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ABSTRACT
This paper introduces HLDB, the first practical system that
can answer exact spatial queries on continental road net-
works entirely within a database. HLDB is based on hub la-
bels (HL), the fastest point-to-point algorithm for road net-
works, and its queries are implemented (quite naturally) in
standard SQL. Within the database, HLDB answers exact
distance queries and retrieves full shortest-path descriptions
in real time, even on networks with tens of millions of ver-
tices. The basic algorithm can be extended in a natural way
(still in SQL) to answer much more sophisticated queries,
such as finding the ten closest fast-food restaurants. We also
introduce efficient new HL-based algorithms for even harder
problems, such as best via point, ride sharing, and point of
interest prediction. The HLDB framework makes it easy
to implement these algorithms in SQL, enabling interactive
applications on continental road networks.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications—
Spatial databases and GIS ; G.2.1 [Discrete Mathemat-
ics]: Combinatorics—Combinatorial algorithms

General Terms
Algorithms, Experimentation

Keywords
location services, databases, SQL, large road networks

1. INTRODUCTION
In the last two decades, GPS navigation and map-based

services have been gaining sophistication and user base, with
increasing digital map coverage and level of detail. This mo-
tivated research in online route planning systems, with spe-
cial focus on the fast computation of shortest paths. These
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systems are usually highly specialized and separated from
other online services. As many services are built on top of
databases and developed by database programmers, imple-
menting map-based services within databases is attractive.
It would allow developers to leverage the power and expres-
siveness of a database language (such as SQL) to create new
types of online services. The resulting systems would be
easy to program, customize, and maintain.

A natural approach to route planning is to use one of vari-
ous speedup techniques for Dijkstra’s algorithm [15] recently
developed by the algorithm engineering community (see [12]
for a survey). Given a source s and a destination t, the
fastest techniques can find the exact shortest path in a road
network with tens of millions of vertices in a millisecond or
less. This is achieved by preprocessing the network for a few
minutes (or hours) to generate auxiliary data that speeds up
queries. Any such technique can be implemented as an exter-
nal distance oracle, a standalone module that runs outside
the database but can be called from SQL to compute the
distance or retrieve the shortest path between two points.

In a recent survey [36], Sankaranarayanan and Samet ar-
gue that such an external oracle is not good enough, how-
ever. Instead, they propose to implement database distance
oracles, which can be stored and queried completely in SQL,
with no external calls. This would have several benefits.
The database system automatically gives an external mem-
ory (and even distributed) implementation of the algorithm,
enabling applications that use more information than fits in
RAM. Having the preprocessed data directly in the database
enables sophisticated queries (such as nearest neighbors) to
be handled much more efficiently than making repeated calls
to an external black-box distance oracle. Furthermore, ad-
ditional constraints (such as “closest gas station open now”)
can be naturally expressed in SQL. Although many such
problems can be solved efficiently outside the database [9,
11, 12, 20, 28], external implementations are less portable,
harder to maintain, and very difficult to customize.

Unfortunately, translating any of the speedup techniques
surveyed by Delling et al. [12] to SQL is hard. They rely on
sophisticated data structures (such as graphs and priority
queues) that cannot be implemented nearly as efficiently in
databases [18]. The best previous database oracle we are
aware of is due to Sankaranarayanan and Samet [35]. On a
graph with n vertices, it can answer ε-approximate queries in
O(logn) time after a preprocessing stage requiring O(nε−2)
space and Ω(n2) time. Their approach has two major short-
comings. First, the preprocessing requires computing Ω(n)
shortest path trees, which takes quadratic total time. Us-
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Figure 1: Labeling algorithm: the hubs of s are cir-
cles, and those of t crosses.

ing the techniques they suggest, this would take months on
continental road networks, thus restricting the applicability
of their algorithm to relatively small networks (fewer than a
hundred thousand vertices). Second, it is approximate: the
suggested driving route may deviate significantly from the
optimum (by up to 10% in their most common scenario), or
a query for five nearby restaurants may not return the clos-
est one. If detected by users, even a few suboptimal outputs
may undermine their confidence in the entire system. Exact
solutions are clearly preferred.

This paper closes the gap between external and database
oracles by introducing HLDB, the first approach that en-
ables exact location services for road networks of continental
size in databases with no external calls. HLDB can answer
spatial queries in real time, i.e., fast enough for interactive
applications. HLDB is based on hub labels (HL) [1, 2, 3], a
highly optimized version of a labeling algorithm [8, 19] tai-
lored to road networks. HL is conceptually simple. During
preprocessing, it creates distance labels associated with each
vertex v in the network. A distance label for v consists of
a subset of vertices (hubs), together with the distances be-
tween each of them and v. To find the distance from s to t,
the query algorithm uses the fact that at least one vertex on
the shortest s–t path must appear (as a hub) in the labels
for both s and t. Figure 1 gives an example.

Our main conceptual contribution is to show that dis-
tance labels (as opposed to arbitrary distance oracles) are
a superior solution for implementing location services in
databases. Distance labels allow exact point-to-point queries
to be stated entirely in terms of set operations, which is not
the case for arbitrary speedup techniques. HLDB queries
can thus be implemented in a straightforward and efficient
way using only relational database operators (SQL state-
ments). Labels are also a natural fit to solve the well-known
k-closest points of interest (or k-nearest neighbors) prob-
lem [7]. In addition, we introduce new algorithmic tech-
niques to efficiently implement even more sophisticated lo-
cation services, such as k-best via points (or k-path nearest
neighbors), ride sharing, and point of interest prediction.
Unlike any previous approach, the asymptotic running time
of HLDB for these queries does not depend on the number
of acceptable candidates (points of interest) in the system.

Besides its flexibility, a crucial advantage of HLDB over
previous database distance oracles is that it is exact—it al-
ways finds the shortest path, and not just approximations.
Moreover, HLDB queries are very efficient, since they are
based on HL, the fastest known external distance oracle al-
gorithm for road networks.

In short, HLDB is the first truly practical algorithm to
handle exact location services within databases. It is effi-
cient, with low preprocessing effort and real-time queries. It
is portable and easy to use: with queries implemented en-
tirely within the database, it can exploit the full expressive
power of SQL. Finally, it is extensible: with the concepts of

hubs and labels, it naturally supports sophisticated queries
(beyond simple distance oracles) within the database with
no loss in asymptotic performance.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the background concepts on which HLDB
builds. Section 3 introduces the basic setup, including label
representation, point-to-point distance queries, and efficient
approaches to store and retrieve the actual sequence of arcs
on the shortest path. Section 4 shows how to extend the
basic label-based approach to enable a rich set of spatial op-
erations, including standard nearest neighbor queries (such
as finding the closest restaurant), as well as more sophisti-
cated ones (such as finding the best gas station on the way
home that accepts credit cards). Finally, Section 5 presents
detailed experimental evidence that our approach is indeed
practical. Implemented in SQL within a standard relational
database, HLDB queries run in milliseconds on continental
road networks, and always find exact solutions.

1.1 Related Work
We now present a brief overview of the literature on dis-

tance oracles (both database and external) and related prob-
lems. Computing distances (finding shortest paths) on spa-
tial networks is a classic problem. Dijkstra’s algorithm [15]
can solve it in essentially linear time [23], but is still too slow
for many applications on large networks. This has motivated
the study of acceleration techniques, which use information
gathered during a preprocessing stage to speed up queries.

The traditional approach to database oracles is to use
the associated geometric information (such as coordinates).
Such techniques have indeed been the main focus of the
database community [30, 34, 35, 37]. The most success-
ful previous database oracle, due to Sankaranarayanan and
Samet [35], is based on the observation that if two clusters
of vertices are sufficiently far apart, then distances between
pairs of points in different clusters are similar. By formaliz-
ing this observation, their oracle (pathDistance) can answer
ε-approximate queries in O(logn) time using O(nε−2) space.
They also show how to use the oracle to implement more so-
phisticated queries, such as k-nearest neighbors. Building
the oracle requires computing Ω(n) shortest path trees in
the graph, in Ω(n2) total time. As a result, the oracle can
only be evaluated on rather small instances (with fewer than
100 000 vertices, the size of a medium city). Combined with
the fact that the oracle size is only practical for large ε, this
approach is not feasible for real-life applications on inputs
of continental size. An advantage of this approach is that
queries can be implemented entirely in SQL.

If one is willing to use a graph to find point-to-point short-
est paths (outside the database), one can obtain much better
results [1, 2, 10, 12]. The best methods have fast prepro-
cessing, low space overhead, and real-time queries. They can
easily handle continental road networks with tens of millions
of vertices, and find provably optimal shortest paths.

Perhaps the most important speedup technique is spar-
sification, which uses the fact that road networks have
strong hierarchies. Algorithms such as highway hierarchies
(HH) [32], contraction hierarchies (CH) [22], and reach-
based routing (RE) [25] run a bidirectional version of Di-
jkstra’s algorithm, but prune unimportant vertices as the
searches move farther from the source and the target. To
ensure optimality, the preprocessing stage measures the im-
portance of each vertex according to a mathematical defi-



nition. Another speedup technique is transit node routing
(TNR) [4]. During preprocessing, it computes a large ta-
ble with the distances between the most important vertices
in the graph, enabling long-range queries to be answered
with a few table lookups. Local queries must still use a
standard Dijkstra-based algorithm, such as CH. By combin-
ing sparsification with goal-direction techniques (such as A∗

search [24] or arc flags [26]), which guide the search towards
the target using information gathered during preprocessing,
further speedups are possible [5, 25].

Many of these techniques perform well in practice and
found their way into production systems, but no theoreti-
cal justification for their good performance was known. Re-
cently, Abraham et al. [3] proved that variants of CH and RE
have sublinear query bounds on graphs (such as road net-
works) with small highway dimension, a new concept they
introduced. They showed even better bounds for a labeling
algorithm [19]. Two follow-up papers [1, 2] presented HL, a
practical implementation of the labeling algorithm that has
the fastest known queries on continental road networks: less
than one microsecond on a modern server.

Other approaches offer different trade-offs between pre-
processing time, space usage, and query times. In fact, sev-
eral algorithms (including TNR, CH, arc flags, HH, RE, and
CRP [10], which is partition-based) are fast enough to im-
plement external distance oracles, answering exact queries
in a few milliseconds (or less) on continental road networks.
Besides having the fastest queries, this paper shows that HL
has a crucial advantage for database applications: its query
is a simple set operation (pick the minimum element in the
intersection of two sets), and can be naturally expressed in
SQL. All other algorithms need more complicated logic and
data structures (even TNR, because of local queries), which
makes it hard to use them as database oracles.

Extended query scenarios, like finding the k closest points
of interest (or neighbors) to a vertex or to a whole path, have
motivated extensive research in the database community [6,
7, 27, 30, 34], but these techniques are either approximate or
only applicable to small road networks (or both). Many such
applications have external (non-SQL) solutions [20] based
on the fast computation of one-to-all [9], one-to-many [11],
and many-to-many [28] shortest paths. One of our contribu-
tions is to show how to incorporate (and extend) these ideas
within HLDB, enabling their use with SQL.

2. BACKGROUND
This section introduces definitions and notation used in

the rest of the paper. The point-to-point shortest path prob-
lem takes as input a directed graph G = (V,A), with a
nonnegative length function `(v, w) associated to each arc
(v, w) ∈ A. Given a source s and a target t, we must find the
length dist(s, t) of the shortest path in G from s to t. A well-
known solution is Dijkstra’s algorithm [15], which processes
vertices in increasing order of distance from s, and stops
when t is reached. With the appropriate priority queues,
the algorithm runs in essentially linear time not only in the-
ory [16, 14] but also in practice: it is only two to three times
slower than a simple breadth-first search [23]. One can save
time by running a bidirectional version of the algorithm.

We focus on road networks, where vertices represent in-
tersections, arcs represent road segments, and lengths cor-
respond to travel times. As a running example, we use a
real-world [31] representation of the road network of (West-

ern) Europe with 18.0 million vertices and 42.2 million arcs,
made available for the 9th DIMACS Implementation Chal-
lenge [13]. On road networks, bidirectional Dijkstra visits a
significant fraction of the entire graph on long-range queries,
which takes seconds even with a fully optimized in-memory
implementation [9], too much for interactive applications.

On road networks, two-phase algorithms can solve the
point-to-point problem much more efficiently. The prepro-
cessing phase takes only the graph as input and produces a
moderate amount of auxiliary data. Efficient methods typ-
ically take minutes or hours on continental road networks.
The subsequent query phase answers queries in on-line fash-
ion, taking a source s and a target t as inputs and using the
auxiliary data to find the shortest s–t path.

In particular, our approach is based on the hub labels (HL)
method. HL is a labeling algorithm [19]: for each vertex v in
the graph, it builds a forward label Lf (v) and a backward
label Lb(v). The forward label Lf (v) consists of a sequence
of pairs (u, dist(v, u)), where u is a vertex (a hub in this con-
text). Similarly, Lb(v) consists of pairs (u, dist(u, v)). Note
that the hubs in the forward and backward labels of v may
differ. Collectively, the labels obey the cover property : for
any two vertices s and t, Lf (s)∩Lb(t) contains at least one
vertex on the shortest s–t path. Given this property, an s–t
query is trivial: among all vertices u ∈ Lf (s) ∩ Lb(t) (each
of which defines a valid s–t path), pick the one minimizing
dist(s, u) + dist(u, t) and return this sum. If the entries in
each label are sorted by hub ID, this can be done with a
coordinated sweep over the two labels, as in mergesort.

Abraham et al. [3] showed that, on road networks, one can
pick labels that ensure polylogarithmic point-to-point query
times. This result is mostly theoretical: it relies on a prepro-
cessing routine that, although polynomial-time, is impracti-
cal for continental road networks. More recently, Abraham
et al. [1, 2] proposed HL as a practical implementation of the
labeling algorithm. They show that one can construct labels
if an ordering of the vertices is given. For road networks, the
most efficient approach is to recursively compute labels ac-
cording to the ordering: at each step, it picks the next vertex
v in the order and shortcuts it. To shortcut v, we remove it
from the graph and add shortcut arcs between its neighbors
as necessary to preserve distances between them [22]. (Note
that each shortcut is built from two other arcs/shortcuts.)
After shortcutting v, the algorithm recursively computes the
labels in the remaining graph, then computes v’s label from
those of its neighbors. We denote by A+ the set of shortcut
arcs added during this process. Let be G+ = (V,A ∪A+).

The average label size depends on the ordering. Abraham
et al. [2] study efficient methods to find good orderings. The
fastest method uses the ordering computed by CH prepro-
cessing, which considers vertices bottom-up (from least to
most important). Ordering vertices top-down is slower, but
yields smaller labels, with fewer than 80 hubs on average on
Europe. Both methods can be combined for different trade-
offs. In this paper, we assume the labels are given, and focus
on how to use them efficiently within the database.

3. POINT-TO-POINT SHORTEST PATHS
We are now ready to explain how HL queries can be nat-

urally expressed in SQL. By storing all labels in a database,
we can run pure SQL code to obtain not only the distance
between any two points, but also a description of the corre-
sponding shortest path.



Algorithm 1: sql dist

Input: source s ∈ V , target t ∈ V
1 SELECT
2 MIN(forward.dist+backward.dist)
3 FROM forward,backward
4 WHERE
5 forward.node = s AND
6 backward.node = t AND
7 forward.hub = backward.hub

3.1 Distance Queries
We store the labels in two tables, forward and backward.

Each table represents all labels of the corresponding direc-
tion, and has three columns: node, hub, and dist. For each
vertex v, we store entries (u, dist(v, u)) ∈ Lf (v) as triples
(v, u, dist(v, u)) in forward. Similarly, backward stores a
triple (v, u, dist(u, v)) for each (u, dist(u, v)) ∈ Lb(v).

To determine the distance between a source s and a tar-
get t, we just have to find the shared hub of the source’s
entries in forward and the target’s entries in backward that
minimizes the sum of the forward and backward distances.
The corresponding SQL statement is given in Algorithm 1.

Since the number of rows in forward and backward is huge
(about 1.35 billion each on Europe), we need appropriate in-
dices. Algorithm 1 needs fast access to the rows of source
and target (lines 5 and 6), followed by fast access to spe-
cific hub entries (line 7) within these rows. We thus build a
composite clustered index on node (primary) and hub (sec-
ondary). All rows corresponding to the same label are stored
together to minimize random accesses to the database.

We note that this is a slight generalization of the schema
proposed by Schenkel et al. [38] to check reachability (a spe-
cial case where all arcs have length zero) in XML documents.

3.2 Path Retrieval
Algorithm 1 computes only the distance between any two

vertices s and t in the network. We now show how to retrieve
the actual list of arcs (or vertices) on the shortest s–t path
P , which may be needed for some applications.

The easiest approach is to retrieve the path one arc at
a time [4]. An s–t query could return not only dist(s, t),
but also the first arc (s, v) on the s–t path; one could then
perform multiple queries to retrieve the full path. Shortcut-
based methods [22, 25] often use a faster two-stage approach.
They first find the shortest s–t path P+ in G+. The path
consists of very few shortcuts (around 20 for Europe). Then
they repeatedly use a precomputed map to translate each
shortcut into its two constituent shortcuts (or arcs). Eventu-
ally, only original arcs are left. Unfortunately, this approach
would still be too slow for HLDB, since retrieving a single
shortest path could require thousands of non-sequential ac-
cesses (up to one for each arc on the path).

We could avoid non-sequential accesses by simply storing
in the database the full description (sequence of arcs) of the
shortest paths between every node and each of its hubs. If
an s–t query meets at a hub v, we could just concatenate
the (precomputed) s–v and v–t paths to obtain the shortest
path. The space requirements are prohibitive, however: on
Europe, these paths have close to one trillion arcs in total.

We opt for an intermediate approach: we actually store

preassembled subpaths. During preprocessing, we store the
full sequence of arcs for each shortcut in the graph. Queries
then work in two stages: first find the shortest s–t path P+

in G+, then translate each shortcut in P+ into the corre-
sponding arcs. This approach requires only O(|P+|) random
accesses, and was first proposed by Sanders et al. [33] in the
context of an external memory implementation of CH.

To support path retrieval within HLDB, we store addi-
tional precomputed information in the database. We assign
a unique arc ID to every original arc, and a unique shortcut
ID to every arc of A ∪ A+. Note that each original arc has
both an arc ID and a shortcut ID, and they are not neces-
sarily the same. Shortcuts (and their IDs) are internal to
the algorithm, whereas arc IDs can be set by the user.

To translate each shortcut into its arcs, we keep a table
called shortcuts. It has three columns (sid, aid, aseq),
meaning that aid is the aseq-th arc on shortcut sid. A
shortcut has one row in shortcuts for each arc it contains
(in order). We also need additional fields in each label entry.
We add extra columns to forward (besides node, hub, and
dist): phub represents the parent hub (the predecessor of
hub on the path from node in G+), and sid is the ID of the
shortcut (or arc) from phub to hub. We augment backward

in a similar way: phub represents the successor of hub on
the path to node in G+, and sid represents the shortcut (or
arc) from hub to phub. In both tables, we set phub and hub

to an invalid ID (−1) for rows where hub = node.
An s–t query can then be implemented in three stages.
First, we run a query similar to Algorithm 1. Instead of

finding just the s–t distance, it must also return the meeting
hub of the s–t path, together with the phub and sid fields
in the corresponding rows of forward and backward.

The second stage builds a temporary table spath with the
sequence of shortcuts on the s–t path P+. Each row has two
columns: sid represents a shortcut, and sseq is an integer
indicating the relative order of this shortcut within P+. If
shortcut sa appears before sb in P+, the row representing
sa must have a lower sseq than the row representing sb.

We build spath one row at a time. Suppose x is the hub
responsible for the s–t path. First, we add to spath the
shortcuts on the subpath of P+ between s and x by follow-
ing parent pointers in Lf (v), represented by phub and sid

in forward. (This can be done in SQL with a WHILE loop.)
Since this will give shortcuts in reverse order, we assign de-
creasing sseq values to them: −1,−2,−3, . . . We then do the
same for the shortcuts in the subpath of P+ between x and
t. Since now parent pointers give us shortcuts in the right
order, we just assign increasing sseq values to the shortcuts
we find: 1, 2, 3, . . . Note that shortcuts in the x–t subpath
have higher sseq than shortcuts in the s–x subpath.

The third stage of the algorithm expands each shortcut in
P+ into the corresponding sequence of arcs. It does so by
joining spath and shortcuts on column sid, ordering the
resulting rows by sseq and aseq. The final table contains
the IDs of all arcs on the shortest s–t path in order.

4. EXTENDED SCENARIOS
So far, we have considered how to implement a distance

oracle directly in SQL. This section shows how to use labels
to answer more sophisticated queries more efficiently than
using only a distance oracle. The problems we consider need
all or some distances to a subset of vertices P (the POIs).
The simplest such location services (like finding the k closest



POIs) depend only on a query source and a set of previously
known POIs. As Section 4.1 will show, we can solve these
problems efficiently by extracting the POI labels in advance
and indexing them by their hubs. Many other natural loca-
tion services are not as simple, however, since they also de-
pend on a query target. An example is finding the best post
office on the way home, i.e., the one yielding the smallest
detour; other problems, such as ride sharing and POI pre-
diction, have similar properties. Section 4.2 introduces new
algorithmic techniques to handle such scenarios efficiently
and shows how they translate to HLDB.

4.1 Single-Hub Indexing
Consider the scenario where many queries (from different

sources) are to be made using the same set of points of in-
terest. An obvious example is the “store locator” feature
of many web sites: users need the closest Starbucks or the
three closest Citibank ATMs. Formally, we must find the k
closest POIs to a source s. The straightforward solution is
to compute the distance from s to all POIs with an external
distance oracle, and report the closest. With this approach,
queries take time linear in |P|. Previous work [30] suggests
filtering the POIs (typically by Euclidean distance), but this
may lead to suboptimal results and complicates the query.

With labels in the database, one can do better. As Fig-
ure 2 shows, each shortest path from s to a POI must pass
through one of the hubs of s. So it suffices to find the k
closest POIs for each hub of s and then pick (among those)
the k closest overall. To implement this efficiently, we use a
preprocessing step to extract from backward a table poilab

with only the relevant rows—those where node corresponds
to a POI. This can be done using a JOIN with the table
representing the POIs. Next, we build a clustered index on
hub and dist (including node for performance). We can now
run queries using poilab instead of backward, as shown in
Algorithm 2. Note that there are only minor differences rel-
ative to Algorithm 1 (besides the use of poilab). We return
k distances, each with the POI responsible for it. We also
need the GROUP BY operator to make sure we only con-
sider the best hub for each potential POI. Without it, we
could return multiple paths to the same POI (using differ-
ent hubs). Also note that the number of random accesses to
the database is bounded by |Lf (s)|, not |P|.

This simple query algorithm does not exploit the fact that
we only need to look at k POIs per hub—it will actually scan
all POIs that share a hub with s. Because the most impor-
tant vertex in the graph is a hub for all other vertices, the
running time still linear in |P|. We can remedy this with a
slightly more complicated query algorithm: we use a cursor
to iterate over all hubs of the source and determine the k
closest vertices for each hub. Since poilab is indexed by hub

and dist and labels are small, this is faster than the straight-

p1

p2

p3

p4 p5
s

Figure 2: Finding the closest POI: the hubs of s are
circles, those of the point of interests crosses.

Algorithm 2: sql k poi dist

Input: source s ∈ V , number k

1 SELECT TOP k
2 MIN(forward.dist+poilab.dist) AS dist,
3 poilab.node
4 FROM forward,poilab
5 WHERE
6 forward.node = s AND
7 forward.hub = poilab.hub
8 GROUP BY poilab.node
9 ORDER BY dist

forward approach when there are many POIs. We can still
restrict the set of acceptable POIs (by opening hours, for ex-
ample) using a WHERE clause when determining the closest
k POIs of a hub.

When k is known in advance and no further constraints
apply (all POIs are acceptable), we can use a tailored version
for even better performance. When building poilab, we only
need to keep the k rows with the smallest dist values for
each distinct hub h. Additional rows cannot possibly be part
of the solution for any source s: among paths that use h,
the first k entries dominate the others. If k is small relative
to the number of POIs, we can use Algorithm 2 to query the
k closest POIs. As experiments will show, this approach is
faster, mainly because we do not use a cursor. Moreover,
since the number of rows per hub is now limited by k, the
total running time is still linear in k, and not |P|.

Additional improvements are possible for k = 1, when we
need to find only the closest POI. Because each hub appears
at most once in poilab, we can make it a primary key, elim-
inating the need for a clustered index and for the GROUP
BY operator. In this case, one can think of poilab as a
superlabel : this is the label one would obtain if all points of
interest were conflated into a single vertex.

In essence, this single-hub indexing strategy is a transla-
tion into SQL of the bucked-based approach [28]: it creates a
separate bucket for each hub in the (potentially large) target
set, but queries only need to access buckets that represent
hubs in the (much smaller) forward label. This approach
was first developed to solve the one-to-many problem: com-
puting the shortest path from s to each element of a prede-
fined set of targets (points of interest). Geisberger [20] has
recently shown that this approach can be used (as an exten-
sion of CH) to solve the k-closest POI problem efficiently.

4.2 Double-Hub Indexing
For location services that depend on a query source s, a

query target t, and a set of predefined POIs P, single-hub
indexing is not good enough. For example, consider the best
via point problem [6, 30, 11]: assume you want to go from
s to t but need to stop at a post office on the way while
minimizing your overall travel time. Formally, you want
the post office p that minimizes dist(s, p)+dist(p, t). Again,
the straightforward approach is to run two external distance
oracle queries (from s and to t) for each via point and report
the one with the minimum sum. This yields a running time
linear in |P|, the number of candidate via points.

We can do better in practice with single-hub indexing.
We build two tables vialabF and vialabB containing the
relevant POI rows of forward and backward, indexed by
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Figure 3: Best via point: forward hubs are circles,
backward hubs are crosses; distances from incoming
to outgoing hubs for each POI are precomputed.

hub and dist. To find the best via point for a given source
s and target t, we compute the distances from s to all POIs
and the distances from all POIs to t. We return the POI
that minimizes the sum of both distances. Unfortunately,
the running time of this approach is still linear in |P|, since
we must consider all acceptable via points.

We now propose a new approach, called double-hub index-
ing, which is asymptotically faster when |P| is large. Every
path we are interested in is the concatenation of two shortest
paths: from s to a POI p, then from the same POI p to t.
We need to find the POI p such that the total length is min-
imized, but without testing all candidates POIs explicitly.
Let h be the meeting hub for path s–p and h′ the meeting
hub for p–t. Note that h is a forward hub for s and h′ is
a backward hub for t; most importantly, both h and h′ are
hubs of p (backward and forward, respectively). For a given
s–t via query, therefore, it suffices to look at all pairs (h, h′)
such that h is a forward hub for s and h′ a backward hub
for t. To do so efficiently, we precompute (before queries)
the POI p∗ for which dist(h, p∗) + dist(p∗, h′) is minimized
(among all POIs that have both h and h′ as backward and
forward hubs, respectively). Figure 3 gives an example.

We can implement this idea in HLDB as follows. For the
set of all POIs (via points), we build a table called vialab

with four columns: node, hubF, hubB, and dist. For each
POI (node) p, we store |Lb(p)| · |Lf (p)| rows. For each com-
bination (hb, hf ) of backward and forward hubs of p, we
store hf in hubF, hb in hubB, and dist(hb, p) + dist(p, hf )
in dist. We index vialab with a clustered index by hubF,
hubB, and dist (including node for performance). Given s
and t, the query algorithm now invokes two cursors loop-
ing over all combinations of hubs hf ∈ Lf (s) and hb ∈
Lb(t). For each pair of hubs, we access vialab and find
the best via point p for this pair. We store p, together
with dist(s, p) + dist(p, t) (obtained from vialab.dist, for-
ward.dist, and backward.dist) in a temporary table temp.
In the end, we return the row from temp with minimum dis-
tance. With this double-hub indexing approach, query times
depend on the square of the sizes of the labels, which can
be considerably smaller than |P|.

This approach can be extended to finding the k best via
nodes (and not just one). In the inner loop, we return (and
store in temp) the k best via points for the particular pair
of hubs. Then, we return the best k rows from temp with
the additional constraint that we group the result by the via
point. The running time still depends on k and the square
of the size of the labels, but not on the number of POIs.

4.2.1 Ride Sharing
The ride sharing problem [21] can also be solved with our

double-hub indexing approach. The goal is to match queries
(people looking for a ride from an origin s to a destination
t) to offers (drivers offering rides with origin s′ and destina-

tion t′). Given a new query (s, t), the goal is to find the offer
(s′, t′) that minimizes the (absolute) detour for the driver,
given by dist(s′, s) + dist(s, t) + dist(t, t′) − dist(s′, t′). We
are interested in an on-line solution: new queries are imme-
diately matched with current offers whenever possible.

To solve this with HLDB, we store all offers in a table
offers with four columns: id (a unique offer identifier),
source (the source vertex), target (the target vertex), and
dist (the distance between source and target). Note that
we can compute the distance when we feed a new offer into
offers. As in the via point application, we then build a
table offlab similar to vialab, with four columns: id, hubF,
hubB, and dist. For each offer (s′, t′), we store for each
combination hf ∈ Lf (s′), hb ∈ Lb(t

′) the offer’s identifier in
id, hf in hubF, hb in hubB, and dist(s′, hf ) + dist(hb, t

′) −
dist(s′, t′) in dist. The query algorithm for a pair (s, t)
works as in the via node problem, with two cursors looping
over each combination hb ∈ Lb(s), hf ∈ Lf (t).

Again, query times depend only on the number of hubs
in s and t. This is better than in the approach proposed by
Geisberger et al. [21], whose query times depend heavily on
the number of available offers.

4.2.2 POI Prediction
Another application of double-hub indexing is POI pre-

diction. Often a user knows her way and does not enter a
destination into her navigation system. While driving, how-
ever, she may decide to stop for gas (or another service).
Intuitively, if she asks the system for a nearby gas station,
the best answer may not be the closest one, since it could
actually be behind the user. This motivates the need for POI
prediction, i.e., reporting a reasonable POI that is “ahead”
of the user, even if her final destination is unknown.

Formally, we consider the following problem. Suppose
the user is at vertex v, and has traveled for some time
on a shortest u–v path (which has been tracked by the
system), and asks for k POIs that are close and “on the
way”. We propose finding POIs that are close to v (close-
ness criterion) and such that the path from u to the POI
via v is not much longer than the shortest path from u
to the POI (detour criterion). To achieve this, we assign
a score S(p) = dist(u, v) + (1 + ε)dist(v, p) − dist(u, p) to
each POI, and report the k POIs with the smallest S(p)
values. One can interpret S(p) as the sum of two terms.
The dist(u, v) + dist(v, p) − dist(u, p) term is the length of
the detour one makes by going from u to p through v. The
ε · dist(v, p) term is proportional to the distance from v to
p. The value of ε is chosen to achieve the desired balance
between detour length and closeness and may vary with the
type of POI. For example, closeness is more important for
finding the nearest restroom than the nearest post office, so
in the former case ε is bigger.

A straightforward implementation computes S(·) for all
POIs and has running time linear in |P|. If ε is prede-
fined (experiments indicate that 0.05 is a reasonable value),
double-hub indexing gives a more efficient solution. First,
note that we can remove dist(u, v) from S(p), since it is the
same for all POIs. So we need to evaluate (1 + ε)dist(v, p)−
dist(u, p) for each POI p. To do so efficiently, we use a pre-
processing stage to build a table predlab with four columns:
node, hub, hubprime, and dif. For each POI (node) p, we
store |Lb(p)|2 rows in predlab; more precisely, for each com-
bination (h, h′) of backward hubs of p, we store h in hub, h′



in hubprime, and (1 + ε)dist(h, p) − dist(h′, p) in dif. An
(u, v) query then works as in the best via point algorithm.
For each pair of hubs h ∈ Lf (u) and h′ ∈ Lf (v), we use
predlab to find the best POI for (h, h′), then pick (among
those) the one minimizing S(·). Note that we can use any
other ranking function that depends only on the lengths of
the paths between u, v, and p.

The fastest previous methods for POI prediction [17, 29]
first compute a probability distribution of all possible user
destinations, then rank POIs accordingly. By ranking POIs
directly, our approach can be much faster. We should note,
however, that our approach is less rigorous, and may give
less accurate predictions.

5. EXPERIMENTS
We now present a detailed evaluation of our approach. To

the best of our knowledge, no previous practical algorithm
has actually been evaluated within a database; for fairness,
Section 5.1 compares existing methods with a standalone
version of HL. Section 5.2 then considers full-fledged HLDB,
with queries implemented entirely within the database.

All experiments were run on a machine with two Intel
Xeon X5680 CPUs and 96 GB of DDR3-1333 RAM, run-
ning Windows Server 2008 R2. Our main benchmark in-
stance, representing Western Europe, has 18.0 million ver-
tices and 42.2 million arcs. We also tested a moderate-sized
instance representing Florida, with 1.07 million vertices and
2.71 million arcs. Both graphs were made available for the
9th DIMACS Implementation Challenge [13]. Other road
networks, including proprietary ones, led to similar results.

Our implementation of label generation is the same as in
Abraham et al. [2]. It is implemented in C++ using Visual
Studio 2010, with OpenMP used for parallelization.

5.1 C++ Implementation
Table 1 summarizes the performance of our standalone

C++ implementations (outside the database context) of
contraction hierarchies (CH) [22] and a few HL variants [2],
which use various combinations of top-down and bottom-up
ordering to achieve different trade-offs between preprocess-
ing time and label size. HL-0 uses pure bottom-up ordering,
HL-17 orders the 131 072 most important vertices top-down
and the rest bottom-up, while HL-∞ approximates a top-
down ordering for all vertices. For comparison, we also give
the numbers reported by Samet et al. for various distance
oracles [34, 37, 35] (which only work on small problems).
Their implementations are also in C++, and the machine
they use is less than twice as slow as ours. For each al-
gorithm, we show the number of vertices on the graph on
which it was tested, the preprocessing time (in seconds), the
total space usage (in bytes per vertex), the average sequen-
tial time for random queries, and (for approximate oracles)
the maximum allowed percent error.
HL-0 and HL-17 preprocessing takes only a few minutes

for Europe. In contrast, the techniques developed by Samet
et al. have very slow preprocessing and are only practical
for small graphs. They do not report preprocessing times,
but among other things their preprocessing uses Dijkstra’s
algorithm to build n shortest path trees. On Europe, this
would take months, even with a state-of-the-art implemen-
tation [9]. A recent algorithm [9] can build the trees much
faster on a high-end GPU, but it is unclear if it can be
augmented to efficiently perform the additional work of the

Table 1: Performance of C++ implementations of
various distances oracles.

input preprocessing query
size time space time error

method ref. |V | [s] [b/v] [ns] [%]
SILC [34] 4k n.a. > 10 > 1 000 000 > 0
PCP [37] 60k n.a. 100 35 000 20
pathDis [35] 90k n.a. 75 68 000 10
pathDis [35] 90k n.a. 30000 > 100 000 1

CH [22] 18M 143 23 78 706 —
HL-0 [2] 18M 181 1344 700 —
HL-17 [2] 18M 1188 1075 545 —
HL-∞ [2] 18M 20580 998 508 —

preprocessing algorithm. Even if it could, preprocessing on
Europe would still take days.

We observe that both CH and HL are clearly superior
solutions when used as external distance oracles. They can
handle much bigger graphs, preprocessing space can be much
lower, and queries are faster and provably exact. HL is two
orders of magnitude faster than the oracles by Samet et al.
even on graphs more than two orders of magnitude bigger.
CH is slower than HL, but it can still answer queries in less
than 100µs, which is fast enough for real-time applications.
Moreover, CH requires much less RAM than HL; because it
uses a graph for queries, however, it cannot be implemented
efficiently within the database.

The values in Table 1 are for distance-only queries. To
support path unpacking, HL needs 11 more seconds of pre-
processing, and an extra 1.2 GB for maintaining full descrip-
tions of all shortcuts. With parent pointers, the total space
usage increases from 18.0 GB to 29.4 GB. With the addi-
tional data, HL can retrieve the full path in about 5µs. CH
queries have similar additive increases using preassembled
shortcuts (which requires an extra 1.2 GB of data).

5.2 Database Queries
We now evaluate our approach within a database system.

We implemented HLDB queries in SQL using Microsoft SQL
Server 2008 R2 (limited to 8 GB of RAM). The database files
are stored on a RAID-0 of two Intel 320 SSD drives with
160 GB each. To evaluate queries, we ran a C++ program
on the same machine, calling the SQL server via ODBC.
We measured the time from requesting a query to the SQL
server to getting an answer from it.

We inserted the labels of HL-17 for Europe (with 75.0
hubs on average) into the database ordered by node and then
hub, producing tables (forward and backward) with roughly
1.35 billion rows taking 36.8 GB each (including parent infor-
mation and indices). The table with precomputed sequences
of arcs (shortcuts) has 205 million rows and takes 5.1 GB.
The total space usage is therefore 78.8 GB. This is more than
the almost 30 GB used by the C++ implementation of HL,
which represents labels more compactly.

For Florida, we ran HL-14 (top 16 384 vertices ordered
top-down) preprocessing, which takes 28 seconds. The re-
sulting labels have 38.8 hubs on average, and take about
41.5 million rows (1.14 GB) per direction in the database.
The shortcuts table has 12.7 million rows and 319 MB.

We always clear the DB cache before each experiment, and
by default store the database on SSD. To compare internal
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Figure 4: Average HLDB times for random point-to-point queries in various setups.

HLDB queries with external calls to an HL-based distance
oracle, we implemented the latter in C#, which can be called
from MS SQL. Compared to the C++ implementation, the
C# version is slower by roughly a factor of 2.5 (random
distance queries on Europe take 1335 ns on average), partly
because our C# implementation is less optimized.

5.2.1 Random Queries
In our first experiment, we ran one million point-to-point

queries, with the source s and the target t picked uniformly
at random among all vertices in the graph. We ran three
variants of our SQL query: computing only the s–t distance,
retrieving the compact path P+ (the path with shortcuts),
and retrieving the full path. Each variant does strictly more
work than the previous one. We also evaluated our external
C# distance oracle, kept entirely in RAM and outside the
database. Figure 4(a) shows the average time of the first q
queries in Europe, with q varying from 10 to 1 000 000.

Average times decrease as more SQL queries are pro-
cessed, since more information is gradually brought to RAM.
In particular, the distance-only variant needs 3.27 ms per
query for the first 10 queries, but one million queries take
1.97 ms on average. The variant that finds the full path
benefits the most (since it makes more random accesses),
with times decreasing from 23.7 ms to 8.7 ms. Results are
even better on smaller instances. As shown in Figure 4(b),
queries on Florida are about twice as fast as on Europe.

Note that all variants of HLDB are fast even with cold
cache. Retrieving each of the first 10 paths takes less than
25 ms on average on Europe, which is good enough for inter-
active applications. Comparing the performance of the SQL
query to the external oracle (which resides in memory), we
observe that the difference in performance is relatively small.
For the C# implementation of HL, most of the 0.6 ms of the
query time is due to overhead for making an external call
from MS SQL Server.

5.2.2 Impact of the SSD
We now evaluate HLDB when, instead of using SSDs, we

store files on two Seagate Constellation 7200 SATA 3 Gb/s
hard disk drives (HDD) with 500 GB each in RAID-0 config-
uration. Figure 4(c) shows the results for random point-to-
point queries for both Europe and Florida. Unsurprisingly,
expensive random accesses make HLDB queries an order of
magnitude slower. Distance-only queries are still fast enough
(30 to 40 ms after a few queries), but retrieving the full path
is costly. To accelerate such queries, one could warm up

the cache by loading all data from shortcuts (5.1 GB) into
memory. Queries would then access the HDD only to load
labels, and times would be similar to the distance-only case.
Since storing the tables on SSD gives better results, we use
this setup for the remaining experiments.

5.2.3 Local Queries
Picking source and target at random produces mostly

long-range queries, but typical users are interested in local
queries, which should be faster. We simulate such queries
by preselecting s–t pairs as follows. Given a ball size b, we
first pick a vertex x at random, run Dijkstra’s algorithm
from x until b vertices are scanned, then pick sources and
targets uniformly at random among the scanned vertices.
Figure 5(a) shows the average query times on Europe for all
three variants of HLDB as a function of b. For each ball, we
run 10 000 queries from a cold start; each point in the plot
is the average of 10 balls of the same size.

As expected, all types of queries are faster in more re-
stricted regions. Reporting the entire path is particularly
cheap in very local areas, since most shortcuts needed end
up in cache. Query locality also has some effect on distance
and compact path queries, but it is not as pronounced.

5.2.4 Single-Hub Indexing
We now consider more complex scenarios, starting with

point of interest (POI) queries. Given k, a source s, and
a set of POIs P, we must find the k closest POIs from s,
as well as the corresponding distances. Recall that Sec-
tion 4.1 considered three algorithms to solve this problem:
the straightforward approach using an external oracle, the
general approach using a cursor to iterate over all the hubs
of s, and a tailored version where k must be preselected.

Figure 5(b) shows how these algorithms perform on Eu-
rope for k = 1 and k = 16 as a function of |P|. As POIs,
we pick a set of vertices uniformly at random from the en-
tire graph, then run 10 000 queries (from cold cache) from
random sources. Each point is an average taken over 10 sets
of POIs. Since the times of the oracle-based approach are
essentially independent of k, we only report them once.

We observe that the oracle-based approach depends heav-
ily on |P|. Initially, running times are dominated by the
overhead of the external calls; eventually, doubling |P| dou-
bles the running time as well. For large |P|, the algorithm is
too slow for interactive applications. In contrast, our SQL-
based algorithms show little dependence on |P|. The impact
of k is also limited: the cursor-based version (C) is less than
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Figure 5: Extended query scenarios on Europe (SSD).

twice as slow for k = 16 than for k = 1. The tailored
query (T) is up to three times faster, but not as flexible
as the cursor-based version, which allows additional con-
straints. All SQL-based algorithms take less than 8 ms for
all scenarios considered, fast enough for online applications.

Note that both curves for the tailored SQL query follow
the same pattern: running times increase with the number of
POIs, decrease abruptly, then start increasing again. These
results indicate that the DBMS uses heuristics to decide
which strategy to use for intersecting Lf (s) and the (usually
larger) table representing the POIs. Initially, it traverses the
label and poilab in full (with running time linear in |P|).
When there are enough POIs, it performs multiple searches
in the POI table, looking only for hubs that appear in Lf (s)
(running time logarithmic in |P|).

Sankaranarayanan and Samet report query times for k-
closest POIs as well (Figure 18(a) in [35]). On a road net-
work with 91 113 vertices (much smaller than ours), they
pick 911 random vertices as POIs. Queries are fast for k = 1
but take more than 1 ms for k > 10, even though they are
implemented in C++ (with no database involved) and are
approximate. We obtain comparable results with an exact
algorithm implemented in SQL (which is much slower than
native C++) and on an input that is 200 times as large.

5.2.5 Double-Hub Indexing
We study the performance of HLDB on location services

requiring double-hub indexing. For simplicity, we focus on
k-best via point queries; ride sharing and POI prediction
have similar behavior. We evaluate two SQL algorithms,
one based on double-hub indexing and the simpler single-
hub solution, which evaluates the distances from s to all
POIs and from all POIs to t. As before, we pick a varying
number |P| of random POIs from the graph and evaluate
the performance of both algorithms for k = 1 and k = 16.
We run 1 000 queries from cold cache from random sources.
Figure 5(c) gives the results.

As expected, the all-POIs approach becomes too slow as
|P| increases. (Since its running time is the same for both
values of k, we only report k = 1 in the figure.) In contrast,
the running time of the double cursor approach increases
only slightly with |P| (by a factor of three when |P| increases
from 1 to 262 144), mainly due to the fact that a larger
fraction of the pairs of hubs determined by s and t end up
having entries in vialab. With running times below 420 ms
even for a large number of POIs in the system, the approach
is still fast enough for practical applications.

6. CONCLUSION
We presented HLDB, the first system that implements

exact location-based services on continental road networks
using only relational database operators. Queries run in
milliseconds, fast enough for interactive applications. We
extended the approach to more advanced queries (such as
k-closest points of interest, via points, ride sharing, and
POI prediction). By retaining the flexibility of SQL, our
approach can be naturally extended to handle arbitrarily
complicated queries, such as finding all POIs within a cer-
tain range or computing meeting points.

Further optimizations are still possible. Figure 4(a) shows
that making external distance queries can be faster than an
internal HLDB implementation in SQL. Retrieving labels
from the database can be quite costly, especially if data
is stored on HDD, and labels require a moderately large
amount of storage space. This suggests a hybrid algorithm
that can reduce storage needs and potentially improve per-
formance, while retaining much of the flexibility of the in-
ternal query implementation. We can run CH preprocessing
and maintain the resulting auxiliary data (substantially less
than what HL needs) in memory, but outside the database.
CH can then be used as a distance oracle. For extended
queries, such as those discussed in Section 4, we can create
labels on demand for the desired vertex v (see Abraham et
al. [2] for details). Although these labels are slightly bigger,
queries may be even faster than the standard HLDB imple-
mentation, since computing the labels in RAM eliminates
external memory accesses. Note that label generation can
be made transparent to the application programmer, who
still codes in SQL. To handle extended queries as discussed
in Section 4, one can still generate the corresponding tables
in SQL and store them in the database for repeated use.

Now that a fast exact database distance oracle is available,
an interesting avenue for future research is exploring which
kinds of new and existing spatial applications can benefit
from it.
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