Two Approaches to Model Periodic Timetabling With Different Event Frequencies

Christian Liebchen, TU Berlin

- The Standard Single Period Length Timetabling Model
- The Two Models Incorporating Different Frequencies
- Properties of the Two Models

The (Omni-) Presence of Periodic Timetables

Zug	RE 16317 ණ	1557	<i>IR</i> 2455 極 ₽ 15	RE 16319 ණ	3659 ණ	2102 ☞ <mark>●</mark>	RE 16321 ർർ	ICE 1559 اا	<i>I</i> R 2457 & ●
Vor		Saarbrücken/ Frankfurt	Düsseldorf/ Dortmund		Göttingen	Frankfurt am Main		Frankfurt am Main	Düssel- dorf
EisenachWuthaSchönau (Hörsel)SättelstädtMechterstädtFröttstädtGothaGotha572,602SeebergenWanderslebenNeudietendorf3 c	10 27 10 33 10 34 10 39 10 43	11 01 MAX BECKMANN	11 04 HEINZ RÜHMANN	11 09 11 14 11 17 11 20 11 23 <u>11 26</u> 11 27 11 33 11 34 11 39 11 43 11 46	11 48 11 54 12 03	12 05 STRE	$\begin{array}{r} 12\ 09\\ 12\ 14\\ 12\ 17\\ 12\ 20\\ 12\ 23\\ 12\ 26\\ 12\ 27\\ 12\ 33\\ 12\ 34\\ 12\ 39\\ 12\ 43\\ 12\ 46\\ \end{array}$	13 01 A	13 04 WAR 13 20 BURG
Neudietendorf Erfurt-Bischleben Erfurt Hbf 70 c nach		11 29 Dresden	11 37 Weimar	11 47 11 52 11 58 Halle	12 04 12 13 Zwickau/ Glauchau	12 39 Stralsund	12 47 12 52 12 58 Halle	13 29 Dresden	13 37 Weimar

The Standard Single Period Length Timetabling Model

The Periodic Event Scheduling Problem (PESP)

$$x_{ij} = \ell_{ij} + (\pi_j - \pi_i - \ell_{ij}) \mod T$$

$$\begin{array}{c} \min \ cx \\ \text{s.t.} \ \Gamma x = pT \\ \ell \leq x \leq u \\ p \text{ integer} \\ \text{(Serafini & Ukovich 1989)} \end{array}$$

$$\Gamma = \begin{pmatrix} 1 & 0 & 1 & 0 & | \ 1 & 0 & 0 \\ 1 & 1 & 0 & | \ 0 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 \end{pmatrix}$$

Visualizing Known Valid Inequalities

Visualizing Known Valid Inequalities

Visualizing Known Valid Inequalities

The Two Models Incorporating Different Frequencies

Presence of Periodic Timetables – Without Single Period

Tram 5	Mon	Montag - Donnerstag									
Zingster Str. Prerower Platz				5.21 5 . 25	5.34	10	8.04 8.08				
Arnimstr. Gehrenseestr.				5.27 5.29			8.10 8.13				

Presence of Periodic Timetables – Without Single Period

Tram 5		Мо	ntag	- Do	onne	rstac	1				
							_				
Zingster Str.			4.41	5 01	5.21	5 34	10 8.04	L			
Prerower Platz		•	4.45	5.05	5.25		-0.0 8.08				
Arnimstr.		•	4.47	5.07	5.27	5.40	8.10)			
Gehrenseestr.		•	4.49	5.09	5.29	5.43	8.13	3			
Tram	13				Mo	ntag	y - Freit	ag	ļ		
Zingste	er Str.				•	•			5.18	15 5.32	17
Prerowe	er Platz				•	•			5.22	5.36	1
Arnimst	r.				•	•			5.24	5.38	1
Gehren	seestr.				-	-	. 5	.06	5.26	5.41	1

Presence of Periodic Timetables – Without Single Period

Tram 5		Mont	ag -	Donn	ersta	g					
						1	<u>ו</u>				
Zingster Str.		. 4.	41 5.	.01 5.2	1 5.34	1	8.04				
Prerower Platz		. 4.	45 5.	05 5.2	5 5.38	3	8.08				
Arnimstr.		. 4.	47 5.	07 5.2	7 5.40)	8.10				
Gehrenseestr.		. 4.	49 5.	09 5.2	9 5.43	3	8.13				
Tram	13			Μ	onta	g -	Freit	ag			
				_		-		-	_	-	
Zingste	r Str.			•				5.1	8 5.32	[5 17.32	
Prerowe					•			5.2		17.36	
				•	•		• •				
Arnimst				•	•		• •		4 5.38	17.38	
Gehren				-					6 5.41	17.41	
	Tram 26					M	ontag	- Fre	itag		
								E			
	Zingster Str.	,					•	4.28	20 5.28	20 5.46	19.26
	Prerower Pla	tz				•	•	4.32	5.32	5.50	19.30
	Arnimstr.						•	4.34	5.34	5.52	19.32
	Gehrenseestr	·.				-	4.16	4.36	5.36	5.55	19.35

Duplicate Lines Within Single Period Model (Intuition)

Duplicate Lines Within Single Period Model (Intuition)

Duplicate Lines Within Single Period Model (Intuition)

Duplicate Lines Within Single Period Model (Formalism)

```
T \leftarrow \operatorname{lcm} \{ T_i \mid i \in V \} \{ \operatorname{artificial single period length} \}
for every arc a = (i, j) do
   g \leftarrow \gcd\{T_i, T_j\} \{ \text{arc's periods' gcd} \}
   n \leftarrow \frac{T}{a} {number of new arcs}
   w' \leftarrow \frac{w}{n} {weight of new arcs}
   for k = 0 to n - 1 do
      \ell_k \leftarrow \ell_a + k \cdot g {lower bound of current new arc}
      u_k \leftarrow u_a + (n-1)g + k \cdot g {upper bound of current new arc}
      INSERT_ARC(i, j, \ell_k, u_k, w')
   end for
   \mathsf{DELETE}_\mathsf{ARC}(a)
end for
```

 \hookrightarrow unavoidable **base** weight $g \cdot w' \cdot \frac{n(n-1)}{2}$.

Duplicate Lines Within Single Period Model (Formalism)

 $T \leftarrow \operatorname{lcm} \{ T_i \mid i \in V \} \{ \operatorname{artificial single period length} \}$ for every arc a = (i, j) do $g \leftarrow \gcd\{T_i, T_j\}$ {arc's periods' gcd} $n \leftarrow \frac{T}{a}$ {number of new arcs} $w' \leftarrow \frac{w}{n}$ {weight of new arcs} **0/T** for k = 0 to n - 1 do $\ell_k \leftarrow \ell_a + k \cdot g$ {lower bound of current new $u_k \leftarrow u_a + (n-1)g + k \cdot g$ {upper bound INSERT_ARC (i, j, ℓ_k, u_k, w') end for $\mathsf{DELETE}_\mathsf{ARC}(a)$ end for

 \hookrightarrow unavoidable **base** weight $g \cdot w' \cdot \frac{n(n-1)}{2}$.

• Maintain period time T_i for every periodic event *i*.

- Maintain period time T_i for every periodic event *i*.
- Periodic constraints become

 $\exists z_i, z_j \in \mathbf{Z} : \ell_a \leq (\pi_j + z_j T_j) - (\pi_i + z_i T_i) \leq u_a.$ (Extended Periodic Event Scheduling Problem)

- Maintain period time T_i for every periodic event *i*.
- Periodic constraints become

 $\exists z_i, z_j \in \mathbf{Z} : \ell_a \leq (\pi_j + z_j T_j) - (\pi_i + z_i T_i) \leq u_a.$ (Extended Periodic Event Scheduling Problem)

• Since $T_a \mathbf{Z} = T_i \mathbf{Z} + T_j \mathbf{Z}$ for $T_a := \gcd(T_i, T_j)$, these simplify to $\exists z_a \in \mathbf{Z} : \ \ell_a \leq \pi_j - \pi_i + z_a T_a \leq u_a$.

- Maintain period time T_i for every periodic event *i*.
- Periodic constraints become

 $\exists z_i, z_j \in \mathbf{Z} : \ell_a \leq (\pi_j + z_j T_j) - (\pi_i + z_i T_i) \leq u_a.$ (Extended Periodic Event Scheduling Problem)

- Since $T_a \mathbf{Z} = T_i \mathbf{Z} + T_j \mathbf{Z}$ for $T_a := \operatorname{gcd}(T_i, T_j)$, these simplify to $\exists z_a \in \mathbf{Z} : \ \ell_a \leq \pi_j - \pi_i + z_a T_a \leq u_a$.
- The Feasibility Problem may be stated as:

$$\Gamma x = \Gamma \begin{pmatrix} z_{a_1} T_{a_1} \\ \vdots \\ z_{a_m} T_{a_m} \end{pmatrix}$$

$$\ell \leq x \leq u$$

 z integer.

- Maintain period time T_i for every periodic event *i*.
- Periodic constraints become

 $\exists z_i, z_j \in \mathbf{Z} : \ell_a \leq (\pi_j + z_j T_j) - (\pi_i + z_i T_i) \leq u_a.$ (Extended Periodic Event Scheduling Problem)

- Since $T_a \mathbf{Z} = T_i \mathbf{Z} + T_j \mathbf{Z}$ for $T_a := \gcd(T_i, T_j)$, these simplify to $\exists z_a \in \mathbf{Z} : \ \ell_a \leq \pi_j - \pi_i + z_a T_a \leq u_a$.
- The Feasibility Problem may be stated as:

$$\Gamma x = \Gamma \begin{pmatrix} z_{a_1} T_{a_1} \\ \vdots \\ z_{a_m} T_{a_m} \end{pmatrix}$$

$$\ell \le x \le u$$

z integer.

 Γ given in HNF again permits reduction to m - n + 1 integer variables.

Objective Function for the EPESP

The waiting times that occur are exactly
$$\{x_0 + i \cdot T_a \mid i = 0, \dots, \frac{T_j}{T_a} - 1\}$$
, with $x_0 := (\pi_j - \pi_i - \ell_a) \mod T_a$.
(Nachtigall 1996)

Objective Function for the EPESP

The waiting times that occur are exactly
$$\{x_0 + i \cdot T_a \mid i = 0, \dots, \frac{T_j}{T_a} - 1\}$$
, with $x_0 := (\pi_j - \pi_i - \ell_a) \mod T_a$.
(Nachtigall 1996)

 \hookrightarrow we may restict ourselves on penalizing only x_0

Properties of the Two Models

Benefit of Cutting Planes in the Single Period Length Case

Benefit of Cutting Planes in the Single Period Length Case

No Profit in Duplicated Lines Model by Standard Cuts

• For every feasible solution, we know

 $\forall a \in A, \exists z_a \in \mathbf{Z} : \ell_a \leq x_a + z_a T_a \leq u_a.$

- For every feasible solution, we know $\forall a \in A, \exists z_a \in \mathbf{Z} : \ell_a \leq x_a + z_a T_a \leq u_a.$
- Along any cycle *C* with incidence vector γ , we have $\sum_{a \in C^+} \ell_a - \sum_{a \in C^-} u_a \leq \sum_{a \in C^+} (x_a + z_a T_a) - \sum_{a \in C^-} (x_a + z_a T_a) \leq \sum_{a \in C^+} u_a - \sum_{a \in C^-} \ell_a.$

- For every feasible solution, we know $\forall a \in A, \exists z_a \in \mathbf{Z} : \ell_a \leq x_a + z_a T_a \leq u_a.$
- Along any cycle C with incidence vector γ , we have $\sum_{a \in C^+} \ell_a - \sum_{a \in C^-} u_a \leq \sum_{a \in C^+} (x_a + z_a T_a) - \sum_{a \in C^-} (x_a + z_a T_a) \leq \sum_{a \in C^+} u_a - \sum_{a \in C^-} \ell_a.$
- Normalizing the tensions' sum $\sum_{a \in C^+} x_a \sum_{a \in C^-} x_a$ to **zero**, we obtain

$$\frac{\gamma^+\ell+\gamma^-u}{T_C} \leq \sum_{a\in C^+} z_a \frac{T_a}{T_C} - \sum_{a\in C^-} z_a \frac{T_a}{T_C} \leq \frac{\gamma^+u+\gamma^-\ell}{T_C}, \quad T_C := \gcd\{T_a \mid a\in C\}.$$

- For every feasible solution, we know $\forall a \in A, \exists z_a \in \mathbf{Z} : \ell_a \leq x_a + z_a T_a \leq u_a.$
- Along any cycle *C* with incidence vector γ , we have $\sum_{a \in C^+} \ell_a - \sum_{a \in C^-} u_a \leq \sum_{a \in C^+} (x_a + z_a T_a) - \sum_{a \in C^-} (x_a + z_a T_a) \leq \sum_{a \in C^+} u_a - \sum_{a \in C^-} \ell_a.$
- Normalizing the tensions' sum $\sum_{a \in C^+} x_a \sum_{a \in C^-} x_a$ to **zero**, we obtain

$$\frac{\gamma^+\ell+\gamma^-u}{T_C} \leq \sum_{a\in C^+} z_a \frac{T_a}{T_C} - \sum_{a\in C^-} z_a \frac{T_a}{T_C} \leq \frac{\gamma^+u+\gamma^-\ell}{T_C}, \quad T_C := \gcd\{T_a \mid a\in C\}.$$

• Since $z_a \in \mathbb{Z}$ and for all $a \in C$ we have $\frac{T_a}{T_C} \in \mathbb{N}$, rounding yields the cuts $\left[\frac{\gamma^+\ell+\gamma^-u}{T_C}\right] \leq \sum_{a \in C^+} z_a \frac{T_a}{T_C} - \sum_{a \in C^-} z_a \frac{T_a}{T_C} \leq \left\lfloor \frac{\gamma^+u+\gamma^-\ell}{T_C} \right\rfloor.$

- For every feasible solution, we know $\forall a \in A, \exists z_a \in \mathbf{Z} : \ell_a \leq x_a + z_a T_a \leq u_a.$
- Along any cycle C with incidence vector γ , we have $\sum_{a \in C^+} \ell_a - \sum_{a \in C^-} u_a \leq \sum_{a \in C^+} (x_a + z_a T_a) - \sum_{a \in C^-} (x_a + z_a T_a) \leq \sum_{a \in C^+} u_a - \sum_{a \in C^-} \ell_a.$
- Normalizing the tensions' sum $\sum_{a \in C^+} x_a \sum_{a \in C^-} x_a$ to **zero**, we obtain

$$\frac{\gamma^+\ell+\gamma^-u}{T_C} \leq \sum_{a\in C^+} z_a \frac{T_a}{T_C} - \sum_{a\in C^-} z_a \frac{T_a}{T_C} \leq \frac{\gamma^+u+\gamma^-\ell}{T_C}, \quad T_C := \gcd\{T_a \mid a\in C\}.$$

- Since $z_a \in \mathbb{Z}$ and for all $a \in C$ we have $\frac{T_a}{T_C} \in \mathbb{N}$, rounding yields the cuts $\left[\frac{\gamma^+\ell+\gamma^-u}{T_C}\right] \leq \sum_{a \in C^+} z_a \frac{T_a}{T_C} \sum_{a \in C^-} z_a \frac{T_a}{T_C} \leq \left\lfloor\frac{\gamma^+u+\gamma^-\ell}{T_C}\right\rfloor.$
- Hope: These inequalities provide **intrinsic lower bounds**!

Summary

Line Duplication Within Single Period Model	EPESP
Provides ability to model easily	
different arc frequencies	
	Really takes advantage of different event frequencies
Cutting planes commonly used	
are defined exclusively in the	
single period length model	

Summary

Line Duplication Within Single Period Model	EPESP
Provides ability to model easily	
different arc frequencies	
	Really takes advantage of different event frequencies
Cutting planes commonly used	
are defined exclusively in the	
single period length model	
Standard cutting planes do not	
necessarily enrich the	
arc-expanded model	
	Improve EPESP by
	generalized inequalities!

