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Abstract. We study problems that arise in the context of covering cer-
tain geometric objects (so-called seeds, e.g., points or disks) by a set of
other geometric objects (a so-called cover, e.g., a set of disks or homo-
thetic triangles). We insist that the interiors of the seeds and the cover
elements are pairwise disjoint, but they can touch. We call the contact
graph of a cover a cover contact graph (CCG). We are interested in
two types of tasks: (a) deciding whether a given seed set has a connected
CCG, and (b) deciding whether a given graph has a realization as a CCG
on a given seed set. Concerning task (a) we give efficient algorithms for
the case that seeds are points and covers are disks or triangles. We show
that the problem becomes NP-hard if seeds and covers are disks. Con-
cerning task (b) we show that it is even NP-hard for point seeds and disk
covers (given a fixed correspondence between vertices and seeds).

1 Introduction

Koebe’s theorem [9, 11], a beautiful and classical results in graph theory, says
that every planar graph can be represented as a coin graph, i.e., a contact graph
of disks in the plane. In other words, given any planar graph with n vertices, there
is a set of n disjoint open disks in the plane that are in one-to-one correspondence
to the vertices such that a pair of disks is tangent if and only if the corresponding
vertices are adjacent. Koebe’s theorem has been rediscovered several times, see
the survey of Sachs [12]. Collins and Stephenson [4] give an efficient algorithm
for numerically approximating the radii and locations of the disks of such a
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(a) disk seeds (b) disk cover of (a) (c) CCG induced by (b)

Fig. 1: Seeds, cover, and CCG.

representation of a planar graph. Their algorithm relies on an iterative process
suggested by Thurston [13].

Since Koebe there has been a lot of work in the graph-drawing community
dedicated to the question which planar graphs can be represented as contact or
intersections graphs of which geometric object. As a recent example, Fraysseix
and Ossona de Mendez [5] showed that any four-colored planar graph without
an induced four-colored C4 is the intersection graph of a family of line segments.

On the other hand, there has been a lot of work in the geometric-optimization
community dedicated to the question how to (optimally) cover geometric objects
(usually points) by other geometric objects (like convex shapes, disks, annuli).
As an example take Welzl’s famous randomized algorithm [15] for finding the
smallest enclosing ball of a set of points.

In this paper we combine the two previous problems: we are looking for
geometric objects (like disks or triangles) whose interiors are disjoint, that cover
given pairwise disjoint objects called seeds (like points or disks) and at the same
time represent a given graph or graph property by the way they touch each other.
Other than in geometric optimization each of our covering objects contains only
one of the seeds. We are not interested in maximizing the sizes of the covering
objects; instead we want them to jointly fulfill some graph-theoretic property
(like connectivity). Compared to previous work on geometric representation of
graphs we are more restricted in the choice of our representatives.

Let us get a bit more formal. Given a set S of pairwise disjoint seeds of some
type, a cover of S is a set C of closed objects of some type with the property that
each object contains exactly one seed and that the interiors of no two objects
intersect. Figure 1b depicts a disk cover of the disk seeds in Figure 1a. Now the
cover contact graph (CCG) induced by C is the contact graph of the elements
of C. In other words, two vertices of a CCG are adjacent if the corresponding
cover elements touch, i.e., their boundaries intersect. Figure 1c depicts the CCG
induced by the cover in Figure 1b. Note that the vertices of the CCG are in
one-to-one correspondence to both seeds and cover elements. We consider seeds
to be topologically open (except if they are single points). Then seeds can touch
each other. (Note that we require cover objects to be closed. This makes sure
that a cover actually contains a point seed that lies on its boundary.)

In this paper we investigate the following questions.

Connectivity: Given a seed set, does it have a (1- or 2-) connected CCG?
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Realizability: Given a planar graph and a set of seeds, can the given graph
be realized as a CCG on the given seeds?

A third type of question is treated in the long version of this article [3]:

Enumeration: For a given number of vertices, how many graphs of a certain
graph class can be realized as a CCG?

However, we do consider in this paper an interesting restriction of the above
problems where seeds and cover elements must lie in the half plane R

2
+ above

and including the x-axis. Seeds are additionally restricted in that each must
contain at least one point of the x-axis. In this restricted setting we call the
contact graph of a cover a CCG+. See Figures 7b and 9 for examples.

Our results. First, we consider arbitrary sets of point seeds, see Section 2. Con-
cerning connectivity we show that we can always cover a set of point seeds using
disks or using homothetic triangles such that the resulting CCG is 1- or even
2-connected. Our algorithms run in O(n log n) expected and O(n2) worst-case
time, respectively. Concerning realizability we give some necessary conditions
and then show that it is NP-hard to decide whether a given graph can be re-
alized as a disk-CCG if the correspondence between vertices and point seeds is
given. Second, we consider the restriction where we are given a set S of points
on the x-axis as seeds. We show that in this case 1-connectivity is easy: we can
realize Cn as a CCG on S and there are trees that can be realized as a CCG+ on
S. For the case that the correspondence between seeds and vertices is given, we
give an algorithm that decides in O(n log n) time which trees can be realized as
CCG+. Third, we consider disk seeds, see Section 4. We show that even deciding
whether a set of disk seeds has a connected disk-CCG is NP-hard. We can only
sketch proofs here. We refer the reader to the long version [3] of this paper.

Related work. Abellanas et al. [1] proved that the following problem, which they
call the coin placement problem, is NP-complete. Given n disks of varying radii
and n points in the plane, is there a way to place the disks such that each disk
is centered at one of the given points and no two disks overlap?

Abellanas et al. [2] considered a related problem. They showed that given a
set of points in the plane, it is NP-complete to decide whether there are disjoint
disks centered at the points such that the contact graph of the disks is connected.

Given a pair of touching (convex) cover elements, we can draw the corre-
sponding edge in the CCG by a two-segment polygonal line that connects the
incident seeds and uses the contact point of the cover elements as bend. This is
a link to the problem of point-set embeddability. We say that a planar graph G

is k-bend (point-set) embeddable if for any point set P ⊂ R
2 there is a one-to-

one correspondence between V and P such that the edges of G can be drawn
as non-crossing polygonal lines with at most k bends. Kaufmann and Wiese [8]
showed that (a) every 4-connected planar graph is 1-bend embeddable, (b) every
planar graph is 2-bend embeddable, and (c) given a planar graph G = (V, E)
and a set P of n points on a line, it is NP-complete to decide whether G has a
1-bend embedding that maps V one-to-one on P .
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2 The seeds are points in the plane

In this section we study point seeds which may take any position in the plane.
If not stated otherwise our results hold for both disk covers and (homothetic)
triangle covers. We focus on the two questions raised before: connectivity and
realizability.

2.1 Connectivity

It is known to be NP-hard to decide whether a given set of points can be covered
by a set of pairwise disjoint open disks, each centered on a point, such that the
contact graph of the disks is connected [2]. In contrast to that result we give a
simple sweep-line algorithm that covers point seeds by (non-centered) disks such
that their contact graph is connected.

Proposition 1. Every set S of n point seeds has a connected CCG. Such a CCG
can be constructed in O(n log n) time and linear space.

Proof. After sorting S by decreasing ordinate we proceed incrementally from
top to bottom. For the first point, we place a cover element (disk or triangle,
depending on the case) of fixed size with the seed as its bottommost point. If
the k − 1 topmost points are already connected, then for the k-th point p we
inflate a cover element Cp with p as the bottommost point until Cp touches one
of the previously placed cover elements.

The implementation for disk-CCGs is similar to Fortune’s sweep [6] for con-
structing the Voronoi diagram of a set of weighted points. For triangle-CCGs we
repeatedly determine the size of the new triangle in O(log n) time by a segment-
dragging query [10] and two very simple ray-shooting queries. ⊓⊔

In fact, even more can be obtained as the following proposition assures.

Proposition 2. Any set S of n point seeds has a biconnected CCG. Such a
CCG can be constructed in O(n2 log n) time using linear space.

Proof. We first consider disks as cover elements. Let D1, D2, and D3 be three
congruent disks that touch each other. They delimit a pseudo-triangular shape R.
Choose the three disks such that each disk Di contains a unique point pi ∈ S

and such that S \ {p1, p2, p3} ⊂ R, see Figure 2 (left).
In order to cover the remaining points we assume that disks D4, . . . , Di−1

have been placed such that each covers a unique point of S and touches two previ-
ously placed disks, see Figure 2 (middle). Thus the contact graph of D1, . . . , Di−1

is biconnected. Let Rj be a connected component of R \
⋃i−1

j=4 Di that contains
at least one uncovered point. Use Fortune’s sweep [6] to compute the combined
Voronoi diagram of the disks incident to Rj and the points in S ∩Rj . This takes
O(n log n) time and the resulting Voronoi diagram has complexity O(n). The
part of the Voronoi diagram in Rj is the locus of the centers of all disks that lie
in Rj and touch ∂Rj ∪(S∩Rj) in at least two points, where ∂Rj is the boundary



Cover Contact Graphs 5

D1 D2

D3

p1

p3

R

p2

D1 D2

D3

p1

p3

p4

D4

R7

p5

p6

p2

D1 D2

D3

p1

p2

p3

p4

p7

p8

D8

D4
D7

R9

p5

p6

Fig. 2: Three steps in the construction of a biconnected disk-CCG.

of Rj . Now we make a simple but crucial observation: if D is a disk that (a) lies
in Rj , (b) contains a seed s ∈ S ∩ Rj on its boundary, and (c) touches two of
the previous disks, then D is centered at a vertex of the Voronoi diagram. Thus
the smallest disk D⋆ fulfilling (a)–(c) can be found in linear time and, by con-
struction, does not contain any point of S in its interior. (If by any chance D⋆

touches more than one point of S, we re-start the whole computation with three
slightly wiggled initial disks D1, D2, and D3. Then the probability of such a
degeneracy becomes 0.) Now set Di = D⋆, and repeat the process until all seeds
are covered. This takes O(n2 log n) time in total.

The case of triangles can be handled analogously. Choosing any reference
point in the triangular shape, a structure similar to the medial axis can be
computed in O(n log n) and updated in O(n) time in each of the n − 3 phases.

⊓⊔

2.2 Realizability

In this section we first give two necessary conditions that a planar graph must
fulfill in order to be realizable as a disk-CCG on a given seed set. Then we
construct a plane geometric graphs on six vertices that cannot be represented
as disk-CCG. Finally we investigate the complexity of deciding realizability.

To formulate our necessary conditions for realizability we define a graph on
the given seed set S. Our graph is inspired by the sphere-of-influence graph
defined by Toussaint [14]. Given a seed set S and a point p ∈ S let the influence
area of p be the closure of the union of all empty open disks D (i.e., D ∩ S = ∅)
that are centered at vertices of the Voronoi region of p, see Figure 3. We call
the intersection graph of these influence areas the hyperinfluence graph of S and
denote it by HI (S), see Figure 4.

Proposition 3. Let S be a set of point seeds and let G be a graph realizable as
a disk-CCG on S. Then

(i) G is a subgraph of HI (S), and
(ii) G has a plane drawing where each vertex is mapped to a unique point in S

and each edge is drawn as a polygonal line with at most two segments (i.e.,
with at most one bend per edge).
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Fig. 3: Influence area of p ∈ S (shaded).
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Fig. 4: The hyperinfluence graph HI (S).

Proof. Both facts are straightforward to obtain. (i) is based on the observation
that any possible covering disk of p is contained in the influence area of p. Thus,
if the covering disks of two seeds are in contact, their influence areas intersect.

(ii) is obtained by representing each edge of the CCG by two line segments
that connect the seeds with the point of tangency of the covering disks. ⊓⊔

While Proposition 3 (ii) is difficult to verify even if all seeds lie on a line [8],
Proposition 3 (i) gives us a way to show non-realizability of certain geometric
graphs as the one depicted in Figure 5. That graph is connected and thus cannot
be realized as a CCG with its vertices as seeds, because the shaded influence areas
of p1 and p2 do not intersect. The graph has eight vertices. On the other hand
it is easy to see that any three-vertex graph can be realized on any three-point
seed set. Now it is interesting to ask for the least n for which there is an n-vertex
geometric graph G such that the straight-line drawing of G is plane but G cannot
be realized as CCG.

p1 p2

Fig. 5: Non-realiza-
ble bipartite graph.

We show that there is a set S = {a, b, . . . , f} of six
points in convex position such that their Delaunay trian-
gulation is not representable as a CCG, see the underlying
graph in Figure 6. The covering disks Da and Dd of the
points a and d must touch each other in one of two ways.
Either the tangent point of the disks lies inside the convex
hull of S, or Da and Dd are very large and lie to the left
of a and to the right of d, in which case they touch far above or below S, see
Figure 6. In the first case there is no disk covering c and touching Da. In the
second case we can assume that the boundaries of Da and Dd are two almost
parallel lines in the vicinity of the six points. The disks Dc and Df covering c

and f must both touch Da and Dd. But if c and f are close enough to a and d

then Dc and Df cannot be disjoint.
So we have seen that there are pairs of (quite small) graphs and seed sets

such that the graph cannot be realized on the seed set as disk CCG. Thus we
would like to decide whether a given graph is realizable as CCG on a given seed
set or not. Of course Koebe’s theorem [9] guarantees that for any planar graph G
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Fig. 6: Non-realizable Delaunay triangulation of six points in convex position.

we can find a seed set S such that it is possible to realize G on S. However, if
the seeds and the vertex–seed correspondence are given, the problem becomes
NP-hard.

Theorem 1. Given a set S of points in the plane and a planar graph G = (S, E),
it is NP-hard to decide whether G is realizable as disk-CCG on S.

The proof is by reduction from the NP-hard problem Planar3SAT. There
are gadgets for each variable and each clause of the given Boolean formula.
The gadget of a variable v is such that it allows two combinatorially different
ways to represent the given subgraph as disk-CCG. These correspond to the
two Boolean values of v. The clause gadget is locally symmetric with respect to
120◦-rotations and designed such that some cover disks must overlap if and only
if the corresponding three literals are all false.

3 The seeds are points on a line

In this section, seed sets consist of points on the x-axis. Connectivity follows
from some of our realizability results, so we focus on the latter. We consider the
following four questions. Note that seeds now correspond to real numbers, so we
can use the natural order < in R to compare them. All covers consist of disks
unless stated otherwise (e.g., in Q4).

Q1. Given a graph class C (e.g., the class of trees), does it hold that for any seed
set S there is a graph in C that is realizable as CCG or CCG+ on S?
We show: This is true for (cycles, CCG) and (trees, CCG+).

Q2. Given a graph class C, does it hold that for any graph G in C there is a seed
set S such that G can be realized as CCG or CCG+ on S?
We show: This is true for the combination (trees, CCG+).
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Fig. 7: Graphs that can be realized on a given one-dimensional n-point seed set S.

Q3. Let C be a fixed graph class. Given a graph G ∈ C with a labeling λ : V →
{1, . . . , n}, is there a sequence s1 < . . . < sn of seeds in R

1 and a realization
of G that maps each vertex v to the corresponding seed sλ(v)?
We show: There is an O(n log n) decision algorithm for (trees, CCG+).

Q4. Let C be a fixed graph class. Given a seed set S and a graph G(S, E) ∈ C,
can G be realized on S as triangle CCG or CCG+?
We show: There is an O(n log n)-time decision algorithm for (trees, CCG+).

Note that the above questions require more and more concrete information about
the seed set, ranging from no information (Q2) via a fixed order (Q3) to complete
information (Q4). We start with question Q1.

Proposition 4. Let S be a set of n point seeds on a line, then

(i) the n-vertex cycle Cn can be realized as CCG on S, and
(ii) there is a tree T (S) that can be realized as CCG+ on S.

Figures 7a and 7b give some intuition about how our algorithms work; for details
see the long version of this paper [3].

In terms of this paper, a coin graph is obtained when seeds are points and
cover elements are disks centered at seeds, and thus Koebe’s theorem establishes
that it is always possible to choose seeds in the plane such that any given plane
graph is realizable as a coin graph on them. We have seen in Proposition 4 that
Cn is realizable as a CCG on any seed set on a line. One can ask whether a
Koebe-type theorem also holds in this restricted setting. However, Kaufmann
and Wiese [7] have shown that there is a plane triangulated 12-vertex graph
(see Figure 8) that cannot be drawn with only one bend per edge if vertices
are restricted to a line. Now Proposition 3 (ii) implies that that graph is not
realizable as CCG if seeds lie on a line. On the positive side, we can show that a
Koebe-type theorem holds for the combination (trees, CCG+). This is an answer
to Q2 and in a way dual to Proposition 4 (ii). See Figure 9 for a sketch of our
recursive construction.
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Fig. 8: Kaufmann–Wiese graph [8]. Fig. 9: Constructing a seed set S(T ).

Proposition 5. For any tree T there is a seed set S(T ) ⊂ R
1 such that T is

realizable as CCG+ on S(T ).

In Proposition 5 above, we had complete freedom to choose the seeds. Now
we turn to question Q3, where we are not just given a tree, but also an order
of its vertices that must be respected by the corresponding seeds. Kaufmann
and Wiese [7] have investigated a related problem. They showed that it is NP-
complete to decide whether the vertices of a given (planar) graph can be put
into one-to-one correspondence with a given set of points on a line such that
there is a plane drawing of the graph with at most one bend per edge. We call
such a drawing a 1d-1BD. If additionally all bends lie on one side of the line, we
call the drawing a 1d-1BD+.

Note that the hardness result of Kaufmann and Wiese does not yield the
hardness of the one-dimensional CCG realizability problem, since not every
graph that can be one-bend embedded on a set of points on a line is realizable
as CCG, let alone as CCG+. Our next result explores the gap between Kauf-
mann and Wiese’s one-dimensional embeddability problem and the situation in
Proposition 5.

More formally, given an n-vertex tree T and a (bijective) labeling λ : V →
{1, . . . , n} of its vertices, we say that T is λ-realizable (as CCG, CCG+, 1d-
1BD, 1d-1BD+) if there is a sequence s1 < . . . < sn of seeds in R

1 and a
realization of T (as CCG, CCG+, 1d-1BD, 1d-1BD+) that maps each vertex v

to the corresponding seed sλ(v).
In order to obtain a characterization of trees that are λ-realizable as CCG+,

we need the following definition. Given a graph G = (V, E) with vertex label-
ing λ, a forbidden pair is a pair of edges

{

{a, b}, {c, d}
}

such that λ(a) < λ(c) <

λ(b) < λ(d). Note that it is impossible to embed the edges of a forbidden pair
simultaneously above the x-axis.

Theorem 2. For a λ-labeled tree T the following statements are equivalent:

(i) T is λ-realizable as a CCG+.
(ii) T is λ-realizable as a 1d-1BD+.
(iii) T does not contain any forbidden pair.
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1

2 3

4 5 6 7 b c d e fa g

Fig. 10: Binary tree not realizable as CCG+ on given seeds.

Given the tree, statement (iii) can be checked in O(n log n) time using an
interval tree, therefore the following corollary is straightforward.

Corollary 1. Given a λ-labeled tree T , we can decide in O(n log n) time whether
T is λ-realizable as CCG+.

We now turn to question Q4. So given a set of seeds S and a tree T (S, E)
our answer is a decision algorithm for the realizability of T as a triangle CCG+

on S. Note that in our series of results about realizability we have required more
and more concrete information about the seed set, ranging from no information
(Proposition 5) via a fixed order (Theorem 2) to complete information now. We
call a triangle V-shaped if it is symmetric to a vertical line and if its bottommost
vertex is unique. In the following we will consider all triangles as V-shaped. First
note that there are trees T and seed sets S for which the answer to question
Q4 is negative even if the mapping between vertices and seeds is not fixed in
advance. Figure 10 shows a complete binary tree T on seven vertices and the
one-dimensional point set S = {a(0), b(2), c(5), d(11), e(13), f(16), g(33)}. A case
distinction on the seed that represents the root vertex 1 shows that it is not
possible to find a representation of T as a triangle CCG+ on S. The example in
Figure 10 shows the case where seed g represents the root. In this case any two
covers of points in S \ {g} that touch the cover of g will overlap, e.g., the covers
of a and f .

On the other hand, there is always a tree that can be realized on a given set
of seeds as Proposition 4 (ii) shows. We can give an algorithm that decides this
realizability for a pair (S, T ) with T = (S, E) in O(n log n) time, where n = |S|.

Theorem 3. Given a set of seeds S and a tree T = (S, E) we can decide in
O(n log n) time whether T can be realized as a V-shaped triangle CCG+ on S.

The decision algorithm is based on the observation that the covers for the
closest pair of seeds must touch each other as otherwise this CCG+ would not be
connected. Thus the algorithm adds the edge between the closest pair of seeds,
removes one of the two seeds, and continues this process as long as it complies
with T . We can use the same algorithm to generate all trees that can be realized
as CCG+ on S by branching on the seed to remove in each iteration.

Although Theorem 3 is stated for a very restricted class of triangles, the result
can easily be extended to homothetic triangles whose top sides are parallel to
the x-axis.
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(a) seed set without connected CCG+ (b) seed set without connected CCG

Fig. 11: Disk seed sets without connected disk covers.

4 The seeds are disks in the plane

In this section, we consider disks in the plane as seeds and cover them using
disks, too. In contrast to point seeds the minimal size of each cover element is
now bounded from below by the size of the corresponding seed. Therefore the
results in this section differ a lot from those obtained in previous sections.

Unlike the connectivity results for points we can neither guarantee the exis-
tence of a connected CCG+ for disk seeds touching a line nor the existence of a
connected CCG for disk seeds in the plane, see Figure 11. Deciding whether a
given set of disk seeds has a connected CCG turns out to be hard.

Theorem 4. Given a set S of disk seeds, it is NP-hard to decide whether there
is a connected CCG on S, even if there are only four different seed radii.

The proof is again by reduction from Planar3SAT. The main trick is to use
what we call a stopper element, a cluster of three congruent pairwise touch-
ing disks as in Figure 11b. Observe that these disks can only be covered by
themselves—any larger cover of any disk would intersect the others. We use
small copies of these stopper elements to discretize the way in which other seeds
can be covered. In the center of our clause gadget there is stopper element that
is connected to the remaining cover as long as any of the corresponding three
literals is true.

Concerning realizability, the hardness result of Theorem 1 clearly still holds
for disk seeds. The necessary conditions for realizability in Proposition 3 can be
adapted to the case of disk seeds.

5 Open problems

This paper has opened a new field with many interesting questions.

1. We know that every 3-vertex graph can be represented as CCG on any set
of three points. We have given an example of six points whose Delaunay
triangulation is not representable as a CCG. What about plane geometric
graphs with four or five vertices? Do they always have a representation?

2. Does any set of point seeds in convex position have a triangulation that can
be represented as CCG?

3. We know that any set of point seeds has a 2-connected CCG. What about
3-connectivity?
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4. Is it NP-hard to decide whether a set of disks touching a line has a connected
CCG+?

5. Is there an equivalent to Theorem 2 for CCG’s, i.e., can we characterize
vertex-labeled trees that have a realization as CCG on a set of seeds on a
line which respect the vertex order prescribed by the labeling?

6. What about other classes of seeds and covers?
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7. O. Giménez and M. Noy. The number of planar graphs and properties of random

planar graphs. In C. Mart́ınez, editor, Proc. Internat. Conf. Anal. Algorithms
(ICAA’05), volume AD of DMTCS Proceedings, pages 147–156, 2005.

8. M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002.

9. P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss.
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