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ABSTRACT

In the design and implementation of the overlayhidecture most peer-to-peer (P2P) systems relyhenunderlay
network to provide them with basic connectivity.eféfore, the intrinsic features of the underlayvogk determine the
efficiency of the overlay. Accordingly, studyingetlinterdependency of the overlay and underlay nédsvieads to a
better understanding of P2Behaviour. We present a visualization-driven anslyfer evaluating the overlay
architecture with respect to the underlay. Usingit8la as a case study, our analysis confirms@mattella’s topology
differs from a randomly generated network and thate is an implicit correlation between the owerdéend underlay
topologies.
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1. INTRODUCTION

The recent growth of P2P file sharing applicatianth respect to total Internet traffic (Sen and \§ao2,
Karagiannis et al '04) has led to an unprecedeintedest in their analysis (e.g. Aggarwal et al):0Bhe P2P
file sharing applications create overlay networkstap of the Internet underlay. The contemporatgrimet

is a collection of segregated routing domains dakeitonomous Systems (AS), each having their own
administration and independent routing policiesutitg information between ASes is exchanged via an
exterior gateway protocol such as BGP (BGP). TBen&twork possesses an implicit hierarchical stinect
where the ASes can be categorized into backboaéienal, regional or local providers, and custon{&€so,

L. '00). The graph of the ASes, where nodes remtedigferent ASes, and edges correspond to traffide
agreements between the ASes, provides us with straabon of the Internet underlay. Accordingly, ean
say that the P2P file sharing systems create ovésfgologies on top of the AS graph. When consiingc
their topology by forming neighborhoods, most stwmoed and unstructured P2P protocols do not exiglici
take the underlay routing into account. Yet asuhéerlay connectivity determines the overlay penfance,
understanding the correlation between routing éndberlay and underlay layers is crucial.

There have been some investigations on such ctiorarecently. Using game theoretic models, Liu et
al '05 study the interaction between overlay rogitand traffic engineering within an AS. Ratnasarhwle
'02 present a node-partitioning scheme that allowerlay nodes to choose peers that are relativeseadn
terms of network latency. An analysis of routinguard link failures (Seetharaman, S. and Ammar, 08) ’
finds that tuning underlay routing parameters impsooverlay performance. Most investigations temd t
point out that the overlay topology does not appedre correlated with the underlay (e.g., Aggarataal
‘04), but the routing dynamics of the underlay ffe the overlay in ways not yet well understood.

In this paper, we analyze the correlation betweeerlay and underlay topologies of the Gnutella
network Gnutellav0.6)using a visualization-driven approach (Baur e04) which relies on the concept of
cores. We confirm that the topology of Gnutellani uniformly random. We also observe a correlation
between features of Gnutella and the AS graph.

The paper is organized as follows. In Section 2,imeoduce the experimental setup for Gnutella
network measurement and the visualization techni@estion 3 details the overlay-underlay corretatio



analysis and the comparison of overlay topologywéndom networks. In Section 4, we make a casthéor
feasibility of our approach by examining the pot&rtias in our analysis, and conclude in Section 5

2. PRELIMINARIES

In this section, we introduce the methodology wplalged to collect Gnutella traces, and the visadilim
technique used to correlate the Gnutella topoloify the Internet underlay.

2.1 Gnutella networ k measur ement

Gnutella is a popular file-sharing network with ghly 2 million users (Slyck), and has attractedealtiy
interest from researchers, e.g., (Stutzbach éimlRipeanu et al ‘02). The Gnutella (Gnutella Yodtwork

is comprised of agents called servents, who camieias well as serve requests for resources. When
launched, a servent searches for other peers teecoto by sending Hello-likei ng messages. TH& ngs

are answered byong messages, which contain address and shared redatommation. Search queries are
flooded within the Gnutella network usin@uery messages, and answered @Qyery Hits. To limit
flooding Gnutella uses TTL (time to live) and megsdDs. Each answer messag®iéry Hit/ Pong)
traverses the reverse path of the correspondiggerimessage. While the negotiation traffic isiedrwithin

the set of connected Gnutella nodes, the actual elathange of resources takes place outside th&lanu
network, using the standard HTTP protocol. Duectability problems, later versions of Gnutella (Baila
v0.6) introduced a hierarchy which elevates sonmgesds to ultrapeers, while others become leaf sode
Each leaf node connects to a small number of Waepwhile each ultrapeer maintains a large nuraber
neighbors, both ultrapeers and leafs. To furtheprawe performance and to discourage abuse, the
Pi ng/ Pong protocol underwent semantic changes. AnswerPitmgs are cached (Pong caching) and too
frequentPi ngs or repeateduer ys may cause termination of connection.

In order to analyze the overlay structure, we firtd to identify a representative set of edgéiserP2P
network. By an edge, we mean a direct P2P conmeb#Btween two overlay nodes. The most obvious viay o
finding edges in a P2P network is to create sompdoiicipating. Yet these are not representativiheg are
highly biased by the location and software of tlagtipipant. Rather we wish to identify edges in B2P
network where none of the two end-nodes is comtadily us. We call such nodes remote neighbor sexven

Due to Pong caching and the rapid fluctuation inutela networks (we measured the median
incoming/outgoing connection duration to be 0.7880seconds), the simple crawling approach usinglera
Pi ngs (Pi ngs with TTL 2) employed in Saroiu et al ‘02 will likeresult in servents that are not active any
more. They should, however, have been remote neigddyvents at some point.

To cope with these complications, we deploy a combdn of active and passive techniques to explore
the Gnutella network. Our passive approach consibtan ultrapeer based on the GTK-Gnutella (GTK-
Gnutella) program. The goal is to have an ultraghat behaves like a normal node in the network, ye
worthwhile to connect to. It shares 100 randomlyegated music files (totalling 300 MB in size) and
maintains 60 simultaneous connections to otheresgsv To derive various statistics the servent is
instrumented to log per-connection information aegtad with a packet level trace. The passive apgproa
gives us a list of active servents.

The active approach consists of a multiple-cligatuer that useBi ngs with TTL 2 to obtain a list of
candidate servents. SinQaer y results are difficult to cache, we uSeer ys with TTL 2 to obtain a set of
remote neighbor servents. These servents are dbetacted actively to further advance the network
exploration. This approach allows us to discoveut@la edges that existed at a very recent poirinod.
When interacting with other servents, our crawlegtgnds to be a long-running ultrapeer with a non-
provocative querying scheme. It processes incomitggsages and has a non-intrusRieng/ Pong
behaviour. For instance, the servent iss@aer y/crawler Pi ngs only to those peers that have already
responded with ®#ong, Pi ngs are issued only to those servents that send @amsilves. This pragmatic
behaviour seems to avoid bans. The client @3 y messages with catchwords like mp3, avi, rar. Gare c
expectQuer ys to yield only a subset of neighbors due to theg@nee of free-riders. We combine active and



passive approaches by integrating the crawler thio ultrapeer. Experiments with the unmodified and
modified ultrapeer confirm that the changes doattetlr the characteristics of incoming connections.

Using this setup, we collect Gnutella logs for aveek starting April 14th, 2005. During this timbget
ultrapeer logged 352,396 sessions and the cravdeovered 234,984 remote neighbor servents

2.2Visualization technique

The concept ofcores (Batagelj V. and Zaversnik M. ‘Q2Seidmann, S. '83) describes a hierarchical
decomposition of the nodes of a graph. More prégiske k-core of an undirected graph is defined as the
unique subgraph obtained by recursively removihgadlies of degree less than k. A node ¢t@eness, if

it belongs to thei-core but not to theuf-1)-core. Theax-shellis the collection of all nodes having coreness
The core of a graph is the k-core such that the (k+1)-d¢srempty. Generally the core decomposition of a
graph results in disconnected sub-graphs, buténctise of the AS graph we observe that all k-cstag
connected, which is a good feature regarding cdivityc Cores have been frequently used for network
analysis, e.gGkantsidis et al ‘03Gaertler M. and Patrignani M. ‘04.

Baur et al '04 proposed a visualization technigoe drawing the AS network based on a hierarchical
decomposition. More precisely, their algorithm ementally layouts the graph starting from the inmest
shell and then iteratively adds the lower shellkeil implementation uses core decomposition and a
combination of spectral and force-directed layaahnhiques. A successful application of this visalon
technique compared actual AS graphs with generA®dgraphs. The obtained layouts clearly revealed
structural differences between the networks.

3. EVALUATION OF OVERLAY-UNDERLAY CORRELATION

Overlays are formed at the application layer, hetactual data flow takes place at the networkrlaymce
the neighborhood selection process of overlay nedsvis largely arbitrary, it becomes interestingtalyze
how much the neighborhood selection process of BBcols respects the underlying Internet topology
For this purpose, we employ the visualization téghe in Section 2.2 to compare the graph imposethéy
P2P network to a randomly generated one at thé ¢évbe AS graph.

We formalize the task of comparing two overlaystesscomparison of two tuples (O_1, U_1) and (O_2,
U_2), where O_i represents the overlays and U_utiderlays, while i=1 denotes Gnutella and i=2 deso
the random network. Since the networks U_1 and hket not be the same, e.g., sampled at differéntspo
in time or location, these four graphs have to éated to each other. Our approach provides a palten
solution by mixing information of the overlay arttetcorresponding underlay. More precisely, the layds
reduced to a composition of elements in the ungerla

To derive the graph imposed by the P2P network tifizeithe data from the Gnutella measurement
setup in Section 2.1. For each edge of the Gnutelfaork we map the IP addresses of the Gnutettaspte
ASes using the BGP table dumps offered by RoutevigRouteviews) during the week of April 14, 2005.
This results in 2964 unique AS edges involving ASks, after duplicate elimination and ignoring R2iges
inside an AS. For the random graph we pick endipoat the IP level by randomly choosing two IP
addresses from the whole IP space. These edgdhearenapped to ASes in the same manner as for the
Gnutella edges. This results in 4975 unique edgesiving 2095 ASes for the random network at the AS
graph level. The different sizes of the graphsearesult of the generation process: we generaedame
number of IP pairs for random network as observethé Gnutella sample, and applied the same mapping
technique to both sets, which abstracts the grapkisting of IPs and direct communication, to gbravith
ASes as nodes and the likely underlay communicatith. This way, the characteristics of Gnutella ar
better reflected than by directly generating a cend\S network of the same size as Gnutella network.

In the following, we consider two kinds of abstians of the (communication) paths induced by a
communicating pair in the overlaglirect overlay communicatioandinduced underlay communicatiom
direct overlay communication, we consider an ASualoted view of the direct P2P communication graph,
where nodes are ASes and an edge connects two iiddese exists a direct P2P communication between
the corresponding ASes. We define dppearance weighdf an edge as the number of such communications



between the corresponding ASes. Note that the eidgidss model disregard the underlying topolodyor
induced underlay communication, we associate eaeHay edge with the corresponding underlay palfis T
path is computed by building an AS graph from ti path information from the Routeview data sets and
then extracting the AS-neighbor information andatimy a likely path for the P2P communication. We
remove all edges of the underlay graph that areuset in any overlay communication. Tappearance
weightof an edge denotes the number of paths it appearhis refines the meaning of the edges in the
original underlay network i.e., an edge is predesitveen two ASes if and only if they have a traffic
exchange agreement and a P2P communication isdrthrzugh it.
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Direct overlay communicatic Induced underlay communicati

Figure 1. Comparison of occuring communication ia @nutella network and a randomly generated netweikg
visualization, see Section 2.2.

Figure 1 shows a top-down view of the visualizatiaf communication edges in Gnutella and random
network. The visualization technique places nodils ekense neighborhoods (tier-1 and tier-2 ASesjptds
the center, and nodes with lesser degrees (tisis®mer ASes) towards the periphery. We can obsbate
while both networks have many nodes with large elegin the center, the random network possessesasev
nodes with large degree in the periphery. Gnutellathe other hand, has almost no nodes with ldegeee
in the periphery in both models. Moreover, thisgrat is more pronounced for Gnutella in the diactrlay
communication model, while the random network igédy similar in both models. In other words, ipaprs
that Gnutella peering connections tend to lie ired$ the core of the Internet where there mayipe-h
bandwidth links available.

The results from visualizations generally tend te ibdicators, which need to be verified by a
mathematical analysis. Consequently, to corrobarateobservations, we investigate structural depeoigs
between the induced underlay communication moddltae actual underlay network itself. Edges in the
underlay network are not equally loaded as somesdppear in more communication paths than otAsrs.
it is not possible to measure the actual traffigtmnindividual edges, we consider a simplified elaghere a
single communication causes one unit of trafficbto routed. The appearance weight of an edge in the
underlay communication model thus correspondssttoad. The real load of an edge in the underlayark
(including all the traffic caused by other applioas) is naturally larger. Comparing these two kaelveals
whether the P2P communication has characteristicslas to the accumulated load. This helps in
understanding and enhancing the underlay netwopblégy and application level routing techniques.
However, measuring the traffic load in the underaywork is not trivial. Even in a simplified modehere
we consider the load to be equal to the number pdearances in router-path announcements, the
measurement is biased. Hence, we compare the amgeaweight with node-structural properties of the
corresponding end-nodes in the original underlag. fdtus on the properties degree and corenessthas b
have been successfully applied for the extractiboustomer-provider relationship as well as visation
(Subramanian et al ‘04,Gaertler M. and Patrignani’04), as these properties reflect the importaote
ASes. We systematically compare the weight of ageedith the minimum and maximum degree and
coreness of its end-nodes. Figure 2 shows thesmrgling plots.

From the plots of min- and max-degree, it is appiatieat the appearance weight of an edge and ds en
nodes' degrees are not correlated in Gnutellaerahdom network, as no pattern is observable., Also
distributions are similar as the majority of edgee located in the periphery of the network whére t



maximum degree of the end-nodes is small. We thgpsthesize that the relation of load in the P2Rvoek
and node degree in the underlying network is timeesen Gnutella and the random network. In otherdsor
the Gnutella network does not appear to be signifly affected by the node degree of underlay nodes

However, considering the coreness reveals integegibservations. From the graphs of minimum and
maximum coreness in Figure 2, we can observe tki@umgh there is no correlation in either of theotw
networks, their distributions are different. In ttamdom network the distributions are very unifomhjch is
a reflection of its random nature. But in the caB&nutella almost no heavy edge is incident t@denwith
small coreness, as can be seen in the minimum-essatiagram. Positively speaking, most edges waitiel
appearance weights are incident to nodes with larigémum coreness. Interpreting coreness as impogta
of an AS, these Gnutella edges are located in #ukldone of the Internet, an important observatidre
same diagram for the random network does not yéelsimilar significant distribution, thus denying a
comparable interpretation. For instance, in theloamnetwork, there exist edges located in the peripthat
are heavily loaded. As an aside, backbone edgesnmenecessarily be heavily loaded in either netwo

All these observations and analysis show that that@&la network differs from random networks and
there appears to be some correlation of Gnutetlalégy with the Internet underlay.
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Figure 2: Comparing appearance weight with mininamd maximum degree and coreness of the corresppedaf
nodes in Gnutella and the random network. Each gatat represents an edge, while the x-axis dentites
appearance weight and the y-axis reflects the dsdmoreness) of the end-nodes. All axes use thgad scale.

4. EXAMINATION OF POTENTIAL BIASES

The comparison of overlay and underlay can be tfteby AS data (Routeviews). For example, the stechd
communication path between two ASes may be undlaildue to maintenance or hardware failures. In the
following, we consider an alternative data sould&MES) as well as several samples of Routeviews dat
distributed over time. This will show if our analyss biased by time or source of AS data. We fothad

our analysis is affected by neither, besides thealed interesting information about propertieA®fgraph.

4.1 Comparing of different AS Data Sour ces



The Oregon Routeviews Project is one of the magmositories for snapshots of the AS network using
looking glasses. In contrast, DIMES extracts ASatiehs by traceroute experiments. Comparing the
Routeviews AS topological map with that of DIMESg wbserve that neither DIMES nor the combination of
DIMES and Routeviews result in different visualinas (Figure 3). Different greys correspond to the
different edge sets, i.e., light grey to DIMES, ldar
grey to Routeviews and black to the intersection.
The data sets correspond to the period of
March to June 2005. We obtain 48,073 edges
(corresponding to 20,406 ASes) from Routeviews
and 38,928 edges (corresponding to 14,154 ASes)
from DIMES. Of these, 21,725 edges exclusively
belong to Routeviews, and 12,580 edges
exclusively to DIMES. The rest of the edges are
common to both data sets. The union of the two
data sets thus results in 60,653 unique edges
(corresponding to 20,612 ASes). Note that the
geometric difference of the two data samples is
surprisingly large. In other words, 58% of the exige
appear in only one data set. An interesting
observation is that many edges only discovered by
Figure 3: Visualization of the union of the Routevée | DIMES are incident to the core. Figure 4 shows the
and the DIMES data sets. plots of the coreness of the end-nodes (which
represent ASes) of the edges versus their rank,
positioned in the non-decreasing sorted sequert cdreness is calculated in the graph that censighe
union of the two data samples. This enables ustag a less biased comparison. The Routeviews data
sample is plotted as a solid line, while the DIM&Snple is dotted. Figure 4(a) plots a data painehch
edge belonging to Routeviews or DIMES using the imam coreness of the end-nodes (as y-axis), while
Figure 4(b) shows the same scenario using the mimirworeness. A similar comparison is made in Egur
4(c) and 4(d) where common edges are omitted. Theisolid lines represent the distribution of edted
are exclusively observed by Routeviews, and théeddines correspond to the exclusive part of DIMES
principle, the distributions of Routeviews and DIBIEre very similar, except for the broad tail oé th
Routeviews distribution observed in Figure 4(c),ickhis an interesting observation requiring further
investigation. However the overall similarity ofetlplots and the resembling visualizations reveat th
Routeviews and DIMES data is indeed similar, hemgeanalysis in Section 3 is unaffected by datacmu
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Figure 4: Comparison of coreness distributions ddes. Fig a and b compare Routeviews (solid) witMES
(dotted), while Fig ¢c and d compare the exclusats.sX axis: number of edges, Y axis: min or maseness.

4.2 MACROSCOPIC EVOLUTION

To ensure that our analysis of the AS graph stradsinot biased by the time of measurement, wi/ama
the temporal evolution of the AS graph obtainedrflBouteviews over a longer period of time. We un&e t
graph-theoretical concept of k-cores (Batagelj Wd &aversnik M. '02 ,Seidmann, S. '83) to track the
general shape of the AS network over time. Asitated in Figure 5 the visualization technique tedahe



coreness of an AS to its position in the layoutywsell: nodes with large coreness are placed incdmger
while nodes with small coreness are placed in #rgpery (this fact was instrumental in Sectiomalgsis).
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Figure 5: Visualization of the AS network (Jan [L Figure 6: The relative size of shells. The x-ax@ésates

2005) using the technique of Baur et.al. 'S8#nall time and the y-axis (logarithmically scaled) desdtee
white nodes have small coreness while big blgck | fraction of nodes in the k-shell. Shells are sarteith
nodes have large coreness. low shells at the top and the maximum at the battom|

We observe that during the period of April 2001April 2005, the number of nodes in the AS graph
increases by about 2000 nodes per year, the nuofbedges increases by 4800 edges per year and the
maximum core number has increased from 18 to 26oAbh the network grows in absolute terms and
especially, the individual core levels grow, theilative sizes remain stable.

Similar to the rings of a tree trunk, Figure 6 slitates the temporal evolution of the relative préipns
of the k-shells, i.e., collection of nodes with @eess k. In this figure, the thickness of one stagesponds
to the fraction of nodes that have a given coreriBiss lowest strip represents the maximum coreenihié
highest strip reflects the 1-shell. One can cleamhpte the stability of k-shells with
k <15. Itis also observable that the size and ca®péthe maximum core increases over time. The/tro
in the coreness is not monotonic and has big fatains. The increase is caused by the improving
connectivity between major ASes. White verticaipstindicate the absence of data in the colleqgtiatess.
Furthermore, the relative distances of the ASdkdd'center” in the visualizations remain roughhg tsame.
The fact that the core structure evolves over timethe relative core sizes remain stable implieg the
visualization approach, see Section 2.2 using cases means to analyze the AS graph is not biageideb
time of measurement. A more detailed analysis efdistribution of the coordinates of the nodes at/éhat
only 6%-10% are placed in or close to the centaystvhodes having coreness two or three are lodéatad
concentric annulus around the peak. Using sevaashots over time, we found a positive correlatbn
0.67-0.78 between the distance from the centetladoreness. This explains the general volcamsiiape
reported by Baur et al '04 for the AS graph. THigge also reflects the hierarchical structure ofgh&phs
well. Furthermore, the shape of the annuli (of 2reand 3-shell) remains fairly constant over timlick
indicates the independence of the visualizatiohnipie from the size of the graph

5. CONCLUSION

Using visualization and the concept of cores, weehastablished that while overlay networks like @fia
use an arbitrary neighborhood selection procegs; tbpology differs from randomly generated netikgor



Moreover, there exists some correlation betweenaverlay and the underlay network topologies. By
comparing the Routeviews and DIMES data sets, wdiroo that different data sources or collection
processes do not significantly affect our viewlw# AS graph. The analysis of the temporal evolutibthe
Routeviews data sets shows that the basic struanateproperties of the global AS graph remain draes
over an extended period of time. Apart from showtmgt our analysis is not biased by the source ®dAta

or the time of measurement, this also demonstthetsanalyzing the overlay-underlay correlatiorotigh a
new visualization approach leads to insightful obagons. Future work will focus on different owvayl
networks, characterizing overlay nodes that liethe core and periphery of visualized graphs using
geographic location and uptimes, and augmentatwighe visualization-based technique with more
elaborate mathematical analysis.
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