). This is also true for edges between shells,
as almost all edges are incident to the maximum shell. This means that almost always
at least one communication partner is in the maximum shell, a strongly hierarchical
pattern that the random network does not exhibit to this degree. Note furthermore that
in Gnutella, betweenness centrality (size of a node) correlates well with coreness, a
consequence of the strong and deep core hierarchy, whereas in the random network the
two- and even the one-shell already contain nodes with high centrality, indicating that
many peerings heavily rely on low-shell ASes. The depth of the Gnutella hierarchy (26
levels) strongly suggests a strongly connected network kernel of ultrapeers, which are
of prime importance to the connectivity of the whole P2P network. However, note that
the distribution of degrees (node colors) does not exhibit any unusual traits and that no
heavy edges are incident to low-shell ASes, in either network.

Figure 11 visualizes the induced underlay communication of both the Gnutella
network and a random network, employing the same technique and parameters as in
Figure 10. The drawings immediately indicate the much smaller number of ASes and

(a) P2P network (b) Random network

Fig. 11. Visualization of the core decomposition of the induced underly communication network. These drawings
use the same parameters as Figure 10

overlay nodes in the Gnutella network. As a consequence, more heavy edges (red)
exist and the variance in the appearance weigth (edge color) is more pronounced. This
is because of the fact that not all the ASes host P2P users (this is in accordance with
our measurements in Section 4.1), as is the case for the random network. Again, the
distributions of degrees do not differ significantly.

For a closer comparison, Figure 12 shows a top-down view of the visualizations
of communication edges in Gnutella and random network. The visualization technique
places nodes with dense neighborhoods (tier-1 and tier-2 ASes) towards the center,
and nodes with lesser degrees (tier-3 customer ASes) towards the periphery. We can
observe that while both networks have many nodes with large degrees in the center, the
random network possesses several nodes with large degree in the periphery. Gnutella,
on the other hand, has almost no nodes with large degree in the periphery in both
models. Moreover, this pattern is more pronounced for Gnutella in the direct overlay



(a) Gnutella (b) random network

Fig. 12. Comparison of occuring communication in the P2P network and the Random network, using visualization,
see Section 2.
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Fig. 13. Comparing appearance weight with minimum and maximum degree and coreness of the corresponding end-
nodes in Gnutella and the random network. Each data point represents an edge, the x-axis denotes the appearance
weight and the y-axis reflects the degrees (coreness) of the end-nodes. All axes use logarithmic scale.

communication model, while the random network is largely similar in both models. In
other words, it appears that Gnutella peering connections tend to lie in ASes in the core
of the Internet where there may be high-bandwidth links available.

To further corroborate our observations, we investigate structural dependencies be-
tween the induced underlay communication model and the actual underlay network, by
comparing the appearance weight with node-structural properties of the corresponding
end-nodes in the original underlay. We focus on the properties degree and coreness, as
both have been successfully applied for the extraction of customer-provider relation-
ship as well as visualization [26, 10], due to the ability of these properties to reflect
the importance of ASes. We systematically compare the weight of an edge with the



minimum and maximum degree and coreness of its end-nodes. Figure 13 shows the
corresponding plots.

From the plots of minimum and maximum degree, it is apparent that the appearance
weight of an edge and its end-nodes’ degrees are not correlated in both the Gnutella
and the random network, as no pattern is observable. Also, the distributions are similar
as the majority of edges are located in the periphery of the network where the maxi-
mum degree of the end-nodes is small. We thus hypothesize that the relation of load
in the P2P network and node degree in the underlying network is the same in both
the Gnutella and the random network. In other words, the Gnutella network does not
appear to be significantly affected by the node degree of underlay nodes.

However, considering the coreness reveals interesting observations. From the
graphs of minimum and maximum coreness in Figure 13, we can observe that although
there 1s no correlation in either of the two networks, their distributions are different. In
the random network the distributions are very uniform, which is a reflection of its ran-
dom nature. But in the case of Gnutella almost no heavy edge is incident to a node with
small coreness, as can be seen in the minimum-coreness diagram. Positively speaking,
most edges with large appearance weights are incident to nodes with large minimum
coreness. Interpreting coreness as importance of an AS, these Gnutella edges are lo-
cated in the backbone of the Internet, an important observation. The same diagram for
the random network does not yield a similar significant distribution, thus denying a
comparable interpretation. For instance, in the random network, there exist edges lo-
cated in the periphery that are heavily loaded. As an aside, backbone edges need not
necessarily be heavily loaded in either network.

All these observations and analyses show that the Gnutella network differs from
random networks and there appears to be some correlation of the Gnutella topology
with the Internet underlay.

4.3 Engineering Approaches to Generate Appropriate Communication Models

The analyses conducted in Section 4.2 suggest that a modified generation process is
necessary for a more appropriate simulation of Gnutella communication. Speaking in
terms of engineering, this closes the cycle of development and leads to a stage of re-
designing.

There are different reasons for the observed behaviour, some of which are outside
our scope of modelling. For example, the overall communication might be random,
but respecting a certain popularity of user content. Thus, naturally, users having much
popular content participate in more communications than others. By introducing a bias
in the random generation, e.g. assigning weights to nodes, we can incorporate such
preferences. A disadvantage of this approach is that it is even harder to obtain realistic
estimates for such bias than collecting structural information about the P2P network
itself.

As a variation, we propose bias based on graph-structural properties of the overlay
and underlay networks, which corresponds to aspects of the infrastructure (instead of
content). Such a structural property could be coreness, which reflects the importance of
anode in the AS network. Thus, preferring nodes in the overlay that are located in ASes
with low coreness models the selection of end-users/customers. Such an analysis has



been conducted in [9]. Furthermore variations of this kind can constitute new protocols
for which the performance can be evaluated using our model.

5 Conclusion

In this paper, we present a novel model and technique to analyze the overlay in the
context of the underlying network. The major focus of our analysis is the identification
of key features as well as the structural comparison between different overlays. More
precisely, we transform the overlay to a corresponding subgraph in the underlying
network that is crucial for the functionality required by the overlay.

The driving force behind this work is the engineering of overlays which is demon-
strated using a case study of the real-world Gnutella network. On the one hand, our
analysis reveals differences between the measured Gnutella and experimental mimics
that are founded on the same principles and prerequisites. On the other hand, by re-
peatedly modifying and adjusting the corresponding generation process, based on the
insights obtained through detailed analysis and visualization, we are able to deepen our
understanding of the real-world instance. In addition, we identify certain artefacts that
incite further research. More precisely, our extensive case study incorporates existing
visualization techniques for the underlying Internet and establishes that while overlay
networks like Gnutella use an arbitrary neighborhood selection process, their topology
differs from randomly generated networks.

Our methodology of analyzing the overlays and underlays supported by analytic
visualizations offers a powerful and flexible tool in the general engineering process of
overlays, which will continue to dominate many spheres of life for times to come!
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