AT

Karlsruher Institut fur Technologie

Karlsruhe Reports in Informatics 2011,13
Edited by Karlsruhe Institute of Technology,

Faculty of Informatics
ISSN 2190-4782

An Experimental Study on Generating
Planar Graphs

Sascha Meinert and Dorothea Wagner

2011

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

=" Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

An Experimental Study on Generating Planar
Graphs

Sascha Meinert and Dorothea Wagner

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany,
{sascha.meinert,dorothea.wagner}@kit.edu

Abstract. We survey several planar graph generators that were selected
according to availability, theoretical interest, easiness of implementation
and efficiency. We experimentally study graph properties that allow for a
basic classification of the generators. This analysis is extended by means
of advanced algorithmical behavior on the generated graphs, in particu-
lar kernelization of fixed-parameter tractable problems. We will see the
major influence of instance selection on algorithmic behavior. This selec-
tion has been disregarded in several publications, which deduce general
results from non-representative data sets. Altogether, this study helps
experimenters to carefully select sets of planar graphs that allow for a
meaningful interpretation of their results.

1 Introduction

Planar graphs are an important class of graphs since many algorithms are cus-
tom tailored and thus perform much better on this subclass than in the general
case. For an experimental analysis, experimenters have to set up data sets that
attest a broad applicability to algorithms. These data sets should be described
precisely. However, many publications fail by either sketchy descriptions or in-
appropriate data set selection. For instance, works exist that describe the use of
the LEDA library [17] for random planar graph generation [2, 1, 6]. They speak
either of the random planar graph generator or a specific representative planar
graph generating function of LEDA. In fact, LEDA offers at least five functions
to randomly generate planar graphs. They are named similar or, even worse,
identical and their behavior is completely different, depending on the parame-
ters used. Obviously, experimenters want easy to use planar graph generators
and do not want to care about inherent generator details. They use one gener-
ator in the hope that a representative data set is created. As we will see later
this is a crucial misestimation that may either completely flaw or at least bias
experimental results. Note that due to space restrictions some details had to be
omitted which can be found in [18].

Related Work. Ideally, an algorithm should be tested on all graphs of a given
class to conclude that it performs well. On several classes of planar graphs
Plantri! [15] would be a good choice, as it is capable of generating all isomorphism-

! Excluded in our experimental study as it is infeasible to generate all non-isomorphic
planar graphs of large size.

free graphs of certain graph size. As the sheer number of planar graphs is way
too large it is obvious to ask for a representative sample. Thus, planar graphs
that are generated uniformly at random [13, 8, 5] may be an appropriate choice.
The implementation of such a generator is a challenging issue. Hence, non uni-
form but easier to implement generators gain importance. These can often be
found in algorithmic libraries, e.g., the LEDA library [17].

Contribution. We empirically study eight selected planar graph generators
by means of running time, basic graph properties and algorithmic behavior.
Additionally, we report on the completeness of each generator, i.e., whether it is
able to generate all planar graphs with positive probability. This work gives an
overview of several planar graph generators by means of theoretical background
and algorithmic behavior, which enables experimenters to compile representative
data sets that allow for a meaningful interpretation of algorithmical experiments
and their reproducibility.

Outline. First, the functionality, and theoretical background of each planar
graph generator is described in Section 2. Additionally, this section provides in-
formation about the implementations, which includes abbreviated library func-
tion calls, and their modifications where it became necessary. Then, the planar
graph generators are experimentally surveyed in Section 3. There, we first de-
scribe our generated data sets and our recommended parameter selection. The
generated graphs are used to analyze basic graph properties in local as well as
global scope to classify the graph generators. Afterwards, we sharpen this classi-
fication by means of algorithmic behavior, e.g., fized parameter tractable (FPT)
kernelization algorithms. Finally, we conclude this work with a recommendation
which generators should be chosen to create a compilation of data sets that
allows for meaningful interpretations of experiments.

2 Graph Generators

From here on a graph G = (V, E) is considered to be a simple, labeled, undirected
and planar graph, where V is the set of vertices {1,...,n} and E is the set of
edges. A planar graph can be embedded in the plane without edge crossings.
A planar graph together with a planar embedding is called a planar map. The
selected graph generators presented in this section either are available in libraries,
have low running times, are of theoretical interest or are based on ideas that
are easy to implement. In our opinion this collection represents the important
planar graph generators available. We separate the generators into two groups
according to the input parameters. The first group are (n)-generators that take
as a parameter the number of nodes n. Clearly, the number of edges of graphs
generated by such a generator is random. The second group consists of the
generators additionally taking the number of edges m as a parameter, denoted
by (n,m)-generator. They allow for an arbitrary number of edges. As always, a
degree of freedom implies the difficult decision on how parameters have to be
selected reasonably.

For our evaluation we created benchmark sets with each generator. Each
planar graph generator had to generate graphs of size 5, 10, 25, 50, 75, 100, 250,
500, 1000, 2 500 and 5 000 nodes n in increasing size. Since some graph generators
have high running time we set a cut-off time to 14 days. For each graph size n we
generated 4n graphs. If a graph generator failed to create the requested number
of graphs within the time limit we report this behavior in the detailed generator
descriptions later on. In the case of the (n,m)-generators, for each node count,
graphs were generated having m = in/4 edges for ¢ = 1,...,11. The number of
graphs generated for each of the n, m combinations is 4n. All (n,m)-graphs were
generated within the time limit. Note that the (n,m)-generators presented here
first generate a maximal planar graph and then randomly delete edges until m
edges remain.

2.1 (n)-generators

The generators presented here can be subdivided into two groups according to
their generation process. The first group consists of combinatorial generators,
whereas the geometric generators form the second group. All of the presented
(n)-generators are complete. Two of them are expected to draw planar graphs
uniformly at random from the set of all planar graphs with the given vertex set
v=A{1,...,n}.

Fusy. The planar graph generator developed by Fusy [13] is based on the princi-
ples of a Boltzmann Sampler [11]. Labeled graphs of size n are drawn uniformly
at random. The running time is in O(n?) if the exact number of nodes is sampled
or O(%2) for an approximated graph size within [n(1 —¢€),n(1+¢)]. The available
implementation [12] is the linear-time version of the algorithm. The sampler is
based on probabilities described using generating functions, which have to be
evaluated laboriously for every number of nodes in a preprocessing step. Note
that the Fusy generator cannot be used as an out of the box generator for two
reasons. First, the implementation allows the graphs only to consist either of
1000, 10000 or 100000 nodes. Second, only a marginal number of graphs were
close to the desired size, i.e., within the interval [0.95n, 1.05n]. In particular, the
ratio of all generated graphs that have inappropriate size 7 was on average 77%
for 3 < n < 0.95n and 21% for 25n > A > 1.05n, depending on the targeted
graph size. Hence, only 2% of the generated graphs were within the targeted
interval. We modified the generator to reject graphs of inappropriate size.
Markov Chain. The planar graph generator by Denise et al. is based on a
simple Markov chain [8]. The algorithm chooses a pair of nodes u, v at random.
Now the transitions are as follows. If edge e = (u,v) exists, it is deleted. If
not, a check is done whether the graph G = (V, E + ¢) is planar. In the case of
planarity the edge is inserted. Otherwise it is discarded and the Markov chain
remains in the current state. The stationary distribution of this Markov chain
is uniform over all subgraphs of a given graph. Unfortunately, the mixing time
of the Markov chain is unknown, but the authors expect that the equilibrium
distribution should be reached after 3n? iterations [8]. This behavior is verified
by all our tests that we performed on 40000 graphs of size 50 generated by 3n?,

n3 and n* iterations. Generation of larger graph sizes is not feasible because of
the long running time. The outcomes of all our tests were similar, independent
of the number of iterations.

Kuratowski. The Kuratowski generator is based on the Kuratowski theorem,
which states that a graph is planar if and only if no subgraph is present that
is a subdivision of K5 or K3 3. The generator starts with a non-planar random
graph. Iteratively, the algorithm searchs for a K5 or K3 3 subgraph and removes
one of its edges until no more Kuratowski violations exist. Clearly, the running
time of the Kuratowski generator strongly depends on the density of the initial
graph. To possibly speed up the generation process we analyzed graph properties
of graphs that were created from random graphs with edge size m equal to
m = nlogn and m € §(n?). The outcomes of our tests were similar. Thus, graphs
with m = nlogn edges were generated as source for applying the Kuratowski
algorithm. LEDA subroutine: KURATOWSKI (graph, V, E, deg).

Intersection. This geometric (n)-generator is provided by the LEDA library. It
is based on the intersection of line segments. The generator chooses n segments,
constructs the corresponding arrangement and keeps the first n nodes. In the last
step missing edges are inserted to make the graph connected. LEDA subroutine:
random_planar_graph(graph, xcoords, ycoords, n).

2.2 (n,m)-generators

Similar to the (n)-generators, (n,m)-generators rely either on combinatorial or
on geometric approaches. Combinatorial generators triangulate the graph while
adding nodes to it. Geometric generators first place points at random in a uni-
form sized rectangle. Afterwards the point set is triangulated. Note that the
combinatorial generators create maximal planar graphs whereas the geometric
ones generate planar triangulations, i.e., each face is bounded by three edges, ex-
cept possibly the exterior face. No (n,m)-generator is known that creates graphs
uniformly at random.

Convex Hull Triangulation. The LEDA library [17] provides a geometric con-
vex hull triangulation algorithm (CHT) that is based on a sweep line. First, the
nodes v € V are sorted lexicographically, i.e., by x- and then by y-coordinate,
such that vy, ..., v, denotes the sorted order. The algorithm processes the ver-
tices in this order. Nodes are inserted and connected to all previous nodes they
can see. In this way, after step ¢, the current graph consists of a triangulation
of the first 7 points. The next vertex is connected to a subset of the previously
inserted points lying on the convex hull. LEDA subroutine: random_planar map (
graph, xcoords, ycoords, int n, int m).

By construction, when node v; is processed, node v;_; is part of the current
convex hull and can be seen by node v;. Thus, an edge (v;,v;—1) is added and v;
becomes part of the new convex hull. Since edges are never removed, the sequence
v1,...,U, is a Hamiltonian path in the output triangulation. Thus, CHT cannot
generate Non-Hamiltonian triangulations, which are known to exist [16]. Hence,
CHT is not complete.

Delaunay. The LEDA library [17] contains a Delaunay triangulation algorithm,
which can be used to generate planar graphs. This generator is not complete as
not every maximal planar graph is Delaunay realizable [9]. LEDA subroutine:
DELAUNAY TRIANG(list L, GRAPH DT).
Expansion. The node Expansion algorithm was first presented by Bowen et
al. [7], who also showed its completeness. Note that the graph generator is com-
binatorial but generates an embedding as well. In particular, incident edges
e1,...,er of each node are cyclically ordered. The algorithm starts with a K,
graph. Nodes are inserted by expanding a randomly selected node u along two
incident edges e; and e;, 1 < 4,5 < k, © # j where k is the number of edges
incident with w. Node w is expanded into two new nodes u; and uy. Additionally
the edges e; and e; are doubled while updating their target node to u; and to uo,
respectively. Thus, a face with four nodes is created, which is then triangulated
randomly. The edges e; and e; separate the incident edges of u into two subsets.
These have to be assigned to u; and us; which is easy due to the ordering of the
stored edges. Thus, a careful implementation yields linear running time.
Insertion. The Node Insertion algorithm is available in the LEDA library [17].
It starts out with a triangle and iteratively picks a face f uniformly at random,
inserts a new vertex and connects it to all vertices of f. LEDA subroutine:
random planar map(graph, int n, int m).

Note that graphs generated by the Insertion generator always contain a node
of degree at most 3. Hence, k-regular graphs with k > 3 cannot be generated.
Therefore, Insertion is not complete.

2.3 Summary

Table 1 gives an overview of the origin, complexity, completeness and possible
uniform generation. We do not report on uniform generation of subclasses of
planar graphs. Hence, an incomplete generator implies non-uniform generation.
Due to their complexity Markov and Kuratowski were not capable of generating
graphs larger than 500 and 1000 nodes, respectively. Hence, these generators
cannot be recommended for large scale planar graph generation. In contrast,
the other generators perform quite well. An exception is Delaunay; it gener-
ated all requested graph sizes but due to its complexity it may not be capable
of generating really large graphs. Note that the running time of LEDA’s In-
tersection implementation is not specified but experiments indicate a running
time of O(nlogn). Additionally note that the completeness of Intersection and
Kuratowski follows from their definitions and that uniform generation is quite
unlikely, which is shown by our experiments.

3 Experiments

We already described the performance of the generators, which together with
the theoretical background allows to decide whether a generator is capable of
generating graphs of favored size. In this section we further classify the presented

6

Table 1. Summary of the studied generators. Asterisk marked results can be found in
this work.

generator ‘complexity ‘complete uniform
Fusy [13] O(n) yes yes
Intersection [17]|O(nlogn) |yes no*
Kuratowski [17] |O(n? logn)|yes no*
Markov [8] O(n?) yes yes
generator ‘ complexity ‘ complete ‘ uniform
CHT [17] O(n+m) |no* no
Delaunay [17]|O(n?) no[9] |no
Expansion [7]|O(n) yes open
Insertion [17] |O(n) no no

planar graph generators by means of basic graph properties in local as well as
globar scope. This classification is strengthened with respect to algorithmical
behavior. Altogether, this result will help experimenters to reasonably compile
data sets. But first, we report on the generation of our data-sets, which are then
used in our experimental studies.

3.1 Dataset Generation

Usually, in experimental studies a broad applicability of newly developed algo-
rithms should be confirmed. In our case it is not feasible to generate all planar
graphs of a certain size n, especially when algorithms should be tested on larger
instances. Obviously, a representative sample should be chosen. The (n)-generat-
ors sample graphs by their underlying behavior, which includes the number of
generated edges. In contrast, the (n,m)-generators’ number of edges can be set
arbitrarily. This raises the difficult question how to set the number of edges in
a representative way. A first idea is to set the number of nodes and edges the
(n,m)-generators have to create to the number of nodes and edges created by an
(n)-generator, which allows to compare them with each other.

As aforementioned, Fusy and Markov are expected to generate graphs uni-
formly at random but Markov was not capable of generating graphs of larger size.
Thus, we generate a data set using the number of nodes and edges predefined by
Fusy as input for the (n,m)-generators. This distribution is referred to as Fusy
distribution. Each generator created 40000 graphs whose number diverged by
+5% from 1000 nodes as described in Section 2.1.

Giminez and Noy [14] found that the average degree of a randomly selected
planar graph is asymptotically normal. A graph of node count n is expected to
contain g ~ 2.21n edges on average with a standard deviation of o ~ 0.65n.
Fusy and Markov exactly fit the theoretical distribution. A consequence of this
distribution is that with increasing node count the average degree of a randomly
generated planar graph gets closer to its expected value. In particular, the stan-
dard deviation of the average degree for 1000 nodes is o199 =~ 0.025, which
states with high probability only a small subset within the interval of possible

edges m € [0,3n — 6] is generated. Thus a fourth data set was created by the
(n,m)-generators whose average degree correspond to a normal distribution with
mean g = 2.21 and standard deviation o = 0.65. This dataset of 40000 values
was chosen to span a larger part of the interval [0, 3n — 6], which should give a
better overview how (n,m)-generators behave on a spreaded distribution. This
distribution is referred to as Fized Average Degree distribution.

Note that all plots showing the (n)-generators base on a graph size of 500
for Intersection, Kuratowski and Markov (lowest common denominator). The
smallest size of Fusy graphs is 1000 so this value was taken. The reason for
letting Fusy be the exception was that Kuratowski was able to generate only
very few graphs of size 1000.

3.2 Basic Graph Properties

In the following basic, local and global graph properties of the generated planar
graphs will be analyzed. Thereby, a classification of the generators is done. This
gives a first sketch which generators should be used for a representative data-set
compilation.

Average Degree. One of the very basic questions answered recently by Giminez
and Noy [14] was the expected average degree of a random planar graph.
According to the theoretical results the
distributions of the average degree of
Fusy and Markov match the expected
distribution, see Figure 1. Intersection
and Kuratowski can each clearly be sepa-
rated from the other generators. For com-
parison, the Fixed Average Degree dis- Fig. 1. Inherent distributions of the av-
tribution used by the (n,m)-generators is erage degree of the (n)-generators and
shown. the Fixed Average Degree distribution.
Degree Sequence. The average degree describes a graph only roughly. A better
way to reflect the structure of a graph is its degree sequence. Hence, in Figure 2
the degree sequence distributions of graphs generated by the (n,m)-generators
using the Fusy distribution are shown. Note that nodes with a degree larger than
10 have been cut off. All graphs except Fusy consist of more than one connected
component. Thus, Fusy contains no nodes with degree zero. The plot shows that
CHT, Expansion and Fusy behave very similar and cannot be separated from
each other. Insertion has more nodes of degree 2 and the peak at degree 3. This
slope then decreases rapidly. The Delaunay generator has a larger mean. Its
number of nodes having a degree less than 4 is much smaller compared to the
other generators. The peak is at degree 4. More than 50% of the nodes have either
degree 4 or 5. The slope then decreases very quickly. Although having similar
trends the absolute values differ quite much. The entropy allows for a clear
separation of Delaunay and Insertion from the other generators. The entropies
of the (n)-generators clearly separate Intersection and Kuratowski from Fusy
and Markov, which behave similarly, see Figures 13 and 14 in the appendix for
details.

@

v

f

Average Degree

=
=}

Fusy Inters. Kurato. Markov Fixed

o N CHT Delaunay Expansion Fusy - Insertion
@ H =
g © - BT T T i
8 T =H L8 = = 5
< & 4 = Tl T T
5 o L. . B M -
c . B L = T (= T
S = B : :
5 o 5 T g Ios L8 %
s = + = - e t e - -
r ° =, = - =, T s =,
1 = Ta - < = Tz, = N
gL < Tir % ol o Fa5 f55 o T
o TTT T T T T T T T T T T T T T T T T T T TT T 7T T T T TTT T T T T TTTTTT TTTTTTTTTTT
1 9

2 4 6 8100 2 4 6 8100 2 4 6 8 10 0 2 4 6 8 10

Node Degree

Fig. 2. The distribution of the degree sequence of graphs generated by the (n,m)-
generators using the Fusy distribution. For a better overview, outliers have been re-
moved and the degree sequence has been cut off at 10 nodes.

)
97
2 8
g 7 < € OTE
8 o : 8 ol o8 flg48°
E o L g 08 iHis
fir 8 ° i o= L
5 8 5 ot:EI '
1 : g . 4
2 g o 3 488 2 1387 g
5 8 = = £ o 9837 o7 T 8
2 & LS : : 2 &1 g8°4m TiETLs
— E. E 085025 EI 5 ° :
ry ° T TI=g8° 'S i
[: =] o QA 1
8 o - E*O ocogo Ho o
2 a 07222 T3 °
= e e lT° EéEIEIE:H:I | 8
o L DTdoon g 4
g = 8 8
g a 8 8
8 8 8 8
8 & 8 8
T T T T T T T T T T [T T T T T T T T T T [T TTTT
CHT Delaunay Expansion Fusy Insertion CHT Delaunay Expansion Insertion

Fig. 3. The number of values of the degree sequence is shown. Both sides show graphs
generated with (n,m)-generators. On the left side graphs underlying the Fusy distri-
bution are shown. The graphs on the right side are generated using the Fixed Average
Degree distribution, which have been split into six groups of increasing edge count for
each generator.

We further study the degree sequence distribution by the number of entries
that are necessary to describe a graph. Our assumption is that it correlates with
the graphs’ structural complexity. Note that we do not expect this to correlate
with algorithmic complexity. In Figure 3 the number of degree sequence entries
of the (n,m)-generators using the Fusy distribution as well as the Fixed Average
Degree distribution are shown. Again, Delaunay and Insertion can be separated
clearly from the other generators, which have a similar distribution of the degree
seqeunce entries. The Delaunay generator has nearly a constant number of entries
for all graphs and thus exhibits a regular structure. In contrast the Insertion
generated graphs show the largest variance.

Diameter. So far we analyzed elementary properties that were easy to obtain.
By this, we got an idea which generators could complement each other. This
classification will now be extended by a global property, namely, the diameter
of a graph. The diameter of a graph is the length of the longest shortest path
between all pairs of nodes in a graph. Thus, their values describes how com-

8 o g °
5 8 E i 5 81 8 E
‘ :] = 3
a 1 = 8 8 E = -+ =
<? : o 8 = i
4 1 = ‘ 5

| = e .1 = E= 4

= e =

T T T T T
Fusy Intersection Kuratowski Markov CHT Delaunay Expansion Fusy Insertion

Fig. 4. The diameters of the (n)-generators (left) and of the (n,m)-generators using
the Fusy distribution (right).

pact a graph is. Figure 4 shows the diameters of graphs generated by the (n)-
and (n,m)-generators using the Fusy distribution. The diameters of Intersection
and Kuratowski are very large compared to the other generators. The graphs
of both generators are connected and simultaneously have very low average de-
grees. Thus, the structure is more tree-like, which results in high diameters.
The (n,m)-generators show some differences. For example, Insertion has a very
small diameter whereas Delaunay has the largest mean diameter. Additionally,
Insertion and CHT have small spreads. This difference can be explained by their
generation process. Delaunay generates a comb-like regular structure whereas
Insertion and CHT insert shortcuts, i.e., long edges, which reduce both the di-
ameter and its spread. Altogether, the studied diameter of graphs confirms the
basic classification on a global scale.

Clustering Coefficient. We complete our basic classification of the planar
graph generators by the analysis of a local property. Namely, we measure the
density of each vertex’ neighborhood, in particular we compute the clustering
coefficient (CC) of a graph [20]. The neighborhood of a vertex v is defined as
N(v) ={u: {u,v} € E}. A complete subgraph of three nodes is called a triangle.
The number of triangles of a node v is defined as §(v) = |[{{u,w} € E : {v,u} € E
and {v,w} € E}|. A triple 7 at a node v is a path of length two for which v
is the center node. Let d(v) denote the degree of node v. Then the number of
triples of a node v is 7(v) = (d(zv)). For nodes v with degree d(v) > 2 the CC is
defined as c¢(v) = §(v)/7(v). The CC of the graph is the average over all nodes
which is defined as CC(G) = 1/n), ¢ c(v), where V is the set of nodes v with
d(v) > 2. Figure 5 shows the clustering coefficients of the (n)-generators. Clearly,
Kuratowski and Intersection can be separated from the other generators. This
can be explained with the average degree being very small for Kuratowski. The
graph is tree like and thus its CC is very small. The Intersection graphs have
somewhat larger average degree that allow for a more complex graph than a tree.
Hence, it exhibits a slightly larger interconnection. In the case of the (n,m)-
generators three groups can be separated. The first consists of the Delaunay
generated graphs. Due to the generation process the CC is less than of the other
groups. The second consists of CHT, Expansion and Fusy. Minor differences
within this group can be seen but they cannot be separated clearly. The Insertion-
generated graphs represent the third group. Their generation process leads to a
high interconnection of the neighbors, which results in a very large CC.

—_
o

<«
e o e 5 1
g — = s g =
%g, La o %c; i
3 8 . T
> o e g 4 = 4
5 . 5 o = ‘
2 - _— 2 : Ll =
S K3 E] T ks .
[} o g = ‘!’

g | == 3 v

Fusy

Intersection

Kuratowski

Markov

T
CHT

T
Delaunay

T
Expansion

T
Fusy

T
Insertion

Fig.5. Clustering coefficients of the (n)-generators (left) and the (n,m)-generators
using the Fusy distribution (right).

3.3 Algorithmical Behavior

So far, basic, local and global properties of the generated graphs have been ana-
lyzed. This analysis would allow for a classification of the generators with respect
to a complementary compilation. We now want to strengthen our proposition
by a study of advanced algorithmical behavior, in particular by applying FPT
algorithms [19].

K-Core Decomposition. First, we study topological properties of the gen-
erated graphs. To this end we use the k-core decomposition [21]. This method
destructively simplifies the graph. Iteratively, nodes are removed from the graph
by increasing degree k. This procedure is applied until all nodes have been pruned
off the graph. The k-core of graph is a maximal subgraph in which each vertex
has at least degree k. A node has coreness k if it is part of the k-core but not
of the k + 1-core. The k-core decomposition cannot be very large for planar
graphs. A k-core implies the graph to have a k-regular subgraph. Because every
planar graph contains a vertex with degree at most 5, no 6-regular subgraph
can occur in a planar graph. Although 5-regular graphs exist [10] their random
generation seems to be unlikely as none of our generated graphs contains a 5-
core. In Figure 6 the coreness distribution of graphs generated by the (n)- and
(n,m)-generators using the Fusy distribution are shown. Note that outliers have
been removed to give a better overview. Evidently, connected graphs do not have
nodes with coreness zero. The Intersection and Kuratowski graphs only consist
of nodes with coreness one and two. Again, the group consisting of CHT, Ex-
pansion, Fusy and Markov can hardly be distinguished. Due to its generation
process Insertion does not have a 4-core. Delaunay graphs are dominated by
the amount of nodes with coreness three. Thus, Delaunay and Insertion can be
clearly separated from the other generators.

K-Vertex Cover. We now take a first glance at an FPT problem. A problem
is FPT if it admits an algorithm with running time O(f(k)n®®M), where f is
an arbitrary function depending only on k. The problem we examine is k-vertex
cover (k-VC). A wvertex cover (VC) of a graph G is a subset C' € V(G) such
that C N {u,v} # 0, Y{u,v} € E(G). The k-VC problem asks whether a VC
of size |C| < k exists. To solve k-VC a kernelization algorithm is applied in
a preprocessing step, which reduces the initial instance to solve in polynomial
time to its problem kernel. The topological information we gained can be very
useful. For instance, it can be used to estimate the size of the kernel when k-VC

11

a CHT Delaunay Expansion Fusy Insertion Inters. Kurato. ~ Markov
3 o« | T = -
T o T - -
S = = s . = B <
k] T = -
2 "
S <]
5 o - N -
@ == - -
s i = - = * % =
Q] = = _-T - - = = -_ = — -
° T T T 11 T T T 11 T T T 11 T T T 1 T T T 1 T T T T T 11
0o 2 4 0 2 4 0o 2 4 1 3 0 2 1 1 0o 2 4
k-core

Fig. 6. Coreness distribution of (n)- and (n,m)-generators using the Fusy distribution,
outliers have been removed.

kernelization is applied to graphs originating from a certain generator, where
others performed extensive experimental studies [2,6]. Two kernelization rules
exist how to handle degree one and two nodes. Thus, the problem reduction
roughly equals the sum of the number of the nodes having coreness 0, 1 or 2.
Recalling the coreness distribution outcomes in Figure 6 we see that Intersection
and Kuratowski can be solved optimally. The best reduction of the remaining
generators achieves Insertion. In contrast to that, Delaunay has the smallest
reduction of all generators. The remaining generators behave very similarly.
Planar k-Dominating Set. So far we used topological information, in par-
ticular the coreness distribution, to estimate algorithmical complexity. Now, we
confirm different algorithmical behavior on the generated graphs solving planar
k-dominating set (PDS), which is also FPT for planar graphs. A dominating set
(DS) is aset D C V(Q) of vertices such that each vertex in V(G)\ D has a neigh-
bor in D. The PDS problem asks whether a DS of size |D| < k exists. Similar to
k-vertex cover, first a problem kernel is computed. However, the problem reduc-
tion of PDS does not rely on the degree of the nodes but the neighborhood of an
examined node. The algorithms described in [4] and [3] have been implemented.
The reduction is based on two kernelization and seven search tree rules. Alber
et al. report impressive kernelization results [1] on several real world instances
as well as artificially generated graphs. The authors were mainly interested in
showing the algorithmical performance on real world problems but the data set
also contained planar graphs that seem to not be selected representatively. Fig-
ure 7 presents the size of the PDS kernel. The large reduction reported was only
partly achieved. CHT, Delaunay and Expansion show a large variance in the re-
duction whereas Insertion can be reduced in most times by an amount of about
85%. Thus, the selection of the graph generator has a high impact on the results
achieved by this algorithm and a wrong selection would greatly bias the results
gained [1].

Treewidth. So far, the topological information and one FPT algorithm confirm
our classification. But we aim at establishing a broad base for the classification.
We achieve this by studying the treewidth of a graph, the number of nodes that
are mapped to the tree nodes of a tree decomposition of the graph. It is NP-

e T F——
- TT$ LT =

o o | = eI o7

g o - - THL R

5 <9 T E; L *BE

o © = =R TJBB;;

& < | = b TS

T © + ' T‘EE‘;L

c " " ' T4

CR H= 78 =

e = L = T
o | =17 = =T e
° TT 1T T T T T T T T T T TTT

CHT Delaunay Expansion Insertion

Fig. 7. Size of the PDS kernel of (n,m)-generators using the Fixed Average Degree
distribution. The total number of generated graphs has been divided into eleven groups
of increasing edge count, outliers have been removed.

3 -
g 8 :
T 2 - i
8 = :
5 = 5 8
: : H
S] + F R A : E
S*é E EI ol T é
] T = — - - B o m—E;Iz. I
o] 1+ ® - F 13 +#=
T

T T
CHT Delaunay ~ Expansion Fusy Insertion CHT Delaunay Expansion Insertion

Fig. 8. Upper- and lower bounds of the treedwidth heuristics computed by LibTW [22]
of the largest connected component of (n,m)-generated graphs according to the Fusy-
(left) and the Fixed Average Degree distribution (right). For each generator the left
boxplot shows the upper bound and the right boxplot the lower bound.

hard to compute the treewidth of a graph. Nevertheless, if the treewidth of a
graph class is bounded, several NP-hard combinatorial problems can be solved in
polynomial time. A k-tree is defined recursively as follows. The complete graph
K, on k vertices is a k-tree. Given a k-tree G on n > k vertices, a k-tree on
n + 1 vertices is obtained by adding a new vertex u and edges connecting
to every vertex of a Kj subgraph in G. A graph is a partial k-tree if it is a
subgraph of some k-tree. Partial k-trees are exactly the graphs with tree width
up to k. This is exactly the way graphs are generated by the Insertion generator.
Hence, Insertion generated graphs have treewidth at most 3 and are often not
appropriate instances when dealing with NP-hard problems. Figure 8 shows the
outcomes of LibTW [22] upper- and lower-bound heuristics, which were applied
to graphs generated by the (n,m)-generators using the Fusy- and Fixed Average
Degree distributions. The heuristics confirm the bounded treewidth of Insertion
generated graphs. The treewidth of CHT is larger than Insertion but is rather
small compared to the other generators. The treewidth of Expansion partially
equals the treewidth of Fusy. Delaunay generated graphs seem to be very hard
instances since the span of upper- and lower bound is largest.

13

4 Conclusions

This work is motivated by the ambigous description and inappropriate data-set
selection found in many experimental works. To our knowledge no work exists
that systematically analyzes planar graph generators, particularly with regard to
assembling a complementary compilation of planar graph generators that allow
for a meaningful interpretation of experimental work. This study allows for such
a classification of a selection of planar graph generators, namely four (n)-generat-
ors (Fusy, Markov, Intersection, Kuratowski) and four (n,m)-generators (CHT,
Delaunay, Expansion, Insertion). Fusy and Markov are capable of generating
graphs uniformly at random. However, with growing size the expected average
degree tends to a fixed value of 2.21, which by no means represents the possible
interval [0,. .., (3n —6)/n]. The (n,m)-generators allow for an arbitrary average
degree. Hence, we recommend a distribution of the average degree that spans
this interval much better.

We empirically studied eight selected planar graph generators by means of
running time, basic graph properties and algorithmic behavior. In our imple-
mentations we rely on the LEDA library, which provides several planar graph
generators. Unfortunately, these are confusably named, which we cleaned up. It
turned out that Kuratowski and Markov are not efficient enough to run large
scale tests. The efficient generator Fusy is capable of drawing graphs uniformly
at random but cannot be used as an out of the box generator. By a detailed
analysis of basic graph properties most of the graph generators can be classified
into groups. Thus, Delaunay and Insertion can clearly be distinguished from
each other and from the group consisting of CHT, Expansion and Fusy. The
latter group shows small differences at various tests but none allows for a clear
separation. These differences and groupings can also be observed when FPT
kernelization algorithms are applied.

As a basic principle, experimental works should precisely describe the ori-
gin of the used data sets, which for generated graphs includes their distribu-
tion of the average degree. Experimenters should keep in mind which structural
properties their algorithms exploit and ensure that the used data sets exhibts
well distributed and representative structural properties to allow for significant
empirical results. Because of the manifold properties of graphs that may be
of interest, it is hard to present a general recommendation which of the stud-
ied generators to use. Nevertheless, theoreticians verifying practicability in a
small experiment should rely on a uniform generator or use Expansion with a
spreaded distribution of the average degree. For detailed experimental works,
experimenters should compile data sets that at least consist of Expansion, De-
launay and Insertion generated graphs. Expansion overlaps CHT and Fusy to a
certain extent. Nevertheless, both CHT and Fusy complement the data set.
Future work. Often in experimental algorithmics, graphs with a predefined
number of nodes and edges are of interest, which Fusy cannot create due to
its restrictions. Thus, future work might be a planar (n,m)-generator capable
of generating planar graphs uniformly at random. Expansion could be a good
starting point as it is complete and compared to Fusy exhibits a similar behavior.

14

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Jochen Alber, Nadja Betzler, and Rolf Niedermeier. Experiments on data reduction
for optimal domination in networks. Annals of Operations Research, 146(1):105—
117, 2006.

Jochen Alber, Frederic Dorn, and Rolf Niedermeier. Experimental evaluation of
a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete
Applied Mathematics, 145(2):219-231, 2005.

. Jochen Alber, Hongbing Fan, Michael R. Fellows, Henning Fernau, Rolf Nieder-

meier, Frances Rosamond, and Ulrike Stege. A refined search tree technique for
dominating set on planar graphs. Journal of Computer and System Sciences,
71(4):385-405, 2005.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Efficient data reduction
for dominating set: a linear problem kernel for the planar case. In Proceedings of
the 8th Scandinavian Workshop on Algorithm Theory (SWAT’2002), number 2368
in Lecture Notes in Computer Science, pages 150-159. Springer, July 2002.
Manuel Bodirsky, Clemens Gropl, and Mihyun Kang. Generating labeled planar
graphs uniformly at random. Theor. Comput. Sci., 379(3):377-386, 2007.

Endre Boros, Peter L. Hammer, and Gabriel Tavares. Preprocessing of uncon-
strained quadratic binary optimization. Technical report, Rutgers Center for Op-
erations Research (RUTCOR), 2006.

Rufus Bowen and Stephen Fisk. Generations of triangulations of the sphere. Math-
ematics of Computation, 21(98):250-252, 1967.

Alain Denise, Marcio Vasconcellos, and Dominic J. A. Welsh. The random planar
graph. Congressus Numerantium, 113:61-79, 1996.

Michael B. Dillencourt. Realizability of delaunay triangulations. Inf. Process. Lett.,
33:283-287, February 1990.

Guoli Ding, Jinko Kanno, and Jianning Su. Generating 5-regular planar graphs.
J. Graph Theory, 61:219-240, July 2009.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-
mann samplers for the random generation of combinatorial structures. Combina-
torics, Probability and Computing, 13(4-5):577-625, 2004.

Eric Fusy. Implementation of a boltzman sampler for pla-
nar graphs. http://www.lix.polytechnique.fr/~fusy/ Pro-
grams/BoltzmannPlanarGraphs.tar.gz, 2005.

Eric Fusy. Uniform random sampling of planar graphs in linear time. Random
Structures & Algorithms, 35(4):464-522, 2009.

Omar Giminéz and Marc Noy. Asymptotic enumeration and limit laws of planar
graphs. Journal of the American Mathematical Society, 2008.

Gunnar Brinkmann and Brendan McKay. Fast generation of planar graphs.
http://cs.anu.edu.au/~bdm/ papers/plantri-full.pdf.

Guido Helden. Hamiltonicity of maximal planar graphs and planar triangulations.
Ph.d. thesis, RWTH Aachen, 2007.

Kurt Mehlhorn and Stefan Naher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

Sascha Meinert and Dorothea Wagner. An Experimental Study on Generating
Planar Graphs. Technical report, ITI Wagner, Faculty of Informatics, Karlsruhe
Institute of Technology, 2011. Karlsruhe Reports in Informatics 2011-13.

Rolf Niedermeier. Invitation to Fized Parameter Algorithms. Oxford University
Press, Oxford, 2006.

20.

21.

22.

15

Thomas Schank and Dorothea Wagner. Approximating Clustering Coefficient and
Transitivity. Journal of Graph Algorithms and Applications, 9(2):265-275, 2005.
Stephen B. Seidman. Network Structure and Minimum Degree. Social Networks,
5:269-287, 1983.

Thomas van Dijk and Jan-Pieter van den Heuvel and Wouter Slob. Computing
treewidth with LibTW. http://www.treewidth.com/docs/LibTW.pdf, 2006.

16

A Appendix

For the sake of completeness we now present some additional results of our
investigations. They either confirm our findings but deliver no new insights or
are not central to our experimental evaluation, while potentially interesting to
the reader.

In some experiments the tested property consists of more than one element,
e.g., the degree distribution. To aggregate the data into a single value the Shan-
non entropy known from information theory is used. This entropy is defined as
H = — Zleﬁi logy, (p;) where p; = n;/N with n; the number of occurrences
of outcome 4, N the total number of observations, k the number of distinct
outcomes and b the base of the logarithm. This estimation of the probabilities
of the outcomes is known as maximum-likelihood estimation. Depending on the
base of the logarithm two different informations are obtained. The bit entropy
is computed using the base b = 2 which determines how many bits per entry on
average are necessary to encode the information. The normalized entropy to the
base b = k informs on the amount of redundancy within the information.
Connected Components. In theory a planar graph created uniformly at ran-
dom is connected with high probability [14]. The graphs produced by the (n)-
generators are all connected, partly by construction. On the contrary, the (n,m)-
generators are usually not connected. Here, the number of connected components
depends on the number of edges. Nevertheless, the latter very often generate a
graph which contains a single, large connected component if the average de-
gree exceeds a certain value. In Figure 9 and Figure 10 the ratio of the largest
connected component’s size and the total size of the graphs generated by the
(n,m)-generators according to the Fixed Average Degree distribution are shown.
The data points are sorted increasingly from left to right according to the aver-
age degree of the represented graphs. With increasing average degree of a graph,
a giant component emerges, which consists of a large fraction of the graph. The
giant component has a size of at least 90% at an average degree of 1.6 for CHT,
1.45 for Delaunay, 1.65 for Expansion and 1.8 for Insertion graphs. The size of
this large connected component grows further with increasing average degree.
Face-Size Sequence. The face size is the number of edges being part of a face.
In Figure 11 a histogram of the face-size sequence of Fusy and (n, m)-generated
graphs according to the Fusy distribution is shown. Observe that the maximum
face size of the generated graphs differ. However, only very few graphs contain a
face of size larger than 75% of the maximum size. Thus, the maximum face size
cannot be used to distinguish the generators.

When looking at the slope of the histogram, we can see that more than 99.6%
of the faces of the generated graphs have a size within the interval [3,10]. The
slope has its peak at size 3 and decreases fast with growing face size. The face-
size sequence seems to be approximately equal among all generators as CHT,
Delaunay, Expansion and Insertion can hardly be distinguished from each other.
Only Fusy can be separated. It has less faces of size 3 and an increased number
of faces of size 4 and 5, compared to the (n,m)-generators.

17

Figure 12 shows boxplots of the face-size sequence distribution of the gen-

erated graphs. The variance among all generators is very low, except for Fusy,
whose face-size sequence distribution differs slightly from the others.
Degree Sequence. Although the degree sequence distributions in Figure 2
have similar trends, the absolute values differ quite much. This can be seen
best when looking at the entropy of the degree sequence. Now Delaunay and
Insertion can be separated clearly from the others, see Figure 13. The normalized
entropy separates Insertion from the other generators, whereas the bit entropy
of Delaunay is much lower than that the others.

For comparison the entropies of the (n)-generators are presented in Figure 14.

The bit entropy of Fusy and Markov are very similar, whereas the normalized
entropy shows some differences between them. Similar to the average degree
distribution, Intersection and Kuratowski can clearly be separated from each
other as well as from Fusy and Markov.
Coreness. Figure 6 shows the coreness of graphs that are generated by (n)- and
(n,m)-generators using the Fusy distribution. For completion we also report on
the coreness entropy in Figure 15. Again, Insertion as well as Delaunay can be
clearly separated from each other and from the remaining graphs.

18

CHT
a
@ |
=
=
2
&
i+
o
o
H
2
&
= |
S
o
S
a
=
T T T T
o 10000 20000 30000 40000
Inclex
Delaunay
a
@ |
=
=
2
)i
i+
o
o
H
2
k]
= |
S
o
s
a
=
T T T T
o 10000 20000 30000 40000

Index

Fig. 9. The size of the largest connected component in relation to the total size of
the graph. Shown are CHT and Delaunay generated graphs according to the Fixed
Average Degree distribution. The data points are sorted increasingly from left to right
according to the average degree of the represented graphs.

19

Expansion

Large st CC Ratio

0o

10000 20000 30000 40000

o

Index

Insertion

Large st CC Ratio

0o

o 10000 20000 30000 40000

Index

Fig. 10. The size of the largest connected component in relation to the total size of the
graph. Shown are Expansion and Insertion generated graphs according to the Fixed
Average Degree distribution. The data points are sorted increasingly from left to right
according to the average degree of the represented graphs.

20

CHT Delaunay
~ ~
S 7 S
© ©
o 7 c 7
I ©
o 7 o 7
< <
c o 7 < S
S S
3 3
L I
w @ w ©
o 7| o 7
o o
s 7 S
5 5
o °
o = o =
T T T T T T T 1 T T T T T T T 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Face size Face size
Expansion Fusy
~ ~
S 7 S
< © O
o 7 o 7
0 ©
o 7 o 7
< <
c S 7 < S
s S
3 3
< g
w ™ w 3
o 7 c 7
o o
o 7 o 7
5 5
o °
S o =
T T T T T T T 1 T T T T T T T 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Face size Face size
Insertion
~
5
©
e
0
@
<
c o
s
3
S
w @
@
o
8
S A
°
2 J
T T T T T T T 1
0 10 20 30 40 50 60 70
Face size

Fig. 11. The face size distribution of Fusy and (n,m)-generated graphs according to
the Fusy distribution. The bars sum up to 1.

21

CHT Delaunay

1000
I
1000

00

L
0

L
o

600
L
600
L

Count
Count

200
L
200
L

= =

B ty
o . i o . Tk
TTTTTTTTT T T T TT T T T T I T T T T IO T TITTTTTTT TTTTTTT TIT T T TToTT

258 12 17 22 27 32 37 42 47 258 12 17 22 27 32 37 42 47 52 57

Face Size Face Size

Expansion Fusy

1000
I
1000

Count
800
L
Count
00
L

200
L
200
L

IALLALARARRAR AR R AR AR AR ILRRLARRRRRRRRRRRRRRR}
258 12 17 22 29 369 13 18

Face Size Face Size

Insertion

00 1000
I I

Count

400
I

ILALARRRR R RR AR AR R R AR RRRAR
258 12 17 22 27

Face Size

Fig. 12. Boxplots of the face size distribution of Fusy and (n, m)-generated graphs
according to the Fusy distribution. For a better overview, outliers have been removed.

22

Normalized Entropy

065 070 075 080 085

0.60

Normalized Entropy of the Degree Sequence

Bit Entropy of the Degree Sequence

og ogo 9 8Bedes o 680088
8 Vo RN
I - T il
; 0111111 Wits SIEEE e T
“““ TR = | a9gesn "
“““ ﬁii 5 °
‘ . 8
::11:1 L ““‘ &
“1 “““““ wlllll = 24
il o
gsgsee so8; 8 CECTIT go speee =
Hué‘
st |
IR o
s09080
TTTT T T T T T T T T TTTT T T T T TTT T TTTTT TTT T T T TTT T T T T T T T T TTTT 1T TTTTTT
CHT Delaunay Expansion Fusy Insertion CHT Delaunay Expansion Fusy Insertion

Fig. 13. The entropy of the degree sequence of graphs is shown which are generated by
the (n,m)-generators using the Fusy distribution. On the left: the normalized entropy
clearly separates Insertion from the other generators. On the right: the bit entropy of
Delaunay is less than that of the others.

Normalized Entropy

0.65 0.70 0.75 0.80 0.85

0.60

Normalized Entropy of the Degree Sequence

Bit Entropy of the Degree Sequence

° 8 08608 6068
o "" o (= Eﬁg
o g%e, - PR 9 {eogoe %?e¢¢
ggss ° Tiion °
IR P
Lt B8Bed T HBBBH °
BBHBB Pl T a2
ST BEEER e esis| £
[H IR i
[Voo - o =
g 5.0 o
5 " .
-] e e +82ap
I HIEEEE Seee
0 ® ' [k4
coTTHg sescs o6°°°
[ESESESEsES
S peege
v
rT T T T T T T T T T T T 1T T T 1T B o o S s B
Fusy Intersection Kuratowski Markov Fusy Intersection Kuratowski Markov

Fig. 14. Shown is the entropy of the degree sequence of graphs computed by the (n)-
generators. On the right side, the bit entropy separates Intersection and Kuratowski
from each other and from the group consisting of Fusy and Markov. The normalized
entropy on the left shows a slightly less value for Fusy than for Markov.

Normalized Entropy of the Coreness

© o °
: il s
54 . mmiiﬁiii
o8 o EEE::::::EEEEEE.
el P
€ I RN
w Vo - SUEEE
E g [RERNN : ° %o 1 !
< g R
I el [TTT SRR
E o e 55g9° 8
5 RREEN o
=° E!g!!gw\\\w‘ 3 6 %
2 : °°
S A Sotiel
TTTTTT TTTTTT TTTTTT TTTTTT TTTTTT
CHT Delaunay Expansion Fusy Insertion

Bit Entropy

14

12

0.8

0.6

04

Bit Entropy of the Coreness

ii iia

sapaes Eﬁﬁii 555555
°@§0§o
o 82
o oo"o
1 l;l % o
ELLLEL
o goe
rrrrrrrrrrr1r——rrrrrr TrrrrT TTTTTT
CHT Delaunay Expansion Fusy Insertion

23

Fig. 15. The coreness entropies of the (n,m)-generators generated using the Fusy dis-

tribution are shown.

	2011,13_Titelbl
	PlanarGraphsStudyTR.pdf

