Rail Car Allocation Problems

Marco E. Lübbecke and Uwe T. Zimmermann

Mathematical Optimization · Braunschweig · Germany
Freight Cars . . .
Freight Cars . . .

. . .sit and wait
Empty Car Distribution

Cars are repositioned due to imbalances in demands

Delayed empty cars \rightarrow Car shortage

\uparrow

Inaccurate data \leftarrow Safety inventories

\downarrow

Low utilization

\downarrow

Large fleet sizes
Empty Car Distribution

Supply

Demand
Empty Car Distribution

Time

Rail Car Allocation Problems – p.5
Empty Car Distribution

Problem:

Time expanded integer multi commodity flow problem
Empty Car Distribution

- Glickman, Sherali (1985): Pooling of cars

Many more papers
5,000 cars, 18 (aggregated) types, 50 terminals

- Future:
 Simultaneously plan empty and loaded cars
A block is a group of cars with common OD pair

Ideally: Only direct blocks
Source of delay and unreliable service
Railroad Blocking

Assign each car a sequence of blocks, observing

- the maximal tractable volume of cars per station

minimizing the total

- number of reclassifications or
- delay or
- mileage

Considerable body of literature

Barnhart, Jin, and Vance (1997): 1080 stations, 12,000 shipments
Yard Operations

- Shunting with capacity constraints
- Dahlhaus et al. (2000): Regrouping of cars
- Older papers: e.g., queueing models
Yard Operations

- Shunting with capacity constraints
- Dahlhaus et al. (2000): Regrouping of cars
- older papers: e.g., queueing models

Also from passenger transportation:
- Routing trough stations (Kroon, Zwaneveld 1996)
- Shunting trams (Winter, Zimmermann 2000)
- This afternoon session
- ...
Further Issues

- Assign blocks to trains
- What is a good fleet size?
- Where and when to clean, maintain, and repair?
- ...

Integrated Planning

- Why not propose *one* big model for *all* stages?
Integrated Planning

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!
Integrated Planning

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!
- But (today) it is illusive to solve it optimally!
Integrated Planning

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!
- But (today) it is illusive to solve it optimally!

- But ...
In-Plant Railroads
Customer oriented!
Rail Car Management

① Transportation request specified by
 ➞ Terminal/track ➞ Quantity
 ➞ Goods type/car type ➞ Deadline
 ➞ Substitution car types

② As long as available, assign cars
 ➞ dedicated, pooled, incoming, in repair . . .
 and build blocks

③ Otherwise: Rent additional rail cars
Blocks
Blocks
Split into Regions
Split into Regions
Split into Regions
Split into Regions
Transportation Problem

\(x_{i,j}^\tau \): Cars of type \(\tau \) from region \(i \) for request \(j \)

\[
\begin{align*}
\text{min } & \quad \sum_{i,r,\tau \in T_r} c_{i,r} \cdot x_{i,r}^\tau + \sum_{r,\tau \in T_r} M_{\tau} \cdot x_{S\tau,r}^\tau \\
\text{s.t. } & \quad \sum_{r: \tau \in T_r} x_{i,r}^\tau \leq a_i^\tau \quad \forall i, \tau \\
& \quad \sum_{i,\tau \in T_r} x_{i,r}^\tau + \sum_{\tau \in T_r} x_{S\tau,r}^\tau \geq b_r \quad \forall r \\
& \quad x_{i,r}^\tau \geq 0 \quad \forall i, r, \tau \in T_r
\end{align*}
\]
Fulfill a demand from a single origin?

\[a_1 = a_2 = \frac{1}{2} \sum_i b_i \]

∃ Solution without car rental \(\iff \exists \text{ Partition of } \{ b_1, b_2, \ldots, b_n \} \)
Shunting Minimization

Demand: \(D = (1, 2, 2) \)

- Each moved car on track \(i \) costs \(c_i \in \mathbb{Q}_+ \).

No space limitations, no ordering/sequence.
Shunting Minimization

Demand: $D = (1, 2, 2)$

Each moved car on track i costs $c_i \in \mathbb{Q}_+$, e.g. $(1 + 1) \cdot c_1 + 2 \cdot c_4 + 2 \cdot c_5$

No space limitations, no ordering/sequence
Greedy

Take cheapest car(s) for each color, respectively
Demand: $D = (1, 1, 1, 1, 1, 1)$, $|D| = n$

Cost: Greedy $O(n^2)$, optimal $O(n)$
Demand: $D = (K, 1, 1, 1, 1, 1, 1)$

∃ feasible shunting plan at cost K \iff

∃ vertex cover of cardinality K
Integer Program

$z_{t,g}$: Access group g on track t?

$y_{t,g}$: Number of chosen cars from group g on track t, at most $Q_{t,g}$

$$\min \sum_{t,g} c_t \cdot [(Q_{t,g} - y_{t,g}) \cdot z_{t,g} + 1 + y_{t,g}]$$

s.t.

$$z_{t,g} \leq z_{t,g-1} \quad \forall t, 1 < g$$

$$y_{t,g} \leq Q_{t,g} \cdot z_{t,g} \quad \forall t, g$$

$$\sum_{t,g: \text{color}(t,g) = \tau} y_{t,g} \geq D_\tau \quad \forall \text{types } \tau$$

$$y_{t,g} \geq 0 \quad \forall t, g$$

$$z_{t,g} \in \{0, 1\} \quad \forall t, g$$
Integer Program

\(z_{t,g}\) : Access group \(g\) on track \(t\)?

\(y_{t,g}\) : Number of chosen cars from group \(g\) on track \(t\), at most \(Q_{t,g}\)

\[
\min \sum_{t,g} c_t \cdot [(Q_{t,g} - y_{t,g}) \cdot z_{t,g+1} + y_{t,g}]
\]

\[
\min \sum_{t,g} c_t \cdot Q_{t,g} \cdot z_{t,g}
\]

s.t.

\[
z_{t,g} \leq z_{t,g-1} \quad \forall t, 1 < b
\]

\[
y_{t,g} \leq Q_{t,g} \cdot z_{t,g} \quad \forall t, g
\]

\[
\sum_{t,g: color(t,g) = \tau} y_{t,g} \geq D_\tau \quad \forall \text{types } \tau
\]

\[
y_{t,g} \geq 0 \quad \forall t, g
\]

\[
z_{t,g} \in \{0, 1\} \quad \forall t, g
\]
\[
\text{min} \quad \sum_{i,r,\tau \in \mathcal{T}_r} c_{i,r} \cdot x_{i,r}^\tau + \sum_{r,\tau \in \mathcal{T}_r} M_{\tau} \cdot x_{s_{\tau},r}^\tau \\
\text{s.t.} \quad \sum_{r: \tau \in \mathcal{T}_r} x_{i,r}^\tau \leq a_r^\tau \quad \forall i, \tau \\
\sum_{i,\tau \in \mathcal{T}_r} x_{i,r}^\tau + \sum_{\tau \in \mathcal{T}_r} x_{s_{\tau},r}^\tau \geq b_r \quad \forall r \\
x_{i,r}^\tau \in \mathbb{Z}_+ \quad \forall i, r, \tau \in \mathcal{T}_r
\]
Integrated Planning

\[
\begin{align*}
\min & \quad \sum_{i,r,\tau \in T_r} c_{i,r} \cdot x_{i,r}^\tau + \sum_{r,\tau \in T_r} M_{\tau} \cdot x_{S_{\tau},r}^\tau \\
\text{s.t.} & \quad \sum_{r: \tau \in T_r} x_{i,r}^\tau \leq \sum_{i,t,g: \text{color}(i,t,g)=\tau} y_{i,t,g} \quad \forall i, \tau \\
& \quad \sum_{i,\tau \in T_r} x_{i,r}^\tau + \sum_{\tau \in T_r} x_{S_{\tau},r}^\tau \geq b_r \quad \forall r \\
& \quad x_{i,r}^\tau \in \mathbb{Z}_+ \quad \forall i, r, \tau \in T_r
\end{align*}
\]
\[
\begin{align*}
\text{min} \quad & \sum_{i,r,\tau \in T_r} c_{i,r} \cdot x_{i,r}^\tau + \sum_{r,\tau \in T_r} M_{\tau} \cdot x_{S_{\tau},r}^\tau + \sum_{i=1}^{n} \sum_{t,g} c_{t} \cdot Q_{i,t,g} \cdot z_{i,t,g} \\
\text{s.t.} \quad & \sum_{r:\tau \in T_r} x_{i,r}^\tau \leq \sum_{i,t,g:color(i,t,g) = \tau} y_{i,t,g} \quad \forall i, \tau \\
& \sum_{i,\tau \in T_r} x_{i,r}^\tau + \sum_{\tau \in T_r} x_{S_{\tau},r}^\tau \geq b_{r} \quad \forall r \\
& z_{i,t,g} \leq z_{i,t,g} - 1 \quad \forall i, t, 1 < b \\
& y_{i,t,g} \leq Q_{i,t,g} \cdot z_{i,t,g} \quad \forall i, t, g \\
& x_{i,r}^\tau \in \mathbb{Z}_+ \quad \forall i, r, \tau \in T_r \\
& y_{i,t,g} \geq 0 \quad \forall i, t, g \\
& z_{i,t,g} \in \{0, 1\} \quad \forall i, t, g
\end{align*}
\]
Computational Results

~ 683 tracks, 168 terminals, 42 regions;
~ 1575 cars, 123 car types; 18 requests
Conclusion

➤ Almost generic approach yields relevant results
➤ Experiments feed back into practice
➤ Test runs planned for September 2002
➤ Results encourage extensions...
Conclusion

➤ Almost generic approach yields relevant results
➤ Experiments feed back into practice
➤ Test runs were planned for September 2002
➤ Results encourage extensions...