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The (Omni-) Presence of Periodic Timetables
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Single Period Length

Timetabling Model
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The Core of the Model
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From a Lineplan to its Graph Model
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From a Lineplan to its Graph Model
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The Periodic Event Scheduling Problem (PESP)

xij := `ij + (πj − πi − `ij) mod T

min cx
s.t. Γx = pT

` ≤ x ≤ u
p integer

(Serafini & Ukovich 1989)
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Γ =

 1 0 1 0 1 0 0
1 1 0 0 0 1 0
0 −1 1 1 0 0 1


Γ network matrix, i.e. cycle-arc incidence matrix
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Visualizing Known Valid Inequalities

Valid Inequalities in the Unit Tact Case
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The Two Models
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Different Frequencies
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Presence of Periodic Timetables – Without Single Period
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Presence of Periodic Timetables – Without Single Period
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Presence of Periodic Timetables – Without Single Period
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Duplicate Lines Within Single Period Model (Intuition)
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Duplicate Lines Within Single Period Model (Formalism)

T ← lcm{Ti | i ∈ V } {artificial single period length}
for every arc a = (i, j) do
g ← gcd{Ti, Tj } {arc’s periods’ gcd}
n← T

g {number of new arcs}
w′ ← w

n {weight of new arcs}
for k = 0 to n− 1 do
`k ← `a + k · g {lower bound of current new arc}
uk ← ua + (n− 1)g + k · g {upper bound of current new arc}
INSERT ARC(i, j, `k, uk, w

′)
end for
DELETE ARC(a)

end for

↪→ unavoidable base weight g · w′ · n(n−1)
2 .
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Generalization of the Single Period Model (Nachtigall 1996)

• Maintain period time Ti for every periodic event i.
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Generalization of the Single Period Model (Nachtigall 1996)

• Maintain period time Ti for every periodic event i.

• Periodic constraints become
∃zi, zj ∈ Z : `a ≤ (πj + zjTj)− (πi + ziTi) ≤ ua.
(Extended Periodic Event Scheduling Problem)
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Γx = Γ
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Generalization of the Single Period Model (Nachtigall 1996)

• Maintain period time Ti for every periodic event i.

• Periodic constraints become
∃zi, zj ∈ Z : `a ≤ (πj + zjTj)− (πi + ziTi) ≤ ua.
(Extended Periodic Event Scheduling Problem)

• Since TaZ = TiZ + TjZ for Ta := gcd(Ti, Tj), these simplify to
∃za ∈ Z : `a ≤ πj − πi + zaTa ≤ ua.

• The Feasibility Problem may be stated as:

Γx = Γ

 za1Ta1...
zamTam


` ≤ x ≤ u
z integer.

Γ given in HNF again permits reduction to m− n+ 1 integer variables.
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Objective Function for the EPESP

The waiting times that occur are exactly

{x0 + i · Ta | i = 0, . . . ,
Tj
Ta
− 1}, with x0 := (πj − πi − `a) mod Ta.

(Nachtigall 1996)
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Objective Function for the EPESP

The waiting times that occur are exactly

{x0 + i · Ta | i = 0, . . . ,
Tj
Ta
− 1}, with x0 := (πj − πi − `a) mod Ta.

(Nachtigall 1996)
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83

2313

↪→ we may restict ourselves on penalizing only x0



Properties of the Two Models
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Benefit of Cutting Planes in the Single Period Length Case
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No Profit in Duplicated Lines Model by Standard Cuts
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Generalize Valid Inequalities to EPESP

• For every feasible solution, we know
∀a ∈ A, ∃za ∈ Z : `a ≤ xa + zaTa ≤ ua.
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• Hope: These inequalities provide intrinsic lower bounds !
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Summary

Line Duplication Within Single Period Model EPESP mmmmmm
Provides ability to model easily
different arc frequencies

Really takes advantage of
different event frequencies

Cutting planes commonly used
are defined exclusively in the
single period length model
Standard cutting planes do not
necessarily enrich the
arc-expanded model

Improve EPESP by
generalized inequalities!
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