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Abstract. We study hierarchical hub labelings for computing shortest
paths. Our new theoretical insights into the structure of hierarchical
labels lead to faster preprocessing algorithms, making the labeling ap-
proach practical for a wider class of graphs. We also find smaller labels
for road networks, improving the query speed.

1 Introduction

Computing point-to-point shortest paths in a graph is a fundamental problem
with many applications. Dijkstra’s algorithm [14] solves this problem in near-
linear time [18], but for some graph classes sublinear-time queries are possible
if preprocessing is allowed (e.g., [12, 16]). In particular, Gavoille et al.’s distance
labeling algorithm [16] precomputes a label for each vertex such that the distance
between any two vertices s and t can be computed given only their labels. A
special case is hub labeling (HL), where the label of each vertex u consists of a
collection of vertices (the hubs of u) with their distances to or from u. Labels
obey the cover property : for any two vertices s and t, there exists a vertex w on
the shortest s–t path that belongs to both labels (of s and t). Cohen at al. [9]
give a polynomial-time algorithm to approximate the smallest labeling within
a factor of O(log n), where n is the number of vertices. The average label size
can be quite large (Ω( 3

√
n) even for planar graphs [16]), but not always. On

real-world DAG-like graphs, for instances, labels are quite small in practice [8].
Abraham et al. [4] conjecture that road networks have a small highway di-

mension, and show that if the highway dimension is polylogarithmic, so is the
label size. This motivated the experimental study of labels for road networks.
Unfortunately, preprocessing algorithms with theoretical guarantees on the label
size run in Ω(n4) time [9, 4, 1], which is impractical for all but small graphs. In
previous work [2], we showed how to compute labels for road networks based on
contraction hierarchies (CH) [17], an existing preprocessing-based shortest path
algorithm. The resulting labels are unexpectedly small [2], with average size 85
on a graph of Western Europe [13] with 18 million vertices. The corresponding
query algorithm is the fastest currently known for road networks.

In this paper we study hierarchical hub labelings, a natural special case where
the relationship “vertex v is in the label of vertex w” defines a partial order on
the vertices. We obtain theoretical insights into the structure of hierarchical
labelings and their relationship to vertex orderings. In particular, we show that



for every total order there is a minimum hierarchical labeling. We use the theory
to develop efficient algorithms for computing the minimum labeling from an
ordering, and for computing orderings which yield small labelings. We also show
that CH and hierarchical labelings are closely related and obtain new top-down
CH preprocessing algorithms that lead to faster CH queries.

Our experimental study shows that our new label-generation algorithms are
more efficient and compute labels for graphs that previous algorithms could not
handle. For several graph classes (not only road networks), the labels are small
enough to make HL the fastest distance oracle in practice. Furthermore, the new
algorithms compute smaller labels; in particular, we reduce the average label size
for Western Europe from 85 to 69, accelerating the fastest method by 8%.

This paper is organized as follows. After settling preliminaries in Section 2,
Section 3 considers the relationship between vertex orderings and hierarchical
labelings. Section 4 presents several techniques for computing vertex orderings,
and Section 5 shows how to compute labels from orderings. Section 6 studies the
relationship between labelings and CH, while Section 7 presents our experimental
evaluation. Section 8 contains concluding remarks. Details omitted due to space
constraints can be found in the full version of this paper [3].

2 Preliminaries

The input to the shortest path problem is a graph G = (V,A), with |V | = n,
|A| = m, and length `(a) > 0 for each arc a. The length of a path P in G is the
sum of its arc lengths. The point-to-point problem (a query) is, given a source
s and a target t, to find the distance dist(s, t) between them, i.e., the length of
the shortest path Pst between s and t in G. We assume that shortest paths are
unique, which we can enforce by breaking ties consistently.

The standard solution to this problem is Dijkstra’s algorithm [14]. It builds
a shortest path tree by processing vertices in increasing order of distance from s.
For every vertex v, it maintains the length d(v) of the shortest s–v path found
so far, as well as the predecessor p(v) of v on the path. Initially d(s) = 0,
d(v) =∞ for all other vertices, and p(v) = null for all v. At each step, a vertex
v with minimum d(v) value is extracted from a priority queue and scanned : for
each arc (v, w) ∈ A, if d(v) + `(v, w) < d(w), we set d(w) = d(v) + `(v, w)
and p(v) = w. The algorithm terminates when all vertices have been processed.
Dijkstra’s worst-case running time, denoted by Dij(G), is O(m+ n log n) [15] in
the comparison model, and even better in weaker models [18].

For some applications, even linear time is too slow. For faster queries, labeling
algorithms preprocess the graph and store a label with each vertex; the s–t
distance can be computed from the labels of s and t. Our focus is on hub labeling
(HL), a special case. For each vertex v ∈ V , HL builds a forward label Lf (v)
and a backward label Lb(v). The forward label Lf (v) consists of a sequence of
pairs (u,dist(v, u)), where u is a vertex (a hub in this context). Similarly, Lb(v)
consists of pairs (u,dist(u, v)). Note that the hubs in the forward and backward
labels of u may differ. Collectively, the labels obey the cover property : for any
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two vertices s and t, Lf (s)∩Lb(t) must contain at least one vertex on the shortest
s–t path. For an s–t query, among all vertices u ∈ Lf (s)∩Lb(t) we pick the one
minimizing dist(s, u) + dist(u, t) and return this sum. If the entries in each label
are sorted by hub ID, this can be done with a coordinated sweep over the two
labels, as in mergesort.

We say that the forward (backward) label size of v, |Lf (v)| (|Lb(v)|), is the
number of hubs in Lf (v) (Lb(v)). The time for an s, t query is O(|Lf (s)|+|Lb(t)|).
The maximum label size (denoted by M) is the size of the biggest label. The
labeling L is the set of all forward and backward labels. We denote its size by
|L| =

∑
v(|Lf (v)|+ |Lb(v)|), while La = |L|/(2n) denotes the average label size.

Cohen et al. [9] show how to generate in O(n4) time labels whose average
size is within a factor O(log n) of the optimum. Their algorithm maintains a set
of U of uncovered shortest paths (initially all the paths) and labels Lf (v) and
Lb(v) (initially empty) for every vertex v. Each iteration of the algorithm selects
a vertex v and a set of labels to add v to so as to maximize the ratio between
the number of paths covered and the increase in total label size.

Given two distinct vertices v, w, we say that v � w if Lf (v)∪Lb(v) contains
w. A labeling is hierarchical if � is a partial order. We say that this order is
implied by the labeling. Cohen et al.’s labels are not necessarily hierarchical.

Given a total order on vertices, the rank function r : V → [1 . . . n] ranks the
vertices according to the order. We will call the corresponding order r.

3 Canonical Labelings

We say that a hierarchical labeling L respects a total order r if the implied
partial order is consistent with r. Given a total order r, a canonical labeling is
the labeling that contains only the following hubs. For every shortest path Pst,
the highest ranked vertex v ∈ Pst is in the forward label of s and in the backward
label of t (with the corresponding distances). A canonical labeling is hierarchical
by construction: the vertex v that we add to the labels of s and t has the highest
rank on Pst, and therefore r(v) ≥ r(s) and r(v) ≥ r(t). This also implies that
the canonical labeling respects r.

Lemma 1. Let L be a hierarchical labeling. Then the set of vertices on any
shortest path has a unique maximum element with respect to the partial order
implied by L.

Proof. The proof is by induction on the number of vertices on the path. The
result is trivial for paths with a single vertex. Consider a path v1 . . . vk with k > 1.
The subpath v2 . . . vk has a maximum vertex vi by the inductive assumption.
Consider the subpath v1 . . . vi. The internal vertices vj are not in Lb(vi) by the
choice of vi. Therefore either vi ∈ Lf (v1) (and vi is the maximum vertex on the
path), or v1 ∈ Lb(vi) (and v1 is the maximum vertex). ut

Given a hierarchical labeling L, the lemma implies that all total orders r that
L respects have the same canonical labeling L′.
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Theorem 1. Let L be a hierarchical labeling, r any total order such that L
respects r, and L′ the canonical labeling for r. Then L′ is contained in L.

Proof. Consider the shortest path P from s to t, and let v be the maximum
rank vertex on P . Let L = (Lf , Lb). We show that v ∈ Lf (s); the case v ∈ Lb(t)
is similar. Consider the shortest path P ′ from s to v. Since shortest paths are
unique, P ′ ⊆ P , and therefore v is the maximum rank vertex on P ′. It follows
that the only vertex of P ′ that is in Lb(v) is v. Thus v must be in Lf (s). ut

We now consider how to extract the canonical labeling L′ from a hierarchical
labeling L. One approach is to first extract a total order r from L′, then build the
canonical label from the order. We can find r with a topological sort of the DAG
representing the partial order induced by L. We can then easily build canonical
labels from r in O(nDij(G)) time, as Section 5 will show.

We can often do better by simply pruning the labels in L. We explain how
to prune forward labels; backward labels can be dealt with similarly. Consider a
vertex w ∈ Lf (v). We must keep w in Lf (v) if and only if it is the maximum-
rank vertex on the shortest v–w path Pvw. Since we have not computed the
ranks, we must test for maximality indirectly. We use the following observation:
if the highest ranked vertex in Pvw is u 6= w, then u must be in both Lf (v) and
Lb(w) (since it belongs to the canonical label). By running what is essentially
a v–w HL query, we can determine if such a vertex u exists. If so, we delete w
from Lf (v). The algorithm takes O(M) time to process each of the |L| vertex-
hub pairs (v, w), for a total time of O(|L|M) = O(nM2). (Recall that M is the
maximum label size.) When labels are not too big (M = O(

√
m)), this is faster

than the O(nDij(G)) approach mentioned above.

4 Vertex Orderings

Canonical labelings are the smallest hierarchical labelings defined by a vertex
ordering. By the quality of an ordering we mean the size of its implied labeling.
In this section, we discuss several ways of computing vertex orderings. We review
a known approach, improve existing algorithms, and introduce new ones.

Contraction Hierarchies. CH [17] has been heavily studied in the context of
point-to-point shortest paths in road networks. It is a preprocessing-based algo-
rithm, but not a labeling algorithm. During preprocessing, CH orders all vertices
and applies the shortcut operation to each vertex in that order. Intuitively, the
ordering is from the least to the most important vertex. When applied to a vertex
v, the shortcut operation temporarily removes v from the graph and adds as few
arcs as necessary to preserve the distances between the remaining vertices. More
precisely, for any two neighbors u and w of v, it runs a witness search (Dijkstra)
to compute dist(u,w) in the current graph (without v). If `(u, v) + `(v, w) <
dist(u, v), it adds a shortcut arc (u,w) with `(u,w) = `(u, v) + `(v, w). The out-
put of CH preprocessing is a graph G+ = (V,A∪A+), where A+ denotes the set
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of shortcuts, as well as the order in which vertices were shortcut. The CH query
algorithm runs bidirectional Dijkstra on G+, but considers only upward arcs.

The CH query performance and |A+| highly depend on the order in which
vertices are shortcut. The best known orderings [17, 19] use online heuristics to
estimate how “important” each vertex is based on local graph properties (such
as the net number of shortcuts added if the vertex were contracted).

The running time of CH preprocessing depends on the number of shortcuts.
In the best case, when both G and G+ have constant degree, it uses O(n) space
and runs in O(nW ) time, where W denotes the time for a witness search. In road
networks, witness searches are local Dijkstra searches, which makes preprocessing
quite fast. If G+ is dense, however, shortcuts may need O(n2) witness searches,
causing the standard implementation of CH preprocessing to run in O(n3W )
time and O(n2) space.

Even for road networks, previous experiments [2] showed that the ordering
computed by CH preprocessing can be improved. Next, we discuss ways to com-
pute orderings with better worst-case time bounds that yield smaller labels.

Top-Down. We turn to an algorithm (which we call TD) that selects vertices
top-down, from most to least important (as opposed to CH, which is bottom-up).
Conceptually, each unpicked vertex v maintains the set Uv of all uncovered paths,
i.e., shortest paths that contain v but do not contain any previously selected
vertex. Each iteration selects the next most important vertex v∗ according to
some criterion that depends on Uv∗ , then updates all sets Uv = Uv \ Uv∗ . This
is repeated until all paths are covered.

We consider two versions of this algorithm, with different selection criteria.
The covering version (TDc) always picks the vertex v which maximizes |Uv|.
The weighted covering version (TDwc) selects the v maximizing |Uv|/(sv + tv),
where sv and tv are the sizes of the sets consisting of the first and last vertices on
the paths in Uv, respectively. TDwc is inspired by Cohen et al.’s algorithm [9].

An obvious implementation of TD is to compute every Uv from scratch in
each round. This takes O(n) space but O(n2Dij(G)) time, which is impractical
even for mid-sized graphs. We therefore propose an incremental implementation
of TDc that runs in O(nDij(G)) time. It can be extended to other TD algorithms
as long as each iteration can pick the vertex v∗ (given the updated Uv sets) in
O(Dij(G)) time. In particular, this holds for TDwc.

The incremental TDc implementation maintains a shortest path tree Tr for
every vertex r, representing all uncovered shortest paths starting at r. Initially,
these are full shortest path trees, computed in O(nDij(G)) time. Moreover, each
vertex v also explicitly maintains a count c(v) = |Uv| of the uncovered shortest
paths containing v. For r, v ∈ V , the number of shortest paths starting at r and
containing v is equal to the size of the subtree of Tr rooted at v. We can initialize
all c(·) in O(n2) total time by adding the subtree sizes for all r.

Now consider an iteration in which a vertex v is selected. It hits several
previously uncovered paths, and we must update the data structures accordingly.
Consider a tree Tr. In the beginning of the iteration, it represents all uncovered
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paths that start at r. The ones that contain v are exactly those represented in
the subtree of Tr rooted at v. We delete this subtree by setting to null the parent
pointers of all of its vertices. Since each vertex can be removed from each tree
once, the total cost of all subtree deletions over the entire algorithm is O(nm).

While traversing the subtree, we also compute its size δr. Then we traverse
the path in Tr from v to r and for every vertex w on the path, we subtract δr
from c(w). The total traversal cost (over all iterations of the algorithm) is O(n3)
in the worst case (although much faster in practice). For provably better bounds,
we need a more careful implementation of these path updates.

Lemma 2. A TD iteration can update the c(·) values in O(Dij(G)) time.

Proof. Consider an iteration in which a vertex v is selected as the most impor-
tant. For a vertex w, let ∆w be the amount by which c(w) must eventually be
decreased. From the trivial algorithm above, ∆w is the sum of δu over all u such
that w is an ancestor of v in Tu. (Recall that δu is the size of the subtree of Tu
rooted at v.) We claim we can compute all ∆w’s without explicitly traversing
these paths. Consider the set S of all vertices whose c(·) values have to be up-
dated; S is exactly the set of vertices in the union of the u–v paths on all trees
Tu that contain v. Since all these paths end at v (and shortest paths are unique),
their union is a shortest path tree Iv rooted at v. Also, it is easy to see that ∆w is
the sum of δu over all descendants u of w in Iv (including w itself). These values
can thus be computed by a bottom-up traversal of Iv (from the leaves to the
root v). The overall bottleneck is building Iv, which takes O(Dij(G)) time. ut

The last aspect we need to consider is the time to select the next vertex in
each iteration. For TDc, a simple O(n) traversal of all c(v) values suffices. For
TDwc, we also need to know the values sv and tv for each candidate vertex v.
The value of sv is |Tv|, which we can maintain explicitly and update in O(n)
time per iteration. We keep tv by maintaining the in-trees T ′v analogous to the
out-trees Tv. Then tv = |T ′v|. Maintaining the out-trees has no effect on the
asymptotic complexity of the algorithm. We have the following result:

Theorem 2. The TDc and TDwc algorithms can be implemented to run in
Θ(nDij(G)) time and Θ(n2) space.

The Θ(n2) time and space requirements limit the size of the problems one
can solve in practice. We are careful to minimize constant factors in space in our
implementation. This is why we recompute subtree sizes instead of maintaining
them explicitly. Moreover, we do not store distances within the trees (which we
do not need); we only need the topology, as defined by parent pointers. We store
the parent pointer of a node with in-degree deg(v) with only dlog2(deg(v) + 1)e
bits, which is enough to decide which incoming arc—if any—is the parent. To
find the children of a vertex v, we examine its neighbors w and check if v is the
parent of w. Since we only look for the children of each vertex in each tree once
(right before the vertex is deleted), the total time spent on traversals is O(mn).
Note that the input size (n and m) fully determines the running time and space
consumption of TD. This is not the case for CH, which can be much faster or
slower than TD depending on the graph topology and cost function.
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Range Optimization. Although TD yields better orderings then CH, its
Θ(n2) space and time requirements limit its applicability. We now discuss how
to combine ideas from TD and CH to obtain better orderings for large graphs.

An obvious approach is to run CH preprocessing until the contracted graph
is small enough, then use TD to order the remaining vertices. This idea has been
used with the non-incremental implementation of TDc, and indeed improves the
ordering [2], even though it can only optimize the most important vertices.

To improve the ordering among other vertices, we propose a range optimiza-
tion algorithm. It takes an ordering r and parameters X and Y as input, and
reorders all vertices v with X < r(v) ≤ Y . It first shortcuts all vertices v with
r(v) ≤ X, creating a graph G′ with n − X vertices. It then runs Dijkstra’s al-
gorithm from each v in G′ to compute all shortest paths U that are not covered
by vertices w with r(w) > Y . The search from v is responsible for paths starting
at v, and can stop as soon as all vertices in the priority queue have at least one
vertex w with r(w) > Y as an ancestor. Finally, we run TDwc with G′ and U
as input. Note that we only need to store a partial tree for each vertex v. If X
and Y are chosen appropriately, the trees are small and can be stored explicitly.

This algorithm reoptimizes a range within a given vertex ordering. Intu-
itively, more important vertices in the range move up and less important ones
move down. To allow a vertex to move between arbitrary positions, we use an it-
erative range optimization algorithm. It covers the interval [1, n] by k overlapping
intervals [Xi, Yi] with X1 = 0, Yk = n, Xi < Yi, and Xi+1 ≤ Yi. The algorithm
starts with some vertex ordering, e.g., the one given by CH. It then proceeds in
k steps, each reordering a different interval. In practice, it pays to process the
intervals in decreasing order of importance; this is faster than processing them
in increasing order, and the resulting labels are at least as small.

5 Computing the Labels

We now discuss how to build a canonical labeling from an ordering efficiently.
As defined in Section 3, we must add the maximum-rank vertex on each shortest
path Pst to the labels Lf (s) and Lb(t).

The most straightforward approach is to use Dijkstra to build a shortest
path tree out of each vertex s. We then traverse the tree from s to the leaves,
computing for each vertex v the maximum-rank vertex w on the s–v path. We
add (w,dist(s, w)) to Lf (s) and (w,dist(s, v)−dist(s, w)) to Lb(v), if not already
in the labels. Note that, if we use TD to order vertices, we can incorporate this
approach and compute labels on the fly. However, the O(nDij(G)) running time
of this approach makes it infeasible for large networks.

A previous approach [2] is based on CH. Given G+, we construct Lf (s) for
a given vertex s as follows (Lb(s) is computed analogously). Run Dijkstra’s al-
gorithm from s in G+ pruning arcs (u, v) with r(u) > r(v) and add all scanned
vertices to Lf (s). To make the labeling canonical we apply label pruning (Sec-
tion 3). Note that when pruning the label of v, we need labels of higher-ranked
vertices, which we achieve by computing labels from high to low rank vertices.
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We now introduce a recursive label-generation procedure, which is more ef-
ficient. It borrows from CH the shortcut operation, but not the query. Given a
graph Gi where all vertices u with r(u) < i are shortcut, and an ordering r, we
pick the lowest-rank vertex v (with r(v) = i) and shortcut it, obtaining the graph
Gi+1. Then we recursively compute the labels in Gi+1. (The basis of the recur-
sion is Gn, with a single vertex s, when we just set Lf (s) = Lb(s) = {(s, 0)}.) To
extend the labeling to v, we merge the labels of its neighbors. We show how to
construct Lf (v); the construction of Lb(v) is symmetric. We initialize Lf (v) with
(v, 0) and then, for every arc (v, w) in Gi and for every pair (x, dw(x)) ∈ Lf (w),
we add to Lf (v) a pair (x, dw(x)+`(v, w)). If the same hub x appears in the labels
of multiple neighbors w, we keep only the pair that minimizes dw(x) + `(v, w).
Since labels are sorted by hub ID, we build the merged label by traversing all
neighboring labels in tandem, as in mergesort.

Theorem 3. The recursive algorithm computes a correct hierarchical labeling
for an ordering r.

We can make the labeling computed by this procedure canonical by pruning
each label immediately after it is generated, as in the CH-based approach.

6 Building Contraction Hierarchies

A vertex ordering determines a canonical labeling. It also determines a contrac-
tion hierarchy (G+): simply shortcut the vertices according to this order, which
may take up to O(n3W ) time. We give an O(nDij(G)) algorithm that does not
use shortcutting. The key observation is that a shortcut (v, w) is added by CH
preprocessing if and only if v and w are the two highest-ranked vertices on Pvw.

Given an ordering r, we first compute all shortcuts (u, v) with r(u) < r(v).
To do so, we run Dijkstra’s algorithm from each vertex u of the graph. Whenever
we scan a vertex v, we check whether v is the first vertex on the path from u to
v with r(v) > r(u). If so, we add (u, v) to G+. We can stop the search as soon
as all vertices v in the priority queue have an ancestor w with r(w) > r(u). The
shortcuts (v, u) with r(v) > r(u) can be computed analogously. This algorithm
builds G+ in O(nDij(G)) time.

Given a small canonical labeling, we can compute the shortcuts for G+ even
faster. We use Lf (u) to compute all shortcuts (u, v) with r(u) < r(v) as follows.
For each pair (v, d) ∈ Lf (u), we check whether there is at least one other pair
(v′, d′) ∈ Lf (u) such that d = d′ + dist(v′, v). If there is none, we add (u, v) to
G+. Note that we need to run a HL query for dist(v′, v). We compute (v, u) with
r(v) < r(u) from Lb(u) analogously. The overall running time of this approach
is O(nM3), since for each label we must run O(M2) queries, each in O(M) time.
In practice, using the HL one-to-many query [11] may accelerate this approach.

7 Experiments

We implemented CH, HL, and TD in C++ and compiled them with Visual C++
2010, using OpenMP for parallelization. We use a 4-ary heap as priority queue.
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The experiments were conducted on a machine with two Intel Xeon X5680 CPUs
and 96 GB of DDR3-133 RAM, running Windows 2008R2 Server. Each CPU
has 6 cores (3.33 GHz, 6 x 64 kB L1, 6 x 256 kB L2, and 12 MB L3 cache).
Preprocessing uses all 12 cores, but queries are sequential. Our implementation
of CH follows [19] and uses Eq(u) +Oq(u) + lev(u) as priority function. Eq(u) is
the edge quotient (number of shortcuts added divided by the number of elements
removed if u were shortcut); Oq(u) is the original edges quotient (number of
original arcs in the shortcuts added divided by the number of original arcs in
the shortcuts removed); and lev(u) is the level of u. Initially, lev(u) = 0 for each
vertex u. Whenever a vertex v is shortcut, the level of all its neighbors v in
the graph with the shortcuts added so far is set to max{lev(v), lev(u) + 1}. We
implement HL queries as in [2], with no compression unless mentioned otherwise.

We first consider the orderings produced by TDwc on various inputs: road
networks [13], meshes [21], communication and collaboration networks [5], and
artificial inputs (Delaunay triangulations, random geometric graphs, small-world
graphs [20, 22]). For each graph, Table 1 shows its size (|V |), its density (|A|/|V |),
the TDwc running time (time), the average resulting label size (La), and HL
query time (qt). We then report the ratio of shortcuts to original arcs (|A+|/|A|)
in the graph G+ produced from this order. Finally, we report query times and
number of scanned vertices for both CH and bidirectional Dijkstra queries (BD).

The results show that TDwc is very efficient for many graphs. Moreover,
HL is practical for a wide variety graphs, with small labels and queries in mi-
croseconds or less. In fact, HL queries are always faster than BD, even when

Table 1. TDwc labels on five groups of instances: meshes, road networks, artificial
graphs, communication networks, and collaboration graphs. qt is the query time.

HL CH BD
|A| time size qt |A+| vert qt vert qt

instance |V | /|V | [s] La [µs] /|A| scans [µs] scans [µs]

face 12530 5.8 20 48.8 0.3 2.2 143 55 3653 598
feline 20629 6.0 70 66.8 0.6 2.6 211 104 4529 810
horse 48485 6.0 362 108.4 0.8 2.8 355 250 13371 2154

bay-d 321270 2.5 14274 44.5 0.4 1.1 119 33 107813 13097
bay-t 321270 2.5 12739 29.3 0.3 1.0 78 17 93829 12352

G pin pout 99995 10.0 1833 8021.6 66.5 196.4 13166 1165430 354 160
smallworld 100000 10.0 2008 5975.0 49.7 102.8 9440 612682 523 203
rgg 18 262085 10.0 10694 225.6 2.2 1.0 723 668 85186 31612
del 18 262144 6.0 12209 97.1 0.7 2.0 304 183 49826 10818
klein 18 262144 6.0 10565 1718.7 12.8 13.6 4135 50844 4644 1590

as-22july06 22963 4.2 86 22.5 0.2 1.2 70 30 63 125
caidaRouter 190914 6.4 7399 343.8 3.1 2.7 2081 6527 377 298

astro-ph 14845 16.1 40 231.2 2.1 2.4 798 1529 151 112
cond-mat 36458 9.4 249 293.3 2.7 2.9 1145 2661 220 134
preferential 100000 10.0 1727 586.4 4.5 11.3 2265 10941 198 215
coAuthors 299067 6.5 19488 789.3 6.9 3.7 4047 26127 530 378
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labels are large. Due to better locality (it just merges two arrays), HL can still
be slightly faster even when BD scans much fewer vertices than there are hubs
in the labels, as in smallworld and G n pin pout. The fact that labels are large
for some graphs is not surprising, given known lower bounds [16].

CH queries are always slower than HL, and usually faster than BD. In several
cases, however, CH queries are worse than BD in terms of both running times
and number of scanned vertices. CH has a weaker termination condition, cannot
balance the two sides of the search space, and works on a denser graph.

As predicted, TDwc preprocessing time depends mostly on the network size
and not on its structure (unlike CH preprocessing). TDwc preprocessing uses
Θ(n2) space, limiting the size of the graphs we can handle in memory to a few
hundred thousand vertices; at under six hours, running times are still acceptable.

Table 2 compares the TDwc orderings to those computed by TDc and CH
preprocessing. For the latter, we give ordering time, number of shortcuts in G+,
CH query search space, and label size. All values in the table are relative to those
obtained from the TDwc ordering. Compared to TDwc, TDc produces larger
labels (by 1% to 8%) and more shortcuts; since TDwc is not much slower, it is
usually a better choice. Compared to TDwc, the CH ordering produces bigger
labels (by 16% to 44%) and the CH query search space increases by 8% to 31%.
Interestingly, this happens despite the fact that CH preprocessing adds fewer
shortcuts (up to 30%). CH preprocessing is much faster than TDwc when G+ is
sparse, but much slower otherwise. In several cases, it did not finish in six hours.

We now consider the effects of range optimization on the road network of
Western Europe [13] (18 million vertices and 42 million arcs) with travel times.

Table 2. Performance of orderings obtained from CH and TDc, relative to TDwc.

CH-preprocessing TDc
instance time |A+| #sc La time |A+| #sc La

face 0.082 0.93 1.11 1.17 0.785 1.06 1.05 1.04
feline 0.115 0.95 1.11 1.16 0.651 1.07 1.05 1.05
horse 0.135 0.97 1.16 1.23 0.644 1.07 1.05 1.05

bay-d 0.000 0.88 1.31 1.36 0.589 1.04 1.06 1.06
bay-t 0.000 0.88 1.29 1.30 0.849 1.05 1.06 1.05

G pin pout dnf – – – 0.808 1.12 0.99 1.02
smallworld dnf – – – 0.752 1.09 1.00 1.02
rgg 18 0.045 0.96 1.16 1.21 0.948 1.07 1.05 1.08
del 18 0.003 0.94 1.08 1.16 0.521 1.06 1.04 1.05
klein 18 dnf – – – 0.989 1.06 1.00 1.02

as-22july06 31.021 0.96 1.29 1.44 0.668 1.00 0.98 1.01
caidaRouter 3.623 0.70 1.17 1.23 0.798 1.01 0.97 1.02

astro-ph 56.873 0.79 1.25 1.20 0.689 1.04 1.00 1.03
cond-mat 24.771 0.81 1.20 1.19 0.658 1.05 1.00 1.03
preferential dnf – – – 0.826 1.15 0.98 1.06
coAuthors dnf – – – 0.761 1.09 0.99 1.05
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Table 3. Range opt.
i time La #sc [µs]

0 108 95.52 288 96.4
1 4546 73.17 213 80.1
2 8925 70.32 206 77.8
3 12737 69.58 203 75.5
4 16730 69.17 201 74.2
5 20606 69.01 200 73.4
6 24512 69.01 200 73.4

Table 3 reports the label size after applying range
optimization multiple (i) times, using the ranges
[n − 217, n], [n − 220, n − 215], [n − 222, n − 217], and
[0, n − 220]. As initial ordering (i = 0), we use the
one given by CH. We report the total time (in sec-
onds) to obtain this ordering and the performance of
CH queries. Each iteration takes about 70 minutes.
The first one reduces label sizes by 25%, but later
ones have a smaller impact. The effect on CH queries
is similar. After five iterations the label size is stable. Experiments on smaller
inputs indicate that the final ordering is close to the one obtained by TDwc.

Table 4. Performance of various algo-
rithms. HL and CH preprocessing use
12 cores, others are sequential.

prepro space query
method [h:m] [GB] [µs]

CH [17] 0:02 0.4 96.381
TNR [7] 0:58 3.7 1.775
TNR+AF [7] 2:00 5.7 0.992
HL local [2] 2:39 20.1 0.572
HL global [2] 2:45 21.3 0.276

HL-0 local 0:03 22.5 0.700
HL-15 local 0:05 18.8 0.556
HL-17 local 0:25 18.0 0.545
HL-∞ local 5:43 16.8 0.508
HL-∞ global 6:12 17.7 0.254

For Western Europe, we also compare
various versions of our algorithm with our
previous HL implementations [2], Con-
traction Hiearchies, transit-node routing
(TNR) [6], and its combination with arc-
flags (TNR+AF) [7]. HL-0 uses pure CH
preprocessing (label size 97.6), HL-15 uses
TDwc on the topmost 32768 vertices (size
78.3), HL-17 optimizes the top 131072
(size 75.0), while HL-∞ uses five itera-
tions of range optimization (size 69.0). In
all cases, building G+ takes 105 s, generat-
ing the labels takes 55 s, and the remain-
ing time is spent on improving the order-
ing. As explained in [2], the “local” ver-
sion uses 8/24 compression and an index, whereas the “global” version is index
free with a partition oracle (cell size 20 000).

We observe that our new techniques (faster label generation, incremental
TDwc) accelerate preprocessing by two orders of magnitude. With longer pre-
processing, we improve the best previous query times (HL global [2]) by 8%.
Preprocessing for HL-0 and HL-15 is fast enough for real-time traffic updates
on large metropolitan areas, even when taking turn costs into account [10].

8 Conclusion

Our study of hierarchical labelings makes HL practical on a wider class of prob-
lems. The work raises several natural questions. It would be interesting to study
the relationship between hierarchical labelings, which are more practical, and
general hub labelings, which have theoretical guarantees on the label size. In
preliminary experiments, we ran Cohen et al.’s algorithm [9] on significantly
smaller graphs (given its O(n4) running time). It produces labels that are about
as good as those created by TDwc for some graph classes (such as road net-
works), but asymptotically smaller for others (like small-world graphs). Another
open question is how to efficiently compute (or approximate) optimal hierarchi-
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cal labelings, or a good lower bound on their size. Finally, we would like to reduce
the space consumption of HL further, beyond existing compression schemes [2].

Acknowledgments. We thank Ruslan Savchenko for implementing [9].
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