Rail Car Allocation Problems

Marco E. Lübbecke and Uwe T. Zimmermann

Mathematical Optimization · Braunschweig · Germany

... sit and wait

Freight Cars ...

Cars are repositioned due to imbalances in demands

Delayed empty cars \rightarrow Car shortage \uparrow \downarrow Inaccurate data \leftarrow Safety inventories \downarrow Low utilization \downarrow

Large fleet sizes

Time expanded integer multi commodity flow problem

- Glickman, Sherali (1985): Pooling of cars
- Holmberg, Joborn, and Lundgren (1996, 1998): Explicit train schedules, train capacities

Many more papers

5,000 cars, 18 (aggregated) types, 50 terminals

• Future:

Simultaneously plan empty and loaded cars

Railroad Blocking

A *block* is a group of cars with common OD pair

Ideally: Only *direct* blocks Source of delay and unreliable service

Railroad Blocking

Assign each car a sequence of blocks, observing

• the maximal tractable volume of cars per station

minimizing the total

- number of reclassifications or
- delay or
- mileage

Considerable body of literature

Barnhart, Jin, and Vance (1997): 1080 stations, 12,000 shipments

Yard Operations

- Shunting with capacity constraints
- Dahlhaus *et al.* (2000): Regrouping of cars
- older papers: e.g., queueing models

Yard Operations

- Shunting with capacity constraints
- Dahlhaus et al. (2000): Regrouping of cars
- older papers: e.g., queueing models

Also from passenger transportation:

- Routing trough stations (Kroon, Zwaneveld 1996)
- Shunting trams (Winter, Zimmermann 2000)
- This afternoon session

Further Issues

- Assign blocks to trains
- What is a good fleet size?
- Where and when to clean, maintain, and repair?

• . . .

• Why not propose one big model for all stages?

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!
- But (today) it is illusive to solve it optimally!

- Why not propose *one* big model for *all* stages?
- Of course it has been proposed!
- But (today) it is illusive to solve it optimally!

In-Plant Railroads

In-Plant Railroads

Customer oriented!

Rail Car Management

- ① Transportation request specified by
 - ➡ Terminal/track
 ➡ Quantity
 - ➡ Goods type/car type
 ➡ Deadline
 - ➡ Substitution car types
- As long as available, assign cars
 dedicated, pooled, incoming, in repair ...
 and build blocks
- ③ Otherwise: Rent additional rail cars

Transportation Problem

 x_{ij}^{τ} : Cars of type τ from region *i* for request *j*

 $\begin{array}{lll} \min & \sum_{i,r,\tau \in \mathcal{T}_r} c_{i,r} \cdot x_{i,r}^{\tau} + \sum_{r,\tau \in \mathcal{T}_r} M_{\tau} \cdot x_{S_{\tau},r}^{\tau} \\ \text{s.t.} & \sum_{r:\tau \in \mathcal{T}_r} x_{i,r}^{\tau} &\leq a_i^{\tau} \quad \forall i,\tau \\ & \sum_{i,\tau \in \mathcal{T}_r} x_{i,r}^{\tau} + \sum_{\tau \in \mathcal{T}_r} x_{S_{\tau},r}^{\tau} &\geq b_r \quad \forall r \\ & & x_{i,r}^{\tau} &\geq 0 \quad \forall i,r,\tau \in \mathcal{T}_r \end{array}$

Unsplit Supply

→ Fulfill a demand from a single origin?

 $\exists \text{ Solution without car rental } \Leftrightarrow \\ \exists \text{ Partition of } \{b_1, b_2, \dots, b_n\} \end{cases}$

Shunting Minimization

Each moved car on track *i* costs $c_i \in \mathbb{Q}_+$,

No space limitations, no ordering/sequence

Shunting Minimization

Each moved car on track *i* costs $c_i \in \mathbb{Q}_+$, e.g. $(1+1) \cdot c_1 + 2 \cdot c_4 + 2 \cdot c_5$

No space limitations, no ordering/sequence

Greedy

Take cheapest car(s) for each color, respectively Demand: D = (1, 1, 1, 1, 1, 1), |D| = n

Cost: Greedy $O(n^2)$, optimal O(n)

Complexity

 \exists vertex cover of cardinality *K*

Integer Program

 $z_{t,g}$: Access group g on track t?

 $y_{t,g}$: Number of chosen cars from group g on track t, at most $Q_{t,g}$

min
$$\sum_{t,g} c_t \cdot [(Q_{t,g} - y_{t,g}) \cdot z_{t,g+1} + y_{t,g}]$$

s.t.

$$z_{t,g} \leq z_{t,g-1} \quad \forall t, 1 < g$$

$$y_{t,g} \leq Q_{t,g} \cdot z_{t,g} \quad \forall t, g$$

$$\sum_{t,g: color(t,g)=\tau} y_{t,g} \geq D_{\tau} \quad \forall types \tau$$

$$y_{t,g} \geq 0 \quad \forall t, g$$

$$z_{t,g} \in \{0,1\} \quad \forall t, g$$

Integer Program

 $z_{t,g}$: Access group g on track t?

 $y_{t,g}$: Number of chosen cars from group g on track t, at most $Q_{t,g}$

$$\begin{array}{ll} \min & \sum_{i,r,\tau \in \mathcal{T}_r} c_{i,r} \cdot x_{i,r}^{\tau} + \sum_{r,\tau \in \mathcal{T}_r} M_{\tau} \cdot x_{S_{\tau},r}^{\tau} \\ \text{s.t.} & \sum_{r:\tau \in \mathcal{T}_r} x_{i,r}^{\tau} &\leq a_r^{\tau} \\ & \sum_{i,\tau \in \mathcal{T}_r} x_{i,r}^{\tau} + \sum_{\tau \in \mathcal{T}_r} x_{S_{\tau},r}^{\tau} &\geq b_r \\ \end{array} \qquad \qquad \forall i,\tau$$

$$x_{i,r}^{\tau} \in \mathbb{Z}_+ \qquad \forall i, r, \tau \in \mathcal{T}_r$$

$$\begin{array}{ll} \min & \sum_{i,r,\tau \in \mathcal{T}_r} c_{i,r} \cdot x_{i,r}^{\tau} + \sum_{r,\tau \in \mathcal{T}_r} M_{\tau} \cdot x_{S_{\tau},r}^{\tau} \\ \text{s.t.} & \sum_{r:\tau \in \mathcal{T}_r} x_{i,r}^{\tau} \leq \sum_{i,t,g: color(i,t,g) = \tau} y_{i,t,g} & \forall i,\tau \\ & \sum_{i,\tau \in \mathcal{T}_r} x_{i,r}^{\tau} + \sum_{\tau \in \mathcal{T}_r} x_{S_{\tau},r}^{\tau} \geq b_r & \forall r \end{array}$$

$$x_{i,r}^{\tau} \in \mathbb{Z}_+ \qquad \forall i, r, \tau \in \mathcal{T}_r$$

Computational Results

 \sim 683 tracks, 168 terminals, 42 regions; \sim 1575 cars, 123 car types; 18 requests

Conclusion

- Almost generic approach yields relevant results
- Experiments feed back into practice
- Test runs planned for September 2002
- Results encourage extensions...

Conclusion

- Almost generic approach yields relevant results
- Experiments feed back into practice
- Test runs were planned for September 2002
- Results encourage extensions...