
A Formal Model for Railway Sta� Rostering

Albena Kirilova Strupchanska, Martin P�eni�cka and Dines Bj�rner

Computer Science and Engineering, Informatics and Mathematical Modelling

Technical University of Denmark

Building 322, Richard Petersens Plads, DK{2800 Kgs. Lyngby, Denmark

falbenajmartinjdbg@imm.dtu.dk

15 October, 2002

Abstract

The problem to be tackled is as follows: There is a railway net. Trains travel from

station to station according to the schedule. There are depots in a railway net to which

sets of sta� members are associated. Sta� members are responsible for performing set of

actions in order to ful�l the schedule demands. Given a schedule, a sta� type, a set of

depots and rules the problem is to construct work schedules for sta� members located in

the depots such that they conform to the rules and the schedule demands. This problem

is approached by dividing it into two subproblems: (i) sta� scheduling: from a given

schedule, sta� type, depots and some rules to produce duties (sequence of actions) for sta�

members and (ii) sta� rostering: generation of base rosters from the duties, constructed

in the previous stage and assignment of particular sta� members to them. Base rosters

are cyclic sequences of duties for some planning period such that they conforms to rules

and cover the duties. The assignment of sta� members to base rosters is done such that

each sta� member receives a roster according his/her characteristics (abilities, previous

duties etc.).

We relate this model to the descriptions provided in [3, 4, 5, 6, 8, 9].

Contents

1 Introduction 3

1.1 Synopsis . 3

1.2 The Major Functions . 3

1.3 Requirements and Software Design . 3

1.4 Paper Structure . 4

2 Narrative & Formal Model 5

2.1 Nets, Stations and Depots . 5

2.1.1 Narrative . 5

2.1.2 Formal Model . 5

2.2 Sta� members . 7

2.2.1 Narrative . 7

2.2.2 Formal Model . 7

2.3 Schedule, Journeys and Trips . 10

1

2 A Formal Model for Railway Sta� Rostering

2.3.1 Narrative . 10

2.3.2 Formal Model . 10

2.4 Actions and Duties . 15

2.4.1 Narrative . 15

2.4.2 Formal Model . 16

2.5 Rosters and Sta� Members . 21

2.5.1 Narrative . 21

2.5.2 Formal Model . 21

2.6 Apendix . 27

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 3

1 Introduction
T:1, F:1

cros0p11.1 Synopsis

Sta� planning is a typical problem arising in the management of large transport companies,

including railway companies. It is concerned with building the work schedules (duties and

rosters) for sta� members needed to cover a planned timetable. Each work schedule is built

concerning a given sta� type (engine men, conductors, cater sta�, etc.).

There are two types of sta� planning: long-term planning and short-term planning. We

will be interested in long term planning. Normally the long term planning task is sepa-

rated into two stages: sta� scheduling and sta� rostering. Sta� scheduling is concerned with

building short-term working schedules, called duties, for sta� members such that they sat-

isfy schedule demands. After this stage it is easy to determine the global number of sta�

members needed to hire such that the working schedules could be performed. Sta� rostering

is concerned with ordering of duties into long-term working schedules, called base rosters,

and assignment of speci�c sta� members to them such that each sta� member performs a

roster. During the stage of rostering we have the assumption that we have enough hired sta�

members such that we could assign rosters to them.

In this paper we will try to explain and analyze �rst informally and then formally the

problem. Using a formal methods approach and RAISE Speci�cation Language we will present

a formal model of the domain of sta� rostering.

1.2 The Major Functions

Given a schedule, a sta� type, a depot and rules the task is to produce a set of rosters. What

we understand in terms of schedule, depot and rules can be found further in the paper.

gen sross : SCH � StfTp � Dep � eRS ! Ros

The function above produces all the rosters for a sta� type per depot. Usually rosters are

generated per depot and we have the assumption that after the sta� scheduling stage all

duties generated per depot are shifted to the depot. If this is not the case we propose a

function that integrates the two stages in sta� rostering into one. So given a schedule, a sta�

type, set of depots and rules we produce all rosters per each depot for this sta� type.

obtain ross : SCH � StfTp � Dep-set � eRS ! Ros-set

1.3 Requirements and Software Design

We emphasis that we formally characterized schedules, duties and rosters to meet sta� ros-

tering demands. On the basic of such formal characterization we can now express software

requirements.

The actual software design relies on identi�cation of suitable operation research techniques,

that can provide reasonable optimal solution at reasonable computing times.

It is not the aim of this paper to show such operation research algorithms. Instead we

formalize the domain of railway sta� rostering such that later we could apply to it operation

research techniques discovered in further research work done within AMORE group.

October 15, 2002, 14:58 c
 The AMORE Project

4 A Formal Model for Railway Sta� Rostering

1.4 Paper Structure

The rest of the paper is one section with �ve subsections. Each section consist of formal

description of the problem (narrative) and formalization of it (formal model). The �rst

subsection introduces the topology of the railway net from sta� management perspective.

The second one introduces the notion of a sta� member and related to it characteristics taken

into account in the early stage of planning. And �nally the last three subsections are the ones

which gradually show the creation of rosters from a schedule, set of depots and rules. The

�rst of them is concerned of separating the journeys observed from a schedule into trips. The

notions of journey and trip are introduced there. The second one introduces the notion of a

duty and produces the set of duties per each depot. Finally the third one introduces more

characteristics of sta� members and the notion of rosters. It generates the rosters for sta�

members too.

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 5

2 Narrative & Formal Model
T:2, F:2

cros12.1 Nets, Stations and Depots

In this section we will introduce the notions of nets, stations and depots which are related to

the topology of the railway net from a sta� manager point of view.

2.1.1 Narrative

We take as base concept for the railway net the topology of that net. From a railway net

(Net) we can observe stations (Sta) and depots (Dep). Depots are personnel bases i.e places

where sta� members are located. The notion of sta� member will be introduced in more

details in the next section. From a station we can observe a set of depots to which the station

can belong. From a depot we can observe a set of stations from which it is easy to reach the

depot. Given a depot and a station we can observe the distance in time (TInt) between them.

We will be interested in these stations and depots which are 'close' to each other.

There are at least two stations in a net (�1). There is at least one depot in a net (�2).

The set of depots observed from a station consists of depots of the same railway net (�3).

The set of stations observed from a depot consists of stations of the same railway net (�4).

2.1.2 Formal Model

We �rst state some abstract types, ie. sorts, and some observer functions.

F:3

Abstract Types and Observers:

scheme NETWORK =

class

type Net, Sta, Dep, TInt, StaNm, DepNm

value

obs Stas : Net ! Sta-set,

obs StaNm : Sta ! StaNm,

obs Deps : Net ! Dep-set,

obs DepNm : Dep ! DepNm,

obs StaDeps: Sta ! Dep-set,

obs DepStas: Dep ! Sta-set,

obs StDepDistance : Sta � Dep ! TInt

end

We will then illustrate some axioms:

Axioms :

(�1) axiom 8 n : Net � card obs Stas(n) � 2

(�2) axiom 8 n : Net � card obs Deps(n) � 1

October 15, 2002, 14:58 c
 The AMORE Project

6 A Formal Model for Railway Sta� Rostering

(�3) axiom 8 n: Net � 8 s : Sta � s 2 obs Stas(n))

(8 d : Dep � d 2 obs StaDeps(s))

d 2 obs Deps(n))

(�4) axiom 8 n: Net � 8 d : Dep � d 2 obs Deps(n))

(8 s : Sta � s 2 obs DepStas(d))

s 2 obs Stas(n))

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 7

2.2 Sta� members

We will introduce the notions of sta� members and related to them attributes according to a

sta� manager stake-holder's perspective.

2.2.1 Narrative

We will call sta� all the people who are employed in a railway company and who could perform

some actions in order to ful�l a schedule demands.

At the �rst stage of sta� rostering - sta� scheduling we will be interested in a part of the

characteristics that can be related to sta� members. Sta� members are exchangeable at sta�

scheduling stage that is why we will call them anonymous sta� members (AnonStfMbr). From

anonymous sta� member we could observe his/her home depot (obs SMDep). A home depot

of some sta� member is the depot of the railway net from where he/she starts and �nishes

his/her sequence of actions. There is a notion of a sta� type (StfTp). Some possible sta�

types are: engine men (engS), conductors (condS), cater sta� (catS) etc. From anonymous

sta� member we could observe his/her sta� type (obs SMStfTp). The set of anonymous sta�

members we will call anonymous sta� (AnonSta�).

At the second stage of sta� rostering we will take into account all the characteristics

that can be related to a sta� member. We assume that sta� member's personal information

makes him distinguishable from other sta� members. So we will call speci�c sta� member

(SpecStfMbr) an anonymous sta� member with added personal information. From a speci�c

sta� member we can observe his personal information as well as home depot and sta� type.

From anonymous and speci�c sta� member we can observe sta� member's name. It makes

the relation between two abstractions of a sta� member - anonymous and speci�c.

Given a sta� type we can observe all the depots which are home depots for sta� members

of a given sta� type (function deps sta� below). Given a sta� type and a depot we can observe

all anonymous sta� members at this depot of this sta� type and respectively their number

(functions dstft and dstft num below).

2.2.2 Formal Model
F:4

We �rst state some types and some observer functions.

Abstract Types and Observers:

scheme STAFF =

extend NETWORK with

class

type

AnonStfMbr, Name,

SpecStfMbr, PersInfo,

StfTp == engS j condS j catS,

AnonSta� = Name !m AnonStfMbr,

Sta� = Name !m SpecStfMbr

value

obs Name: AnonStfMbr ! Name,

October 15, 2002, 14:58 c
 The AMORE Project

8 A Formal Model for Railway Sta� Rostering

obs Name: SpecStfMbr ! Name,

obs SMStfTp : AnonStfMbr ! StfTp,

obs SMStfTp: SpecStfMbr ! StfTp,

obs SMDep : AnonStfMbr ! Dep,

obs SMDep: SpecStfMbr ! Dep,

obs PersInfo: SpecStfMbr ! PersInfo

end

We will then illustrate some axioms and functions:

Functions and Axioms:

proj SpecAnonStfMbr: SpecStfMbr ! AnonStfMbr

proj SpecAnonStfMbr(ssm) as asm

post obs SMStfTp(ssm) = obs SMStfTp(asm) ^

obs SMDep(ssm) = obs SMDep(asm),

proj AnonSpecStfMbr: AnonStfMbr � PersInfo ! SpecStfMbr

proj AnonSpecStfMbr(asm, pinf) as ssm

post obs Name(asm) = obs Name(ssm) ^

obs PersInfo(ssm) = pinf ^

obs SMStfTp(asm) = obs SMStfTp(ssm) ^

obs SMDep(asm) = obs SMDep(ssm),

axiom 8 asm: AnonStfMbr � 9! ssm: SpecStfMbr �

obs Name(asm) = obs Name(ssm)

axiom 8 ssm, ssm0: SpecStfMbr � ssm 6= ssm0
)

proj SpecAnonStfMbr(ssm) = proj SpecAnonStfMbr(ssm0)

value

depStfMbrs : Dep ! AnonSta�

depStfMbrs(d) as astf

post (8 asm: AnonStfMbr �

astf = [obs Name(asm) 7! asm] ^ obs SMDep(asm) = d),

deps sta� : StfTp ! Dep-set

deps sta�(stft) �

fd j d : Dep � 9 asm : AnonStfMbr �

obs SMStfTp(asm) = stft ^ obs SMDep(asm) = dg,

dstft : Dep � StfTp ! AnonSta�

dstft(d, stft) as astf

post (8 asm: AnonStfMbr � astf = [obs Name(asm) 7! asm] ^

obs SMDep(asm) = d ^ obs SMStfTp(asm) = stft),

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 9

dstft num : Dep � StfTp ! Nat

dstft num(d, stft) � card dom dstft(d, stft),

dsstft grs : Dep-set � StfTp ! (Dep � Nat)-set

dsstft grs(ds, stft) � f(dep, n) j dep : Dep, n : Nat �

dep 2 ds ^ n = dstft num(dep, stft)g

October 15, 2002, 14:58 c
 The AMORE Project

10 A Formal Model for Railway Sta� Rostering

2.3 Schedule, Journeys and Trips

In this section we will explain the notions of schedule, journeys and trips that help us to

introduce further the notion of duties.

2.3.1 Narrative

Schedule and Exchange stations: A schedule includes information about all train jour-

neys such that each train journey is uniquely determined by a train number and a date and

time. A train number is a unique identi�er of a train which remains the same from the �rst

to the last station of its journey. We don't consider train names here as not all the trains in

a railway net have names.

Some of the stations in the net are special from sta� management perspective because it

is possible either to exchange sta� members or a sta� member to start or to �nish his work

there. We will call such stations exchange stations. From a station we could observe all the

sta� types for which this station is an exchange station (obs ExchgStas). Given a station

and a sta� type we could check if the station is an exchange station or not for this sta� type

(is exchgst). Exchange stations are located near the depots in the railway net.

Journeys and Trips: Sta� members are responsible for performing some actions in order

to ful�l the schedule demands. Some of the actions are related to train journeys. Train

journeys could be both actual journeys with passengers or freights or empty trains journeys.

A train journey is a sequence of rides with the same train number. A ride is characterized by

a departure station, a departure time, an arrival station, an arrival time and a train between

these two stations. Given a schedule we can extract a set of train journeys (journ set).

There are some restrictions about the maximal working time for a sta� member without a

rest. Taking into account these restrictions it is natural to divide a journey into an indivisible

pieces of work for sta� members. That is why we introduce the notion of a trip. A trip is

a sequence of rides of a train journey such that the �rst and the last station of a trip are

exchange stations and the duration of a trip is less or equal to maximal allowed uninterrupted

working time (maxUnIntWrkHr). Each trip is characterized by a train, a departure time, a

departure station, an arrival time, an arrival station and possibly additional attributes. From

a trip we can observe train characteristics for instance kind of the engine, sta� types and

their numbers needed to perform a trip etc.

2.3.2 Formal Model
F:5

Fist we will state some types(abstract and concrete) and some observer functions.

Abstract Types and Observers:

NETWORK, STAFF

scheme SCHEDULE =

extend STAFF with

class

type

Date, Hour, Trn, TrnId, LongDistance, Urban, ICE, TGV,

StfAttr, NoStf,

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 11

TrnChar = LongDistancej Urbanj ICEj TGV,

DateTime = Date � Hour,

Ride0 == rd(sta: Sta, dt: DateTime, nsta: Sta, at: DateTime, trn: Trn),

Ride = fjrd: Ride0 � wf rd(rd)jg,

Journey0 = Ride�,

Journey = fjj: Journey0 � wf journ(j)jg,

Trip = Ride�,

TrpAttr == OvernightjOther,

SCH= TrnId !m (DateTime !m Journey)

value

< : DateTime � DateTime ! Bool, =� DateTime < DateTime�=

�: TInt � TInt ! Bool, =�TInt< TInt�=

� : DateTime � DateTime ! TInt,

� : TInt � TInt ! TInt,

�: DateTime � DateTime ! Bool,

�: TInt � TInt ! Bool,

consec intime: DateTime � DateTime ! Bool,

obs TrnId: Trn ! TrnId,

trnchr: Ride ! TrnChar,

stfchr: TrnChar ! StfTp !m Nat,

obs ExchgStas: Sta
�

! StfTp-set,

techTime: Sta � Trn � StfTp ! TInt,

maxUnIntWrkHr: StfTp ! TInt,

=� from a sta� type (rules taken into account implicitly) we can observe

the maximal permitted working time in minutes without a rest �=

maxWrkHr: StfTp ! TInt,

=� from a sta� type (rules taken into account implicitly) we can observe

the maximal permitted working time�=

tripAttr: Trip ! TrpAttr,

wf rd : Ride0 ! Bool

wf rd(rd) � dt(rd) < at(rd),

wf journ: Journey0 ! Bool

wf journ(j) �

(8 i: Nat � fi, i + 1g � inds j)

obs TrnId(trn(j(i))) = obs TrnId(trn(j(i+1))) ^

nsta(j(i)) = sta(j(i+1)) ^

consec intime(at(j(i)), dt(j(i+1)))),

journ set: SCH ! Journey-set

journ set(sc) � fjj j: Journey �(8 trnid: TrnId, timdat: DateTime �

trnid 2 dom sc ^

timdat 2 dom sc(trnid))

October 15, 2002, 14:58 c
 The AMORE Project

12 A Formal Model for Railway Sta� Rostering

j=sc(trnid)(timdat))g,

journ set1: SCH ! Journey-set

journ set1(sc) � [frng tnj tn: (DateTime !m Journey) �

tn 2 rng scg

end

Each train journey is divided into trips with subject to a sta� type. The following is a function

that divides a journey into trips.

trip list : Journey � StfTp ! Trip�

trip list(j, stft) as trpl

post (8 i : Nat � i 2 inds trpl)

wf stft trip(trpl(i), stft)) ^

check separation(trpl, stft),

A trip is well formed if it consists of consecutive rides, the �rst and the last stations of a trip

are exchangeable stations and the train during the trip has the same characteristics from a

sta� member perspective.

wf stft trip: Trip � StfTp ! Bool

wf stft trip(trp , stft) �

is exchgst(trip fsta(trp), stft) ^

is exchgst(trip lsta(trp), stft) ^

�(possible exchg inside(trp, stft)) ^

trip fnT(trp) � trip stT(trp) � maxUnIntWrkHr(stft) ^

same trn(trp, stft),

is exchgst: Sta � StfTp ! Bool

is exchgst(s, stft) � stft 2 obs ExchgStas(s),

possible exchg inside: Trip � StfTp ! Bool

possible exchg inside(trp, stft) �

(8 i: Nat � i 2 f1::len trp �1g)

if is exchgst(nsta(trp(i)), stft) then

dt(trp(i + 1)) � at(trp(i)) � tech time(trp(i), stft)

else false end),

same trn: Trip � StfTp ! Bool

same trn(trp, stft) �

(8 i: Nat � fi, i + 1g � inds trp)

same trnchr(trnchr(trp(i)),

trnchr(trp(i + 1)), stft)),

same trnchr: TrnChar � TrnChar � StfTp ! Bool,

=�checks if two trains are with the same characteristics from the sta� point of view�=

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 13

check separation: Trip� � StfTp ! Bool

check separation(trpl, stft) �

(8 i : Nat � fi, i + 1g � inds trpl)

coincident sta(trpl(i), trpl(i + 1)) ^

div sta(trpl(i), trpl(i + 1), stft)),

coincident sta: Trip � Trip ! Bool

coincident sta(trp1, trp2) �

trip lsta(trp1) = trip fsta(trp2),

On the station where we separate the train journey there should be enough time for exchanging

the sta� members or a sta� member to change a train. The time interval between departure

and arrival time of a train at this station should be greater or equal to the technical time.

Technical time is the smallest interval of time for which it is possible to exchange sta� members

or a sta� member to change a train.

div sta: Trip � Trip � StfTp! Bool

div sta(trp1, trp2, stft) �

trip stT(trp2) � trip fnT(trp1) � tech time(last(trp1), stft),

tech time: Ride � StfTp ! TInt

tech time(rd, stft) �

techTime(sta(rd), trn(rd), stft),

last: Trip
�

! Ride

last(trp) � trp(len trp)

pre len trp � 1,

Finally given a schedule and a sta� type we produce the trip set such that each journey that

can be extracted from a schedule is divided into trips.

gen tripss: SCH � StfTp ! Trip-set

gen tripss(sc, stft) � [ftripsj trips: Trip-set �

trips = gen trips(sc, stft)g,

gen trips : SCH � StfTp ! Trip-set

gen trips(sc, stft) as trps

post (8 j: Journey � j 2 journ set(sc))

trps = elems trip list(j, stft))

The following are some functions that extract some characteristics of a trip.

trip stT: Trip ! DateTime

trip stT(trp) � dt(hd trp),

trip fnT: Trip ! DateTime

trip fnT(trp) � at(last(trp)),

October 15, 2002, 14:58 c
 The AMORE Project

14 A Formal Model for Railway Sta� Rostering

trip fsta: Trip ! Sta

trip fsta(trp) � sta(hd trp),

trip lsta: Trip ! Sta

trip lsta(trp) � nsta(last(trp)),

trip trn: Trip ! Trn

trip trn(trp) � trn(hd trp),

trip trnchr: Trip ! TrnChar

trip trnchr(trp) � trnchr(hd trp),

trip stfchr: Trip ! StfTp !m Nat

trip stfchr(trp) � stfchr(trip trnchr(trp)),

trip WrkTm: Trip ! TInt

trip WrkTm(tp) � trip fnT(tp) � trip stT(tp)

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 15

2.4 Actions and Duties

In this section we will explain the notion of duties.

2.4.1 Narrative

Actions: Each sta� member performs some actions. Actions could be sequence of trips,

rests and some human resource activities. Rests could be rest between trips, meal rests,

rests away from home depot including sleeping in dormitories (external rest) etc. By human

resource activities we mean activities performing from a sta� member in order to increase his

quali�cation (seminars, courses etc.).

The sequence of trips is characterized with a start time, an end time and a list of rides. A

rest is characterized by a start and an end time, station name and also some attributes. We

will assume that a rest starts and ends at the same station. Human resource activities has

the same characteristics as rests.

Duties: Each sta� member is related to a given depot, home depot, in a railway net, which

represents starting and ending point of his work segments. A natural constraint imposes that

each sta� member must return to his home depot within some period of time. This leads to

the introduction of the concept of duty as a list of actions spanning L consecutive days such

that its start and end actions are related to the same depot. A duty conforms to some rules

and satisfy some requirements like continuance, working hours per duty etc. Each duty is

concerned with members of the same sta� type. From a duty we can observe duty attributes

for example: 'duty with external rest', 'overnight duty', 'heavy overnight duty', 'long duty'

etc. Also each duty has some characteristics as:

1. Start time: it is given explicitly when the �rst action of a duty is either rest or human

resource activity; in case of a trip it is de�ned as the departure time of its �rst ride

minus the sum of technical departure time and brie�ng time,

2. End time: it is given explicitly when the last action of a duty is either rest or human

resource activity; in case of a trip it is de�ned as the arrival time of its last ride plus

the sum of technical arrival time and debrie�ng time,

3. Paid time: it is de�ned as the elapsed time from the start time to the end time of the

duty,

4. Working time: it is de�ned as the duration of the time interval between the start time

and the end time of the duty, minus the external rest, if any.

Mentioned above characteristics are common for every duty. There are other possible charac-

teristics of a duty but they strictly depend on a sta� type. For instance taking into account

engine men sta� type we could observe:

5. Driving time: it is de�ned as the sum of the trip durations plus all rest periods between

consecutive trips which are shorter than M minutes e.g. 30 minutes,

Duties attributes and characteristics are taken into account in scheduling process while

selecting feasible, eÆcient and acceptable duties per each depot and in sequencing duties into

rosters. This will be introduced in the next sections.

Given the schedule, sta� type, set of depots and rules we can generate duty sets per each

depot.

October 15, 2002, 14:58 c
 The AMORE Project

16 A Formal Model for Railway Sta� Rostering

2.4.2 Formal Model
F:6

First we will state some types and observer functions.

Abstract Types and Observers:

scheme DUTY =

extend SCHEDULE with

class

type

RestAttr, HRAttr, DtChar,

Ac == mk trip(st: DateTime, tripl: Trip�, et: DateTime)j

mk rest(sr: DateTime, rsta: Sta, ratt: RestAttr, er: DateTime)j

mk hra(sh: DateTime, hsta: Sta, hatt: HRAttr, eh: DateTime),

Duty = Ac�,

DtAttr==ExtRestjLongjOvernightjHeavyOvernight,

AcR = Ac � StfTp ! Bool,

AcRS = AcR-set,

DuR = Duty � StfTp ! Bool,

DuRS = DuR -set,

DepR = Dep � Duty-set � StfTp! Bool,

DepRS = DepR-set,

OvDR = (Duty-set)-set � StfTp ! Bool,

OvDRS = OvDR-set,

RS == check acr(ar: AcRS)jcheck dur(dur: DuRS)j

check dpr(dpr: DepRS)jcheck ovdsr(ovdsr: OvDRS)

value

dt maxlenght: StfTp ! TInt,

dt char: Duty ! DtChar,

dt attr: Duty ! DtAttr

end

Each duty is generated taking into account some depot and some sta� type. The following

is a function which generates a duty set for a depot. It generates all possible duties for the

depot.

gendep dutys : Trip-set � StfTp � Dep � RS ! Duty-set

gendep dutys(trps, stft, dep, rs) as ds

post (8 d: Duty � d 2 ds)

d = gen duty(trps, stft, dep, rs)) ^

�(9 d0: Duty � d0 = gen duty(trps, stft, dep, rs) ^

d0 62 ds),

Each duty has to start and to end at the same depot and has to conform some rules. Rules

are related to the sequence of actions in a duty, maximal number of actions with a given

characteristics, rest time between actions, overall rest time, overall working time etc. These

rules we will call rules at a duty level. Given a trip set, a sta� type, a depot and rules we can

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 17

generate a duty for the depot. The function below generates a duty such that its �st and its

last action starts and respectively �nishes at the depot, the depot is a home depot for sta�

members of the given sta� type and the duty satisfy the rules.

gen duty : Trip-set � StfTp � Dep � RS ! Duty

gen duty(trps, stft, dep, srs) as d

post is wfd(d, stft, srs) ^ ac dep(hd d, stft) = dep ^

dt endt(d) � dt startt(d) � dt maxlenght(stft) ^

(9 trpl : Trip� � belong(trpl, d))

trip stft(trpl, stft, dep)),

is wfd: Duty � StfTp � RS ! Bool

is wfd(dt, stft, rs) �

ac dep(hd dt, stft) = ac dep(dt(len dt), stft) ^

comp dtTrips(dt, stft) ^ conf dt rules(dt, stft, rs),

ac dep : Ac � StfTp
�

! Dep

ac dep(ac, stft) as dep

post (9 dep0:Dep �

case ac of

mk trip(st, tripl, et) !

dep 2 st stftdep(sta(hd (hd tripl)), stft),

mk rest(sr, rsta, ratt, er) !

dep 2 st stftdep(rsta, stft),

mk hra(sh, hsta, hatt, eh) !

dep 2 st stftdep(hsta, stft)

end

^ dep = dep0),

st stftdep: Sta � StfTp ! Dep-set

st stftdep(st, stft) �

fdepj dep: Dep � dep 2 obs StaDeps(st)^

is exchgst(st, stft)g,

=� checks if all the trips in a duty has the same characteristics from sta� point of view �=

comp dtTrips: Duty � StfTp ! Bool

comp dtTrips(dt, stft) �

(8 i: Nat � i 2 inds dt)

case dt(i) of

mk trip(sti, tripli, eti) !

(8 j: Nat � j 2 inds dt ^ j 6= i)

case dt(j) of

mk trip(stj, triplj, etj) !

same trpchr(hd tripli, hd triplj, stft)

end)

end),

October 15, 2002, 14:58 c
 The AMORE Project

18 A Formal Model for Railway Sta� Rostering

same trpchr: Trip � Trip � StfTp ! Bool

same trpchr(trp1, trp2, stft) �

same trnchr(trip trnchr(trp1), trip trnchr(trp2), stft),

conf dt rules: Duty � StfTp � RS ! Bool

conf dt rules(dt, stft, rs) � satf(dt, stft, rs) ^

(8 i : Nat � i 2 inds dt) conf ac(dt(i), stft, rs)),

conf ac: Ac � StfTp � RS ! Bool

conf ac(ac, stft, rs) �

case rs of

check acr(acrs) ! (8 acr: AcR � acr 2 acrs) acr(ac, stft))

end,

=�checks if the rules for sequencing actions in a duty are satis�ed�=

satf: Duty � StfTp � RS ! Bool

satf(dt, stft, rs) �

case rs of

check dur(durs) ! (8 dur:DuR � dur 2 durs) dur(dt, stft))

end,

belong: Trip� � Duty ! Bool

belong(tpl,dt) � (9 ac: Ac � ac 2 elems dt ^

case ac of

mk trip(st,tpl,et) ! true

end),

trip stft: Trip� � StfTp � Dep ! Bool

trip stft(trpl, stft, dep) �

let stfm = trip stfchr(hd trpl) in

stft 2 dom stfm ^ dstft num(dep, stft) > 0 end,

The set of all duties for a depot has to obey to some rules too. The rules/restrictions could

be related to a maximal number of duties with speci�c characteristics per depot, maximal

number of duties per depot etc. We will call these rules rules on a depot level.

The function below selects a subset of a duty set, generated on previous stage, such that it

satis�es the rules on the depot level and there is enough sta� at the depot to perform the

duty set.

seldep dutys : Trip-set � StfTp � Dep � RS ! Duty-set

seldep dutys(trps, stft, dep, rs) as ds

post let ds1 = gendep dutys(trps, stft, dep, rs) in

ds � ds1 ^ conf dts deprules(dep, ds, stft, rs) ^

enough sta�(ds, stft, dep) end,

conf dts deprules: Dep � Duty-set � StfTp � RS ! Bool

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 19

conf dts deprules(dep,ds,stft, rs) �

case rs of

check dpr(dprs) ! (8 dpr: DepR � dpr 2 dprs) dpr(dep, ds, stft))

end,

enough sta�: Duty-set � StfTp � Dep ! Bool

enough sta�(ds, stft, dep) �

dutys sta� numb(ds, stft) � dstft num(dep, stft),

dutys sta� numb: Duty-set � StfTp ! Nat,

=�the number of people should be equal to the number of duties,

but in case of a conductor sta� type the number of people may

be more than the number of duties as two conductors may have the same duties�=

Finally given a trip set, a sta� type, a depot set and rules we can generate a set of duties per

each depot.

gen dutys : Trip-set � StfTp � Dep-set � RS ! (Duty-set)-set

gen dutys(trps, stft, deps, rs) as dss

post (8 ds: Duty-set � ds 2 dss)

(9! dep: Dep � dep 2 deps ^

ds = seldep dutys(trps, stft, dep, rs))) ^

card dss = card deps,

The union of generated sets of duties per each depot has to conform to some overall rules

e.g. the number of duties as a whole with a given characteristics not to exceed some de�ned

number etc. Also the generated duties as a whole has to cover all the trips that can be

observed from a schedule. Finally given a schedule, a sta� type, set of depots and rules

we can generate set of duties per each depot such that the mentioned above constraints are

satis�ed.

sel dutyss : SCH � StfTp � Dep-set � RS ! (Duty-set)-set

sel dutyss(sc, stft, deps, rs) as dss

post let trps = gen tripss(sc, stft) in

dss = gen dutys(trps, stft, deps, rs) ^ cover(dss, trps)

^ conf dts ovr(dss, stft, rs)

end,

cover : (Duty-set)-set � Trip-set ! Bool,

conf dts ovr: (Duty-set)-set � StfTp � RS ! Bool

conf dts ovr(dss, stft, rs) �

case rs of

check ovdsr(ovdsrs) ! (8 ovdsr: OvDR � ovdsr 2 ovdsrs)

ovdsr(dss, stft))

end,

The following are some functions concerning a duty and its characteristics.

October 15, 2002, 14:58 c
 The AMORE Project

20 A Formal Model for Railway Sta� Rostering

duty dep: Duty � StfTp ! Dep

duty dep(dt, stft) as dep

post dep 2 st stftdep(dt fsta(dt),stft),

dt fsta: Duty ! Sta

dt fsta(dt) �

case hd dt of

mk trip(, tripl,) ! trip fsta(hd tripl),

mk rest(, rsta, ,) ! rsta,

mk hra(, hsta, ,) ! hsta

end,

dt lsta: Duty ! Sta

dt lsta(dt) �

case dt(len dt) of

mk trip(, tripl,) ! trip fsta(hd tripl),

mk rest(, rsta, ,) ! rsta,

mk hra(, hsta, ,) ! hsta

end,

dt starttime: Duty ! DateTime

dt starttime(dt) �

case hd dt of

mk trip(st, tripl, et) ! st,

mk rest(sr, rsta, ratt, er) ! sr,

mk hra(sh, hsta, hatt, eh) ! sh

end,

dt endtime: Duty ! DateTime

dt endtime(dt) �

case dt(len dt) of

mk trip(st, tripl, et) ! et,

mk rest(sr, rsta, ratt, er) ! er,

mk hra(sh, hsta, hatt, eh) ! eh

end,

duty stft num: Duty ! StfTp !m Nat

duty stft num(dt) as stfm

post (9 trpl: Trip� � belong(trpl, dt))

stfm = trip stfchr(hd trpl))

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 21

2.5 Rosters and Sta� Members

In this section we will explain the notion of a roster and how it is related to sta� members.

2.5.1 Narrative

Rosters: During the second stage of sta� rostering the duties generated at previous stage

are ordered in rosters which are long term working schedules assigned to speci�c sta� members.

For each depot in a depot set, a separate sta� rostering problem is solved considering only

the corresponding duties. We will introduce two help notions in order to explain the concept

of roster and its stages of generation.

A plan roster is a sequence of duties generated for anonymous sta� members of the same

sta� type. A base roster is a cyclic sequence of a plan roster such that it spans trough a

planning period determined by a schedule. In other words, a plan roster is that part of the

base roster which is repeated several times and a base roster is just a cyclic sequence of

duties. Each base roster has to satisfy some rules. The rules are about the order of duties in

a consecutive days and their attributes. Also there are some constraints concerning number

of duties in a base roster with determined attributes. These rules we will call conventionally

rules at the roster level.

So given a schedule, a sta� type, a depot and rules we can generate base rosters for the

given depot. These base rosters have to cover all the duties corresponding to this depot and

have to conform to some rules. The rules at this level we will call conventionally rules at the

overall roster level.

All the duties in a base roster has to be performed by a speci�c sta� member. We will call

roster a cyclic sequence of duties (base roster) for a speci�c sta� member such that he/she

could perform them. So from a base roster and a sta� type we can generate rosters. The

number of sta� members assigned to the base roster is equal to the length of the plan roster.

All sta� members perform the base roster but starting at a di�erent day.

Sta� Members: During the assignment of duties in a base roster to sta� members we

consider speci�c sta� members. At this stage we are working with speci�c sta� members as

we are interested in their personal information. From a sta� member personal information

we could observe his/her private information (obs PrInf) as date of birth, place of living,

address etc. Also we could observe his quali�cation (obs Qual), special work requirements

(obs SpWrkReq) and the list of his/her previous duties (obs PrevDuty).

Given a base roster and a sta� member we can observe his roster which is considered to

his/her attributes.

2.5.2 Formal Model
F:7

Abstract Types and Observers: We �rst state some types(abstract and concrete) and

some observer functions.

scheme ROSTER =

extend DUTY with

class

type

Info, WrkReq, Quali�cation,

October 15, 2002, 14:58 c
 The AMORE Project

22 A Formal Model for Railway Sta� Rostering

PlRos = Duty�,

BRos = PlRos � Nat,

RoR = PlRos � StfTp ! Bool,

RoRS = RoR-set,

OvR = BRos � StfTp ! Bool,

OvRS = OvR-set,

eRS == RS j check ror(rrs : RoRS) j check ovrs(ovrs : OvRS),

Ros = SpecStfMbr !m BRos

value

f : eRS ! RS,

obs PrInf : PersInfo ! Info,

obs SpWrkReq : PersInfo ! WrkReq,

obs PrevDuty : PersInfo ! Duty�,

obs PostDuty : PersInfo ! Duty�,

obs Qualf : PersInfo ! Quali�cation,

obs PlPer : SCH ! Nat,

bros length : BRos ! Nat

bros length(bros) �

let (plros, rnumb) = bros in

len plros end

end

The following function generates all possible base rosters for a given duty set (related to a

depot).

gen dep bross : SCH � StfTp � Dep � eRS ! BRos-set

gen dep bross(sc, stft, dep, rs) as bross

post (8 bros : BRos �

bros 2 bross)

bros = genbros dep(sc, stft, dep, rs)) ^

�(9 bros0 : BRos �

bros0 = genbros dep(sc, stft, dep, rs) ^

bros0 62 bross),

genbros dep : SCH � StfTp � Dep � eRS ! BRos

genbros dep(sc, stft, dep, rs) as bros post

let ds = dep dutyset(dep, stft) in

cover rds(bros, ds)

end ^ wf bros(bros, sc, stft, rs),

cover rds : BRos � Duty-set ! Bool,

wf bros : BRos � SCH � StfTp � eRS ! Bool

wf bros(bros, sc, stft, rs) �

let (plros, rnumb) = bros in

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 23

same quali�c(plros, stft) ^

conform cplrosrs(plros, stft, rs) ^

len plros � rnumb = obs PlPer(sc)

end,

same quali�c : PlRos � StfTp ! Bool

same quali�c(plros, stft) �

(8 i : Nat � fi, i + 1g � inds plros)

sm qual(plros(i), plros(i + 1))),

sm qual : Duty � Duty ! Bool,

conform cplrosrs : PlRos � StfTp � eRS ! Bool

conform cplrosrs(plros, stft, rs) �

conform plrosrs(plros, stft, rs) ^

let cycros = hplros(len plros)i b hhd plrosi in

conform plrosrs(cycros, stft, rs)

end,

conform plrosrs : PlRos � StfTp � eRS ! Bool

conform plrosrs(plros, stft, rs) �

case rs of

check ror(rrs) !

(8 rr : RoR � rr 2 rrs) rr(plros, stft))

end,

The generated, on previous stage, set of base rosters has to conform to some rules as maximal

percentage of base rosters with particular characteristics etc.

sel dep bross: SCH � StfTp � Dep � eRS ! BRos-set

sel dep bross(sc, stft, dep, rs) as bross

post let bross1 = gen dep bross(sc, stft, dep, rs) in

bross � bross1 ^

conform bros rules(bross, stft, rs)

end,

conform bros rules : BRos-set � StfTp � eRS ! Bool

conform bros rules(bross, stft, rs) �

(8 bros: BRos � bros 2 bross)

case rs of

check ovrs(ovrs) !

(8 ovr : OvR �

ovr 2 ovrs) ovr(bros, stft))

end),

Having a base roster and a sta� type and a depot we can produce rosters for the speci�c sta�

members of the given sta� type.

October 15, 2002, 14:58 c
 The AMORE Project

24 A Formal Model for Railway Sta� Rostering

gen ssmros : BRos � StfTp � Dep ! Ros

gen ssmros(bros, stft, dep) as ros

post let sms = dstft gr(dep, stft) in

ros = assignment(bros, sms) ^

card dom ros = bros length(bros)

end,

dstft gr : Dep � StfTp ! Sta�

dstft gr(dep, stft) �

let ansta� = dstft(dep, stft) in

get sta�(ansta�)

end,

get sta�: AnonSta� ! Sta�

get sta�(ansta�) as sta�

post (8 asm: AnonStfMbr � asm 2 rng ansta�)

(9! ssm: SpecStfMbr � ssm 2 rng sta� ^

obs Name(asm) = obs Name(ssm)))

Given a base roster and sta� we assign speci�c sta� members to the base roster such that we

receive a set of rosters. The number of rosters is equal to the length of the base roster. All

the rosters are permutations of the base roster. So at this stage of planning we assign speci�c

sta� members to duties in the plan roster (cyclic part of the base roster).

assignment : BRos � Sta� ! Ros

assignment(bros, sta�) as ros

post (8 dt : Duty � duty in bros(dt, bros))

(9! ssm : SpecStfMbr � ssm 2 dom ros ^

dt = �rst bros duty(ros(ssm)) ^

conform rsm(ros(ssm),ssm) ^ permutation(ros(ssm), bros)))

pre card rng sta� > bros length(bros),

duty in bros: Duty � BRos ! Bool

duty in bros(dt, bros) �

let (plros, rnumb) = bros in

dt 2 elems plros end,

�rst bros duty: BRos ! Duty

�rst bros duty(bros) �

let (plros, rnumb) = bros in

hd plros end,

Each roster is assigned to a speci�c sta� member according to his/her quali�cation, special

work requirements and previous duties such that he/she could perform it.

conform rsm : BRos � SpecStfMbr ! Bool

conform rsm(bros, ssm) �

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 25

satisfy qual(bros, obs Qualf(obs PersInfo(ssm))) ^

satisfy predt(bros, obs PrevDuty(obs PersInfo(ssm))) ^

satisfy swr(bros, obs SpWrkReq(obs PersInfo(ssm))),

satisfy qual : BRos � Quali�cation ! Bool,

satisfy predt : BRos � Duty� ! Bool,

satisfy swr : BRos � WrkReq ! Bool,

permutation: BRos � BRos ! Bool,

Finally we generate the rosters for the given depot and sta� type such that for each base

roster generated at the previous stage we generate rosters.

gen sross : SCH � StfTp � Dep � eRS ! Ros

gen sross(sc, stft, dep, rs) as ros

post let bross = sel dep bross(sc, stft, dep, rs) in

(8 bros : BRos � bros 2 bross)

ros = gen ssmros(bros, stft, dep))

end,

All rosters are generated taking into account a sta� type. So using the function above we can

generate all rosters per depot for all sta� types related to this depot. In this case to generate

rosters per depot we will need only the schedule, the depot and the rules.

dep rosters : SCH � Dep � eRS ! StfTp !m Ros

dep rosters(sc, dep, rs) as stft ross

post (9! stft : StfTp �

stft 2 dep stftypes(dep))

let rset = gen sross(sc, stft, dep, rs) in

stft ross = [stft 7! rset]

end) ^

card dep stftypes(dep) = card dom stft ross,

dep stftypes : Dep ! StfTp-set

dep stftypes(dep) � fstftj stft: StfTp � 9 ssm: SpecStfMbr � obs SMDep(ssm) = depg,

Base rosters and respectively rosters are generated per depot and we have the assumption

that after the sta� scheduling stage all duties generated per depot are shifted to the depot.

If this is not the case we could observe all the duties generated in sta� scheduling stage per

depot (dep dutyset) which will help us to integrate the two stages in sta� planning into one.

So given a schedule, a sta� type, a set of depots and rules we will produce all rosters per each

depot in the depot set for the given sta� type.

obtain ross : SCH � StfTp � Dep-set � eRS ! Ros-set

obtain ross(sc, stft, deps, rs) as rosset

post let dtss = sel dutyss(sc, stft, deps, f(rs)) in

(8 ross : Ros � ross 2 rosset)

(9! dep : Dep � dep 2 deps)

October 15, 2002, 14:58 c
 The AMORE Project

26 A Formal Model for Railway Sta� Rostering

ross = gen sross(sc, stft, dep, rs) ^

dep dutyset(dep, stft) 2 dtss)) end ^

card rosset = card deps,

dep dutyset: Dep � StfTp ! Duty-set

dep dutyset(dep, stft) �

fdtj dt: Duty � dep = duty dep(dt, stft)g

The rest is a small part of the possible functions for operating with sta� members in depots.

hire sm: SpecStfMbr � Sta�
�

! Sta�

hire sm(ssm, stf) � stf [[obs Name(ssm) 7! ssm]

pre (8 ssm0: SpecStfMbr � ssm0
2 rng stf)

obs Name(ssm0) 6= obs Name(ssm)) ^ ssm 62 rng stf,

�re sm: SpecStfMbr � Sta�
�

! Sta�

�re sm(ssm, stf) � stf n fobs Name(ssm)g

pre obs Name(ssm) 2 dom stf,

hired sm: SpecStfMbr � Sta� ! Bool

hired sm(ssm, stf) � ssm 2 rng stf,

add specsm: AnonStfMbr � PersInfo � Name ! SpecStfMbr

add specsm(asm, pinf, nm) as ssm

post obs Name(asm) = nm ^

obs SMStfTp(asm) = obs SMStfTp(ssm) ^

obs SMDep(asm) = obs SMDep(ssm) ^

obs PersInfo(ssm) = pinf,

get specsm : AnonStfMbr � PersInfo ! SpecStfMbr

get specsm(asm, pinf) as ssm

post obs Name(asm) = obs Name(ssm) ^

obs PersInfo(ssm) = pinf,

dep sta� : Dep ! Sta�

dep sta�(dep) �

let ansta� = depStfMbrs(dep) in

get sta�(ansta�)

end

c
 The AMORE Project October 15, 2002, 14:58

An AMORE Project Report: A.Strupchanska, M.P�eni�cka, P.Karras and D.Bj�rner 27

2.6 Apendix

duty1

duty2

duty3

duty4

duty5

Fig. 1. Trips and duties

October 15, 2002, 14:58 c
 The AMORE Project

Plan Roster

Day 1 : duty3

Day 2 : rest

Day 3 : duty2

Day 4 : duty4

Day 5 : rest

Day 6 : rest

Day 7 : duty1

Day 8 : rest

Day 9 : duty5

Day 10 : rest

Day 11 : rest

Day 12 : rest

Base Roster

10 times

PersonName 1

PersonName 2

PersonName 3

PersonName 4

PersonName 5

PersonName 6

PersonName 7

PersonName 8

PersonName 9

PersonName 10

PersonName 11

PersonName 12

Roster 1
duty3, rest, duty2, duty4, rest, rest, duty1, rest, du

Roster 5
rest, rest, duty1, rest, duty5, rest, rest, rest, duty3,

Roster 12
rest, duty3, rest, duty2, duty4, rest, rest, duty1, r

10 tim

10 tim

10 tim

Fig. 2. Plan Roster, Base Roster and Roster

References

[1] Leo Kroon. Models for rolling stock planning. Research report, Utrecht, Netherlands.

AMORE meeting Patras, Oct/Nov 2001.

[2] G�abor Mar�oti. Maintenance Routing. Research report, CWI, Amsterdam and NS

Reizigers, Utrecht, Netherlands. AMORE meeting Patras, Oct/Nov 2001.

[3] Leo Kroon and Matteo Fischetti. Crew Scheduling for Netherlands Railways Destination:

Customer. ERIM Report Series Research In Management, Netherlands, December 2000.

[4] A. Caprara, M. Fischetti, P. Toth, D. Vigo, P.L. Guida, "Algorithms for Railway Crew

Management". Publication in Mathematical Programming 79 (1997) 125-141.

[5] A. Caprara, M. Fischetti, P.L. Guida, P. Toth, D. Vigo. "Solution of Large-Scale railway

Crew Planning Problems: the Italian Experience", in N.H.M. Wilson (ed.) Computer-

Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems 471,

Springer-Verlag (1999) 1-18.

[6] A. Caprara, M. Monaci, P. Toth. "A Global Method for Crew Planning in Railway Appli-

cations", in J. Daduna, S. Voss (eds.) Computer-Aided Transit Scheduling, Lecture Notes

in Economics and Mathematical Systems 505, Springer-Verlag (2001) 17-36.

[7] Torsten Fashe. Crew assignment via constraint programming: integrating column gener-

ation and heuristic tree search. Research report, University of Paderborn, Department of

Mathematics and Computer Science, Germany. AMORE meeting Patras, Oct/Nov 2001.

[8] A. Ernst, H. Jiang, M. Krishnamoorthy, H. Nott and D. Sier. "Rail Crew Scheduling and

Rostering: Optimisation Algorithms", CSIRO Mathematical and Information Sciences,

Australia.

[9] R. Lentink, M. Odijk and E.Rijn. "Crew Rostering for the High Speed Train", ERIM

Report Series Research In Management, Netherlands, Februaty 2002.

