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ABSTRACT 

In the design and implementation of the overlay architecture most peer-to-peer (P2P) systems rely on the underlay 
network to provide them with basic connectivity. Therefore, the intrinsic features of the underlay network determine the 
efficiency of the overlay. Accordingly, studying the interdependency of the overlay and underlay networks leads to a 
better understanding of P2P behaviour. We present a visualization-driven analysis for evaluating the overlay 
architecture with respect to the underlay. Using Gnutella as a case study, our analysis confirms that Gnutella’s topology 
differs from a randomly generated network and that there is an implicit correlation between the overlay and underlay 
topologies. 

KEYWORDS 

Gnutella, Random Network Topology, Autonomous System Graph, Overlay-Underlay Correlation, Core, Visualization 

1. INTRODUCTION 

The recent growth of P2P file sharing applications with respect to total Internet traffic (Sen and Wang ‘02, 
Karagiannis et al ’04) has led to an unprecedented interest in their analysis (e.g. Aggarwal et al ‘04). The P2P 
file sharing applications create overlay networks on top of the Internet underlay. The contemporary Internet 
is a collection of segregated routing domains called Autonomous Systems (AS), each having their own 
administration and independent routing policies. Routing information between ASes is exchanged via an 
exterior gateway protocol such as BGP (BGP).  The AS network possesses an implicit hierarchical structure 
where the ASes can be categorized into backbones, national, regional or local providers, and customers (Gao, 
L. ’00). The graph of the ASes, where nodes represent different ASes, and edges correspond to traffic trade 
agreements between the ASes, provides us with an abstraction of the Internet underlay. Accordingly, we can 
say that the P2P file sharing systems create overlay topologies on top of the AS graph.  When constructing 
their topology by forming neighborhoods, most structured and unstructured P2P protocols do not explicitly 
take the underlay routing into account.  Yet as the underlay connectivity determines the overlay performance, 
understanding the correlation between routing in the overlay and underlay layers is crucial.  

There have been some investigations on such correlations recently. Using game theoretic models, Liu et 
al ’05 study the interaction between overlay routing and traffic engineering within an AS. Ratnasamy et al 
’02 present a node-partitioning scheme that allows overlay nodes to choose peers that are relatively close in 
terms of network latency. An analysis of routing around link failures (Seetharaman, S. and Ammar, M. ’06) 
finds that tuning underlay routing parameters improves overlay performance. Most investigations tend to 
point out that the overlay topology does not appear to be correlated with the underlay (e.g., Aggarwal et al 
‘04), but the routing dynamics of the underlay do affect the overlay in ways not yet well understood.   

In this paper, we analyze the correlation between overlay and underlay topologies of the Gnutella 
network (Gnutellav0.6) using a visualization-driven approach (Baur et al ’04) which relies on the concept of 
cores. We confirm that the topology of Gnutella is not uniformly random. We also observe a correlation 
between features of Gnutella and the AS graph.  

The paper is organized as follows. In Section 2, we introduce the experimental setup for Gnutella 
network measurement and the visualization technique. Section 3 details the overlay-underlay correlation 



analysis and the comparison of overlay topology with random networks. In Section 4, we make a case for the 
feasibility of our approach by examining the potential bias in our analysis, and conclude in Section 5. 

2. PRELIMINARIES 

In this section, we introduce the methodology we deployed to collect Gnutella traces, and the visualization 
technique used to correlate the Gnutella topology with the Internet underlay. 

2.1 Gnutella network measurement 

Gnutella is a popular file-sharing network with roughly 2 million users (Slyck), and has attracted a healthy 
interest from researchers, e.g., (Stutzbach et al ‘05, Ripeanu et al ‘02). The Gnutella (Gnutella v0.4) network 
is comprised of agents called servents, who can initiate as well as serve requests for resources. When 
launched, a servent searches for other peers to connect to by sending Hello-like Ping messages. The Pings 
are answered by Pong messages, which contain address and shared resource information. Search queries are 
flooded within the Gnutella network using Query messages, and answered by Query Hits. To limit 
flooding Gnutella uses TTL (time to live) and message IDs. Each answer message (Query Hit/Pong) 
traverses the reverse path of the corresponding trigger message. While the negotiation traffic is carried within 
the set of connected Gnutella nodes, the actual data exchange of resources takes place outside the Gnutella 
network, using the standard HTTP protocol. Due to scalability problems, later versions of Gnutella (Gnutella 
v0.6) introduced a hierarchy which elevates some servents to ultrapeers, while others become leaf nodes. 
Each leaf node connects to a small number of ultrapeers while each ultrapeer maintains a large number of 
neighbors, both ultrapeers and leafs. To further improve performance and to discourage abuse, the 
Ping/Pong protocol underwent semantic changes. Answers to Pings are cached (Pong caching) and too 
frequent Pings or repeated Querys may cause termination of connection. 

In order to analyze the overlay structure, we first need to identify a representative set of edges in the P2P 
network. By an edge, we mean a direct P2P connection between two overlay nodes. The most obvious way of 
finding edges in a P2P network is to create some by participating. Yet these are not representative as they are 
highly biased by the location and software of the participant. Rather we wish to identify edges in the P2P 
network where none of the two end-nodes is controlled by us. We call such nodes remote neighbor servents.  

Due to Pong caching and the rapid fluctuation in Gnutella networks (we measured the median 
incoming/outgoing connection duration to be 0.75/0.98 seconds), the simple crawling approach using crawler 
Pings (Pings with TTL 2) employed in Saroiu et al ‘02 will likely result in servents that are not active any 
more. They should, however, have been remote neighbor servents at some point.  

To cope with these complications, we deploy a combination of active and passive techniques to explore 
the Gnutella network. Our passive approach consists of an ultrapeer based on the GTK-Gnutella (GTK-
Gnutella) program. The goal is to have an ultrapeer that behaves like a normal node in the network, yet 
worthwhile to connect to. It shares 100 randomly generated music files (totalling 300 MB in size) and 
maintains 60 simultaneous connections to other servents. To derive various statistics the servent is 
instrumented to log per-connection information augmented with a packet level trace. The passive approach 
gives us a list of active servents. 

The active approach consists of a multiple-client crawler that uses Pings with TTL 2 to obtain a list of 
candidate servents. Since Query results are difficult to cache, we use Querys with TTL 2 to obtain a set of 
remote neighbor servents.  These servents are then contacted actively to further advance the network 
exploration. This approach allows us to discover Gnutella edges that existed at a very recent point of time. 
When interacting with other servents, our crawler pretends to be a long-running ultrapeer with a non-
provocative querying scheme. It processes incoming messages and has a non-intrusive Ping/Pong 
behaviour. For instance, the servent issues Query/crawler Pings only to those peers that have already 
responded with a Pong, Pings are issued only to those servents that send one themselves. This pragmatic 
behaviour seems to avoid bans. The client uses Query messages with catchwords like mp3, avi, rar. One can 
expect Querys to yield only a subset of neighbors due to the presence of free-riders. We combine active and 



passive approaches by integrating the crawler into the ultrapeer. Experiments with the unmodified and 
modified ultrapeer confirm that the changes do not alter the characteristics of incoming connections. 

Using this setup, we collect Gnutella logs for one week starting April 14th, 2005. During this time, the 
ultrapeer logged 352,396 sessions and the crawler discovered 234,984 remote neighbor servents. 

2.2 Visualization technique 

The concept of cores (Batagelj V. and Zaversnik M. ‘02, Seidmann, S. ’83) describes a hierarchical 
decomposition of the nodes of a graph. More precisely, the k-core of an undirected graph is defined as the 
unique subgraph obtained by recursively removing all nodes of degree less than k. A node has coreness α, if 
it belongs to the α-core but not to the (α+1)-core. The α-shell is the collection of all nodes having coreness α. 
The core of a graph is the k-core such that the (k+1)-core is empty.  Generally the core decomposition of a 
graph results in disconnected sub-graphs, but in the case of the AS graph we observe that all k-cores stay 
connected, which is a good feature regarding connectivity. Cores have been frequently used for network 
analysis, e.g., Gkantsidis et al ‘03, Gaertler M. and Patrignani M. ‘04. 

Baur et al ’04 proposed a visualization technique for drawing the AS network based on a hierarchical 
decomposition. More precisely, their algorithm incrementally layouts the graph starting from the innermost 
shell and then iteratively adds the lower shells. Their implementation uses core decomposition and a 
combination of spectral and force-directed layout techniques. A successful application of this visualization 
technique compared actual AS graphs with generated AS graphs. The obtained layouts clearly revealed 
structural differences between the networks. 

3. EVALUATION OF OVERLAY-UNDERLAY CORRELATION 

Overlays are formed at the application layer, but the actual data flow takes place at the network layer. Since 
the neighborhood selection process of overlay networks is largely arbitrary, it becomes interesting to analyze 
how much the neighborhood selection process of P2P protocols respects the underlying Internet topology. 
For this purpose, we employ the visualization technique in Section 2.2 to compare the graph imposed by the 
P2P network to a randomly generated one at the level of the AS graph.  

We formalize the task of comparing two overlays as the comparison of two tuples (O_1, U_1) and (O_2, 
U_2), where O_i represents the overlays and U_i the underlays, while i=1 denotes Gnutella and i=2 denotes 
the random network. Since the networks U_1 and U_2 need not be the same, e.g., sampled at different points 
in time or location, these four graphs have to be related to each other. Our approach provides a potential 
solution by mixing information of the overlay and the corresponding underlay. More precisely, the overlay is 
reduced to a composition of elements in the underlay.  

To derive the graph imposed by the P2P network we utilize the data from the Gnutella measurement 
setup in Section 2.1. For each edge of the Gnutella network we map the IP addresses of the Gnutella peers to 
ASes using the BGP table dumps offered by Routeviews (Routeviews) during the week of April 14, 2005. 
This results in 2964 unique AS edges involving 754 ASes, after duplicate elimination and ignoring P2P edges 
inside an AS. For the random graph we pick end-points at the IP level by randomly choosing two IP 
addresses from the whole IP space.  These edges are then mapped to ASes in the same manner as for the 
Gnutella edges. This results in 4975 unique edges involving 2095 ASes for the random network at the AS 
graph level. The different sizes of the graphs are a result of the generation process: we generated the same 
number of IP pairs for random network as observed in the Gnutella sample, and applied the same mapping 
technique to both sets, which abstracts the graph consisting of IPs and direct communication, to a graph with 
ASes as nodes and the likely underlay communication path. This way, the characteristics of Gnutella are 
better reflected than by directly generating a random AS network of the same size as Gnutella network.  

In the following, we consider two kinds of abstractions of the (communication) paths induced by a 
communicating pair in the overlay: direct overlay communication and induced underlay communication. In 
direct overlay communication, we consider an AS-abstracted view of the direct P2P communication graph, 
where nodes are ASes and an edge connects two nodes if there exists a direct P2P communication between 
the corresponding ASes. We define the appearance weight of an edge as the number of such communications 



between the corresponding ASes. Note that the edges in this model disregard the underlying topology.  For 
induced underlay communication, we associate each overlay edge with the corresponding underlay path. This 
path is computed by building an AS graph from the AS path information from the Routeview data sets and 
then extracting the AS-neighbor information and locating a likely path for the P2P communication.  We 
remove all edges of the underlay graph that are not used in any overlay communication. The appearance 
weight of an edge denotes the number of paths it appears in. This refines the meaning of the edges in the 
original underlay network i.e., an edge is present between two ASes if and only if they have a traffic 
exchange agreement and a P2P communication is routed through it. 
 

 

 
Figure 1 shows a top-down view of the visualizations of communication edges in Gnutella and random 

network. The visualization technique places nodes with dense neighborhoods (tier-1 and tier-2 ASes) towards 
the center, and nodes with lesser degrees (tier-3 customer ASes) towards the periphery. We can observe that 
while both networks have many nodes with large degrees in the center, the random network possesses several 
nodes with large degree in the periphery. Gnutella, on the other hand, has almost no nodes with large degree 
in the periphery in both models. Moreover, this pattern is more pronounced for Gnutella in the direct overlay 
communication model, while the random network is largely similar in both models. In other words, it appears 
that Gnutella peering connections tend to lie in ASes in the core of the Internet where there may be high-
bandwidth links available. 

The results from visualizations generally tend to be indicators, which need to be verified by a 
mathematical analysis. Consequently, to corroborate our observations, we investigate structural dependencies 
between the induced underlay communication model and the actual underlay network itself. Edges in the 
underlay network are not equally loaded as some edges appear in more communication paths than others. As 
it is not possible to measure the actual traffic on the individual edges, we consider a simplified model where a 
single communication causes one unit of traffic to be routed. The appearance weight of an edge in the 
underlay communication model thus corresponds to its load. The real load of an edge in the underlay network 
(including all the traffic caused by other applications) is naturally larger. Comparing these two loads reveals 
whether the P2P communication has characteristics similar to the accumulated load. This helps in 
understanding and enhancing the underlay network topology and application level routing techniques.  
However, measuring the traffic load in the underlay network is not trivial. Even in a simplified model where 
we consider the load to be equal to the number of appearances in router-path announcements, the 
measurement is biased. Hence, we compare the appearance weight with node-structural properties of the 
corresponding end-nodes in the original underlay. We focus on the properties degree and coreness, as both 
have been successfully applied for the extraction of customer-provider relationship as well as visualization 
(Subramanian et al ‘04,Gaertler M. and Patrignani M. ’04), as these properties reflect the importance of 
ASes. We systematically compare the weight of an edge with the minimum and maximum degree and 
coreness of its end-nodes. Figure 2 shows the corresponding plots. 

From the plots of min- and max-degree, it is apparent that the appearance weight of an edge and its end-
nodes' degrees are not correlated in Gnutella or the random network, as no pattern is observable. Also, the 
distributions are similar as the majority of edges are located in the periphery of the network where the 

Figure 1: Comparison of occuring communication in the Gnutella network and a randomly generated network, using 
visualization, see Section 2.2. 

(a) Gnutella (b) random network (c) Gnutella (d) random network 
    Direct overlay communication       Induced underlay communication 



 min-degree max-degree min-coreness max-coreness 

maximum degree of the end-nodes is small. We thus hypothesize that the relation of load in the P2P network 
and node degree in the underlying network is the same in Gnutella and the random network. In other words, 
the Gnutella network does not appear to be significantly affected by the node degree of underlay nodes. 

However, considering the coreness reveals interesting observations. From the graphs of minimum and 
maximum coreness in Figure 2, we can observe that although there is no correlation in either of the two 
networks, their distributions are different. In the random network the distributions are very uniform, which is 
a reflection of its random nature. But in the case of Gnutella almost no heavy edge is incident to a node with 
small coreness, as can be seen in the minimum-coreness diagram. Positively speaking, most edges with large 
appearance weights are incident to nodes with large minimum coreness. Interpreting coreness as importance 
of an AS, these Gnutella edges are located in the backbone of the Internet, an important observation. The 
same diagram for the random network does not yield a similar significant distribution, thus denying a 
comparable interpretation. For instance, in the random network, there exist edges located in the periphery that 
are heavily loaded. As an aside, backbone edges need not necessarily be heavily loaded in either network. 

All these observations and analysis show that the Gnutella network differs from random networks and 
there appears to be some correlation of Gnutella topology with the Internet underlay.  

 

 

 

4. EXAMINATION OF POTENTIAL BIASES 

The comparison of overlay and underlay can be affected by AS data (Routeviews). For example, the standard 
communication path between two ASes may be unavailable due to maintenance or hardware failures. In the 
following, we consider an alternative data source (DIMES) as well as several samples of Routeviews data 
distributed over time. This will show if our analysis is biased by time or source of AS data. We found that 
our analysis is affected by neither, besides this revealed interesting information about properties of AS graph.  

4.1 Comparing of different AS Data Sources 

Figure 2: Comparing appearance weight with minimum and maximum degree and coreness of the corresponding end-
nodes in Gnutella and the random network. Each data point represents an edge, while the x-axis denotes the 
appearance weight and the y-axis reflects the degrees (coreness) of the end-nodes. All axes use logarithmic scale. 

(a) Gnutella 

(b) Random network 



Figure 3: Visualization of the union of the Routeviews 
and the DIMES data sets. 

The Oregon Routeviews Project is one of the major repositories for snapshots of the AS network using 
looking glasses. In contrast, DIMES extracts AS relations by traceroute experiments. Comparing the 
Routeviews AS topological map with that of DIMES, we observe that neither DIMES nor the combination of 
DIMES and Routeviews result in different visualizations (Figure 3). Different greys correspond to the 

different edge sets, i.e., light grey to DIMES, dark 
grey to Routeviews and black to the intersection.  

The data sets correspond to the period of 
March to June 2005.  We obtain 48,073 edges 
(corresponding to 20,406 ASes) from Routeviews 
and 38,928 edges (corresponding to 14,154 ASes) 
from DIMES.  Of these, 21,725 edges exclusively 
belong to Routeviews, and 12,580 edges 
exclusively to DIMES.  The rest of the edges are 
common to both data sets. The union of the two 
data sets thus results in 60,653 unique edges 
(corresponding to 20,612 ASes). Note that the 
geometric difference of the two data samples is 
surprisingly large. In other words, 58% of the edges 
appear in only one data set. An interesting 
observation is that many edges  only discovered by 
DIMES are incident to the core. Figure 4 shows the 
plots of the coreness of the end-nodes (which 
represent ASes) of the edges versus their rank, 

positioned in the non-decreasing sorted sequence. The coreness is calculated in the graph that consists of the 
union of the two data samples. This enables us to set up a less biased comparison. The Routeviews data 
sample is plotted as a solid line, while the DIMES sample is dotted.  Figure 4(a) plots a data point for each 
edge belonging to Routeviews or DIMES using the maximum coreness of the end-nodes (as y-axis), while 
Figure 4(b) shows the same scenario using the minimum coreness.  A similar comparison is made in Figures 
4(c) and 4(d) where common edges are omitted. Thus the solid lines represent the distribution of edges that 
are exclusively observed by Routeviews, and the dotted lines correspond to the exclusive part of DIMES. In 
principle, the distributions of Routeviews and DIMES are very similar, except for the broad tail of the 
Routeviews distribution observed in Figure 4(c), which is an interesting observation requiring further 
investigation. However the overall similarity of the plots and the resembling visualizations reveal that 
Routeviews and DIMES data is indeed similar, hence our analysis in Section 3 is unaffected by data source. 
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4.2 MACROSCOPIC EVOLUTION 

To ensure that our analysis of the AS graph structure is not biased by the time of measurement, we analyze 
the temporal evolution of the AS graph obtained from Routeviews over a longer period of time. We use the 
graph-theoretical concept of k-cores (Batagelj V. and Zaversnik M. ’02 ,Seidmann, S. ’83) to track the 
general shape of the AS network over time. As illustrated in Figure 5 the visualization technique relates the 

Figure 4: Comparison of coreness distributions of edges. Fig a and b compare Routeviews (solid) with DIMES 
(dotted), while Fig c and d compare the exclusive sets. X axis: number of edges, Y axis: min or max coreness. 

 (a) maximum coreness  (b) minimum coreness   (c) maximum coreness  (d) minimum coreness 



Figure 5: Visualization of the AS network (Jan 1, 
2005) using the technique of Baur et.al. ’04. Small 
white nodes have small coreness while big black 
nodes have large coreness. 

Figure 6: The relative size of shells. The x-axis denotes 
time and the y-axis (logarithmically scaled) denotes the 
fraction of nodes in the k-shell. Shells are sorted, with 
low shells at the top and the maximum at the bottom. 

coreness of an AS to its position in the layout very well: nodes with large coreness are placed in the center 
while nodes with small coreness are placed in the periphery (this fact was instrumental in Section 3 analysis).  

 
 

 

 
We observe that during the period of April 2001 to April 2005, the number of nodes in the AS graph 

increases by about 2000 nodes per year, the number of edges increases by 4800 edges per year and the 
maximum core number has increased from 18 to 26. Although the network grows in absolute terms and 
especially, the individual core levels grow, their relative sizes remain stable. 

Similar to the rings of a tree trunk, Figure 6 illustrates the temporal evolution of the relative proportions 
of the k-shells, i.e., collection of nodes with coreness k. In this figure, the thickness of one strip corresponds 
to the fraction of nodes that have a given coreness. The lowest strip represents the maximum core while the 
highest strip reflects the 1-shell. One can clearly note the stability of k-shells with 
 k ≤ 15. It is also observable that the size and coreness of the maximum core increases over time. The growth 
in the coreness is not monotonic and has big fluctuations. The increase is caused by the improving 
connectivity between major ASes. White vertical strips indicate the absence of data in the collection process. 
Furthermore, the relative distances of the ASes to the “center” in the visualizations remain roughly the same. 
The fact that the core structure evolves over time but the relative core sizes remain stable implies that the 
visualization approach, see Section 2.2 using cores as a means to analyze the AS graph is not biased by the 
time of measurement. A more detailed analysis of the distribution of the coordinates of the nodes reveals that 
only 6%-10% are placed in or close to the center. Most nodes having coreness two or three are located in a 
concentric annulus around the peak. Using several snapshots over time, we found a positive correlation of 
0.67-0.78 between the distance from the center and the coreness. This explains the general volcano-like shape 
reported by Baur et al ’04 for the AS graph. This shape also reflects the hierarchical structure of AS graphs 
well. Furthermore, the shape of the annuli (of the 2- and 3-shell) remains fairly constant over time which 
indicates the independence of the visualization technique from the size of the graph.  

5. CONCLUSION 

Using visualization and the concept of cores, we have established that while overlay networks like Gnutella 
use an arbitrary neighborhood selection process, their topology differs from randomly generated networks. 



Moreover, there exists some correlation between the overlay and the underlay network topologies. By 
comparing the Routeviews and DIMES data sets, we confirm that different data sources or collection 
processes do not significantly affect our view of the AS graph. The analysis of the temporal evolution of the 
Routeviews data sets shows that the basic structure and properties of the global AS graph remain the same 
over an extended period of time. Apart from showing that our analysis is not biased by the source of AS data 
or the time of measurement, this also demonstrates that analyzing the overlay-underlay correlation through a 
new visualization approach leads to insightful observations. Future work will focus on different overlay 
networks, characterizing overlay nodes that lie in the core and periphery of visualized graphs using 
geographic location and uptimes, and augmentations of the visualization-based technique with more 
elaborate mathematical analysis. 
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